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If G is a collection of subsets of a set, then a subintersection of G is a non-

null set which is the common part of the elements of a subcollection of G.

Suppose that a space X is a compact, locally connected, metric con-

tinuum. We show that X has a countable basis whose subintersections are

connected and uniformly locally connected. In fact, there is a basis for X

with the additional property that the collection of closures of elements of this

basis is a family of continuous curves such that each subintersection of this

family is a continuous curve. This extends a result of Anderson [l ] (x) showing

that there is a sequence Gi, G2, ■ ■ ■ such that d is a finite 1/t-collection of

continuous curves covering X and the subintersections of ^G, are locally

connected.

The notion of partitioning [2, 3, 4] will be used in proving these results. A

partitioning of X is a finite collection of mutually exclusive connected do-

mains whose sum is dense in X. The partitioning U is a brick partitioning if

each of its elements is uniformly locally connected and equal to the interior

of its closure while the interior of the closure of the sum of two adjacent ele-

ments of U is connected and uniformly locally connected. If each element of U

is of diameter less than e, U is an e-parititioning. In general, if each element

of a collection is of diameter less than e, the collection is called an ^-collection.

The brick partitioning F is a core refinement of the brick partitioning U if

(a) F is a refinement of U, (b) for each pair of adjacent element u', u" of U

there is a pair of adjacent element v', v" of V in u' and u" respectively such

that v'-j-v" is a subset of the interior of it'' + «"', and (c) for each element u

of U, the elements of V in u may be ordered v0, »i, • • • , vn such that üo inter-

sects each Vi while S¡ intersects the boundary of u if and only if i>0. We call

Vo a core element and vi, v2, ■ ■ • , vn border elements.

If B is a subset of X and G is a collection of subsets of X, we use S(B, G)

to denote the interior of the closure of the sum of the elements of G which have

limit points on B.

We shall use the following result which was proved in [3].

Theorem 1. For each brick partitioning U of X and each positive number

e, there is a brick (.-partitioning V of X which refines U.

Although the following result is a corollary of Theorem 6, it is given here

since its proof is much simpler than that of Theorem 6.
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Theorem 2. The space X has a countable basis whose subintersections are

connected and uniformly locally connected.

Proof. Let Ui, U2, ■ ■ ■ be a decreasing sequence of brick partitionings of

X (Ui+i refines Ui and the maximum of the diameters of elements of Ui ap-

proaches 0 with l/i). The basis is the collection of sets S(p, Ui) for pÇzX and

i=\, 2, • • • .

If G= [g] is an infinite subcollection of this basis, Hg is either empty or a

single point. The conclusion follows in this case. If G is finite, there is a larg-

est integer n such that some S(p, Un) is an element of G. Any two elements

of U„ in Tig are adjacent; moreover, the interior of the closure of their sum

is connected, uniformly locally connected, and contained in IIg. Since Ilg is

the interior of the sum of the closures of adjacent pairs of elements of U„, it is

connected and uniformly locally connected.

Theorem 3. For each brick partitioning U of X and each positive number e

there is a brick partitioning V of X such that V is a core refinement of U and

each border element of V is of diameter less than e.

Proof. Since U is a brick partitioning of X, there is a positive number «'

less than « such that the common boundary of each pair of adjacent elements

of U contains a point that is farther than e' from any other element of U. By

Theorem 1 there is a brick e'-partitioning U' of X which refines U. For each

element u of U, let Tu be a dendron in u which intersects each element of U'

in u. There is a brick (5/2)-partitioning U" oí X which refines U' where ô is

less than the distance between any Tu and the corresponding X — u. The core

element v0 of V in u is the set which is maximal with respect to being a con-

nected domain containing Tu and being the interior of the closure of the sum

of some elements of U" whose closures lie in u. The border elements of V in u

are components of the intersection of elements of U' with u — v0.

Theorem 4. For each ordering Ui, u2, ■ ■ ■ , un of the elements of the brick

partitioning U of X and each positive number e there is a brick partitioning V of

X such that

(1) V is a core refinement of U;

(2) each border element of V has a diameter of less than e;

(3) ifvi, v2 are adjacent elements of V, one of the sets S(vi, U), S(v2, U) con-

tains the other ;

(4) if Vi, v2 are adjacent elements of V and the element of U containing vi

precedes in uu u2, ■ ■ ■ , unthe element of U containing v2, then S(vi, U) contains

S(v2,. U).

Proof. We first show that there is a brick partitioning V satisfying (1),

(2), and (3). Suppose A7" is a fixed positive integer. Denote by Lemma N the

result obtained by replacing in Theorem 4 conditions (3) and (4) by
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(3') ifvi, V2 are adjacent elements of V, one of the sets S(vi, U), S(v2, U) con-

tains the other if each contains N or more elements of U.

Lemma N holds if N is greater than the number of elements in U. We show

that it holds for N=M if it holds for N— M+Í. Induction then establishes

Lemma N; Lemma N for N= 1 is Theorem 4 with condition (4) deleted.

Let U' be a brick partitioning of X satisfying the conditions of Lemma N

for N= Jkf+1. Defined to be the set of all points £ such that S(p, U) contains

at least M+Í elements of U. We define a brick partitioning U" of X whose

elements are of two types; (a) each element of U' in W =S(A, U') is an ele-

ment of U"; (b) if u is an element of U, u — W is an element of U". We note

that U" is a refinement of U and a consolidation of U'. However, it may not

be a core refinement of U.

There is a positive number 5i so small that if B is a subset of X—Woi

diameter less than 5i, S(B, U) does not contain ilf+1 elements of U.

Let 82 be the minimum of the distances between nonadjacent elements of

U'. We note that if B is a subset of X of diameter less than 52 and u' is an

element of U' with a limit point on B, then S(u', U) contains S(B, U).

We now describe a brick partitioning V which insures that Lemma N

holds for N= M. Let V be a brick partitioning of X which is a core refinement

of U" and such that each border element of V is of diameter less than

min (5i/2, 52). If u" is an element of U" of type (b) in an element u of U, the

core element of F in m is the interior of the closure of the sum of the elements

of V in u" whose closures lie in u. The other elements of Fare the elements

of U' in W and the elements of V which are not in W and whose closures

do not lie in any element of U. We find that F is a core refinement of U.

We now show that the elements of F satisfy conditions (3'). Suppose Vi

and v2 are two adjacent elements of F such that each of S(vi, U) and S(v2, U)

contains M or more elements of U. We may suppose that neither vx nor v2 is a

core element, for if Vi is a core element, S(v2, U) contains S(vi, U). Hence, if

Vi is not in W, it may be supposed to be of diameter less than either Si/2 or 52.

If both Vi and v2 are subsets of W, they are elements of U' and condition

(3') holds for them because each of the sets S(vi, U), S(v2, U) contains

Af+1 elements of U.

If vi is a subset of W and v2 is not, then Vi is an element of U'. Since the

diameter of v2 is less than S2, S(vi, U) contains S(v2, U).

If neither Vi nor v2 is a subset of W, Vi+v2 is of diameter less than Si. Then

S(vi-\-v2, U) does not contain M-\-i elements of U. Hence S(vi, U) =S(v2, U).

By induction we find that Lemma N holds for all values N. Since it holds

for N=i, there is a sequence U— Vo, V%, ■ ■ ■ , F„ of brick partitionings of X

such that Fi+i satisfies (1) and (3) where U is F,- and the diameters of the

border elements of F¡+i are less than the distance between any nonadjacent

elements of F,- and less than the e mentioned in the statement of Theorem 4.

Consider the core partitioning V of U where the core element of F in w,-
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is the interior of the closure of the sum of the elements of F,- whose closures

lie in Ui. The border elements of F in «; are the elements of F,- in m, which

are not in this core.

If vi and v2 are two adjacent elements of F in the same element «,- of V,

one of the sets S(vi, U), S(v2, U) contains the other because if neither vx nor

»2 is a core element, then both are elements of F,. If Vi and v2 are adjacent

elements, Vi is in «,-, v2 is in u¡, &nàj>i, then S(vx, U) contains S(v2, U) because

the diameter of v2 is less than the distance between any two nonadjacent ele-

ments of Vi. Hence, F satisfies conditions (1), (2), (3), and (4).

Theorem 5. Suppose U is a brick partitioning of X and G is a collection of

open sets satisfying the following conditions:

(a) each element of G is the interior of the closure of the sum of the elements of

a subcollection of U;

(b) the subintersections of G are connected and uniformly locally connected;

(c) For each subcollection of G, the intersection of the closures of the elements

of the subcollection is the closure of the intersection of the elements of the sub-

collection.

Then for each positive number e there are a brick partitioning V of X and an

(.-covering H of X such that G-\-H satisfies the above conditions (a), (b), and

(c) with V substituted for U in condition (a).

Proof. Let U' be a brick (e/2)-partitioning of X that refines U. We note

the G satisfies condition (a) with U' substituted for U.

Since U' has only a finite number of elements, G has only a finite number.

Let Ui, «2, • • • , m„ be an ordering of the elements of U' such that if i<j, u¡

intersects as many elements of G as Ui does. It follows from condition (c)

that if üi intersects ü¡, then each element of G containing M; also contains u¡.

Let 5 be a positive number so small that if B is a subset of X of diameter

less than 5, then there exists a point p of X such that S(p, U') contains

S(B, [/')• Suppose F is a core refinement of U' such that F satisfies condi-

tions (3) and (4) of Theorem 4 and the border elements of F are of diameter

less than 5/2. Let vx, v2, • ■ ■ , vm be an ordering of the elements of F such that

Vi precedes v¡ provided either (1) »,• lies in an element of U' which precedes

the element of U' containing v¡ in the ordering u\, u2, • • ■ , un or (2) Vi and v¡

lie in the same element of U' and S(ví, U') contains more elements of U' than

S(vj, U') does . We note that if Vi intersects 9¿ and i<j, then each element of

G containing Vi also contains v¡.

For each point p, define h(p) to be the interior of the closure of the sum

of all elements of F whose closures lies in S(p, U'). Let H be the collection

of all such sets h(p). We prove that H is an e-covering of X and that G-\-H

satisfies conditions (a), (b), and (c) with F substituted for [/in condition (a).

To prove that H is a covering, consider a point q. Since each border ele-

ment of F is of diameter less than S/2, there exists a point p such that S(p, U')
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contains S[S(ç, F), U']. Then h(p) contains q. As the elements of U' are of

diameter less than e/2, each S(p, U') is of diameter less than e and the ele-

ments of H are of diameter less than e.

We next verify condition (b). Let J be a subcollection of G+iïand7rbe the

intersection of the elements of /. Since w is the interior of the closure of the

sum of the elements of a subcollection of F, it is uniformly locally connected.

If / contains no element of H, then rr is connected by hypothesis. Suppose /

contains an element h(p) of H. Let v,, v¡ be elements of F contained in w and

uT, u, be the elements of U' containing Vi and v¡ respectively. Then üT-üs is

not null. Hence it contains v,, v¡, the core elements of V in ur and u„ and the

border elements of V whose boundaries intersect the closure of no elements

of U' except ur and us. Then it is connected.

Finally, we check condition (c). If a» intersects v¡ and i<j, S(ví, U')

contains S(vj, U'). Hence v¡ lies in S(ví, U') and if h(p) contains v,, it also con-

tains Vj. Hence each element of G-\-H containing Vi also contains Vj. If p is a

point of the intersection of the closures of the elements of /, the last element

of Vi, v2, ■ ■ ■ , vm having p on its closure is in each element of /. Hence # con-

tains p and is the intersection of the closures of the elements of /.

Theorem 6. The space X has a countable basis G whose subintersections are

connected and uniformly locally connected and such that if G' is a subcollection

of G, then the intersection of the closures of the elements of G' is the closure of the

intersection of the elements of G'.

Proof. Let G0 be the covering of X whose only element is X itself, and i/0

be the brick partitioning of X whose only element is X itself. Repeated appli-

cations of Theorem 5 give a sequence Go, G\, • • • of coverings of X such that

Gi (*'èl) is a (1/t)-covering and such that Gi + G2+ • • • +G,- satisfies con-

ditions (b) and (c). Define G to be ¿^,G, and the theorem follows. The follow-

ing result is a consequence of Theorem 6.

Theorem 7. For each positive integer i, X is the sum of a finite (1 /^-collec-

tion G i of continuous curves such that each subintersection of ¿2d is a continuous

curve.
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