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1. A mean on a semi-group S is a positive linear functional of norm one

on the space ?re(2) of bounded, real-valued functions on 2. A bounded semi-

group S of linear operators from a Banach space £ to itself is called er-

godic if there exists a system zA of averages A such that for every S in S

linu iAS—A) =linu iSA —A) =0; we have three strengths of ergodicity of

S according as uniform, strong, or weak convergence is used in the operator

algebra.

The first part of this paper deals with the relationship between existence

of invariant means and ergodicity of bounded representations. In Theorem 2

it is shown that weak ergodicity of every bounded representation of 2 is

equivalent to weak ergodicity of the right and left representations of 2 by

right and left translations on ?w(2), and equivalent to the existence of a mean

on tw(2) invariant under right and left translations. These conditions, in

turn, are equivalent to existence of a directed system of finite means on ?re(2)

converging weakly to two-sided invariance under all right and left translations

of m(2). Uniform ergodicity is similarly related to existence of finite means

converging in the norm of ?re(2)* to two-sided invariance (Theorem 4).

The second part of this paper gives some sufficient conditions for exist-

ence of invariant means or of finite means converging in norm to invariance.

For the former, the Markoff method of proof by fixed-point arguments is ap-

plied (§5) to "solvable" semi-groups and groups, and to semi-groups which

are the union of expanding directed systems of sub-semi-groups with means.

(For example, a group G such that every finite subset generates a finite sub-

group has an invariant mean.) It is also proved by a direct construction

(Theorem 6) that if G is a normal subgroup of a group H and if G and H/G

have two-sided invariant means, so has H. In §6 a parallel result is proved for

finite means converging in norm to invariance. These results greatly increase

the family of groups known to have invariant means. Solvable groups formed

the only such class previously known; §6 now shows that a solvable group

satisfies a stronger property; it has a system of finite means converging in

norm to invariance.
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The last section shows that if G has an invariant mean, then every

bounded representation of G on a Hubert space is equivalent to a unitary

representation, and also shows that the free group on two generators has no

invariant mean.

It is to be emphasized that the ergodic and invariance properties of major

interest here are properties of abstract semi-groups or groups; in this sense

they are "algebraic" properties of a semi-group though the definitions go out-

side the semi-group to bounded representations or to function spaces.

2. The definition of ergodicity below is adapted from that of Eberlein(2)

to the special case of bounded semi-groups. In what follows £ will be a

Banach space(3) and £(£, C) the Banach space of all linear operators from

£ into C. S will be a bounded(4) semi-group contained in the Banach algebra

£(£,£); that is(6) lub {||S|||5GS }=N<<*,and for each 5, S' in S , SS' is

also in S- For each b in£ lets (&)"■ (5è|5GS } and £(ô) = closed convex hull

oí Bib). Let K={T\ TGLiB, B) and TbGKib) for every b in B} ; that is,
if 'Pb^sKQ)) is the cartesian product of the sets £(£>), then i£ = £(£, £)

CWb^BKib). The symbol zA will represent a directed system(6) each element

of which is an element of £(£, £).

Definition 1. S is called ergodic under the system of averageszA when all

the following conditions are satisfied:

(a) zAqZK.
(b) For each 5 in S , linu A (5 — I) = 0, where I is the identity operator in

£(£, £).

(c) For each 5 in S, KmA (5- I)A=0.

The strength of the assumption of ergodicity of S depends on the topology

of £(£, B) used in (b) and (c). Corresponding to the uniform (or norm) s*-

and w*-topologies(7) in £(£, £), we have uniform s*- or w*-ergodicity of S

under zA. S is called ergodic in a given sense if and only if there exists a di-

rected system <¡A of averages under which S is ergodic in the given sense.

5*-ergodicity of S is the property which carries the burden of the F. Riesz

proof(8) of the mean ergodic theorem. It may be noted that if in the proofs

of most such results the s*-limit is used in (b), it suffices to use the w*-limit

in (c) since its only use is to get a certain point into the manifold of common

fixed points of S .

(2) W. F. Eberlein, Proc. Nat. Acad. Sei. U.S.A. vol. 34 (1948) pp. 43-47, and Trans. Amer.
Math. Soc. vol. 67 (1949) pp. 217-240.

(3) S. Banach, Théorie des opérations linéaires, Warsaw, 1932.

(4) For brevity we keep to the bounded case even in this section where the results can be

adapted to the more general definition of ergodicity used by Eberlein.

(6) [pI Q\ ls the set of elements p with the property Q.

(•) SS' is the element of L(B, B) such that 55'(6) =5(5'(6)) for all b in B; that is, multi-

plication in L(B, B) is functional composition.

C) M. M. Day, Trans. Amer. Math. Soc. vol. 51 (1942) pp. 583-608.
(8) F. Riesz, J. London Math. Soc. vol. 13 (1938) pp. 274-278.
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Let us begin with a simple characterization of w*-ergodicity of S • As-

sume^) that £ is embedded in £**, the second conjugate of £, by the canon-

ical mapping Qbiß) =ßib) for all ß in £*; then £(£, £) can be regarded as a

subspace of £(£, £**). To the uniform, s*-, and w*-topologies of £(£, £**)

we must add a fourth, the w*-topology; this is the relative topology imposed

on £(£, £**) by the product space topology (also called the point-open

topology) of the space of all functions from B into £** when the w*-topology

is used in £**. w*-linu A =A0 if and only if linu Ab iß) =A0biß) for every b

in£ and (3 in E*. In this w*-topology every sphere in £(£, £**) iscompact(10).

Let E* =w*-closure of K in £(£, £**).

Lemma 1. S is w*-ergodic if and only if there exists A* in £(£, £**) such

that (a*) A*GK*; (b*) A*(S-I) =0, and (c*) iS-I)**A* =0(n).

K is bounded so K* is bounded and w* -compact. If S is ergodic under zA,

let A* be a w*-cluster point of zA; that is, for every A in zA and every w*-

neighborhood U oí A* there exists A' ^ A such that 4'£¿7. Clearly A* GK* ;

the proofs of (b*) and (c*) are so similar that we display only that of (c*).

Given S in §, b in B, ß in £*, and e>0, there exists Ae in zA with

|/3[(5-J)i46]| <e if A^At; then there exists A^At such that | (-4*6)

[iS-I)*ß]-[iS-I)*ß]iAb)\<e. Hence \ [iS-I)**A*b]iß2) = \iA*b)[iS
--O*0]| <l [(5-/)*j3](il6)|4-e=|j8[(5-7)i4&]|4-É<2e. Using in order the
freedom of e, Ô, and b gives (c*).

If A* inE* satisfies (a*) to (c*), each w*-neighborhood U oí A* meets K;

for each U let Au belong to KC\U. Ordering neighborhoods by inclusion

then gives a directed system zAçZK such that w*-limA A =A*. To prove, for

example, (c) take S in§ , b in B, and ß in £*; then

lim 0(S - I)Ab = lim [(5 - I)*ß](Ab)
A A

= (¿¿)[(S - I)*ß] = [(5 - I)**A*b](ß) = 0,

so 0 = w* — linu iS — I)A.

Theorem 1. If K* =K, in particular, if S ib) is w-conditionally compact or

w-sequentially conditionally compact for each b, or if B is reflexivei}2), then S is

w*-ergodic if and only if S is uniformly ergodic.

Under either compactness hypothesis Eberlein(13) has shown that KQ)) is

(•) As in M. M. Day, Trans. Amer. Math. Soc. vol. 51 (1942) pp. 399-412.
(I0) Compact is used here in the sense once denoted by bicompact. To prove compactness,

C, the unit sphere in L(B, B**), is closed in Pb(=B C(b), where C(b) is the sphere of radius ||ô||

about 0 in B**. Each C(b) is î«*-compact, so Tychonoff's theorem asserts C is compact.

(H) As usual the adjoint 5* of an 5 in L(B, B) is that element of L(B*, B*) defined by 5*0(6)

=ß(Sb) for all 6 in B, ß in B*. 5** = (5*)* is, therefore, in L(B**, B**).

(12) B reflexive means Q(B) =B**.

(13) W. F. Eberlein, Proc. Nat. Acad. Sei. U.S.A. vol. 33 (1947) pp. 51-53.
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w*-closed in £**; hence K is w*-closed and E* =E. Under the reflexivity

assumption, £(£, £**)=£(£, £), so K*=K. Then ^4*GE and is invari-

ant.

It will be necessary to recall that attached to each semi-group S in £(£, £)

there are two closed linear manifolds Af0(S ) = {b\ (5 — 7)6 = 0 for all 5 in S },

and Afi(S ) - closed linear hull of {iS-I)b\ SGS, bGB}. Let M (S ) = Af0(S )
+ MiiS) = {x+y\xGMoiS), yGMiiS)}. The gist of the usual ergodic

theorems is in the following collection of conclusions; these and further

references can be found in the references of footnotes 2, 8, and 9.

If S is s*-ergodic under zA, then

(1) lim a AB=rb exists in the norm topology if and only if bGM(S).

(2) M(S ) is closed in B.

(3) rb = b if and only if bG Mo(S );rb = 0 if and only if bG -Mi(S ) ; and for
all S in S ,tS = St = tt = t; hence r is the projection of M(2> ) along Afi(S ) onto

Afo(S).
(4) ||x|| ̂ iV = lub {||5|||5GS}.
(5) rb is the unique point in K(b)r\Mo(ê)-

(6) bGM(ë) if and only if Ab, AGzA have a weak cluster point ba in B;

in this case bo = rb.

If S is only w*-ergodic under zA, the conclusions change only in that the

first limit is taken in the weak rather than the norm topology of B.

Using (6) we see: If S is w*-ergodic under a system zA such that Ab has a

weak cluster point in B for every b in B, then S is uniformly ergodic with t as a

single invariant average. This gives another proof of Theorem 1 ; (1) identifies

A* as r. It may be noted that this could also be stated as: S is ergodic under

a single invariant average A in K if and only if S is w*-ergodic and Ai(S )

= £ (thenA=r).

3. In this section we consider bounded representations of a fixed abstract

semi-group. Let 2 be a semi-group with elements a; that is, in 2 is defined a

binary multiplication which satisfies the associative law. A right ileft) rep-

resentation of 2 is a function £ from 2 to an £(£, £) such that F„<

= £„£„'(£,„' = £„'£„). We wish to find conditions under which every bounded

right and left representation of 2 is ergodic in some sense. To this end we

employ certain regular representations of 2.

Let íw(2) be the Banach space of all bounded, real-valued functions x on

2. For each a in 2 define R = r(cr)=ra in £(rre(2), w(2)) by Rxi<r') =x(<r'<r)

for all a' in 2 and x in ?w(2). The function r is the right representation of 2,

although we shall also apply this name to the semi-group f\ = r(2). Similarly

we define the left representation I by £ = ¿(tr) = /„ if Lxicr')=xiao') for all tr' in

2 and x in w(2); let £=¿(2).

It is clear that elements of %. commute with elements of £, and that

the elements of %_ and „£ are of norm not greater than 1, so 'R. and jf¿ are

bounded representations of 2.
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Let e be the unit function, e(ff) = l, in ?re(2). A meanu over 2 is an element

of rez(2)* such that ¿¿(e)=||p.|| =1; it is well known that for an element of

fre(2)*/u(e) =||m|| is equivalent to a(x) = 0 if x(o) =0 for all a.

Theorem 2. The following conditions on a semi-group 2 are equivalent (14).

(a) Every bounded right or left representation is w*-ergodic.

(b) The regular representations 1\ and .£ are w*-ergodic.

(c) There exists a mean ju in rez(2)* invariant under <R* and jÇf (where
£R*={E*|EG£R.}).

(d) e is at distance one from Mi(1{) + Mi(£).

(e) For every bounded representation Fof"Z and S = E(2), there exists A*

satisfying (a*), (b*), and (c*) ; in fact, A* is in the w*-closure of the convex hull

ofê.

Obviously (e)—»(a)—-»(b) ; the rest of the argument depends on the follow-

ing propositions:

(A) If <R and £ are w*-ergodic, then AfoCR) = MoiJQ ={te\t real}.

If xGMoilO, r„(x)=x for all <r or r„x(o-') = x(o-'er) = x(o-') for all cr, o'.

Hence la>xio) = x(o-') for all a'; that is, Z„<x = x(o-')e if o-'G2. Clearly scalar

multiples of e are in AfoCR) and in Af0(.£) so x = ix — l„>x)+l,>xGMiijQ

+ Mo(jQ = M(JQ. By ergodicity of jf¿ (items 1 and 5) l,'X = l„>>x for every a',

a" in 2, so x(cr') =>*(<r") for all a', a" in 2.

Let eP = smallest semi-group in L(w(2), w(S)) containing iR and „£; by

commutativity, fP = {E£ | E G"R., LGJ^}- We also recall the definition of

partial order and convergence in a semi-group given by Alaoglu and Birk-

hoff(16). We shall use the symbols p, X, w for elements of the convex hulls

of 'R, JÇj and CP, respectively. Ordering these by multiplication, we say pèp'

if there exists p" such that p=p"p'. Alaoglu and Birkhoff showed that, for

given x, lim,, px exists (in norm) if and only if (5) of the conclusions of ergodicity

holds for every p'x. Applying this to a w*-ergodic *R. we find that

limp \\px — trx\\ —0 for every x in AfCR), where tr is related to <R as r was

related toS-

(B) If î\ and jf¿ are w*-ergodic and xG-MCR), then limT |¡tjíX — 7rx|| =0.

This argument depends on the commutativity of 5\ with .£; compare also

Eberlein's Theorem 8.2.

Since a similar result holds with <R replaced by £ we obtain :

(C) If <R and jf¿ are w*-ergodic and x G -M"CR) + M(^Q), then lim* 7rx exists

in the norm topology. limT irx = 0 if xGMiilQ + MiijQ; limT ttx = x if x( = /e)

GJIfo(«0=Mo(0-
Since every x is of norm not greater than 1, ||limx irx|| Ss||x||. It follows

that iiyGMii<Rj + MiijQ, \\y + e\\^\\e\\ =■ 1. This proves that (b) implies (d).

(") Alaoglu and Birkhoff, Proc. Nat. Acad. Sei. U.S.A. vol. 12 (1939) pp. 628-630, have
observed that for groups (c) implies some form of ergodicity.

(I6) Alaoglu and Birkhoff, Ann. of Math. (2) vol. 42 (1940) pp. 293-309.
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By the Hahn-Banach theorem and (d) there is a mean ß such that p.(x) = 0

for x in Mii<R) + MiiJQ. But m = 0 on Afi(<R) means p.(Ex-x)=0 for all

x or R*u = ß for all £. Similarly, ß is invariant under "P*, so (d) implies (c).

Now let £ be a bounded representation of 2 in £(£, £) and define A*

from u, as in footnote 9, as follows: For each b in £, E„ b is a bounded function

of (r,/6(ff) ; for each ß in £*, j8:/0, defined by ö:/6(er) =/3(/„(<r)), is in w(2). De-

fine -4*6(|8) =niß:fh) for all /3 in £*. It is easily verified that A* ££(£, £**) ;

(b*) and (c*) can be checked as in footnote 9. For (a*) recall that each mean

¡x is a w*-limit of finite means p.T, where 7 is a function on 2 such that 7(0-)

= 0, X^t(°") = 1> 7(°0=O except at a finite number of points, and p;7(x)

=23„7((r)x((r). It is easily verified that if ß = w*-limy ßy, then A* =w*-lim7

^,cy(o-)F(a), so ^4*GE*.

Corollary 1. // every bounded right and left representation of 2 is w*-

ergodic, then every bounded representation F over a reflexive space B has the in-

variant t (0/ Theorem 1 and the conclusions from s*-ergodicity) given by ßirb)

= ßiß:fb) for every ß in B*,b in B, where u is an arbitrary mean invariant under

<R* and £*.

In some semi-groups ergodicity of one regular representation is enough to

enforce ergodicity of all right and left representations. The hypothesis of the

next corollary is satisfied if on the appropriate side 2 has either a unit or

unique cancellation; a similar result holds with left and right interchanged.

Corollary 2. Let 2 be a semi-group such that for every x in ?w(2) there exists

o" in 2 and x' in rez(2) such that l,"x' = x. Let p* be an average for iR defined,

as at the end of the preceding proof, from a mean ß. Then *R »5 ergodic under p* if

and only if ß is invariant under <R* and £*.

All that need be proved is invariance of p.; we sketch one case. By hy-

pothesis

0 =   [p*(£ - I)x]ia) = p(a:/(Ä_n.)

for all ff£m(2)*, xG?re(2), EG'R- Applying this to an a defined by a(x)

— xi<r") for all xG»*(2), we can show that a:f(R-i)X= (£ — I)l„"X for all x, so

that

0 =  [(£ - I)*ß]il,.,x) for all er", x.

Under the hypothesis, £*p =M for all £ in <R. A similar proof disposes of L*ß

and of the cases with right and left interchanged.

We remark here that if both cancellation laws hold in 2, then it can be

shown that if an element ß of ?w(2) * is invariant under 'R* and £*, the same

is true of the positive part of ß. This gives the following corollary.

Corollary 2'. If both cancellation laws hold in 2 (for example, if 2 is a

group), then the following conditions are equivalent to those of Theorem 2 :
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(c')  There exists ß^Oin m(Z)* invariant under <R* and «£*.

(d') AfiCR) + MiijQ is not dense iin norm) in w(2).

Invariance of ß under <R* and „£* is equivalent to the vanishing of ß on

Mi (il) and Mi(.Q, so (c') and (d') are equivalent. If (c') holds, ||p+|| +||m~||

= ||m|| 3^0, so at least one of p.+/||p.+|| and ju. /|j/x ]j is defined; that one will

satisfy (c).

4. In this section(16) we discuss a restricted form of ergodicity in which

the averages A used are actually finite averages of the elements of the semi-

group S • Let 13 be the convex hull in £(£, B) of the semi-group S. It was

shown in footnote 15 that 15 is also a semi-group in £(£, £) ; clearly M0(15)

= Mo(S) and Mi(15) =Mi(S). For further notation let $ = w*-closure of 15

in £(£,£) and let $* =w*-closure of 15 in £(£,£**) (so E = E*n£(E, £)).

Lemma 2. Lemma 1 and Theorem 1 remain valid if K and E* are replaced

by $ and $*, through all of §2.

Definition 2. S is restrictedly ergodic in a given topology of £(£, £) if it

is ergodic in that topology under a directed system of averages zAçZ^ô.

Lemma 3. In LiB, B) a convex set is w*-closed if and only if it is s*-closed ;

hence ®=s*-closure of 15.

If £oGs*-closure of C, a convex set, there exist e>0 and bu • ■ • , bn in

£ with Z7={r|||rii-r06i||<e} disjoint from C. Let £' = £X£X - - • XB

(using « factors) and let ||(&i, • • • , &n)||=max¿g„ ||ô;||. Let C'={T'

= (77>i, • • • , Tbn)\TGC} and let r¿ = (r02>i, • • • , T0bn). Then C is convex

and ||r'-r¿|| ^e if T'GC. By Mazur's theorem(17) there existsß'GB'* such

that ô'(£o)>lub^Gc ß'iT')+e. Since ß'iTbu ■ ■ ■ , Tbn) = ¿¿g.ô, (Eè,-),

where ßiGB*, the w*-neighborhood V= {T\ |p\-(£ — T0)bi\ <e/n} is disjoint

from C; hence T0 is not in the w*-closure of C if it is not in the s*-closure of C.

Paralleling Theorem 1, this lemma now yields the following theorem.

Theorem 3. Under the hypotheses of Theorem 1,S is restrictedly w*-ergodic

if and only if it is restrictedly s*-ergodic.

In this case $*ÇJE* =KQB, so Ä* =$; hence $ is w*-compact. Hence

S w*-ergodic under zAÇLf^ implies zA has a w*-cluster point A 0 ; by Lemma 3,

this A o is the s*-limit of a directed system zA'CTj. It is easily verified that S is

s*-ergodic under zA' and we have the additional property that s*-linu'.4'

exists; by the remarks at the end of §2 we know A0 = s*-liniA' A' is t, the pro-

(18) The amount of space used here in §4 on the special case of restricted uniform ergodicity

and in §6 on existence of finite means converging in norm to invariance is justifiable on the

grounds of ignorance; every known example of a group with an invariant mean (including the

new cases introduced by the theorems of §5) has, as I have since shown, a system of finite means

converging in norm to invariance.

(17) S. Mazur. Studia Mathematica vol. 4 (1933) pp. 70-84.
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jection associated with S •

Combining this with (b) implies (e) of Theorem 2 we derive:

Corollary 3. When the regular representations 51 and „£ of a semi-group

2 are w*-ergodic, then every bounded right or left representation S = E(2) is

restrictedly w*-ergodic and every bounded representation of 2 over a reflexive B

is restrictedly s*-ergodic.

To strengthen this somewhat, let Q be the set of finite means over 2; that

is, 7GC? means y(o)^0 for all 0, 7(0-) =0 except on a finite subset of 2, and

^2«(=ty(o) = 1- As we mentioned before, each mean ß is a w*-limit of a di-

rected system TÇZC- Applying this to the ß of Theorem 2, (c), we have the

following corollary.

Corollary 4. If % and J^are w*-ergodic, then there exists a directed system

TÇZQ such that each bounded representation F of 2 is restrictedly w*-ergodic

under the directed system {<py\yGY} of finite means, where <py — ̂ «(=ty(o)F(cr).

A similar result holds for uniform ergodicity. To prove it we give the fol-

lowing lemma.

Lemma 4. If there exists a directed system YÇ.Q such that, for each o' in 2,

limy [lub {¡ ^2^y(o)(x(<rcr') — x(cr))| | ||xl| ^l} =0, then, for cpy defined as in

Corollary 4, IimT ||<£TE„' — <£-y|| =0 for each right representation F of 2.

For 110,^.-^11= lub {| Y,M<r)ß[F(<r)(F(<T')-I)b]\\\\ß\\^l, \\b\\^l}
= lub {| E.7(cr)(x((T(r')-x((r))||||x||álub,||Es||}.

It should be pointed out that if Q maps ¿i(2) into ?re(2)* by

Qy(x) — X)"G s y(a)x(o), then the hypothesis of Lemma 4 becomes

lim \\¿Qy - QT|| = 0.

Using this and the corresponding results for J^ and for left representations

gives the following theorem.

Theorem 4. // there exists a directed system V Cg which converges strongly to

2-sided invariance in the sense that limy \\ii'<r — I)*Qy\\ =0 andlimy \\ih — I)*Qy\\

= 0for every a, then every bounded right or left representation of 2 is restrictedly

uniformly ergodic; a suitable system of averages is {<j>y\yGY}, where <py

= ^2cyio)Fio). Conversely, ifL is a semi-group such that for every x in mÇZ,)

there exists 0" in 2 and x' in M(2) such that l„>>x' = x and \\x'\\ ^ ||x||, then uni-

form ergodicity of Runder a directed system {p7|7Gr} of finite means implies

that the system Y converges strongly to 2-sided invariance. (Right and left can be

interchanged here.)

For one typical case of the converse, we have by assumption ||r„p7— py\\

-»0. But
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\r,Pt - py\\ J2 y (<*')(?„■ -r*')

This will be

lub
MISV'Gz

lub
MISl,a"GS

J2y(a')x(o-"ao-') - x(cr'V)

Z7(<0lU"*(V) -/,"*(*')]

lub        \Qy[(h -I)l...x]\
bnsi,<'"Gs

lub        \{(l,-I)*Qy](l.'-x)\.
MláV'Gs

ä îub | [ii. - D*Qy](x) | = |[(/.-/)*e,

under the hypothesis of the converse.

5. The last sections showed the relationship between restricted ergodicity

of all bounded representations and the existence of finite means approaching

two-sided invariance, and (in the w*-case) the existence of a single two-

sidedly invariant mean. We present in this section some existence proofs for

such means.

For semi-groups we can give (Theorem 5) an invariant^ if the semi-group

is solvable in a sense to be made precise below. For groups we show that

existence of a left-invariant X suffices for existence of a two-sided invariant p.

and then (Theorem 6) show that if G and H/G have such means, so has H.

This, of course, applies to arbitrary solvable groups and, with slight modi-

fication, to show existence of a ß in C(H)* if H is an extension of a compact

G by a solvable H.

For groups with finite means converging in norm to invariance we have

parallel results (see §6) ; we can reduce to the left-sided approach, and we can

prove H has such means if G and G/H have.

Lemma 5. Let S be a semi-group of distributive operators in a linear space

B, let p be a positive-homogeneous sub-additive functional on B, and suppose

there is a constant N with piSb) ^ Npib) for all b, S. Let Eo be a linear subspace

of B invariant under S and let <po be a distributive functional on Eo invariant

under S and dominated by p (that is, cpo(Sb) =tpn(b) for all bGEo, SGS, and

<bo(b) ikp(b) for bGEo). If there exists a distributive extension ßo of <po to all

B such that ß0(b) Sp(b) for all b and ßü(SxS2b) =ß0(S2Sib) for all bGB, SiGS ,
then there is a distributive extension ß of(p0 to all B such that ß(Sb) —ß(b) for all

S,b,andß(b)^Np(b).

The assumption on ß0, that SiS^ßo^S^S^ßo for all Si in S , provides just
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enough commutativity to make the Markoff proof(18) (that there is a fixed

point common to all S* in the TO*-closed convex hull of {5*ô0| SGS }) effec-

tive. Morse and Agnew(19) have also proved such a theorem by an adaptation

of Banach's proof of existence of a Banach limit for bounded sequences.

If S is a semi-group, call Si a commutator set for S if for each pair S, S' in

S there exists Si in Si such that SS' = SiS1S or S'S = SiSS', and there exists

S2 in S i such that SS' = S'SS2 or S'S = SS'S2.

Lemma 6. Let S, p, <¡>o, and £0 be as in Lemma 5. If there exists a distributive

extension ß0 of <po to all B such that S*ß0 = ßo for all S* in a commutator set Si*

of S *, and ßo(b) íkp(b) for all b, then there exists an extension ß of <bo to all B

such that S*ß = ßfor all S in S and (3(6) ̂  Npib) for all binB.

If S, S' are given in S, arrange them in the proper order so that S*S'*

= S'*S*St Then S*S'*ßo = S'*S*S2*ß0 = S'*S*ß0, so Lemma 5 applies.
Call 2 solvable if there exists a chain of sub-semi-groups 2=20D2i

D • • •• D2n, with 2I+i a commutator set for 2,- and 2n commutative.

Theorem 5. Let 2 be a solvable semi-group. Then there exists a mean ß in-

variant under il* and £* iso the other conditions of Theorem 2 also hold).

Let £R, = r(2i) and „£i = /(2j) and let i\- be the semi-group generated by

51,- and .£,; then %,n and J^„ are abelian and commute. The Hahn-Banach

theorem gives a ßo such that p-o(e) =||mo|| = 1; since <Pn is commutative, Lemma

5 gives a p-i invariant under <P*. Since %¡ and „£< commute, it is easily verified

that *Pi+i is a commutator sub-semi-group for <P¿. Lemma 6 and induction

complete the proof.

This applies, of course, to solvable groups. Other notable simplifications

of proof appear, however, for groups, due to the presence of the cancellation

law and the inverse operation. In what follows G will be a group and £ will be

the element of £(rej(G), miG)) defined by £x(g) =x(g_1) for all gin G, x in

miG). The formulasrgT= Tig-1, l„T=Trf1, T2 = I, Te = e, and ||£x|| =||x|| for

all x are easily established.

Lemma 7. If there exists a mean X in rez(2)* invariant under .£*, then there

exists a mean p in m(X)* invariant under both <R* and .£*.

To define first a right-invariant mean p let p = £*X. Then from l*\ =X for all

g, we see that r*p=r*£*X = £%*-1X = £*X = p. X(e) = 1 implies p(e) = £*X(e)

=X(£e) =X(e) = 1. || £*|| = 1 and T*2 is the identity, so ||p|| =||x|| ( = 1).

Given right- and left-invariant means p and X define a two-sided invariant

mean p, as follows: for xGmiG) and gGG, let x(g) =p(/„x), and let p(x)

= X(x). This ß can be shown to be an invariant mean.

(") A. Markoff, C. R. (Doklady) Acad. Sei. URSS. N.S. vol. 10 (1936) pp. 299-301.
(») R. P. Agnew and A. P. Morse, Ann. of Math. (2) vol. 38 (1938) pp. 20-30.
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The argument above can be applied to any subspace of miG) closed

under the operations in question. In particular if G is a topological group and

U(G) the space of uniformly continuous, bounded functions on G, then U(G)

is closed under right and left translations and under the formation of x. If

G is the extension of a compact group by a discrete group, this space U(G)

coincides with the space C(G) of all bounded continuous functions, and is

also closed under T.

Corollary 5. 7/2 is a group, then the conditions of Theorem 2 and Corol-

laries 2, 2', 3, 4 are also equivalent to

(c") there exists a mean p. or a p^O in ?re(2)* invariant under il* or „£*,

or

(à") MiCR) or MiijQ is not dense in m(2),
or

if") there exists a directed system T of finite means converging weakly to

one-sided invariance.

Theorem 6. Let H be a group and G a normal sub-group of H. If there

exist invariant means over m(G) and over m(H/G), then there is an invariant

mean over m(H).

By Lemma 7 it suffices to find a left-invariant mean over H. Suppose that

a is left-invariant over miG) and ß left-invariant over ret(£), where H = H/G.

For fixed h in H and x in miH), define xu in ire(G) by xA(g) =x(Äg) ; then let

xQi) =aixh). We prove that if h and h' are in the same coset h, then x(h)

= x(h') ; for h = h'g' so

Xh(g) = x(hg) = xQi'g'g) = xh,(g'g) = (lg>xh,)(g),

so Xh = lg'Xh', and a(xn) =a(xw). Hence x(h) depends only on the coset h; we

define x on H by x(A) =xQi).

Now define y on m(H) by 7(x) =ß(x). This y can be shown to be a left-in-

variant mean, and Lemma 7 completes the proof.

Again this proof is valid for any subspace E(H) for which the con-

structed functions xh lie in an £(G) with left mean and the x lie in an E(H)

with a left mean. As before it may be noted that U(G), U(H), and U(H/G)

would satisfy these conditions.

Corollary 6. If the chain of commutator sub-groups of a group G ends at the

identity, then there is in m(G)* a two-sided invariant mean 71 so all the condi-

tions of Theorem 2 hold.

This follows by induction from Theorem 6.

Corollary 7. Let H be a topological group and G a compact normal sub-

group of H such that H/G satisfies the hypotheses of Corollary 6 ; then there is in

C(H) * a two-sided invariant mean.
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The Haar measure in G is a left-invariant a on CiG) — Í7(G). Corollary 5

provides a left-invariant ß on w(7í/G)2C(ií/G)2 UiH/G). Hence the re-

marks after Theorem 6 apply to give in CiH)* an invariant mean 7.

An elementary argument using w*-compactness proves the following

corollary.

Corollary 8. Let 'S, be a semi-group with a system A of sub-semi-groups ô,

directed by ¡2, with UjeAÔ = 2, such that for each 5 there is in rei(2)* a mean

ßs invariant under r(5)* and lib)*. Then there is a mean ß invariant under all

r(2)* and /(2)*.

As an aid in applying this we use the following lemma.

Lemma 8. If 2' is a sub-semi-group of 2, and if there exists a mean p.' in

m(2')* invariant under r'(2')* and Z'(2')*, then there exists a mean ß in fre(2)*

invariant under r(2') * and Z(2') *.

Letting £x = x'mean x'(o-') =x(ít') for all 0' in 2', the definition ß = P*ß'

gives an appropriate mean on m(S).

From these, Theorem 6, and the obvious mean on a finite group follow

(a) if every finitely generated sub-semi-group of 2 has a two-sided invariant

mean, so has 2; (b) if G is a group such that every finite subset generates a

finite sub-group, then G has an invariant mean; and (c) if G — U«« Hi, where

Hi and Hi+i/Hi are finite or solvable for all ordinals i<a, and if H\= U.oiiE

for every limit ordinal X <a, then G has an invariant mean.

6. The existence of finite means over rez(G) converging in norm to two-

sided invariance is a stronger restriction on G than is the existence of a single

invariant mean u in miG)*, for this is equivalent to existence of finite means

converging weakly to invariance. For this stronger restriction we have, how-

ever, almost the same properties (except for the analogues of Corollary 7

to the end of §5).

Lemma 9. If on a group G there exists a directed system A of finite means

X such that limx ||ieX—X|| =0 for every g in G, then there exists a directed system

<P offinite means d> such that lim0 ||Zff<£ —0|| =0 and lim^, ||v£— </>|| =0 for every

g in G.

As in Lemma 7, let

Ik.P - p|| = £ I pig's) - p(g') I = HI MrY-1) - Ms'-1) I
a' a'

= ||i,-*x-x||,

so lim„ ||rap—p|| =0. To construct a two-sided mean 4> from one left mean X

and one right mean p, define 4>=<p{\, p) by

*(*) = E X(A)p(A-ig) = £ HgfMt1).
hGO f€zG
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Then

Ik«* - ¿II = EI *(«<>) - <p(g) I
a

= ElZxwk^Koí-PÍ*-1«)]!

áEE x(ä) I rooP(Â-«g) - p(k-*g) |
0 *

- E X(A) E I ̂ .P(A') - p(A') | = |k,oP - p||.
h h'

Similarly

II*«* - *ll = E I <t>(gog) - <t>(g) |

- El E[M^/)-x(g/)]p(/-i)|

sLpCnEIWcO-^Cifll
/ 0

= Ep(/-1)Ek0x(g')-x(g')|
/ s'

= ||/..x - x|j.

Let <Ï>={</>(X, £*X)|XGAJ and order $ as A was ordered; that is,

¿(X,   £*X)è<p(X',   £*X')  if and only if X^X'.  Then

lim^, |ke<p —<p|| =Hm#|]Z,<p —<p|| =0

for all g in G.

Now as with invariant means we have the following theorem.

Theorem 7. Let H be a group, G a normal sub-group of H, and H* = G/H.

If there exist on G and on H* directed systems of finite means converging in norm

to (either-sided) invariance, then there exists on H a directed system of means

converging in norm to two-sided invariance.

By Lemma 9 we can consider only left invariance, so suppose that

lima ||/ea —aj| =0 for each g in G and lim3 \\lh*ß— ß\\ =0 for each A* in H*. Let

£ be a system of representatives in H of the group H/G; then each A in H is

uniquely representable as A=/g, /G£, gGG. Then (fg)(f'g') = (ff')(gf'g'),
where gh = h~1ghGG also.

Now for a and ß given define ß=ß(a, ß) by ß(fg) =oc(g)ß(J*), where A*

= coset containing A. Then, iifof=<pg', <1>GF, g'GG, and g'go = gi,

W(/í) = »(te'fg) = ß((M)*)«(g'gig) = ß((fof)*Mgig).
Hence
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IIW - J-ll = E        I ß((fof)*)a(gig) - ß(f*)«(g) I
/Gf.bGg

=§    E   ß((fof)*) I <*(gig) - «(*) I
fGF.gGa

+    E     I ß((M)*) - ß(f*) I cc(g)
/Gf,5Gq

á E pW</)*)||*.i« - «|| + \\lflß - ß\\
f

^ \\lfß - ß\\ +      lub     ||/,ia - «||.
/s(a./)*)^o

If £ and G are finite, the theorem is evident from the beginning. If £ or G

is infinite, the new directed system of means will be ordered by triples

(ß, 5, 7r), where (3 is in the given system of means on H*, ô is a finite subset

of G, and ir is a finite subset of £; (ß, 5, ir) Sï (ß', 5', ir') means that ß^ß',

53ô', and it'Dtt'. Define | 5 J to mean the number of elements in 5. For given

/o,/, and go, as above, letfof — cp'g', and gi = g'go- For given (ß, ô, ir) the set of

such gi obtained for/oG^, goGô, and /3(/*)^0 is finite. Hence there exists

a = a(ß, ô, ir) such that ||¿sia — a|| <1/| S| ■ 17r| for each such gi.

Let ß(ß, Ô, w) =ß(a(ß, 5, w),ß); then

lim   \\l/oBoß - ß\\ = 0.
(0,ä,ir)

This and Lemma 9 complete our proof.

Corollary 9. If the chain of commutator sub-groups of G ends at the identity

in a finite number of steps, then there exists a directed system of finite means

converging in norm to two-sided invariance.

G = GoDGiDG2D ■ ■ ■ ZDGn, abelian, and G,/Gt+i is abelian. To verify
the hypotheses of Theorem 7 for an induction argument requires only the

following lemma.

Lemma 10. // G is an abelian group, then the set V of all finite means on G

is an abelian semi-group under the operation of convolution, (y O y') (g)

= E^Go y(h~x)y'(gh). Ordering V by 7^7' if there exists y" withy =y" O y',

r becomes a directed system and limT ||/„7 —7|| =0 for all g.

The proof is essentially that of Eberlein's remark that every abelian semi-

group of linear operators is uniformly ergodic under its semi-group of finite

means, or can be derived from that fact by Theorem 4.

Returning for a moment to Corollary 9, it can be seen from the proofs of

Theorem 7 and Lemma 9 that a directed system $ of means on G is iso-

morphic to TXAXII, where Y is the system approaching invariance on G/Gi,

A is the system of finite subsets of Gi, and IT is the system of finite subsets of

G/Gi.
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Corollary 10. If G satisfies the hypotheses of Corollary 9, then every

bounded representation of G is restrictedly uniformly ergodic.

Since r*Qy — Qy = Q(rg-iy—y) and Q is norm-preserving, the conclusion

of Corollary 9 gives the hypothesis of Theorem 4.

Cohen(20) gave, as a sufficient condition for (s*-) ergodicity of every

bounded representation of the positive integers under a sequence of means

defined by a regular Toeplitz matrix {aa}> essentially the condition

lim< 2Z* | a,-*+i — au \ =0. The discussion here and around Theorem 4 can be

modified to prove this condition necessary and sufficient for uniform ergodic-

ity under the given sequence of means.

Lorentz(21) uses this same condition in a paper on Banach limits. His work

shows that an element x lies in the ergodic subspace M(S ) of the regular

representation of the semi-group S of integers if and only if p(x) has the same

value for every Banach limit ( = invariant mean). His proof can easily be

adapted to each abelian semi-group, but it is not yet determined for how

general a class of groups the result is valid.

7. We conclude with counter-examples and applications.

To show that there need not be a mean even one-sided invariant on the

space of all bounded uniformly continuous functions on a locally compact

group, let G be the discrete free group on two generators; the space in ques-

tion then reduces to m(G). If each element of G is written in reduced form,

then it begins with either a, b, a-1, or b~l (unless g = u, the identity of G).

Let A, B, A'1, and E"1 be the sets of this form. Then A,bA,b2A, ■ ■ ■ , bnA

are all disjoint. If, for example, x(g) =0 for g not in A, then lbx, l&x, ■ ■ ■ ,

fox are all disjoint so p( £¿sn4*x) =rep(x) if p is left-invariant, while

II "¿Lien lb'x\\ =||x||, so re|p(x)| ^||x|| for all re, and p(x) =0. But if xA(g) =x(g)

if gG^4, xA(g)=0 if gG^4,  we have ß(x) =ß(xA)+ß(xB)+ß(xA-1)+ß(xB-1)

+ p(Xu)=0.

I. Kaplansky suggested the following generalization of a theorem proved

by Sz. Nagy(22) for G = the integers or the real line.

Theorem 8. Let G be a group with a two-sided invariant mean p in m(G)*.

Then every bounded representation F of G in an inner product space B is equiva-

lent to a unitary representation in the sense that there exists a new inner product

defining the same topology in B, and such that every £„ is unitary with respect to

this new inner product.

As in the paper cited in footnote 22, for <p, \pGB let (<j>, \¡/) be the original

inner-product in the space £. Define a new inner-product stepwise, by x(g)

= (Fg<f>, Fgip), (<p, \p)=ß(x). Then (</>, \p) is an inner product in H, and, if || £„||

(2°) L. W. Cohen, Ann. of Math. (2) vol. 41 (1940) pp. 505-509.
(21) G. G. Lorentz, Acta Math. vol. 80 (1948) pp. 167-190.
(22) B. de Sz. Nagy, Acta Univ. Szeged Sect. Sei. Math. vol. 11 (1947) pp. 152-157.
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á.iV for all g, then (<p, <p)/NS(<P, <j>)ûN(<j>, <p). Also, defining \<j>\2 = (^, </>),

| Fg4>\ =\<p\ for all </>, g.
[It is known that if an inner product with these properties is given, there

exists a positive definite £ such that (</>, \p) — (£_1</>. P-1^)- ]

In case G is a topological group and Fg is continuous in w*-, s*-, or re-topol-

ogies, it suffices that p. be invariant over C(G).

Corollary 11. If G satisfies the hypotheses of Corollary 6, every bounded

representation on a Hilbert space is equivalent to a unitary representation. If G

satisfies the hypotheses of Corollary 7, then every continuous bounded representa-

tion is equivalent to a continuous unitary representation.

It should be mentioned that very simple (even finite) semi-groups need

have no invariant mean. If 2 is an arbitrary set and ao' = a' for all a, a', then

2 has no right-invariant mean if it has more than one element. I. —I for every

o and rax = x(o)e for every a, and Mi(31) =?re(2).

That there is no invariant mean does not (apparently) imply that there

is a bounded representation on a Hilbert space not equivalent to a unitary

representation. Thus far I have not succeeded in settling this more difficult

question even for the free group G on two generators.

Another problem of interest is this: Suppose every bounded representa-

tion of a group or semi-group is s*-ergodic. Is it restrictedly uniformly

ergodic?
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