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la. Introduction and summary of known results. There is no general

method of deciding whether a statement concerning the natural numbers,

involving the operations of addition and multiplication and the concepts of

elementary logic, is true or false. (See Gödel [2], Church [l], Rosser [8],

Tarski and Mostowski [ll], [5].) We express this fact by saying that the

solution to the decision problem is negative for the arithmetic of natural num-

bers, or that the arithmetic of natural numbers is undecidable.

This conclusion is very plausible even without proof, because of the

existence of many unsolved problems of just the character considered. For

example, the conjecture that there are infinitely many prime-pairs may be

written

(A^XVyXA«, v)[x 4- y = uw % + y + 2 = uv —>u = lv?= lj.

It is therefore one of the statements considered in the first paragraph.

Here and throughout, we use the logical symbols a (and), v (or), c«o

(not), —»■ (if • • • then ■ ■ •),*-* (if and only if), A (for every), and V (there

exists). These, together with =, represent the concepts of elementary logic.

The formulas under consideration involve only these symbols, the symbols

+ and ■, variables whose range is the set of natural numbers, and parentheses.

In the above formula, (Au, v) is short'for (AM)(A^)4We*shall also use the

convention that a formula containing free variables is to be interpreted as if

these were bound by universal quantifiers at the beginning of the formula.
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The prime-pair conjecture, as written, contains the symbols 1 and 2, in

addition to those listed as permissible. These, and indeed the symbols for

any specific natural numbers, can be eliminated by means of definitions such

as

x = 0<->x+x=x,        ï= 1<-*ï!= ïaï^O,        2=1 + 1.

Statements of the type which we have been considering will be called

statements of the arithmetic of natural numbers, or arithmetical statements

of the theory of natural numbers. We shall also consider arithmetical state-

ments of other theories. These are statements involving specified mathe-

matical concepts (operations, relations, and so on), the concepts of elementary

logic, and variables with specified range. The mathematical concepts will

always be the operations of addition and multiplication unless the contrary

is stated.

Let us now consider the arithmetic of integers. In the ring of integers, we

can define the concept natural number by

Nat x <-> (V«, i>, y, z) [x = u2 + v2 + y2 + z2],

or by

Nat x<->(Vy,z)[x = y2v(y2 = 1 + xz2 A y ?¿ 0 A z ^ 0) ].

In both cases, the range of the variables is the set of all integers. To verify

these equivalences, we use in the first case the theorem of Lagrange, and in

the second case known results concerning the so-called Pell equation.

Any statement in the arithmetic of natural numbers can be written as a

statement about integers, each variable x being restricted by the condition

Nat x; that is, we replace {/\x)[ • • • ] by (Ax) [Nat *—► • ■ • ], and

(\/x) [ • • • ] by (V*) [Nat xa • • • ]. Using either of the above definitions,

we can eliminate Nat, obtaining a statement of the arithmetic of integers.

Thus the solution to the decision problem is clearly negative for the arith-

metic of integers, or, as we shall say, the ring of integers is undecidable.

Both of the definitions of Nat given above are examples of what we shall

call arithmetical definitions. By this we mean that the definition has the form

of an equivalence, with the concept to be defined on the left, whereas on the

right occur only the concepts of elementary logic, the given mathematical

concepts (here the operations of addition and multiplication), and variables

with specified range (here the set of integers), all of the variables being bound

except those which occur on the left. Only such a definition can serve to

eliminate the defined concept and give an arithmetical statement as result.

For example, the set-theoretical definition

Nat ^(AM)foe MA(/\y)[yG M--> y + I <E M]^ x E M},

where M ranges over sets of integers, would not serve this purpose.
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Nat is also arithmetically definable in the field of rational numbers (Julia

Robinson [7], Theorem 3.1), and hence this field is undecidable. On the other

hand, any algebraically closed field or real closed field is decidable (Tarski

[10]). In particular, there is an effective method of deciding whether a state-

ment about real numbers involving addition, multiplication, and the con-

cepts of elementary logic is true or false. Finite fields are of course also decid-

able. For all other fields, the decision problem is open. Notice that in a decid-

able field of characteristic zero, Nat is not arithmetically definable; for ex-

ample, Nat is not definable in terms of addition and multiplication of real

numbers.

Very few other results concerning the decision problem for particular

rings are known. Mostowski and Tarski [5] have shown that any ordered

ring with a unity element 1, and with no element between 0 and 1, is unde-

cidable. Here we have an additional primitive concept <, so that the result

does not concern the undecidability of rings as such. However, it follows that

any ring in which such an ordering is arithmetically definable (in terms of

addition and multiplication) is undecidable. There does not seem to be any

simple example of such a ring, except for the ring of integers, though the

existence of other such rings can be proved.

Tarski and Mostowski [ll], [5] have also shown that the general theory

of rings is undecidable, and Tarski has shown that the theory of Boolean

rings is decidable. Some results concerning the decision problem in group

theory are given by Presburger [ó], Szmielew [9], and Tarski [12].

lb. Plan of this paper and summary of new results. We shall prove that

various rings are undecidable. This will usually be done by showing that it is

possible to formulate all statements of the arithmetic of natural numbers in

the ring. For this purpose, we construct in the ring a model for the arithmetic

of natural numbers. We shall be interested not only in the existence of such a

model, but also in what kind of model it is possible to find.

For simplicity, we shall consider in this paper the decision problem only

for IDi's. Here IDi is an abbreviation of integral domain with unity element

(that is, ring in which xy = yx, xy = 0—*x = 0vy = 0, xi=x, and 1 ̂  0). In

any IDi, the elements 0 and 1 are arithmetically definable in terms of addition

and multiplication, so that it is immaterial whether we take them as primitive

concepts.

Divisibility is defined in any commutative ring, as well as in the arith-

metic of natural numbers, by

* I y *~* (Vz) [y = xz\.

However, the meaning of x\y depends on what ring is being considered. In a

field, the concept of divisibility is trivial, and indeed x\y *-> x?¿0vy = 0. Now

in all our investigations, the concept of divisibility plays a central role. Thus

to prove that a field is undecidable, some quite different method is needed
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(perhaps based on the theory of quadratic forms, as was the proof in [7]

that the field of rationals is undecidable).

In any IDi of characteristic zero, we identify the ring elements 0, 1, 2

= 1 + 1, ■ • • with the natural numbers, and use Nat x to indicate that x is

one of these elements. Similarly, we use Int * to indicate that * is one of the

integers 0, ±1, +2, • • • ; thus Int x «-> Nat x v Nat ( —x). These concepts are

used only if the characteristic of the ring is zero. (The term integer is always

used in the sense mentioned, and is not to be confused with algebraic integer,

which we also use in certain places.)

If we can define Nat arithmetically in a given IDi of characteristic zero,

then all statements of the arithmetic of natural numbers can also be formu-

lated arithmetically in the ring; hence, in particular, the ring is undecidable.

We draw the same conclusions if Int can be defined arithmetically, since Nat

may then also be defined arithmetically.

More generally, all statements of the arithmetic of natural numbers can

be formulated arithmetically in a given ring, if we can define arithmetically

a model for the arithmetic of natural numbers; that is, if we can define arith-

metically a set of ring elements, and two binary operations on them, so that

the model obtained is isomorphic to the arithmetic of natural numbers. If

Nat is defined arithmetically (in an IDi of characteristic zero), then we have

of course such a model, where ring addition and multiplication also serve as

addition and multiplication in the model.

Another model which proves useful has the natural numbers replaced by

the corresponding powers p°, p1, p2, ■ ■ • of some fixed element p. We must

of course choose p so that these are all different. Here the ring multiplica-

tion serves as addition in the model. We must also arithmetically define multi-

plication in the model, as well as the set of powers of p itself. In this connec-

tion, we shall use the symbols Pow and Asp. By x Pow p, we shall mean

that x is a power of p, and by x Asp p, that x is associated with a power of p,

that is,

x Asp p <-> (Vy, z) [x = yz A y | 1 A z Pow p].

In practice, Asp will be defined arithmetically first, and used in the arith-

metical definition of Pow.

Many of our results concern polynomial IDi's (that is, polynomial rings

over IDi's). Elements of the base ring will be called constants, and Con x will

mean that x is a constant. It should be pointed out however that the meaning

of this symbol is not in general determined by merely knowing the polynomial

ring, but only by knowing what ring is considered as base ring.

We shall use a variety of methods in our study of undecidable rings. The

results of §2, §§3a-3b, §§4a-4d, §§5a-5c, §6, and §7 are substantially inde-

pendent of each other, and hence these parts of the paper may be read in

any order.
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In §2, we define Nat in a polynomial ring over any field of characteristic

zero, in a polynomial ring over the ring of £-adic integers, and in the ring of

entire functions of a complex variable. In §§3a—3b, we define Int (and hence

also Nat) in a quadratic ring (the ring of algebraic integers in a quadratic

field), and in the ring of polynomials over the integers or over a quadratic

ring. These are the only cases in which we have been able to define Nat.

In §§4a-4c, we prove that it is possible to formulate all statements of the

arithmetic of natural numbers in various polynomial rings, including those

for which the base ring is any field, or is the ring of algebraic integers in a

field of finite degree over the rationals. We have not been able to obtain this

conclusion for polynomial ID/s in general, but in §4d, using the method of

§§4a-4c combined with a result of Tarski and Mostowski [ll], [5], we do

show that all polynomial ID¡'s are undecidable. This is the only place in the

paper where we prove that a ring is undecidable without also showing that it

is possible to formulate all statements of the arithmetic of natural numbers

in it.

In §§5a-5c, we prove that all statements of the arithmetic of natural

numbers can be formulated in algebraic rings with one fundamental unit. In

§6, the same is done for the rings of formal power series with integer or

rational coefficients. In §7, a result of a different character is proved, namely

that in a polynomial ring in two or more variables over a finite field, there is

no uniquely definable model for the arithmetic of natural numbers.

2. Definition of natural numbers in certain function rings. We shall show

that Nat is arithmetically definable in any polynomial IDi of characteristic

zero in which Con is arithmetically definable. This result applies in particular

to any polynomial ring over a field of characteristic zero, since in this case

we clearly have

Con £<-> x = Ova;| 1.

It also applies in certain other cases. For example, in a polynomial ring over

the ring of ¿>-adic integers, we have

Con x<-+ x\ Iv x + l\l.

On the other hand, in the case of a polynomial ring over the integers, the

present result is of no help, and is indeed trivial, since Con is the same as

Int. This case is however treated below by another method (see §§3a-3b).

Suppose we are given the ring of polynomials in one or more variables

oi,ß,y, • ■ • , over any ID! of characteristic zero. We shall show that Nat can

be defined in terms of Con by

Nat x«-> ÇVu, v){ coCon uav ?¿ 0 a w | v

a (Ay) [Con yAM-f- y | o —* w + y+ i\vv y = x]}.

First suppose that x is a natural number. Then the condition on the right
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is satisfied with

u = a, v = a(a + l)(a + 2) • • • (a + x).

To check this, notice that by the factor theorem, the only factors of v of the

form cí+y, with y a constant, are a, a + 1, a+2, • ■ • , a-\-x.

Conversely, suppose that x satisfies the right side of the equivalence.

Choose suitable u and v. Enlarge our polynomial ring by embedding the ring

of constants in a field. In this new polynomial ring, we have unique factoriza-

tion. Since u, « + 1, M+2, • • ■ are relatively prime and not constant, and

v¿¿0, only a finite number of them can divide v. Returning to the original

ring, no more of them can divide v. Now u\v, thus there must be a natural

number n such that

m + n\v,       u + n + \\v.

It then follows that x = ra, that is, that x is a natural number.

A quite similar method of defining natural numbers may be used in the

ring of entire functions of a complex variable a. Here the formula x\ 1 ex-

presses that the entire function x has no zeros. Now according to Picard's

theorem, an entire function which is not constant must assume every value

with at most one exception. Thus

co Con x—T-zjlva;— ljl.

It follows that we can define Con by

Con x<-> x = Ov x = 1 v (* | 1 a x — 11 1).

Finally, we shall show that Nat may be defined by

Nat x <-> Con x

A (Am, v)[u\ i) a (Ay) [Con y a« + y\ v —> u + y + 1 | »] —> m + x|z>}.

The right side is clearly satisfied if x is a natural number. Conversely, sup-

pose that the right side is satisfied. In particular, we may take u=a, and for

v any entire function whose only zeros are at 0, — 1, —2, — 3, • • • , for

example, v = 1/T(a). With this choice of v, we see that for constant y, a+y\ v

if and only if y is a natural number. We conclude that a+x|z>, and hence

that x is a natural number.

If instead of entire functions, we consider the ring of analytic functions

regular in the unit circle, I do not know how to arithmetically define Nat

or even Con.

3a. Definition of integers in quadratic rings. In this section and the next,

we shall define integers in quadratic rings. The method given also applies,

without any essential modification, to the problem of defining integers in a

polynomial ring over the integers or over a quadratic ring.

A quadratic field is obtained by adjoining m1'2 to the field of rationals,
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where m is an integer which is not a square. We shall suppose that m is square-

free. By a quadratic ring, we understand the ring of algebraic integers in a

quadratic field. The algebraic integers of the field have the form a-\-bm112,

where a and b are integers, if m^i (mod 4), and the form (a-\-bm1,2)/2, with

a = b (mod 2), if m = 1 (mod 4).

We shall show first that, in a quadratic ring, Int can be defined in terms

of Pow by any formula of the form

Int x «-» (A«)(V», y) [u Pow p —* v Pow q a px + 1 = v + uy],

where p and q are replaced by two prime numbers for which p>2 and q is a

primitive root mod p2. (This'result holds indeed in the ring of algebraic

integers in any field of finite degree over the rationals.)

It is known that under the stated conditions, q will also be a primitive root

mod pk for every k. Consequently, if * is any integer, we can find / so that

ql = px+ i (mod pk),

or px-\-i=qlJrpky with some integer y. Thus if Int x, we can satisfy the

right side of the equivalence, and indeed with y an integer.

Conversely, if the right side is satisfied, then px-\-i has the form ql-\-pky

for every k, where y is an element of the ring. If x' denotes the conjugate of x

in the quadratic ring, then also px'-\-l=q'-\-pky', and hence p(x — x')

= pk(y — y'). Thus pk~1\x— x' for every k, so we must havex — x' = 0. Hence x

is equal to its conjugate, and is therefore an integer.

To complete the arithmetic definition of Int, it remains to define Pow.

We do not however have to give an arithmetic definition of x Pow p in gen-

eral, but only for two suitable primes p. We shall show in §3b how to define

x Pow p when p is any natural number for which (p) is a prime ideal in the ring.

This condition is stronger than supposing that p is a prime number, but we

shall see that two suitable primes can be found among such values of p.

If p is an odd prime, it is known that (p) is a prime ideal if and only if

(m/p) = — 1, that is, if and only if m is not a quadratic residue mod p (Hecke

[3], Satz 90). For a given m, this restricts p to certain residue classes mod Am.

Choose a suitable p, which certainly exists by Dirichlet's theorem. Now the

primitive roots mod p2 fill certain residue classes mod p2. Since (p2, Am) = 1,

we can find an odd prime q with (m/q) = — 1 and q a primitive root mod p2.

Indeed, both conditions are satisfied by every prime q in certain residue

classes mod imp2. Thus the p and q in the definition of Int may be chosen

so that (p) and (q) are prime ideals.

3b. Definition of prime-powers in quadratic rings. To complete the con-

siderations of §3a, we must show how to define x Pow p arithmetically when

p is a natural number for which (p) is a prime ideal in the ring. Throughout

this section, p will denote a fixed prime of this sort.

In the first place, x Asp p may be defined arithmetically by the formula
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x Asp p <-► (Ay) [y I x -* y 11 v p I y].

Indeed, if x Asp p and y| x, then clearly y Asp £, and hence y\i or p\y. (We

have used the uniqueness of factorization into prime ideal factors.) Con-

versely, suppose the right side holds. Then x^O, hence we may put x = pku

with p\u. Since u\x, we must therefore have u\ 1, and hence x Asp p.

The units in the imaginary quadratic ring are ±1, + * if »» = — 1, the sixth

roots of 1 if m= —3, and otherwise just ±1. Hence we may put

x Pow p *-* (Vz) [z Asp p a (x = z2 v x = />z2) ],

if m is negative but not —1 or —3. If m= — 1, we put

x Pow /» *-» (Vz) [z Asp pA(x = z4 v x = pz*v x = pV v x = ph*)],

and an analogous definition may be given when m= — 3. Thus the required

arithmetical definition of x Pow £ has been given for m<0. Unfortunately,

we cannot extend this definition to positive values of m, since there are then

infinitely many units.

An alternative definition for negative m, valid however only for p>3

(which would be enough for the purposes of §3a), is

x Pow p <-> x Asp pAp— l|x— 1.

Indeed, if x = pku with u\ 1, and p — l|x— 1, then p —1| (/>* — 1)m + m — 1,

and hence p — l\u — l. Thus N(p —1)| N(u — 1), and hence either w=l or

N(p-l)^N(u-l). In the latter case, |/>-l| S|«-l| ^2; hence if £>3,

we must have w= 1, or x — pk as required. It may be shown that this definition

also fails for m>0.

We must therefore find a new method of defining x Pow p if m>0. It is

known that in this case there is a fundamental unit 77 >1, such that every

unit has the form +r¡n, where n is an integer (which may be negative). We

put

Luc y «-> (V«, v)[uv = 1 a y = u2 + s2].

Then Luc y if and only if y has the form rfk-\--q~2k, where k is a natural num-

ber. These numbers y are all positive integers, and form a so-called Lucas

sequence. We have used the fact that N(t]) = +1, that is, r)t]'= ± 1, where

r\' is the conjugate of r¡.

In a real quadratic field, a number is the sum of four squares if and only if

it is totally non-negative, that is, if and only if neither it nor its conjugate is

negative (Landau [4]). In terms of elements of the quadratic ring we may

define totally non-negative by

2 2 2 2 2-1

Tot x <-> (Vy, *u 22, Zi, z4) [y ?¿ OAxy  = Zi + z2 + z3 + Z4].

We are now in a position to define x Pow p in a real quadratic ring. We

shall show that
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x Pow p *-» X = 1

v { x Asp p ATot (x - 2) a (Ay) [Luc y -> Tot (x - y) v Tot (y - x)]\.

If x Pow ¿>, then the right side is clearly satisfied. Conversely, suppose that

the right side is satisfied, but xj^ 1. Then x Asp p, hence x = ±pkr¡1, where k is

a natural number and I an integer. Since x^2, we must have x=pkrjl. If x'

denotes the conjugate of x, then x' = pkr]'1, where r¡'= ±tf~l; and since x'^2,

we must have x' = pkv¡~1. Furthermore, x and x' are not separated by any

term of the Lucas sequence, hence both lie in one and the same interval

[n2i + T2i, v2i+2 + »T*'-2].

Since ri2'+2+r]-2'-2<r]2(r¡2' + ri-2'), it follows that

rf2 < x/x' < r;2.

But x/x' = r¡21, hence 1 = 0; thus x=pk, that is x Pow p.

4a. Definition of prime-powers in an arbitrary IDi. Let any fixed IDi be

given. We shall formulate in this section sufficient conditions on p in order

that x Pow p should be arithmetically definable in terms of p. The results

obtained are applied in §§4b-4d.

While the considerations of this section apply to an arbitrary IDi, it may

happen in some cases that no p satisfies the conditions found. For this reason,

the present results do not supersede those of §3b.

The first condition on p is that it should be prime in a strict sense,

namely that (p) should be a prime ideal different from (0) or (1). In other

words, p should satisfy the condition Pri p given by

Pri ^><-> p j¿ 0a/)|1 a (Ax, y)[p\ xy —» p\ xv p\ y].

We notice first that the powers of a prime element p are all different. For if

pk = pl with k>l, then either p = 0 or else pk~l = i and hence p\l.

From the definition we can readily show that

Pri pAx\ py —> p\ x v x | y.

Indeed, by hypothesis there is a z such that py — xz, or p\xz. Thus p\ x vp\ z.

If p\z, then z = pu, or py=xpu. Since p^O, we have y = xu, and hence x|y.

We therefore conclude that p\ x or x| y.

In particular, for any natural number n, Pri p a x \ pn+1 —> p | x v x | pn. Using

this, we see by induction that

Pri p a x | pn —> p | x v x | 1.

In order to define the powers of p, we impose on p two further conditions,

one arithmetical in form and the other non-arithmetical. The non-arithmetical

condition Nam p is needed in order to define x Asp p, and is given by

Nam/»*-* (/\x){(/\n)[pn\ x] —>x = o},
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where n ranges over the natural numbers. The condition Nam p evidently

implies that every ring element x^O can be put in the form x=pnu where

p\u. We then see that

Pri /»ANam p —* \x Asp ^«d^Oa (Ay)[y| x —> y | 1 v p\ y]}.

Indeed, if x = pnu with p\u, then each side of the equivalence is satisfied if

and only if u\ 1.

The arithmetical condition Arm p which we shall use is given by

Arm p <-> (Am) [p — 1 | « — 1 a« | 1 —> u = l].

We shall show that

Arm p —> {x Pow p «-* x Asp pAp— 11 x — 1}.

Clearly, x Pow p —> x Asp pvp — l\x—l. Conversely, if x Asp p, then

x=p"u where n is a natural number and u\ 1. From p —l|x—1, we find

P —1| (P"~ 1)m + m— 1, and hence p — l\u—l. The condition Arm £ then

gives m= 1, that is, x Pow ¡ö.

Thus if p satisfies the conditions Pri p, Nam p, and Arm p, then x Pow £

is arithmetically definable in terms of p. If p itself is arithmetically definable,

then the set of powers of p is also.

4b. The prime-power arithmetical model. Among the natural numbers,

it is possible to define multiplication in terms of addition and divisibility

(Tarski [12]). We need only note the formulas

» = k(k + 1) <-> (f\m) [n\ m <-» k\ m a k + 1 | m],

n= kl*-*(k + l)(k + I + 1) = k(k + 1) + /(/ + 1) + n + n.

Thus in any model for the arithmetic of natural numbers, it is sufficient to

define arithmetically an operation and a relation corresponding to addition

and divisibility.

A convenient method of constructing a model is to make correspond to

the natural numbers the powers p°, p1, p2, p3, • • ■ of a prime element of the

ring. We know that these are all different. Clearly, the ring multiplication

defines addition in the model. It remains to define divisibility in the model.

We know that k\l-+ pk—l|p'—l. If the converse were true, we should have

the required definition. We therefore impose on p the (non-arithmetical)

condition Div p defined by

Div p «-» (A*, t)[p * - 11 pl - 1 -» h \l],

where k and / range over the natural numbers. If p satisfies this condition,

and if x and y are powers of p, then the divisibility of y by x in the model is

expressed by x — 11 y — 1.

Div may be defined arithmetically in terms of Pow by the formula
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Div p «-» (Ax, y) [x Pow p a y Pow p a x — l\ y — Í a y — l| x — 1—>x= y].

This provides a condition equivalent to Div p which is more convenient to

verify. In the first place, if Div p and x = pk, y = pl, x — 11 y — 1, y — 11 x — 1,

we find that k\l and /[&, hence k = l, and therefore x=y; that is, the condi-

tion en the right is satisfied. Conversely, suppose that the condition on the

right is satisfied. We wish to prove Div p; that is, given natural numbers k

and / with pk—l\p' — l, we wish to conclude k\l. Let d=(k, I), and choose

natural numbers r and 5 so that kr — ls = d. From pk— i\pkr— 1 and

pl — l\pls— 1, we conclude

pk — 11 (pu — i)pd + pd — 1,        pk — i\ pu — 1,

and therefore

¿* - 11 pd - 1.

Since d\k, we also have pd — i\pk— 1, and hence by our hypothesis k=d,

which is equivalent to k\l.

As a simple example, we construct a prime-power model in the ring of

integers itself. We see that any prime p>3 satisfies the conditions Pri p,

Nam p, Arm p, and Div p. We may thus use the set of powers of 5 as our

model; notice that 5 is arithmetically definable. The powers of 5 are defined

by

x Pow 5 <-» (Ay) [y\ x—> y | 1 v5 | y] A4 | x— 1.

Furthermore, every statement in the arithmetic of natural numbers can be

replaced by an equivalent statement about this model. We first eliminate

multiplication in favor of divisibility, obtaining an equivalent statement

concerning the natural numbers. Then we restrict each variable x by the

condition x Pow 5, and we replace 0 by 1, 1 by 5, each sum x+y by xy, and

each relation x\y by x —l|y—1. This statement, interpreted in the ring of

integers, is equivalent to the original statement in the arithmetic of natural

numbers.

For example, the prime-pair conjecture

(A*XVy)(Az)[(z| x+ y->z = lvz = x+y)

a(z|x+;v4-2^>z= 1vz= x + y + 2) ]

is a formula of the arithmetic of natural numbers which is stated initially in a

form involving only addition and divisibility. An equivalent statement in the

ring of integers is

(Ax) { x Pow 5 —> (Vy) [y Pow 5 a (Az) {z Pow 5 —* (z — 1 | xy - 1

-^z = 5v2 = xy) a(z— l|25xy— 1 —*z = 5vz= 25 xy)} ] j.

While this model was intended primarily as an example, we may notice
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that in the statements about the model, we use only multiplication and the

function x—1. We thus have a new proof that the arithmetic of integers is

undecidable when the given operations are successor and multiplication. (For

another proof, see Julia Robinson [7], §1.)

In a similar way, we can construct a prime-power model in an imaginary

quadratic ring, or in a polynomial ring over the integers or over an imaginary

quadratic ring. These are, however, all cases in which we know how to define

the integers.

4c. Prime-power models in polynomial rings. Suppose that we are given

the ring of polynomials in one or more variables a, ß, y, • ■ ■ , over any IDi.

The conditions Pri p, Nam p, Arm p, Div p are clearly all satisfied by p = a.

Thus a suitable model is definable arithmetically in terms of a. If a itself were

definable, we would conclude that all problems of the arithmetic of natural

numbers could be formulated in the polynomial ring. Unfortunately, however,

a is not definable, and I do not know whether the conclusion mentioned is

true or false.

We shall use in this section a generalization of the method of §4b. Instead

of defining one model for the arithmetic of natural numbers, we shall define a

non-empty family of such models. This is just as effective so far as formulat-

ing problems of the arithmetic of natural numbers in the ring is concerned.

We do not have to find a suitable arithmetically definable element p, but only

an arithmetically definable non-empty set of such elements.

It is clear that any non-constant element of the polynomial ring satisfies

conditions Nam p, Arm p, and Div p. Thus the condition

Pri p a oo Con p

serves to define a non-empty set of suitable values of p. If the set of constants

is arithmetically definable, then the condition imposed on p is arithmetical.

In this case, we have defined arithmetically a family of models of the arith-

metic of natural numbers, hence any problem of this arithmetic can be formu-

lated in our ring.

In particular, if the ring of constants is a field, then Con p<r+ p = 0v p\ 1,

so that Pri pA<x> Con p reduces simply to Pri p. To formulate any statement

of the arithmetic of natural numbers in the polynomial ring, we first eliminate

multiplication in favor of divisibility, obtaining an equivalent statement

concerning the natural numbers. Then we restrict every variable x by the

condition x Pow p, replace 0 by 1, 1 by p, expressions of the form x+y by xy,

relations of the form x\ y by x— 11 y — 1, and prefix the whole by either of the

following:

(A¿)[Pri#-*••• ]    or    (V#)[Pri#A ••■ ].

The two resulting formulas, considered as statements about the polynomial

ring, are equivalent to each other, since any statement holding in one model
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will hold in all models, and both are equivalent to the given statement in the

arithmetic of natural numbers.

As an example, the conjecture that there are infinitely many primes of

the form 2"—1 may be stated in the arithmetic of natural numbers in the

form

(Ax)(Vy)(Az){(z| x+ y-+z = lvz = x + y)

A(z|x+y+l->-z= lv2|z)}.

The corresponding statement in any polynomial ring over a field has the form

(Aí) [Pri p->(Ax){x Pow i—>(Vy)[y Pow/>a(Az){z Pow p

—* (z — l|xy— 1—>z = />vz = xy)

a (z - 1 | pxy - i~^z = pvp2- 1 | z - 1)}]}].

From this, we may eliminate Pri and Pow, thus obtaining an arithmetical

statement concerning the polynomial ring, which is equivalent to the original

conjecture.

Notice that the result obtained here is more general than that of §2, in

that there is now no requirement that the field of constants have character-

istic zero. The polynomial ring considered might for example be the ring of

polynomials in a over the two element field.

Instead of supposing that Con is arithmetically definable, another ade-

quate hypothesis is that the polynomial ring satisfies the condition

(Ai) [i| lvNami].

This will be the case if and only if the ring of constants satisfies the same con-

dition. The condition

Pri p A Arm p aDív p

then serves to define a non-empty set of suitable values of p. This condition

may be expressed in an arithmetic form, since Div p was expressed arith-

metically in terms of x Pow p, x Pow p is arithmetically definable under the

hypotheses Pri p, Nam p, and Arm p, and if the ring satisfies the assumed

condition, Nam p follows from Pri p.

The condition (Ai)[i| 1 v Nam p] is easily seen to hold in the ring of

algebraic integers in a field of finite degree over the rationals, by making use

of the norm. We conclude that any statement in the arithmetic of natural

numbers can be formulated in a polynomial ring over such a ring.

It should be noticed that the formula (Ai)[i| 1 v Nam p] is not true

in every IDi. This follows easily from the Skolem-Gödel theorem (according to

which a consistent set of axioms has a model), as was pointed out to me by

A. Tarski. A simple example of an IDX in which the formula fails was supplied

by the referee. Consider the rational functions of a and ß which have the
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form f(a) -\-a~nßg(a, ß), where/(a) and g(a, ß) are polynomials with integer

coefficients, and n is a natural number. These form an IDi of which a and ß

are elements, and we have an\ß for every n, although a\\ and /3^0.

4d. Proof that any polynomial ring over an IDi is undecidable. An axiom

system, with specified primitive concepts, is called decidable if there is a gen-

eral method of deciding whether a statement involving the given primitive

concepts and the concepts of elementary logic does or does not follow from

the axioms; otherwise it is called undecidable. The set of axioms is called

essentially undecidable if it is consistent, but has no consistent extension which

is decidable. Mostowski and Tarski have found a finite set of axioms, with

primitive concepts 0, 1, +, -, which are true for the natural numbers, but

are essentially undecidable. (See the abstracts [ll] and [5], and the discus-

sion in [7], §4.) Let the conjunction of these axioms be denoted by M. The

exact form of M is not important for our purposes.

If S is an arbitrary statement in the arithmetic of natural numbers, involv-

ing the primitive concepts 0, 1, +, -, we may find an equivalent statement

S', involving the primitive concepts 0, 1, +, | , by using the definition of

multiplication in terms of divisibility given in §4b. From S' we construct

S*(p) by restricting each variable x by the condition x pow p, and by re-

placing 0 by 1, 1 by p, expressions of the form x+y by xy, and relations x\y

by x—l|y—1, and then eliminating pow by means of the equivalences

X POW p <-> X ASP pAp—  1 |  X —   1,

x ASP ̂hj^Oa (Ay) [y ¡ x —> y I 1 v p I y].

(Notice that under certain conditions pow and asp actually have the mean-

ings Pow and Asp.) Interpreted in a given IDi, S*(p) is a statement about p

which is equivalent to the statement S, provided p satisfies the conditions

Pri p, Nam p, Arm p, and Div p. In other words, if S is a true statement in

the arithmetic of natural numbers, then S*(p) is satisfied by every such p;

and if S is false, then S*(p) is satisfied by no such p.

For example, if S is any statement in the arithmetic of natural numbers,

then S*(5) and S*(7) are both equivalent statements in the ring of integers,

and

(Ap)[Vtip-*S*(p)]    and    (Ví)[Pri#AS*(#)]

are both equivalent statements in any polynomial ring over a field.

Let us suppose that in the given ring, there is at least one suitable value

of p. This is the case in any polynomial IDi. We know that if a non-empty

set of such values of p is arithmetically definable, then all problems of the

arithmetic of natural numbers can be stated in the ring. We shall no longer

make this assumption, nor shall we be able to draw the same conclusion.

We shall, however, show that the ring is undecidable.

Consider the set zA of statements S in the arithmetic of natural numbers
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for which

(Ap)[M*(p)->S*(p)]

is a true statement in our ring. On the one hand, M itself is in zA. On the

other hand, every such statement S must be true. In fact, the set n// is just the

set of statements true in all the "prime-power" models corresponding to values

of p for which M*(p) holds. These values of p include those for which Pri p,

Nam p, Arm p, and Div p; by hypothesis, there is at least one such p. For

the latter values of p, the model obtained is isomorphic to the arithmetic of

natural numbers. If all values of p satisfying M*(p) also satisfy the other

conditions, then zA is simply the set of true statements of the arithmetic of

natural numbers. If there are additional values of p satisfying M*(p), these

need not be primes, and the "prime-power" models obtained using such

values of p need not be isomorphic to the arithmetic of natural numbers. In

this case, zA may be a proper subset of the set of true statements in the arith-

metic of natural numbers.

Furthermore, we see that if S is deducible from statements in zA, then S

itself is in zA. Since zA is consistent and contains the essentially undecidable

axiom M, there cannot be a general method of deciding whether a statement

S is in zA or not. Now if the given ring were decidable, there would be such a

method; hence the given ring must be undecidable.

5a. Algebraic rings with one fundamental unit. Let us consider the ring

of algebraic integers in a field of degree n over the rationals. This field may be

generated by adjoining an algebraic number a to the field of rationals. Sup-

pose that among the conjugates of a, including a itself, there are r\ real

numbers, and r2 pairs of conjugate imaginary numbers, so that n = r\A-2r2.

The units in our ring form an Abelian group. According to a theorem of

Dirichlet (Hecke [3], Satz 100), this group has a basis consisting of fi + r2

elements, one of finite order, the others of infinite order. The basis elements

of infinite order are called the fundamental units of the ring.

In §§5a-5c, we shall study rings with one fundamental unit. Thus we

suppose that r-i+r2 = 2. There are three possibilities: ri = 2, r2 = 0, hence n = 2;

H~ 1| r2 = 1, hence n = 3 ; ri = 0, r2 = 2, hence n = 4. Thus the present methods

apply to certain cubic and quartic rings, as well as to real quadratic rings.

The decision problem is open for rings with more than one fundamental unit.

We suppose that a fixed ring with one fundamental unit is given. The

group of units in our ring has a basis consisting of a unit r? of infinite order

and a unit f of finite order. The order of f is clearly even, say 2s, since — 1

must be a power of f. Thus all units of the ring are expressible in the form

7?*f', where k = 0, ±1, ±2, • • • , and / = 0, 1, • • • , 2s-l.

We may of course take f = eTi/*. If w = 2, we must have 5 = 1, since the ring

is real. In any case, we must have </>(2s) | n, since f generates a field of degree

<fr(2s). Thus if n = 3, we must again have s = l. But if w = 4, we are allowed
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</>(2s) = 1, 2, or 4, and hence 5 = 1, 2, 3, 4, 5, or 6. If s = 4, 5, or 6, then <f>(2s)

= 4, so that f itself generates the quartic field; that is, 5 = 4, 5, or 6 occurs

only for the ring of algebraic integers in the field generated by e*'ls. The

smaller values of s can occur in various cases. If the quartic field has no quad-

ratic subfield, then we must have 5=1.

In order to show that all problems of the arithmetic of natural numbers

can be formulated in the ring, it is sufficient to construct a model for the

arithmetic of integers. That is, we define arithmetically a set of ring elements,

and two operations on them corresponding to addition and multiplication, so

that the model obtained is isomorphic to the ring of integers. It is also suffi-

cient to define a non-empty family of such models.

In the ring of integers, multiplication can be defined arithmetically in

terms of addition, divisibility, and 1. (Compare Tarski [12]; the correspond-

ing fact for the natural numbers was used in §4b.) It is sufficient to note the

following equivalences:

n = k(k + 1) *-* {Am) [» | i» <-* k\mAk + l\m]A2k + 11 2« — k,

» - #«-»(* + l)(k + I + 1) = k{k + 1) + 1(1 + 1) + 2m,

where 2« stands for «+«. The condition 2¿+l| 2n — k is designed to eliminate

the possibility w=— k(k-\-\). In this case, 2n — k= — k(2k + 3), which is

prime to 2&+1. Thus if 2& + l|2w — k, we must have 2& + l|l, and hence

& = 0«or k=—l; consequently, k(k-\-l)=0, so that the sign doesn't matter.

Thus in our model or models, it is sufficient to define addition, divisi-

bility, and the unity element. As elements of the model, corresponding to the

integers • • • , — 2, — 1, 0, 1, 2, • • • , we shall select the powers • ■ • , d~2,

d~l, d°, d1, d2, ■ ■ • of some unit d. If d = rjm, where m is a. positive integer which

is a multiple of 25, then we can express the fact that x is one of the selected

elements by the arithmetical condition Sel x defined by

Sel x <-> (V«) [m I 1 a x = um].

For if x=dh, we may take u = r¡k; and if u\ 1, then u = v¡kCl, and hence um

= r¡>™ = dk.

Clearly, the zero element of the model is 1, the unity element is d, and

addition is defined by ring multiplication. It remains to consider the defini-

tion of divisibility in the model, as well as the arithmetical definition of d

itself.

5b. Definition of divisibility in the unit model. We start with the observa-

tion that neither the fundamental unit -n nor any of its conjugates can have

absolute value 1. For among the conjugates rji, t?2, • • • , »?„, there are r± real

numbers and r2 pairs of conjugate complex numbers. Hence among |j7i|,

I *7a11 ■ ■ • , | Vn\, there are at most ri+r2 = 2 different numbers. Furthermore,

their product is | iV(i7) [ = 1. Hence if one of the numbers | r]j\ were 1, all would
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be 1. But if I ??i| = 11721 =  • • • = I Jj„| = 1| then by a theorem of Kronecker, 77

would be a root of unity, contrary to hypothesis.

We next note the following elementary inequality:

I zk - 11 • I I z I - 11 = I zk+* - 11,

wherever z is a complex number and k a natural number. This is trivial if

k = 0 or \z\ =1. If &=1 and \z\ >1, we have

|«*- l| (| «I - 1) = (|z|*+ 1X| «| - 1) = \z\k+i - |s|* + |«| - 1

= |z|*+1- 1 = Iz^1 - l|.

The case k^l and | z] < 1 may be treated similarly, or derived from the pre-

ceding case by replacing z by 1/z.

In particular, if Ox, 92, ■ ■ ■ , 0„ are the conjugates of the unit 9 = inm, we

have

|ö*-i|.||öi|-i|aK+1-i|

for .7 = 1, 2, • • • , n. Multiplying these inequalities together, we find

\N(ek- i)| -nil ö,-| - l| ^\N(9k+1- 1)|.
M

Now

ir 11 ö,i -ii-niui--ii,
and as wz—>=o, the factors of the product on the right approach 1 or =0 ac-

cording as I 7],\ <1 or I 7)j\ > 1. The latter must happen for at least one value

of j. Hence the product itself becomes infinite as m—» °o. Choose m so large

that the product is greater than 1. Then

I N(6k - 1) I < I N(dk+1 - 1) I

for all natural numbers k. We shall suppose, in this section and the next,

that 9 = r]m, where m is a positive integer which is a multiple of 2s, and is large

enough so that this inequality holds.

We shall now prove the truth of the equivalence

0*- i\el- i«->*|i,

where k and I are any integers. This furnishes the required arithmetic defini-

tion of divisibility in the model. (A similar definition was used in §4b for the

prime-power model.) It is sufficient to consider the cases & = 0 and Z^O, since

0*-l|0-*—1. We know of course that k\l~^9k-i\8l-l, and it remains to

consider the converse. Suppose that

0* - 1 \d> - 1.
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If k = 0, we have Bl — 1 = 0, and hence / = 0. Now suppose k > 0, and put / = ka

+ b, with 0^b<k. We have

Ö* - 1 | (0*» - 1)0» + 0» - l,

hence 0* — 11 db — 1, and therefore

iV(0* - 1) | N(6b - 1).

Since | N(db-1)\ < | iV(0*-l)|, we must have AT(06-1) =0, hence 0»-l=O,

and thefore b = 0. Thus / = ¿a, or ¿ ] I, as was to be shown.

5c. Definition of the unity element in the unit model. To complete the

discussion of the model, we must consider the arithmetical definability of 0,

which plays the role of unity element in the model. One method of treating

this is by using the concept of divisibility just defined for the model.

Notice that in the ring of integers, 1 is not definable in terms of addition

and divisibility, since changing the sign of all integers preserves both addi-

tion and divisibility. However, either of the two integers a satisfying

(A&)[a|¿>] could equally well serve as unity element of the ring. If, using

either value of a as unity element, we define multiplication as in §5a, we ob-

tain either the ring of integers, with the usual definition of multiplication, or

an isomorphic ring.

The same considerations, applied to the model, show that either of the

two elements, u=d or u=d~1, which satisfy the arithmetical condition One u

given by

One u *-» Sel u a (Av) [Sel v —> u — 11 » — 1 ],

can serve equally well as unity element of the model. Because of this am-

biguity, we have defined arithmetically a pair of models for the arithmetic of

integers, instead of a single model.

We now see that any statement in the arithmetic of natural numbers can

be formulated in our ring. We first restate as a proposition about the ring of

integers, and then eliminate multiplication in favor of divisibility. Finally, we

restrict each variable x by Sel x, replace 0 by 1, 1 by u, each expression of the

form x+y by xy, relations of the form x[ybyx—l|y —1, and prefix the whole

by either

(A«) [One »—»•••]    or    (V«) [One ua • • • ].

The resulting formula, interpreted in our ring, is equivalent to the original

statement in the arithmetic of natural numbers.

It may be of interest to consider also a quite different method of defining

0, namely as a root of a certain equation. We put

Req u *-» uk + C\uk~x + • • ■ + ck = 0,

where the equation on the right is the irreducible equation over the field of
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rationals of which 0 is a root. Since 0 is a unit, Cx, c2, • • • , Ck are integers, and

Ck= ±1. Indeed, since 0 is an even power of 17, we must have N(0) = 1, and

hence ck = ( — 1)*.

Since 0 is irrational, we must have k>i; on the other hand, we must

have k\n. Thus the only possible cases are n = 2, k = 2; n = 3, k = 3; n = i,

k = 2 or 4. In any case, Req u is satisfied by at most four values of u, one of

which is 0. We shall show that in fact Req u is satisfied either by 0 only, or by

just 0 and 0~l.

In the first place, if k = 2 then Req u takes the form u2-\-CxU-\-i =0, which

clearly has the roots 0 and 0_1. In the remaining cases, k=n, and hence our

ring is the ring of algebraic integers in the field generated by 9. If any con-

jugate of 0 is in the ring, then there must be an automorphism of the ring

taking 0 into this conjugate. But any automorphism of the ring must take 0,

which satisfies the arithmetical condition One u, into an element satisfying

this same condition, that is, into either 0 or 0_1. Thus in case k = n, and hence

in all cases, the condition Req u is satisfied either by 0 alone or by 0 and 0-1.

It-is of course absurd that 0 and 0_I should be two of the roots of an ir-

reducible cubic. Hence if k = 3, Req u is satisfied only by 0. Consider next the

case k = 4. If both 0 and 0_1 satisfy Req u, then this condition must take the

form w4 + CiM3 + c2m2+CiM+1 =0. It follows that 0+0-1 is a root of a quadratic

equation, and hence that our quartic ring has a quadratic subring. Conversely,

if there is a quadratic subring, then we see that 0 has a conjugate in the

quartic ring, and hence is not uniquely determined by the condition Req u.

Thus the condition Req u is satisfied by 0 alone in the case of a cubic ring,

or of a quartic ring with no quadratic subring, but is satisfied by both 0 and 0_1

in the case of a quadratic ring, or of a quartic ring with a quadratic subring.

We now ask, if 0 is not uniquely determined by the condition Req u, is it

possible that 0 is nevertheless arithmetically definable? This does indeed

happen in certain cases. For example, suppose we are given the ring of alge-

braic integers in the field generated by a = ( — 3 + 21/2)1/2. Then it may be

shown that of the conjugates of a, that is, of the roots of y4 + 6y2 + 7 =0, only

+ a belong to the ring. We mav take 0 = 3 + 2 • 21/2 = 2a2 + 9. Hence 0 is defined

by

x = 0 «-» (Vy) [x = 2y2 + 9 a y* + 6y2 + 7 = 0].

A similar procedure is possible whenever we are given the ring of algebraic

integers in a quartic field which is generated by an element not all of whose

conjugates lie in the field, provided there is a real quadratic subfield. It can

be shown that this is the only case in which 0 is arithmetically definable,

except when it is the only ring element satisfying the condition Req u.

We have thus determined in exactly what cases it is possible to define the

unit model uniquely, rather than as one of a pair of models.

6. Undecidability of certain rings of formal power series, in this section,
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we shall consider only rings of formal power series, as opposed, for example, to

the ring of entire functions of a complex variable studied in §2. The formal

power series in a over a given ring of constants have the form

Co + Cia + c2a2 + c3a3 + • • •  ,

where the coefficients are constants, no consideration being given to con-

vergence.

Consider first the ring of formal power series in a with integer coefficients.

Here it is easily seen that x| 1 if and only if the constant term of x is +1.

Thus the constant term of x is zero if and only if x— 11 1 and x+11 1. If we

define equivalence by the condition

x ~ y <-» x — y — 1 | Iax— y + l| 1,

then we see that x and y are equivalent if and only if they have the same

constant term.

The relation « is indeed an equivalence relation. Furthermore,

u « x a v « y — > « + v « x + y a uv « xy.

Thus addition and multiplication are also defined for the equivalence classes,

and these form a ring isomorphic to the ring of integers. This arithmetical

model differs from those constructed in previous sections in having as ele-

ments classes of elements of the given ring, rather than single elements. We

can conclude, nevertheless, that all statements of the arithmetic of integers

(and hence all statements of the arithmetic of natural numbers) can be

formulated in the ring. We need only to notice that in making the transla-

tion, we must replace = by ~ throughout. In particular, we conclude that

the ring of formal power series with integer coefficients is undecidable.

A similar argument applies to the ring of formal power series in a with

coefficients from an imaginary quadratic ring, and indeed exactly the same

definition of equivalence may be used. The equivalence classes form a ring

isomorphic to the ring of constants. Since the integers are arithmetically de-

finable in the ring of constants, we again conclude that all statements of the

arithmetic of integers can be formulated in the ring.

Finally, we consider the ring of formal power series in a over a field. Here

x| 1 if and only if the constant term of x is not zero. If we define equivalence

by the condition
x « y <-> x — y\ 1,

then again x and y are equivalent if and only if they have the same constant

term. The equivalence classes here form a field isomorphic to the field of

constants. Since Int is arithmetically definable in the field of rationals (Julia

Robinson [7], Theorem 3.1), we see that all problems of the arithmetic of

integers can be stated in the ring of formal power series with rational coeffi-
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cients, and hence that this ring is undecidable. If any other undecidable field

were known, we could conclude that the power series ring over the field is also

undecidable.

The method just considered gives us no information concerning the de-

cidability of the rings of formal power series in a with real or complex coeffi-

cients, since in these cases the field of constants is decidable (Tarski [lO]).

The decision problem is open for these rings.

7. A negative result on the unique definability of models. We have shown

that various rings are undecidable; this was done, except in §4d, by showing

that all problems of the arithmetic of natural numbers can be stated in the

ring. We defined arithmetically either a model for the arithmetic of natural

numbers, or a non-empty family of such models, depending on a parameter

subject to certain arithmetical conditions. (In some cases, we considered

models for the arithmetic of integers, but this is immaterial, since the natural

numbers are arithmetically definable in terms of the integers.)

In this section, we shall consider only models whose elements are single

elements of the given ring, thus excluding models such as those considered in

§6. In those cases where a single model is defined, rather than a family of

models, we may speak of the model being uniquely definable.

If the natural numbers are themselves definable (in an IDi of character-

istic zero), then we certainly have a uniquely definable model. Various other

uniquely definable models have also been found; in particular, see §5c, where

a pair of models is first defined, and then the unique definability of one of

the models is considered. Another example is found at the end of this section.

The main result which we wish to prove in this section is that there are

some IDi's in which a non-empty family of models for the arithmetic of

natural numbers is arithmetically definable, but no such model is uniquely

definable. We shall show that this is the case in the ring of polynomials in

two or more variables a, ß, y, • ■ • over a finite field. A family of models was

defined arithmetically in §4c; it remains to prove that no suitable model is

uniquely definable.

Suppose that there were a uniquely definable model for the arithmetic of

natural numbers in our polynomial ring. Since every natural number is

arithmetically definable in the arithmetic of natural numbers, it would fol-

low that every element of the model is arithmetically definable in the ring.

Since the field of constants is finite, this implies that some non-constant ele-

ments of the polynomial ring would be arithmetically definable. We shall

show that this is not the case.

In order that a ring element be arithmetically definable, or indeed defin-

able in any sense in terms of addition and multiplication, it is necessary that

it be invariant under all automorphisms of the ring. Among the auto-

morphisms of the polynomial ring is a, defined by the condition that all

constants are fixed, together with the equations
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a(a) = a + ß'\ <r(ß)  = ß, «r(7) = y, ■ ■ ■  ,

where w is any natural number. Let x be any polynomial in the ring which

contains a, and choose n greater than the degree of x. We see that cr(x) will

be of at least the wth degree, hence of a higher degree than x, and conse-

quently a(x) ,¿x. A similar construction may be made if x does not contain a,

but contains one of the other variables ß, y, ■ ■ ■ . Thus to each non-constant

polynomial x an automorphism a can be found for which cr(x) 5¿x. Hence a

non-constant element x of the polynomial ring is not arithmetically definable.

The argument given does not apply to the ring of polynomials in one

variable a over a finite field. In this case, there are indeed definable non-

constant elements. In the first place, in such a ring (as in the ring of poly-

nomials in a over any field), we may define constants by Con x<->x = 0vx|l,

and linear polynomials by

Lin m<-> co Con ma (Ay)(Vz)[Con (y — uz)\.

Since there are but a finite number of linear polynomials in a over a finite field,

their product is arithmetically definable.

This does not of course show that there is a uniquely definable model for

the arithmetic of natural numbers in the polynomial ring. However, as we

have seen in §4c, a suitable model is furnished by the powers of any ir-

reducible polynomial. To uniquely define a model, it is thus necessary only to

find some irreducible polynomial which is arithmetically definable. I do not

know whether there is always such a polynomial. But if the field of constants

contains but two elements, we see that a2+a+l is irreducible, and is defined

by

x = a2 + a+l<-* (V«, v) [x = uv + 1 a Lin u a Lin v au 7e v].

Thus in the ring of polynomials in a over the field of residue classes modulo 2,

there is indeed a uniquely definable model.
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