
FUNCTIONS OF EXPONENTIAL TYPE IN AN ANGLE
AND SINGULARITIES OF TAYLOR SERIES

BY

SHMUEL AGMON

1. Introduction. A function/(z), analytic in the angle | arg z\ ^a, is said

to be of exponential type in the angle if there exist two constants a and A

such that

(1.1) \f(z)\ g Ae"^ (| arg 2 | ^ a).

It was shown by Cartwright [l0](x) that if /(z) satisfies (1.1) and a condition

which is essentially

log I f(re±ia) I
(1.2) lim sup '    -— ^ k sin a (0 ^ k < r),

r= m T

and if /(z) is bounded on the sequence of points z=l, 2, • • -, then/(z) is

bounded on the entire positive axis. (See also Macintyre [21].)

It was shown by Boas (for entire functions) [ó] and more generally by

Duffin and Schaeffer [13] (for a = w/2) that Cartwright's theorem remains

true if the sequence of integers w=l, 2, • • -, where/(z) is bounded, is re-

placed by a more general sequence of complex numbers {X„}. The condition

imposed by Duffin and Schaeffer on the X„'s, and which will be retained by

us through most of this paper, is

(1.3) |X„ - Xm|   ^ h > 0 (n ^ m)    and     |X„ - n\   g H

where h and H are two constants.

We propose to remove here the condition of boundedness of /(X„) and

to obtain similar results concerning the growth of the function from its growth

on a sequence of points, under the much more general and "natural" restric-

tion

(1.4) hm sup-y—:-g 0.

We shall show that if /(z) satisfies (1.1) and (1.2), and if {X„} is a sequence

of complex numbers for which (1.3) and (1.4) are satisfied, then there exists a

"regular" majorant \q„} of { |/(X„)| } such that for k'>k and z = x-\-iy in the

angle, we have

(1.5) (/(*+ iy)\ SCqlx]ek'\y\
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where C= C(h, H, k';f) is a constant^2).

Now, if the sequence {|/(X„)| } is regular enough, q[x] in (1.5) can be re-

placed by |/(A[»])|. In the general case, if (1.4) is satisfied with the sign of

equality, there exists a touching majorant [qn\ for which (1.5) holds; where

by a touching majorant we mean a sequence {qn}, such that

(1.6) qn £ | f(K) | (» = 1, 2, • • • ) while qnk = | f(Kk) \

for an infinite subsequence {«*}.

We would like to make two remarks. The first concerns the three condi-

tions (1.1), (1.2), and (1.4), which we say are equivalent to (1.1) and

log I f(reiB) I . .
(1.7) lim sup -L ^ * [ sin Ö | (for | 6 | â a),

where k is such that 0 ¿ k <tv, if the sequence {X„} verifies (1.3) or, more gen-

erally if lim (Xn/«) = 1. Indeed, it is obvious that (1.7) and (1.1) imply (1.2)

and (1.4). To show the converse we apply a result of V. Bernstein [5], in a

generalized form given by Pfluger [24], by which the last mentioned three

conditions, with lim (X„/«) = l, imply lim supI=00 [(log |/(x)| )/x] ^0. But,

it is well known (by the method of Phragmén and Lindelöf) that the last

relation, when combined with (1.1) and (1.2), yields (1.7).

In the second remark we want to point out that there exists an almost

trivial method of getting some results in the general case which will depend

on the theorem of Duffin and Schaeffer for the special case when /(X„) is

bounded. Thus, we can construct a function r\(z) analytic in the angle, satisfy-

ing there r){z)/z—>0, and such that 9î[i?(X„)] ̂ log |/(X„)|. Applying the

theorem of Duffin and Schaeffer (slightly generalized) to the function

f{z)e~*{¿), we shall obtain (1.5) with gn = eSR['K*»)]_ The point is, however, that

this method gives results which are not precise enough, for, in almost all the

applications of our theorem, it is essential to have touching majorant se-

quences \qn\ for which the theorem is applicable. But, it seems to us that it

is impossible (in the general case) to construct an analytic function 17(2)

with the above properties and such that [e$R[i<x»>]} will be a touching major-

ant of {|/(X„)|}.

Finally we mention that a large part of this paper is devoted to applica-

tions of the main theorem described above to problems of singularities of

Taylor series. Thus, in §4 we prove a general gap theorem; in §5 we generalize

a theorem of Szegö; and in §6 we prove a weak converse of a theorem of Fabry.

2. Some lemmas. We shall use the following known inequality, an-

nounced as a lemma, which is an immediate consequence of the Poisson-

Nevanlinna formula for the half-circle. (See F. and R. Nevanlinna [22]. For

a proof see also Levinson [19, p. 245].)

(2) It can be easily shown, though we shall not prove it here, that for x large enough C can

be replaced by C0 = Co(h, H, k').
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Lemma 2a. Let g(w) be analytic in the half-circle  \w\ ¿R, n^O, where

w=u-\-iv=pei*. Then, for w inside the circle,

log   | g(« + Ml) | 1

(2.1)

- f   log | g(t) | N(w, R, t)dt
tr J -R

+ — f   log | g(Re<*) | P(w, R,
IT   J 0

4>)d<t>,

where both N(w, R, t) and P(w, R, </>) are positive kernels, given explicitly by

(Ä» - p»)(Ä» - <*)
N(w, R, t) = -

(¿2 - 2pt cos 4> + p2)(Ä4 - 2ptR2 cos 4> + pH2)

(2.2)
1 R2

t2 - 2pt cos ii + p2      i?4 - 2p/J?2 cos ^ + p2t2

and

2R(R2 - p2) sin 4>
(2.2')     P{w,R,<p) =

£V2* - 2pi? cos ^e¡* + p2 2

Moreover, if g(w)yi0 in the half-circle, then (2.1) becomes equality. Taking,

in particular, g(w)=eiw, we have identically,

R   f*
(2.3) 1 m — I   sin <j>P(w, R, <¡>)d<t>.

X   J 0

The following lemma can be considered as a weak form of the main

theorem. We shall suppose in it that the value of the function/(z) of exponen-

tial type is known on the whole positive axis and not only on a sequence of

points.

Lemma 2b. Let f(z) be an analytic function of exponential type in the angle

I arg z\ ^<x<tt/2, satisfying (1.7) with k non-negative {but not necessarily less

than it) . Suppose that on the positive axis

(2.4) |/(*)|   ^ p(x),

where p{x) is a positive function with the following properties:

w(t)dt + const.,(i) log p(x) =   f
J 0

w(x) being Riemann-integrable in any finite interval such that

(ii) lim u>(x) = 0,
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and

A
(iii) w(x') - u(x) ^ — for 0<x<oo,0£x'-x^ I,

X

and some non-negative constant A.

Then if k'>k and r¡>í, there exists a positive number x0 such that

(2.5) \f(x+iy)\ <tf(*VK

for z satisfying | arg z\ ^a and x^x0.

(We remark that (i), (ii), and (iii) will be satisfied, in particular, if log p(x)

is a concave function of x, and log p{x)=o{x). It will also be satisfied if

log p(x) is twice differentiable with lim*»,«, (log p(x))' = 0 and (log p{x))"

£A/x.)
Proof. In what follows o(l) will denote a positive function of x tending to

zero when x—*». It is well known that (1.7) holds essentially uniformly, so

(2.6) log |/(re«'9) | ^ k\ sin 6» | r + o(l)-r = k\ y\ + o{\)r     (\d\^a).

It is also easily verified (taking account of (2.6) and the fact that | log p(x) | /x

= o(l)) that the inequality to be proved, (2.5), holds trivially outside any

angle |arg z\ ?¿a'<a. Let us choose a number X such that

(2.7) 0 < X < min ( — , — log v, ~ (*' - *), sin a)

where A is the constant satisfying (iii), and let a' be a positive number such

that tan «'<X. Obviously a' <a and it is clear from the preceding that it is

enough to prove (2.5) for z satisfying [arg z\ <a'. Let z = x+iy be any such

point and suppose to begin with that y is positive. Put

f(x + w)
g(v>)  = gz(v>)  = -—- •

p{x)

The function g(w) is holomorphic in the half-circle | w\ ^Xx, v^O (w = u-\-iv).

Hence, applying Lemma 2a to this function and the point w = iy (which is

inside the half-circle on account of our previous suppositions) we can write

log 1 /(* + iy) | - log p{x)

y

(2.8)      g — f      {log I /(* + i) I - log p{x)} N(iy, \x, t)dt
IT J _Xi

1      f
+ —I     {log | /(* + Xxe;*) | - log p(x)}P(iy, \x, <t>)d<¡> = ti + h.

ir J a

The kernel N being positive and given by (2.2) we find for 1%, using (2.4),
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2+   y2

1 /% \x

he— \       {log p(x + t) - log p(x)}N(iy, Xx, t)dt

(2.9) = — f     {log p(x + t) + log p(x -t)-2 log p(x)} -
ir Jo t

- t SI{log p{x+° -log pix)} -^h¿=Ji -u

Now, it is easily seen from the properties of p(x) that for positive x and

Q<f¿x/2,

4A
(2.10) log p(x + t) + log p(x - t) - 2 log p{x) <-t(t + 1).

x

(Indeed, we have log^(x-H) + \ogp(x — t) — 2\ogp(x) = /¿[co(x + u)

— o)(x — u)]du, and, from (iii), w(x+w) — w(x — u) <4(u+l)A/x for O^m

¿x/2, so that (2.10) follows from the last two relations.) Using (2.10) in the

expression for J\, we get (using the inequality log (l+ô) <2(ô)1/2 (¿>>0)),

4A    rXx /              t     \           4A\       2A /        X2x2\
Jt<— J     (l+——i)¿< = -+ -~log(l +—)

rt Jo     \        <   + y / * irx        \ yl /

4áX       44X
< —+-

7T 7TJI

For /2 we find, using properties (i) and (ii) of p{x)

/*   SE — I lo8 #(* + 0 - loS #<*)    T7T
■K   J-\x X4X4+  J2/2

(2.11')

< ( max  I log p(x + t) I  )- = o(l).
\ |<|Sx* /  xXx

Combining (2.9), (2.11), and (2.11') we obtain,

dt

4A\
(2.11") 7iSJ/i+   /i   ^-(1 + --)+o(l).

7T      \ y(' + })+»<

Now, if x+Xxe,'* = rei9, then Xx sin <p = r sin 0, so that (2.6) can be rewritten

as

(2.12) log I f(x + Xxe**) I g ¿Xx sin </> + o(l) • x.

Also from (2.2'),

C
(2.12') 0 ^ P(iy,\x,<t>) ^ —

x
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where  C=C(\, a')  is a constant.  Using  (2.12),   (2.12'), and the identity

(2.3), remembering that | log p(x)\ /x = o(l), we get

(2.13)

i  rT
h = —        {log | /(x + Xxe*'*) | - log p(x)\P(iy, Xx, *)d*

IT   Jo

k   C T
^ — j    Xx sin 4>P{iy, Xx, <t>)d<t> + o(l) - k + o(l).

IT   Jo

Finally, combining (2.8), (2.11"), (2.13), and using (2.7), we find,

4^Xi /       44X \
log |/(x+ *y)| - log/>(x) ̂  f k +-+ o(l) J -y +

(2.14) ' \ ir / ir

i£ £';y + log r\ for x =5: Xo,

which is the desired inequality (2.5) for y>0. For negative y (y = 0 is trivial)

we have only to apply the proved result to/(z).

3. The main theorem. We shall begin by discussing in some detail the

properties of the smallest concave majorant, defined for a certain class of

real functions, which turn out to be of fundamental importance in our proof of

the main theorem.

Let co(x) be a real and continuous function for 0^x<«>, such that

lim sup (co(x)/x)=0. Then, there exists a unique function C(x) having the

following three properties:

(i)  C(x) is a majorant of u(x) : C(x) ^ w(x).

(ii)  C{x) is concave: C(x+h) + C(x-h)-2C(x) ^0 (h>0, x-h^0).

(iii) C(x) is the smallest function having properties (i) and (ii).

The function C(x) is called the smallest concave majorant (or envelope) of

w(x). Indeed, we can define C(x) (0^x< <x>) as the smallest number y such

that there exists a straight line passing through (x, 7) above which there

are no points of the curve y = w(x). It is easily proved that C(x) so defined is

concave. That it is a majorant is obvious; and that it is the smallest concave

majorant follows immediately from the construction.

Now, from the condition of growth imposed on co(x), it follows in an

easy way that C(x)/x—>0, and this combined with concavity shows that the

slope of C(x) is always non-negative. Hence, C(x) is nondecreasing, and we

also have \\mx=x C(x) = upper boundosi<«, <o(x). The interesting case, which

will also concern us, is when co(x) is not bounded from above, so that C(x) Î 00.

In this case there exists an infinite sequence of positive numbers {£„ j tending

to infinity (a principal sequence), such that

(3.1) C(?n) = "(£») (»=1, 2, •••)•

Indeed, let {£„} be a sequence of positive numbers tending to infinity, such

that y = C(x) is not linear in any small interval with {£„} as center. Such a
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sequence exists, for otherwise y = C(x) would be a straight line with a non-

negative slope for x large enough. However, the slope of the line cannot be

positive, since C(x)/x—»0; and it cannot be zero because C(x) is not bounded.

Now, the last defined sequence {£„} satisfies (3.1). For, if C(£„) >«(£„),

there exists 5>0 sufficiently small such that w(x):S/(x) for §n — 5:gx;££n+5,

where/(x) is the linear function joining (£» — b, C(£„ — ô)) and (£n + ô, C(£„ + 5)).

Thus, we shall get another concave majorant C*(x) by putting C*(x)=/(x)

in the interval (£n — S, £n+5) and C*(x)=C(x) elsewhere, Or, C*(x)gC(x)

(x^O) and C*(x)<C(x) for some point in (&»— ô, ¿„ + 5) (C(x) is not linear

there). This contradicts the definition of C(x) and establishes (3.1).

We pass now to the statement and proof of the main theorem (3).

Theorem 3a. Letf(z) be an analytic function of exponential type in the angle

| arg z\ ^a<w/2, such that

log | f(reie) |        . .
(3.2) lim sup- g k J sin $ \ for \d\ ^ a,

»-- r

and where 0^k<ir. Let {X„} be a sequence of complex numbers which satisfies

(3.3) | Xn - \m\ à h > 0 (» 5¿ m)     awd    | Xn - s | g F   (« = 1, 2, • • • ),

h and H being two positive constants. Suppose, furthermore, that

(3.4) \f(K)\úqn (»=1, 2, •••),

wAere {<?„} is a sequence of positive numbers satisfying the following conditions

of regularity

(i) lim qn/qn+\ =1 (»-+<»),

and

(ii) log qn¥i + log o„_i — 2 log £„ ^ 5/« (n = 2, 3, • • • )

/or some constant B. Define q(x) to be continuous, q(n) =qn, and log q(x) linear

for Mgi|»+1. Then, if k'>k, there exists a constant C such that, for | arg z\

(3.5) \f(x+iy)\èCq(x)e"'M.

Proof. Put(4)

(3.6) «(*) - log+     U)JI   ) (x ^ 0),
\   q(x)    }

so that w(x) is continuous, and lim sup (co(x)/x) =0. It is easily seen that q(x)

(3) This theorem was announced by us in a somewhat less general form (as concerns the

sequence {an}) in [2].

(4) If A is a real number we write, as usual, A+ for (A +1A | )/2.
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satisfies properties (i), (ii), and (iii) of Lemma 2b. Thus, if we use this

lemma, it is enough to prove that a>(x) is bounded in order to obtain our re-

sult. Suppose now the contrary, that the theorem is false and that we have

(3.6') limsupo)(x) = oo.
X=oo

Let C(x) be the smallest concave majorant of <o(x). It follows from what we

have shown in the beginning of this section that C(x)/x—K), and C(x) f ».

Moreover, there exists a sequence {£„} of positive numbers tending to in-

finity, such that

(3.7) "(£»)= C(£n) («=1, 2, •••)•

Let us put p(x) =q(x)ecix). It follows from (3.6), the definition of C(x), and

(3.7), that

(3.8) | f(x) | ^ p{x)   (OáK«)    and   | /(£„) | = #({„)     (ft = 1, 2, • • • ).

Furthermore, it is easy to verify that both functions q(x) and exp [C(x)],

and consequently their product p(x), satisfy hypotheses (i), (ii), and (iii)

of Lemma 2b. Applying this lemma we find that if 1}>1 and k'>k, there

exists Xo such that for | arg z\ get, x^Xo,

(3.9) |/(*+ h)\ ^ ^(x)e*'l"l.

Let us consider now the family of functions {Fn{z)} defined by

/(£» + z)
(3.10) Fn(z) = («- 1,2,..-).

J\èn)

which are analytic inside any circle \z\ ^R for «à»o = »o(^), and satisfy

there, on account of (3.9) and (3.8),

I , Píen +   X)
(3.11) \Fn(x+iy)\ ÛV        f   ,      «»'""•

Or, we have uniformly for x in any fixed interval |x| g2?,

(3.12) lim {p% + *)/*({.)) = 1,
n=»

so that the family { Fn{z)} is bounded in any finite circle and hence is normal.

Let G(z) be any limit function of the family:

(3.13) G(z) = limFn».

It follows from the above remarks that G(z) is an entire function not identi-

cally zero, G(0) = 1, which, on account of (3.11) and (3.12) (remembering

that the only restrictions on rj and k' are r¡ > 1 and k' > k) satisfies
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(3.14) |G(z)| ^ «*l»l.

We are now going to get a contradiction by showing that G(z) has too

many zeros to be consistent with its growth. Let n(r) denote the number of

zeros of G(z) inside the circle \z\ i£r. We claim that

(3 .15) »(r) £ 2r - 0(1) (r -* » ).

For, let mv= [£„J ([x] being as usual the largest integer not exceeding x,

and {nv\ the subsequence of (3.13)) and put

(3.16) m   =\m„+j-%nv, íorjíí—m,.

It follows from (3.3) that

I m/2   - M¿ | à * > 0    0's >/i è - )».)    and
(3.17) i    (»j i

| M/    - i | á ff + 1    (j g - m,),

and it is now obvious from (3.17) that by a diagonal process we can choose a

subsequence {pí}, such that

(3.18) lim/4o "m (Í = 0, ±1,---).

Now, all the n/s are zeros of G(z). Indeed, using (3.8), (3.10), and (3.4), we

have

| Fn (M«) I = l/(X-,+i)l . ¡J^tÈl e-c«,^
(3  19) I/tt-,) I ?(*»,)

|/(Xm,+ í) I   q(m„+ j)
= -■-£-Mi*r\

o(w„ + jr")        ?(£„„)

But  |in,—(i»,+j)| Si+1, and hence q(m>+j)/q(£„v)—>l  (y-*«); also C(x)

t », and |/(Xffll,+3-)| ̂ gm^+j = g(w„+j), so that (3.19) yields, in particular,

GO»,) = lim Fri(Jîù) = 0 (j - 0, ±1, • • ■ ).

Or, it is evident that the sequence {p,j} satisfies (3.17) for j = 0, +1, • ■ • ;

from which our assertion (3.15) follows immediately.

Finally, let us apply Jensen's formula:

C*   n(r) 1   r2* i i .
I      —^- dr = — I      log | G(Reie) | dB - log | G(0) |

Jo        r 2ir J o

to our function G(z). Making use of inequalities (3.14) and (3.15), and re-

membering that G(0) = 1, we get
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k   r2r                        2kR
(3.20) 2R - Oflog R) á — J     -R | sin Ö ¡ <f0 =-

2w Jo it

Dividing by R and sending R to infinity, we obtain k^ir, which, however,

contradicts our hypothesis and completes the proof of the theorem.

Theorem 3a can still be generalized in several directions. Thus, the condi-

tion (3.3) was imposed on the sequence {Xn} because of its simplicity. The

same method yields the following more general theorem.

Theorem 3b. Letfiz) be an analytic function of exponential type in an angle

| arg z\ r£a<7r/2, satisfying (3.2) with k^O {but not necessarily k<ir). Let

[\n] be a sequence of complex numbers contained in the strip x=g0, |y| ^M,

and such that |Xn— Xm| ¿th>0 (n^m). Denote by iV(£, r) the number of\n's

in the rectangle \x — £| ^r, \y\ SM, and put

D = lim inf  lim inf I-
R=„ {=»      \        R

Suppose that D>k/iv and let {qn\ be a sequence of positive numbers satisfying

(i) and (ii) of Theorem 3a, and such that

qn ^ max | /(XOT) | for \m in the rectangle w :S x < » + 1,  [ y\ á M

{the right side is understood to be zero if there are no Xm's in the rectangle). Then,

the conclusion of Theorem 3a holds.

Another generalization consists in considering "multiple" points: that is,

when not only/(X„) is known but also some of its derivatives/'(X„), • • • ,

/(""'(Xn)- How the theorem must be announced in this case is obvious from

our method of proof. Thus, to take a special case, if, in Theorem 3a, qn

^max (|/(X„)|, |/'(X„)|) and if k<2ir (instead of k<ir in Theorem 3a),

then the conclusion (3.5) holds.

We would also like to note that Theorem 3a is essentially equivalent to a

theorem which was fundamental in our thesis [l, Theorem III] and proved

fruitful in investigations of singularities of a class of Dirichlet series. Here we

shall show how Theorem 3a can be applied to problems of singularities of

Taylor series. (However, the fundamental theorem of [l ] is the more "nat-

ural" and can easily be generalized to apply to various series having a

"power series type" of convergence.) In the following applications only the

special case X„ = w of Theorem 3a will be used.

4. Some general remarks and a general gap theorem. Let {an\ be a

sequence of positive numbers such that lim sup ((log an)/n)=0. We have

shown in   [l, Lemma II](6) that there always exists a majorant sequence

(6) We use this opportunity to correct the following printing mistake in [l] where at the

top of p. 271 is written: "log 3„/r(X„ + l) est une fonction concave" and so forth, and it should

be: log (3„/r(X„ + l)) and so forth.

)•



502 SHMUEL AGMON [May

\qn\ with the following properties:

(i) limn=w (qn/qn+1) = l.

(ii) lim sup„=00 m (log g„+i + log qn~i — 2 log qH)£l.

(iii) qn^an (» = 1, 2, • • • ) while g„¡=o,t for an infinite subsequence {»4}

(A-1,2, '.').
(Thus, if the sequence {an} is not bounded, we can take log q„ to be the small-

est concave majorant of log a„.) In particular, the above mentioned sequence

\qn\ satisfies conditions (i) and (ii) of Theorem 3a. Taking an= |/(X„)| , we

obtain :

Corollary 4a. //, in Theorem 3a, lim sup (log |/(X„)| /|X„| ) =0, then

there exists a touching majorant {q„} satisfying (1.6).

Let now <j>{z) be a Taylor series having the unit circle as its circle of

convergence
X

(4.1) <p(z) = £ «n3n (lim sup I anl1'" = 1).
n=0

We lay down the following definition.

Definition 4. A subsequence of coefficients \ank\ of the Taylor series (4.1)

will be said to be a sequence of principal coefficients, and the corresponding se-

quence {«&} a sequence of principal indices, if there exists a positive constant K

and a sequence of positive numbers {qn} having properties (i) and (ii) of Theorem

3a and such that

(4.2) qn ^  \an\ (n = 0, 1, • • • ),

while qnk^K\a„k\ for the given subsequence of coefficients.

From our first remark in the beginning of this section follows:

Corollary 4b. Every Taylor series (4.1) has a sequence of principal coeffi-

cients.

Now, it is well known (Carlson [9], see also V. Bernstein [5] where a

more general theorem is proved for Dirichlet series) that a necessary and

sufficient condition for the function <j>(z), defined by (4.1), to be regular on

the symmetric arc of the unit circle £<|arg z\ ¿ir (0<&<tt) is that there

will exist a function/(z), analytic and of exponential type in a certain angle

I arg z\ ^a where it satisfies (3.2), and furthermore such that /(«) =a„

(w = 0, 1, • ■ • ). In what follows we shall call this function the interpolation

function.

We shall apply Theorem 3a to the interpolation function f(z) (with

\n = n). Let {nk) (A = l, 2, • • • ) be a sequence of principal indices of <f>(z),

and consider the family of functions {F„k(z)} defined by Fnt(z) =f(nk+z)/ant.

It follows from Theorem 3a and Definition 4 that the family is analytic and

bounded in every circle | z\ ^R (for k^k0(R)), and hence is normal. Further-
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more, by the same argument as is employed in the proof of Theorem 3a, it

follows that each limit function G(z) of the family G(z) =linu=00 Fn'k(z) is an

entire function satisfying

(4.3) \G(x+ iy)\ g Aek^ (k < x),

A being a constant independent of the special limit function, and

(4.3') G(0) = 1.

We also know that the values of G(z) at the integer points are given by

(4.3") G(m) = lim (an-k+m/an>k) (m = 0, ± 1, ■ • • ).

Now, given a Taylor series (4.1), let {»*} be a sequence of principal

indices, and suppose that there exists a subsequence {n't} of {ra*} such that

linii=00 (an>k+m/an>k) = bm (m = 0, ±1, • • • ) and such that no entire function

satisfying (4.3) and (4.3') can take the values bm at the integer points. Then,

it may be concluded from the above remarks that z = — 1 is a singular point

for the series in (4.1). Thus, for example, by a theorem of Cartwright [ll,

Theorem I], an entire function G(z) satisfying (4.3), and such that | G(m) \

iïexp [— d(m)] (m = l, 2, ■ • • ) where d(m) is an increasing sequence satisfy-

ing ^2(6(m)/m2) = oo, is identically zero (so that (4.3') cannot hold). We

therefore deduce the following general gap theorem.

Theorem 4. Let <p(z) be a Taylor series (4.1), and let {«&} be a sequence of

principal indices such that \\mk~,x (wt+i —«*) = ». Suppose that one of the fol-

lowing two conditions is satisfied :

(4.4) lim sup
4=c

nfc+m
^ e~e<-m\    or    lim sup

i=»

^ni.—»
<   p-t(.m)

for m = l, 2, ■ ■ ■ , where 6(m) is an increasing sequence such that ^(d(m)/m2)

= oo. Then the unit circle is a natural boundary.

This theorem was proved by us (for a class of Dirichlet series) in [l ]

by another method. (Also in [3] where the present proof is sketched.)

It is seen that no real gaps are required in the gap theorem. It is enough

that the coefficients immediately after (or before) the principal coefficients

will be relatively small in order that the conclusion will hold. Theorem 4

contains also as a special case the gap theorem of Fabry [14] asserting that

the unit circle is a natural boundary for the Taylor series (4.1) if an = 0 ex-

cept for n=nk where nk+i — «*—*«. Indeed, in this case it is obvious that any

sequence of principal coefficients is to be found among the nonzero coefficients

and for any such sequence both conditions (4.4) are satisfied with d(m) = oo.

We remark that a very special case of our theorem was proved by Ilieff

[15]; namely, the case of the coefficients being bounded while there exists a
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sequence of principal coefficients bounded away from zero and satisfying the

first condition (4.4) with $(m)m<x>. Ilieff's result was generalized by Boas

[7] (at about the same time our theorem was announced); but his results

are less general and are contained essentially in Theorem 4. As a matter of

fact his method applies to cases which can be reduced to Ilieff's theorem by

using the Hadamard multiplication theorem. This requires, however, a very

regular growth of the principal coefficients. (See also our second remark at

the end of the introduction, which deals with the same point in an equivalent

form.) Finally we remark that gap theorems with the same general idea were

given even earlier by Lösch [20] and Claus [12]. However, their results are

different, and in particular they assume that the length of the gaps depends

on the magnitude of the coefficients.

5. Generalization of a theorem of Szegö. The following is a well known

theorem proved by Szegö [25]:

Theorem. Let 4>(z) be a Taylor series (4.1) such that its coefficients take only

a finite number of different values. Then, a necessary condition that cf>(z) can

be continued analytically beyond the unit circle is that the sequence of coefficients

be ultimately periodic: an+i = anfor n}zn0 and some positive integer I.

(It is obvious that the condition is also sufficient and that in this case

4>(z) is a rational function of the form P(z)/(1 — z1).)

We shall prove the following generalization:

Theorem 5. Let <f>(z) = 2Z"_0 anqnr}nzn where the sequence {an} takes only a

finite number of different values, where {qn} is a sequence such that g„/gn+i—>1

and (log g„+i + log qn-i — 2 log qn) IkBjn (« = 1,2, • • -, and B is a constant),

and where {r)„} is a sequence satisfying rjn/?jn+i^l and 0<Ci^|??„| = C2

(the C's being constants). Then, a necessary condition that <j>(z) can be con-

tinued analytically beyond the unit circle is that the sequence {an\ be ultimately

periodic (6).

This theorem was announced by us in [4] and was proved by another

method in an unpublished part of our thesis (as a matter of fact we proved

there a more general theorem concerning Dirichlet series g(s) = ^,anqnr¡ne~'Xn''

where Xn+i—X„ has only a finite number of positive limit points). We remark

also that a special case of Theorem 5 (when g„ = «°) was proved independ-

ently by Ilieff [16] (see also the same author [17], which is, however, in-

cluded in the more general theorem for Dirichlet series mentioned above).

Another kind of generalization was given by Duffin and Schaeffer [13] who

proved that under the conditions of Szegö's theorem, the Taylor series can-

not even be bounded in any sector of the unit circle, unless the coefficients are

ultimately periodic. The method of proof we shall employ here is similar to

(fi) A more precise result could be proved. Namely, that each singular point on the unit

circle of ¿Lanzn is also a singular point of </>(z).
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that used by Duffin and Schaeffer in proving their generalization. We shall

make use, however, of our more general theorem, Theorem 3a.

Proof of Theorem 5. Suppose that the unit circle is not a natural boundary.

There is no loss in generality in assuming z= — 1 to be regular. (Indeed, if

not, we shall consider <pi(z) =(p(e2Tiplllz) where p and q are integers chosen so

that <pi(z) will be regular at z= — 1. The coefficients of <pi(z) will take only a

finite number of different values and will be periodic (nonperiodic) if the

coefficients of 4>(z) are periodic (nonperiodic).) Let /(z) be the interpolation

function, associated with the Taylor series, introduced in §4 (/(z) is of ex-

ponential type in a certain angle, satisfying there (3.2) and is such that/(»)

= anqnr]n). It follows from Theorem 3a that the family {Fn(z)} defined by

Fn(z)=f(n-\-z)/qni]n is normal in any finite region. Furthermore, by essen-

tially the argument employed in §4, it follows that each limit function G(z)

is an entire function satisfying (4.3), and such that

(5.1) G(m) = \im F„k(m) = lim ank+m —-— = lim a„k+m

(m = 0, ±1, ■••).

Now, suppose, by way of contradiction, that the sequence {an\ is not

ultimately periodic. As the sequence takes only a finite number of different

values: &i, o2, • • • , b„; |ô< — bj\ ^o>0 (i^j), it follows in an easy way that

for any integer r — 1, 2, ■ • ■ , we can find a pair of integers p = p(r) and

q = q(r), r<p<q, such that

(5.2) ap ¿¿ ag   while    ap_¿ = aq-i for i = 1, 2, • • • , r.

We shall choose two limit functions from the normal family {Fn(z) ) : G\(z)

= liml=00 Fp(U)(z), where {£(/%)} is a subsequence of {p(r)}, and G2(z)

= limi==00 Fgtr'jiz), where {r[} is a subsequence of {»%•}. Let us put H(z)

= Gi(z)~Gï(z). It follows from §4, (5.1), (5.2), and the definition of H(z),

that H(z) is an entire function which satisfies

(i)   \H(x+iy)\^2AekM (k<ir),

(tí) H(-m)=0 (m = l, 2, ■ ■ ■), and

(iii)   |iî(0)| ^o>0.

But, by a theorem of Carlson [8], a function satisfying (i) and (ii) is identi-

cally zero. This contradicts (iii) and completes the proof of the theorem.

6. Further applications. A well known theorem by Fabry [14] states that

if the Taylor series (4.1) is such that lim (an/an+i) = 1, then z= 1 is singular.

We proved in [l, Theorem XI ] a general theorem from which it follows that

if

,. ank+m / «nt-rn \

hm   - =1 I or   hm   -= 11
*=»      ank \       t=»      ank /
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for »i = l, 2, • • • , where {«■*} is a sequence of principal indices, then z=l is

singular.

Now, it is well known that the converse of Fabry's theorem is not true,

even when z = 1 is the only singularity on the unit circle, and even when the

singularity is of a relatively simple type. We shall show, however, that

(when z=l is the only singularity on the unit circle) the converse of our

theorem stated above holds. This will show, in particular, that for any

Taylor series (4.1) with a single singularity z = 1 on the unit circle, an'/an-+l-*l

when {n'} runs through certain blocks of integers, the length of which tends

to infinity.

It should be pointed out that much stronger results are known in some

special cases. Thus, Jungen [18] in the case where z= 1 is algebrico-logarith-

mic, and Whittaker and Wilson [26] in the case where z=l is an essential

singularity of finite exponential order, showed that an>/an>+1—»1 where {«'}

excludes only a sequence of integers of zero density. The interest of our theo-

rem lies, however, in its generality, as no further assumptions are made upon

the nature of the singularity z=l. We shall prove:

Theorem 6. Let <¡>(z) be a Taylor series (4.1) with a single singular point,

z=l, on the unit circle. Let {«*} be an infinite sequence of principal indices.

Then,

(6.1) lim   ^^ =1 (m = ± 1, ± 2, ■ ■ • ).
*»•     ank

Proof. Let /(z) be the associated interpolation function introduced in §4

(thus, /(z) is analytic and of exponential type in a certain angle, satisfying

(3.2), and/(ra)=a„ (« = 0, 1, • • • )). The point z=l being the only singu-

larity on the unit circle, it can easily be shown that (3.2) can be replaced

here by the sharper inequality

log I /(re") I .    ,    , , .    ,
(6.2) lim sup        '    -— = ô(| e\) | sinö | ( M g a),

r=oo r

where 5(6) (O^d^a) is continuous, increasing, 5(0) =0, and 5(a) <tt. Put

F„k(z) =f(n/c+z)/a„k. By Theorem 3a the family {Fnk(z)\ is normal in any

finite region. We shall show that

(6.3) lim F„k(z) = 1 (uniformly in any bounded region).
t=»

This, of course, will prove the theorem, as we shall get, in particular,

f(nk + tn)              a„k+m
1 = lim Fnk(m) = lim- = lim- (m = ± 1, ± 2, • • • ),

which is (6.1).
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Now, in order to prove (6.3), it is enough to show that all the limit func-

tions of the family are equal to 1. Let G(z) be any such limit function. By §4

it is an entire function satisfying G(0) = 1, and

(6.4) |G(x+ iy)\ á AeSM^K

Or, we could have started by considering/(z) in any smaller angle: |arg z\

^a' <a. Thus, a in (6.4) can be taken positive but as small as we please.

This, combined with 5(0) J, 0, yields
(i) G(z)=0(e«l*l) (|«| —>oo) for any 6>0, and

(ii) G(z) is bounded on the entire real axis.

But, it is well known (see, for example, [23, p. 43]) that an entire function

satisfying (i) and (ii) is a constant, so that G(z) = G(0) = 1. This establishes

(6.3) and completes the proof of the theorem (7). As a corollary, we obtain

.he following.

Corollary. Under the conditions of Theorem 6, suppose that there exists a

sequence of principal indices {«&} such that wt+i —«4 = 0(1); then we have

limn=00 (an/a„+i) = 1.
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