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1. Introduction. Let C be a closed Jordan curve which contains the

origin in its interior and which lies in the ring

(a) * £ | w| á 1 + «

where t is some positive number. Let w=f(z) map the circle \z\ <1 con-

formally onto the interior R of C in such a manner that/(0)=0 and/'(0)

>0. If e is "small," then it is to be expected that w=f(z) is "close" to the

identity transformation, namely, w = z, and the problem of establishing

bounds in terms of e for \f(z)— z\ valid in the closed circle \z\ ^1 has been

repeatedly treated in the literature on conformai mapping. The first result in

this direction was given by L. Bieberbach(2) in 1924, and his theorem was

sharpened considerably by A. R. Marchenko(3) in a short note published in

1935.

In this note Marchenko gives a theorem (without proof) which states

that under hypothesis (a) and an additional hypothesis on the smoothness of

C,

| f(z) - z | £ Kt ( | z] á 1),

where K is constant. As a first result in the present paper a simple proof of

this theorem is given which not only shows the existence of the constant K

but also give a numerical estimate for K. (See Theorem I, §2.)

In view of the fact that "nearly circular" regions play an important part in

the theory as well as in some of the applications of conformai mapping, par-

cularly in connection with the numerical computation of the mapping func-

tion of aerodynamics(4), it seemed of some interest to pursue this problem
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further and to investigate the analogous questions for the derivatives of the

mapping function. The problem considered is that of determining actual

numerical bounds for \f'(z) —1|, |/"(z)|, • ■ • , |/(n)(z)| assuming, of course,

further suitable restrictions on the curve C.

2. Statements of results.

Theorem I (Marchenko). Let C be a closed Jordan curve which is star-

shaped^) with respect to the origin and let the polar equation of C be p=p(<¡>),

0^<b^2ir, where p(<p) is periodic of period 2ir and satisfies the following addi-

tional hypotheses:

(a) For some e>0

1 ^ p(<f>) ¿1 + e,        0 ^ <t> ̂ 2ir.

(b) There exists a positive number (?) M such that

I p(* + s) - pfo) | á m e I s i,
where 0^4>^2ir and 5 is any real number. Let w=f(z) map \ z\ < 1 conformally

onto the interior of C in such a manner that /(0) =0 and /'(0) >0. Then there

exists a constant K which depends only on M such that for | z | á 1

| f(z) - z | á ke.

In fact K^l + M(2 log 2 + 1) if e£i.

Theorem II. Let Cbea closed Jordan curve which is star-shaped with respect

to the origin. Let the polar equation of C be p=p(<¡>), where p(<f>) is positive,

periodic of period 2ir, and satisfies the following additional hypotheses:

(a) p'(</>) is continuous and

| p'(4>)/p(4>) | < e (0 < € < 1).

(b) For all <p0, O^0o^2tt,

\p'(<p)/p(4>) - P'(4>o)/p(<t>o)1   r r

2ir J -T2-K J _T |        sin ((0 - 0o)/2)
dtp < J (0 < 5 < 1)

the integral being uniformly convergente) in this interval. Let f(z) be defined as

in Theorem I and let <f>(ô) = arg f(eiS). Then f'(z) exists and is continuous for

\z\ ál. Furthermore,

8 + e2

(2.1) |0'(0)_i|^-
1 — o

(6) A closed curve is star-shaped with respect to the origin if every ray from the origin

intersects the curve in exactly one point.

O That is, p(t¡¡) satisfies a Lipschitz condition with Lipschitz constant Mt.

(7) That is, given i)>0, there exists a number a>0, depending only on r\ and not on <t><¡,

such that <j>o—x<a, y—<j>0<a, and x<y implies fl<y.
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(2.2)
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f(z)
- 1

e + e2 + e3 + Ô
g - = k(e)

1-5

185

(1*1 ái).

Theorem III. 7/ t» addition to all the hypotheses of Theorem II, ¿fee curve

C is assumed to lie in the ring

(2.3) 1   ̂   \W      <   1  +  €

w&ere e is ¿fee number given in hypothesis (a) o/ Theorem II, aw¿ iff(z) is defined

as in Theorem I, ¿Aew

(2.4) I /'(*) - 1 | £ S
e + í2 + e3 + Ô

1 - 5
(|*| £D.

Theorem IV. Ze¿ C be a closed Jordan curve which is star-shaped with

respect to the origin and let the polar equation of C be p = p(<b) where p(4>) is posi-

tive, periodic of period 2x, and satisfies the following additional hypotheses:

(a) p(4>) — (d/d(t>)(p'(4>)/p((b)) exists and is continuous and

p(4>) | < e/x (0   <  €   <   1).

(b)  For all <b0, 0^</>„^2x,

i  r T\ <■

2x J _T | si

u'(4>) - w'(0o)

sin ((<t> - 0o)/2)
¿0   ̂

where co(0) = — arc tan (p'(<f>)/p(<j>)) (the principal branch of the arc tangent

being chosen). Let f(z) and <p(d) be defined as in Theorem II, then f"(z) exists

for |*| SI,

\1-   (8/x2)e/\ X      /
(2.5)

and

(2.6)

/"(S)

/'(*)

<t>'(6)

(3 + (1/x)) + «(((1 + e + e2)/x) + 1 + 2e)

1 - (8/x2)e

< e
3 + (1/x) + 4e

1 - (8/x2)e

Theorem V. Let C be a closed Jordan curve which is star-shaped with respect

to the origin and let the polar equation of C be p=p(<j>), 0^<b^2ir, where p(<j>)

is positive, periodic of period 2x, and satisfies the following additional hy-

potheses :

(a) pM(4>) exists and is continuous,



186 E. J. SPECHT [September

| p(<b) | < s/tt (0 < e < 1)

where p(<b) = (d/d<p)(p'(<p)/p(<t>)), and

(2.7) | «<»(» | < t/r fork = 2, •••,«- 1,

wÄere w(<p) = — arc tan (p'(<l>)/p(<p))  (the principal value of the arc tangent

being chosen).

(b) For all<p0, 0^<po^2ir,

1    /•"■|<ö<"r-

2tt J _t I      si

(»-!>(,£)   _  w(^l)(0)o

sin ((0 - *o)/2)
dtf> g e.

Let f(z) and <p(6) be defined as in Theorem II, then f(n)(z) exists for \z\ ^1

a«d /Äere exú/ /wo absolute constants Kn and J'n, that is, numbers which depend

only on n, but not on € or on the curve(s) C, such that

(2.8) \<i>M(<>)\è Kne (»£2)

and

(2.9) i^w/ywla^ (M*i,*fc2).
Remark. If in addition to the hypotheses of Theorem V we assume that

C lies in the ring

1 ^ | w\ < 1 + e (0 < e < 1),

then by Theorem III (since 5 may be taken as (8/V2)e, see Preliminary in-

equalities under §5) there exists an absolute constant Ji such that

| f'(z) - 11 á J*     or     | /'(*) | =£ Jlf + 1< Ji + 1.

Hence under this additional assumption

I /<">(*) | á (A + 1)/«« = /««

where A«(/i+l)/; (» = 2, 3, • • • ).

3. Proof of Theorem I.
(A) An integral representation for arg (f(z)/z) on the boundary. Let C be a

closed star-shaped Jordan curve, containing the origin, whose polar equation

is p=p(<¡>), 0 5ä<£i=27r, where p(4>) is positive and has bounded difference

quotients. Let the function w=f(z) map \z\ <1 conformally onto the interi-

or of C in such a manner that /(0)=0 and /'(0)>0. Let <p(6) -0 = arg (f(z)/z),

z = eu, where the branch of arg (f(z)/z) is chosen so that [arg (f(z)/z)]z=0

= arg/'(0) =0, and let t(<j>) denote the inverse function of <f>(0). Then for all

(8) Thus the inequalities (2.8) and (2.9) are satisfied with the same Kn and j'n for the

mapping function of every curve C for which hypotheses (a) and (b) are fulfilled.
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9 for which <f>(6) and p(0(0)) have(9) a (finite) derivative and <f>'(B) ¿¿0, that is,

for almost all 0,

(3.1) 0(0) - e
i  /"■

= - I    log
X   J_T

¿(0) - «
sin [<t>]d<t>.

Remark. Since t(<p)—doo((b—(b(,)-t'(<po) as 0—>0o, where 0o=0(0), and

(p'/p) [<Al is bounded, the integral of (3.1) exists in the sense of Lebesgue.

Proof. Let 0 be a value for which <p'(9) and p'(0) (0=0(0)) exist and

<p'(6)r^0. Since 0(0)—0 is the imaginary part of log (f(z)/z), z = eie, where

log (f(z)/z) is the real(10) log/'(0) when z = 0, we have

<p(d) e = r I    [log
2x J 0_T

p(0(O) -logp(0(fl))]cot
< - e

dl.

Since p(0) is continuous and has bounded difference quotients, it follows

that C is rectifiable, and therefore, by a theorem of F. and M. Riesz (see F.

and M. Riesz [5]), that 0(0) is an absolutely continuous (and monotonie)

function. Hence p(<f>(9)) is an absolutely continuous function of 9, for all 9.

We shall make use of this fact in changing the last integral by an integration

by parts. The function

*(i)= [log p(cb(t)) -log p(0(0))] log |sin (t-9)/2\,

for t^O, í>(0) =0, is continuous for 0 — x^i ^0+x. Hence

l r t
=-(log p(<t>(t) - log P(<p(6))) log

x L
0(0) - e

\e+r

sin -

+   lim
s4f->o L J 6+S

fo(/)]*'(01og
t-e

sin dt

+
•J »-

— [«(<) ]*'(<) log
P

Í-6
sin ¿Í

the integrated part being zero because of the periodicity of <£(/)• Making the

substitution t=t(<p), <f>'(t)dt=d<p, and observing the remark concerning the

existence of the integral of (3.1), we obtain the formula (3.1).

(B) Estimate of | arg f(eu) -6\ and \f(z)-z\. Let 0(0) -0 = arg (f(z)/z),

z = e<s, where arg (f(z)/z) is so chosen that arg/'(0) =0. Let 0 be a value for

which 0'(0) and p'(0) exist and 0'(0)^O. Then by (3.1)

0(0)
1   re+'

X   J e-r
log

t-e
sin [/]0'(/)¿/.

(9) The notation [p'/p)[<t>] means p'((j>)/p(4>).

(10) That is, let F(z) =log (/(z)/z) for 2^0, ^(0) =log/'(0), and let f(0) be real.
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Since <p'(6)>0 and | (p'/p) [<b] | g Me (by hypothesis (b)) we have

I —i        i re+T t
4>(6) - d\ ^ Me—  I ( -log  sin

-M'Í7C(-loe

2    I

t-e
sin-

Vio*

■ W(0- i)dt

If«-'      I       í - 0 I   1— I        log   sin-KM'
tt J e-x 2 J

The second integral has the value — 2x log 2. The first integral is easily

evaluated by integration by parts. We have

1    rs+r--J        ]log  sin ■
t-

(<b'(t) - \)dt

t-e
= — f      (cot-í——) (d>(t) - t -  [<p(6) - fl])d< = log

/(«")

/'(0)

< 1.

It follows(u) from hypothesis (a) that

|/(*)//(0) | á 1 + « for,

Hence we obtain

(3.2) | <p(e) - 6 | g> Me(2 log 2 + «).

This holds for almost all 9, and hence by the continuity of <j>(6) —0 it holds for

all 8, 0^0¿2ir.
Let p=p(<p(d)), then by hypothesis (a) and by (3.2)

/CO-1 = I pe<t*(«-»j _ 11 g | p _ 11 + | eiW(»)-*i _ 11

g e + JWÉ(2 1og2 + e).

Thus, if e^l and \z\ =1, |/(z)-z| ¿Ke where iCgl + Af(2 log 2 + 1). By

the maximum-modulus principle this holds for \z\ <1.

4. Proof of Theorems II and III.
(A) An integral representation for (d/dd) arg/(e<e). Let C be a closed star-

shaped Jordan curve, containing the origin, whose polar equation is p=p(<p),

0i£<pg27r, where p(<p) is positive, p'(4>) is continuous, and the integral

(4.1)
*°+r\(p'/p)M-(p'/p)[<Po]f *o+'

J tf0-r <t> — <Po
d<t>

exists for some <po- Let/(z) and <j>(t) = arg f(eil) be defined as in Theorem I and

(u) Applying the minimum-modulus principle to the function g(z) = (f(z)/z), zp^O, g(0)

=/'(0), we see that hypothesis (a) implies/'(0) 2:1.
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let t(<p) be the inverse function of <p(t). If 9 = t(<b0), then 0'(0) exists and

(4.2)

0(0) [l + (- [0„]J]

Proof. Because of hypothesis (4.1) the function/(z) has a (nonvanishing)

derivative(12) f'(z0) at z0 = eiB, and linw f'(re«) =/'(z0). Let log (f(z)/z) de-

note the branch of the logarithm which is equal to the real log /'(0) when

z = 0. This function is analytic for \z\ <1 and has the continuous boundary

function log p(<p(t))+i(<p(t)—t) for z = eil. Furthermore, (d/dt)(log p(<b(t))

+i(<p(t)—t)) exists for t = 9 and

fd        /f(reia)\l p'
(4.3)       lim   - log (^-r^J       = - (0(0))0'(0) + <*'(») " 1 ■

r-i Loa        \   reia   /Ja=)     p

The function log (f(z)/z) may be represented for | z\ = | reia\ < 1 by means

of the Poisson integral

log — = - I     (log p(0(i)) + <[*(/) - t]) ——- dl.
z       2x J_T 1 + rl — 2r cos (¿ — a)

Hence

3<A reia   /

= — f   (log p(0(O) + *[*(/) - t]) —(-]dt
2xJ_, da\l + r2 - 2rcos(t - a)/

1    rT r ,    d / 1 - r2 \
=  - - I     (log p(0«) + ifo(0 - t]) — [ ——- ) Ä.

2x J_T 3/\1 + r2 — 2r cos (t — a);

Since <p(t) —t and p(<b(t)) are absolutely continuous and periodic functions of

/, the period being 2x, we obtain by an integration by parts

r('°e—)da\        re,a   /

- r f '(- [*«)]*'w + »I*'«) - i]) t—t-^-t,—,di
2irJ-r\p 1 + r2 — 2r cos (/ — a)

(0 ^ r < 1).

Because of this representation and because (¿/d/) [p(0(/))+î'(0(O— /)]i_»

C2) That is, lim*,,, (/(z)-/(z0))/(z-Zo))=.f(zo) exists when z->z0 in |z| gl (z^z0).
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exists, the real and imaginary parts of the boundary function (4.3) are given

by the following integrals(13):

(4.4) — [<p(d)W(9) = — f    [*'(« + 0 - *'(« - r)] cot 4 dr
p 2w J o 2

and

*'(*)- 1 = - -1 J" *^ fo(i) ]0'(O] ̂ - [- [*W ]*'(<)] ) cot j dr

where both integrals converge in the sense that lim,..0 /* exists. We may

write

<t>'(d) - - [<p(B + r) j - fo(fl) J U'(fl + t) cot -£- drr f'(-[*(«+ r)]--[*w])*'(»
¿xJ 0    \ P p /

+ ^ fr(- [*(fl - r)] - - [*(*)])*'(* - r) cot 4^
Z7rJo\p p / 2

- — — [*(»)]   f   [*'(« + t) - 0(0 - t)] cot 4 ¿r.
2ir   p J o 2

For, the first two integrals exist in the sense of Lebesgue because of the

hypothesis (4.1) and the fact that <b'(t) exists almost everywhere, as is seen

by introducing x=<p(0+¿) and x=<p(6 — t), respectively, as variables of

integration. If we make this substitution and use (4.4) we obtain (4.2).

(B) Proof of Theorem II. Because of the continuity of p(<f>) and the

hypothesis (b), <p'(0) exists and is continuous(14) for O^0^27r. By (4.2), if

e = t(d>0),

(<b'(e) -1) [i+(- m)2]

= - U'Jrmr){^ M - 7 w)* - (7 w)'-
Choose (piso that¿(<pi)—0 = 7Tand<pi — 27r^<po<<pi, then t(<f>i — 2ir) —6= —w,

and 4>i — 2ir^<p^<pi implies \t(<p)— 0\ ^tt, which in turn implies(16)

(4.5)
t(<p)

cot-
t(<p) - 6 j

(13) This follows from a theorem on conjugate functions, see A. Zygmund, Trigonometric

series, p. 54, §3.45.

(H) This follows from Warschawski [lO, Theorem 10, p. 433].

(16) Note that for 0<*á7r/2, x cot x<\.
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Letting /í = max |0'(0) —1|  and taking the limits in the above integral as

0i —2x and 0i, we have by (4.5) and hypothesis (a)

i     i rn
0'(0) - 11 á - (m + 1)

Zx J <¡>l-ir

(pVp)l0]-(p'/p)[0o]

p + 1 r *o+

2x    J d>.-T

(0 - 0o)/2

(p'/p)[0]-(p7p)[0o]

d<p + e2

sin ((<(, - in)/2)
dcp + e2

for O^0^2x. Hence by hypothesis (b)

M g (p + 1)5 + e2

which implies (2.1).

In order to prove (2.2) observe that, for z = eie,

'*/'(*)à .    /(«)
— log-
de       z

<

(zf'(z) \ I      I p' r
i (±¡-L - l) - — [0(0)]0'(0) + i(<p'(e) - l)

\ /(*)       /I    I p

/        5 + e2\      5 + e2       t + e2 + e3 + 5
s(H-H-= -— = k(e).
\        1-5/1-5 1-5

Since the function zf'(z)/f(z) — 1 is analytic for  |z| <1, if defined as 0 for

z = 0, and continuous for \z\ gl, this proves (2.2) for all |z| ¡SI.

(C) Proof of Theorem III. We first note that for \z\ ¡g 1 :

(/'(*)-!
/(*) /'(*)

/(*)
1 +

/(*)
f'(0) + |/'(0)- 1

Since f(z)/z is analytic for \z\ <1 if defined as/'(0) when z = 0, (2.3) implies

that

i < < 1 + e

for |z| gi. Hence we have from (2.2) (note that/'(0)>0)

(4.6)

Now

!/(*)

\f'(z)~ 1| è Ä(e)[l+e] + |— -/'(0)| + í

I    I cz d /f(t)\   i    i rzM / fit)     \
/'(0)   =     f    — I —JA   = ^(¿^^-lW/

J»   áí\ í  / Jo    t2   \  f(t) J

Since the function tf'(t)/f(t) — í is regular for |í| <1 if defined as 0 when

t = 0, (2.2) implies | (i/t)(tf'(t)/f(t) -1) | £k(e) for \t\ ál, and thus that

|/(z)/z-/'(0)| á¿(«) [1+e]. We obtain, therefore, from (4.6)

|/'(*)-l| ^2k(e)[l + e] + e<5k(e).
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5. Proof of Theorem IV.
(A) A formula for <j>"(0). We assume the hypotheses of Theorem IV

satisfied. The function F(z) =log (zf'(z)/f(z)) when z^O, F(0) =0, is analytic

for \z\ <1 and continuous for \z\ ¿1. Since p"(0) exists and is continuous

and p(<p) satisfies hypothesis (b), f'(z) and hence F(z) has a derivative at

every point of the unit circle(16) (that is, limz^l)[(F(z) — F(z0))/(z — z0)]

exists, |zo|=l, |z|^l, z^zo). Hence (d/dô)(F(eie)) and 0"(0) exist for

0 ̂ 0 ^ 2t, and limr<1 (d/d0)(F(re*) = (d/dB)(F(eie)). Let « = -arc tan(p'/p) [<p],

where the principal value of the arc tangent is chosen. Then, it is easily seen

that

[WOO! P'   r l
(5.1) arg   ——- = - arc tan — [0(0)]

L f(z) Jz_e.« p
0,(0(0)).

Hence

d        r zf'(z)-\
-arg \~^\        = «'(0(0))-0'(0),
de     L f(z) J2_e.-»

and thus (d/d8) arg (zf (z)/f(z))z=r<ß has the continuous boundary function

co'(0(0))0'(0) for r = l. Therefore we have

dr   \zf(z)n
—   log -
d0\_      |s     |J2=e.8

a r    i zf(z) 11
=    lim —   log -

r-*l 50 L      I  f(z)   I l_e«

1      C * T
=  —  I      [o/(0(0 + r))0'(0 + t) - o/(0(0 - r))0'(0 - t)] cot — dr.

2x «/o 2

This integral converges absolutely for every 0 in the interval 0=0 = 2?r. To

see this we note that it may (formally) be written in the following way (0o
= 0(0)):

- — f    ["W + T)) - «'(*>) ]*'(» + ') cot 4 *■
2ir J o 2

1      /* ' T
H-I     [«'(0(0 - t)) - w'(0o)]0'(0 - t) cot — dr

2ir J o 2

w'(0o)    f ' r T
-— [0'(Ö + t) - 0'(0 - r) ] cot — dr.

2t   J o 2

Hypothesis (b) and the fact that 0'(0) is continuous imply that the first two

(16) This follows from Warschawski [11, Theorems III and IV] by noting the remarks on

p. 320 under (3) Change of variables and on p. 318 under (1).
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integrals are absolutely convergent as is seen by introducing x=0(0+r) and

x=0(0—t) respectively as variables of integration. The third integral con-

verges absolutely since the existence of 0"(0) for every 0 implies that

limT_o (((0'(0+t)— 0'(0 — t))/t)) exists. If we make these substitutions, x

= 0(0+r) and x=0(0—t), respectively, and note that the last integral is

equal to w'(0o)  (p'/p) [0o]-0'(0), we are led to the formula

(5.2)

d r   i */'(*) n i r2i    ¿(0) - *,
-log -^±L = _ - I    cot 22— [„'(*) - «'(*,) ]¿0
ö0 L     I y(z)   I _!«=«•» 2x^o 2

+ «'(*,) —  [0o]-0'(0).
p

Since (see, for example, (4.3))

'*/'(*)r z/'(z)-| r      I 2/(2) I "I
log </>'(0) = log Re   -^- =    log -^ + log cos «(00))

L /(z) J2_e«     L    I /(*) IJ«_.«

we have

Hence

(5.3)

"(0)     dr    i «/'(*) n
— = —   log -^-^- - tan a,(0(0)) • co'(0(0)) • 0'(0).
'(0)      del  8   /(z)    _L.« w"        w'     w

0"(0)

0'(0)

"(0) If«      i
-=-I   cot
'(0) 2xJ_,

f'(0)
0'

¿(0)  - 0
[«'(0)   -  ü/(0o)]</0

+ 2co'(0o)—[0o]-0'(0).
P

(B) Preliminary inequalities. We first derive an upper bound for 0'(0)

using Theorem II. Hypothesis (a) implies

(5.4) - M - - [0o]
p p

^ — I 4> — 0o | Ú «
X

if |0— 0o| ^ir. Since f%T(p'/p) [0]¿0 = O, there exists a point 0i such that

(p'/p) [0i] =0. Hence, applying (5.4) with 0o=0i and using the periodicity

of (p'/p)[0], we find for all 0, O^0á2x,

(5.5) M0] <  €.

Furthermore, by (5.4), we have(17)

(") Since the function v(t) = //sin t when t p^O, d(0) =0 is concave (upward) for 0 Si g x/2,

application of the trapezoidal rule for the approximate calculation of integrals shows that

/*'*(< /sin t)dt<2.
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*o+-l(p'/p)[0]-(p'/p)[0o]

[September

ZX J ^0_T sin ((0 - 0o)/2)
d<b

le /• *o

¿TW J T„

4e  f '2      *

0   —   00

¿Í   <

sin ((0 - 0o)/2

8«

d<f>

sin ¿ x2

Thus, the hypotheses of Theorem II are satisfied, 5 being equal to 8e/7r2, and

(8/x2)e + e2
0'(0) - 1 hs

1 - (8/x2)e

or

(5.6)
1 + e2 1 + e2

<M* =   max  0'(0) <
os«s2T 1 - (8/x2)e       1 - (8/9)«

(C) Estimate of |0"(0)|. Let 0i be so chosen that i(0i)—0 = ir where 0i

— 27r<0oá0i. Then t(<pi — 2w)—0= —w, and we may take the limits of inte-

gration in the integral of (5.3) as0i —2x and 0!. For (pi — 2x^0 ú<pi, \t(<p)—0\

^x and, therefore,

cot-
¿(0)   - 0 M* M*

/(0) - 0 | ((0 - 0o)/2) sin ((0 - 0o)/2) I

(0 ^ 0o)

where M* is defined in (5.6). Hence by hypothesis (b)

i  r *i        /(0) - 0

(5.7)

1   f *1

I 2x J *!—2t
cot [«'(0) - «'(0o)]d0

M* *1     I   «'(0) - o/(0o)

/*1 sin ((0 - 0o)/2)
d(b ̂  M*e,

and thus from (5.3) by (5.7), hypothesis (a), and (5.5)

, *"(«) I
(5.8)

0'(0)
g M*(e + — ) ̂  (-V1 + — Je.

V x/      \l-(8/x2)/\ x/

Making use of (5.6) we obtain (2.5).

(D) Estimate of |/"(z)//'(z)|. To prove (2.6) we note first that

(5.9)
00

F(z)
mi, . i"(¿)

\l | 1 — Z     ..'.     I + IZiU-.m
L       f(z) J /'(*)

de
ReF(z)   +  — ImF(z)

30

for z = rea, Ogr^l. If we estimate | (d/dO)(log |z/'(z)//(z)|2=(,'«)| by use of
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(5.2), (5.7), hypothesis (a), (5.5), and (5.6), and if we estimate

|(d/d»)(arg (2/'(z)//(z))W<>| by use of (5.1), (5.6), and hypothesis (a), we
find

d
■F(ei0) < M*■0 + 7)+ M* — = h(t).

This inequality is true also when \z\ < 1, as may be seen in the following man-

ner. Application of the mean value of the real and imaginary part of F(em)

shows that for r = 1

| F(re^e+^) - F(reie) \ ^ h(e) -\y\.

By the maximum modulus principle this is also true when 0¡£r<l. Keeping

0 and r (0O<l) fixed and letting y—>0, we find

(5.10) lim
7->0

F(rei(o+y) _ F{rei»)

36
F(reie) g h(e)        (Oíf¿ 1).

(5.11)

By Theorem II (2.2) we have, using 5 = (8/x2)e, 0<€<1,

2e + e2 + €3/'(*)       ,
2-1

/(*)
<

1 - (8/x2)e

Hence, from (5.9) and (5.10), for   z  gl

/"(*)

/'(*)

2e + e2 + €3
< -+ A(«)

1 - (8/x2)e

3 + (1/x) + e[(l + e + e2)/x + 1 + 2e]

1 - (8/x2)e

< e-
3 + (1/x) + 4«

1 (8/x2)e

The proof of Theorem V is by induction and will be omitted. The ideas

involved in the proof are essentially the ideas used in the proof of Theorem

IV.
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