AUTOMORPHISMS OF THE UNIMODULAR GROUP

BY
L. K. HUA AND I. REINER

Notation. Let IR, denote the group of #nXn integral matrices of de-
terminant +1 (the unimodular group). By M} we denote that subset of
M. where the determinant is +1; M, is correspondingly defined. Let I
(or briefly I) be the identity matrix in I,, and let X’ represent the transpose
of X. The direct sum of the matrices 4 and B will be represented by 4 +B;

A=B

will mean that A4 is similar to B. In this paper, we shall find explicit.ly the
generators of the group A, of all automorphisms of M.

1. The commutator subgroup of IM,. The following result is useful, and
is of independent interest.

THEOREM 1. Let R, be the commutator subgroup of M.. Then trivially
R.CIE. For n=2, R, is of index 2 in MM}, while for n>2, R,=MS.

Proof. Consider first the case where #» =2. Define

o () ()

It is well known that S and T generate 9% . An element X of I is called even
if, when X is expressed as a product of powers of .S and T, the sum of the
exponents is even; otherwise, X is called odd. Since all relations satisfied by
S and T are consequences of

St=—1, (ST’ =1,

it follows that the parity of X €9 depends only on X, and not on the manner
in which X is expressed as a product of powers of .S and 7. Let € be the
subgroup of M, consisting of all even elements; then clearly € is of index 2
in M. It suffices to prove that E=R,.

We prove first that R CE. Since the commutator subgroup of a group is
always generated by squares, it suffices to show that 4 €I, implies 42€E.
For ACM, this is clear. If ACM;, set A =XT=JY, where

)
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and X and YEM}. Then 42=XY=XJ"1XJ. Hence we need only prove
that if X€MM, X and J-1XJ are of the same parity. This is easily verified
for X =S or T;since S and T generate M;, and J~1 X, XoJ =J"1XJ- J1X,J,
the result follows.

On the other hand we can show that ECR,. For, € is generated by T and
ST, since TS=(ST-T-?)2 However, T?=TJT'J1E&R,, and therefore also
(T)ER,. Furthermore, ST=TST-1SY(T')2T?ER,. This completes the
proof for n=2.

Suppose now that #»>2, and define

0---0 (_l)n—l

1.0 0 N 0 1
@ R= c o, s=( -

r (1 1)+I("_2)
“\o 1 )

(The symbols S and T defined here are the analogues in ;' of those defined
by (1). It will be clear from the context which are meant.) For n>2 we

have(?)
T’ = [R-Y(TR)~"»R(TR)*?*|(TR)"[R(TR)~""?R-YTR)"*|(TR) E R..

Further S=TST-1S~Y(T")"2T ER,. Finally, for odd » there exists a permuta-
tion matrix P such that R2=P-'RP, whence R=R'P-'RPEC®R,. For even n,
R represents the monomial transformation

) +I10-o,

X1 X2 * °* Xp—1 Xn
(xz X3t Xn —xl)’
which is a product of
(xl X2 X3t Xpo x,,) ( X1 Xs Xz Xg- o xn)
Xy — % Xgc o Xay  Xn) —%s X2 %1 Xe- - xn)
(xl X2 X3 Xg® - xn) (xl X2+ Xn—1 xn)
X4 X2 X3 — X1 Xn ’ ’ Xn X2 Xp1 — XL '

each factor of which is similar to S (and hence is in R.). Since T and R gen-
erate M}, the theorem is proved.

COROLLARY 1. In any automor phism of M., always M —»MF.

Proof. For n>2 this is an immediate corollary, since the commutator
subgroup goes into itself in any automorphism. For n=2, let S—S; and

(M L. K. Hua and I. Reiner, Trans. Amer. Math. Soc. vol. 65 (1949) p. 423.
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T—T:. Then ST&NR, implies $;T1ER,, so det (S:71) =1. Further, S?=—T
implies S?= —1, so det S;=1, since the minimum function of S is x2+1,
and the characteristic function must therefore be a power of x2+1. This
completes the proof whenn=2.

2. Automorphisms of 9. We wish to determine the automorphisms of
IN,. Since every automorphism of I, takes P into itself, we shall first de-
termine all automorphisms of M;. For XEM;, define e(X)=+1 or —1,
according as X is even or odd.

THEOREM 2. Every automorphism of MS is of one of the forms

(D) X EMy— AXA 4E M
or
(In X € M= ¢(X)-4X4, 4 E M.

That s, the automorphism group of My is generated by the set of “inner” auto-
morphisms X—AXA (AEM,) and the automor phism X —e(X) - X.

Proof. Let 7 be an automorphism of M ; it certainly leaves I and — I
individually unaltered. Let S and T (as given by (1)) be mapped into S*
and T7. Then (S7)2= —I. Since all second order fixed points are equivalent,
there exists a matrix BEIM,; such that BS*B~1=S. Instead of 7, consider
the automorphism 7’: X—BX7B~!, which leaves S unaltered. Assume here-
after that 7 leaves S invariant. (It is this sort of replacement of 7 by 7/ which
we shall mean when we refer to some property holding “after a suitable

inner automorphism.”) Set
a b
r=(C ).
c d

From (ST)®=1I we obtain (ST7)3=1, whence b —c=1. Since det 7" =1, we get
ad=14bc=c*+c¢c+1>0.

Set N=|a+d|. If N23, consider the elements generated by S and T~
(mod N). Since a+d=0 (mod N), we find that (T7)2=T (mod N). Further-
more (ST7)®=1 (mod N); therefore S and T+ generate (mod N) at most the
12 elements

+I, £8, £T7, £8T7, TS, +ST"S.

But if 7 is an automorphism, S and T~ generate I, which has more than 12
elements (mod N) for N=3.

Therefore N<2. Since ad>0, either a=d=1 or a=d= —1, and thence
b=1,¢=0or b=0, c=—1. There are 4 possibilities for Tr:
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’ (1 1) , (—-1 1)
*“\o 1)’ 7\ o0 -1/
10 -1 0
(1) ()
-1 1 —1 -1

Since S and T generate My, to determine 7 it is sufficient to specify S* and
T7. Thus every automorphism of 9 is of the form S—BSB~!, T—»BT ;B!
(for some 7, 1=0, 1, 2, 3), where BEM,. If J is given by (2), we have:

To=T, T,=STS, Ty=—JTJ7, Ts = — SJTJ'SY,

and also S= —JSJ~1. The possible automorphisms are:

i=0: S — BSB}, T — BTB™.
i=1: S — BS-S-S71B7}, T— BS-T-S71B™.,
1= 2: S—— BJ-S-J1B7, T-—-—BJ-T-J1'B7,

i=3: S— — BSJ-S-J By, T —— BSJ-T-J\S7'B~%.

These automorphisms are of two types: fort=0and 1, S»AS4-, T—-ATA},
which imply that X €EMF —AXA-1;fori=2and3,S—>—ASA-, T——ATA,
which imply that X €I —e(X)-AXA~1. This completes the proof.

3. Automorphisms of I¢; and IM,. We are now faced with the problem of
determining the automorphisms of M, from those of M. We shall have the
same problem for I, and IM;. As we shall see, the passage from MM} to M,
is trivial, and most of the difficulty lies in determining the automorphisms of
M. In this paper we shall prove the following results:

THEOREM 3. For n>2, the group of those automorphisms of MM} which are
induced by automorphisms of M, is generated by
(i) the set of all “inner” automorphisms

X EM - AXA 4 €M),

and
(ii) the automorphism

XEMr—-Xx"1.

REMARK. When # =2, the automorphism (ii) is the same as X—SX.S-1,
hence is included in (i). The automorphism X —¢(X) - X occurs only for n=2.
Furthermore, for odd 7 all automorphisms of 9, are induced by auto-
morphisms of M..

THEOREM 4. The generators of A, are
(i) the set of all inner automorphisms

XeM—A4X4™1 (4 €M),
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(ii) the automorphism X EM,—X"1,
(iii) for even n only, the automorphism
X eM, — (det X)- X,

and
(iv) for n=2 only, the automorphism

XEM—eX) X, XEDM—eJX) X,

where J 1s given by (2).
Further, when n=2, the automorphism (ii) may be omitted from this list.

Let us show that Theorem 4 is a simple consequence of Theorem 3.
Let 7 be any automorphism of .. By Corollary 1, 7 induces an auto-
morphism on M+ which, by Theorems 2 and 3, can be written as:

X €M — a(X)-AX*41,

where AEM,, a(X) =1 for all X or a(X)=¢(X) for all X (this can occur
only when #=2), and where either X*=X for all X or X*=X'-1 for all X.
Let Y and ZE€M; ; then

YZr = (YZ)" = a(YZ)-A(YZ)*47,
whence
Y = a(VZ) - AY*Z*A-1(Z7),
Let ZEM;, be fixed; then
Y = a(VZ)-AY*B for all ¥ € M,
where 4 and B are independent of Y. But then
AY*B-AY*B = (Y7)? = (Y7 = a(Y)A(¥V?)*4A,
so that
(BA)Y*(BA) = a(Y2)T*

Since this is valid for all YEI;, we see that of necessity a(¥?) =1 for all
Y, and BA = + 1. This shows that either Y"=a(YZ)- A Y*4 - for all YEII,,,
or V=—a(YZ)-AY*A-! for all YEM,. If =2 and a(VZ) =¢(YZ2), it is
trivial to verify that either e(YZ) =e(JY) for all YEM; or e(YZ) = —€e(JY)
for all YEM; .

The remainder of the paper will be concerned with proving Theorem 3.

4. Canonical forms for involutions. In the proof of Theorem 3 we shall
use certain canonical forms of involutions under similarity transformations.

LeEMMA 1. Under a similarity transformation, every involution X €I, such
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that X*=1I™ can be brought into the form
4 W, y,2)=L+---+L+ (=D + 10,

(z terms)

e=( )

Proof. We prove first, by induction on #, that every X €IR, satisfying
X?2=] is similar to a matrix of the form

o 0
® (M —I(ﬂ-”)'

For n=1 and 2, this is trivial. Let the theorem be proved for #, and assume
that X2=T"+D where #=2. Then X2—I=0,0or X—-I)(X+I1)=0. If X—-T
is nonsingular, then X = — I and the result is obvious. Hence, supposing that
X —1 is singular (so that A=1 is a characteristic root of X), there exists a
primitive column vector t= (¢, - - -, £.41)’ with integral elements such that
t’'X =t’. Choose P& My, with first row t’. Then

’
PXP_‘=(1 " ),
r Xu

where 2x+y+z=n and

where 1 denotes a vector whose components are 0; thus

(¢ %)
X = .
r Xu

4
It = X2 = ( 1 1 2)
I+ X)r Xu

shows that X2=1I®™ and (I4X;)r=n. By the induction hypothesis,

e [I(™ 0
Xl = ( )’
M —It=m

and, after making the similarity transformation, we have (as a consequence

of (I+Xy)r=n)
(2]‘"‘) 0)
= n.
TM 0

But

Therefore



1951] AUTOMORPHISMS OF THE UNIMODULAR GROUP 337

t=(0 0,% -, %

1"ty Uy ity ’
(m terms) (n—m terms)

where * denotes an arbitrary element. Thus

!1 nl
0
. I(m 0
.- J(mtD) 0
x< |0 =<_ )
M —I0-m
*
.M — [t
‘ai:

This completes the first part of the proof.
Suppose we now subject (5) to a further similarity transformation by

A® 0
" o) Em

A simple calculation shows that we obtain a matrix given by (5) with M
replaced by M, where M =2CA—'4DMA-. Choosing firstly C =0, 4 and D
unimodular, we find that M =DMA-!, and by proper choice of 4 and D we
can make M diagonal. Supposing this done, secondly put 4 =I, D=1I; we find
that M = M+2C. Since C is arbitrary, we can bring M into the form

I® 0
(0 0)’

where & is the rank of M. Since we can interchange two rows and simul-
taneously interchange the corresponding columns by means of a similarity
transformation, the lemma follows.

It is easily seen that

W(x,y,3) = W(Z, 3, 2)

only when x =%, y=7#, and z2=2. Furthermore, changing the order of terms in
the direct summation does not alter the similarity class. The number 4, of
nonsimilar involutions in M, is therefore equal to the number of solutions of
2x+y+z=n, x=0, y=0, 2=0. This gives

(=)
5 ) neven,

(n+ 1)(n+ 3)
4

(6)
n odd.
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Let B, be the number of nonsimilar involutions in I}, where the similarity
factors are in IM,. One easily obtains

4. — 1)/2, if # = 0 (mod 4),
(7 B, =

A4./2, otherwise.

5. Automorphisms of Itf. We shall now prove Theorem 3 for n=3. Let

-1 0 0 1 0 0
II=< 0 —1 o), 12=<1 -1 o)esmI.
0 0 1 0 0 —1

Then I = I®, Let 7 be any automorphism of M7 and let X =I7; then X2=I®,
By Lemma 1, the matrices I, I, and I® form a complete system of non-
similar involutions in I§. Therefore

X ; I1 or Iz.

After a suitable inner automorphism, we may assume that either I,—I; or
I,—1I,. We shall show that this latter case is impossible by considering the
normalizer groups of I; and I.. The normalizer group of I;, that is, the
group of matrices €M which commute with I, consists of all elements of

M7 of the form
e b 0
(c d 0),
0 0 e

and is isomorphic to M,. That of I; consists of all elements of M7 of the form

a 00
<(a—e)/2 4 f):
—B2 ki

and is isomorphic to that subgroup ® of MM, consisting of the elements

e=1
<2 /.>€ D, where & = O} (mod 2).
i
i=1

Since e and 7 are both odd, ® contains no element of order 3, and hence is
not isomorphic to P,. But then I—1I, is impossible.

We may assume thus that after a suitable inner automorphism, I is
invariant. Thence elements of MF which commute with I; map into ele-
ments of the same kind, so that
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’ o ’
¢ ()

n *1 n  +1
Since this induces an automorphism X—X7 on M;, we see that det X7 =det X,
and hence the plus signs go together, and so do the minus signs. By Theorem 2
and that part of Theorem 4 which follows from Theorem 2, there exists a
matrix 4 €M, such that X7= + AXA?; here, the plus sign certainly occurs
when X is an even element of 9, and if the minus sign occurs for one odd

element of M, then it occurs for every odd element of M. By use of a
further inner automorphism using the factor A—!4IV, we may assume that

X N <iX n’)
® (n il)em_’ n +1/’

1 0 O -1 0 0
M=(0 -1 O)-—)M or M—>N=< 0 1 0).
0 0 -1 0 0 -1

0—-1 0 0 1 0
N = (1 0 0>«M‘(—-1 0 0>,
0 0 1 0 0 1

we may assume (after a further inner automorphism, if necessary) that I,
M, and N are all invariant under the automorphism (but (8) need not hold).

Thus, after a suitably chosen inner automorphism, we have I;, M, and N
invariant. Therefore there exist A, B, and CEN, such that

X = N (iAXA‘l n)
(n’ il)em_) g +1/)’

+1 v + +1 w
(%) X emi=( )
) n X n +BXB!

so that

Since

where

a B a b
(-2l Do
y 6 c d

and n=(0, 0)’. Here, the +1 on the left goes with the +1 on the right al-
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ways (and the —1’s go together) ; further, when X is an even element of I,
the plus sign occurs before AXA-!, BXB™}, and CXC-!, while if the minus
sign occurs before one of these for any odd X €95, it occurs there for every
odd XMy .

Now we may assume that at most one of 4, B, and C has determinant —1;
for if both 4 and B (say) have determinant —1, apply a further inner auto-
morphism (with factor N) which leaves I;, M, and N invariant and changes
the signs of det 4 and det B. Suppose hereafter, without loss of generality,
that det A =det B=1.

Next, N is invariant, but by (9) goes into

-1 0
(iA( )A—l n’)
01 ,

n -1

so that

iA<—1 O)A_l_(—l 0)
‘ 0 1 "\ o 1/

This gives two possibilities:

01
wero o (00,
-1 0

The same holds true for B (but not necessarily for C, since det C= +1).
Suppose firstly that either 4 or B is I®, say A =I®. Then

1 1 0 + (1 1) 0
T = <0 1 0)—»(_ 0 1 0).
0 0 1 0 0 1

Case 1. T invariant. Then

0 1 0 0 1
<—1 0 0) and <1 (VI
o o0 v - 0 0 -1

are both invariant. (The first matrix is invariant in virtue of the remarks after
(9); the second is invariant because it is M times the first.) For either possible
choice of B we find that

-1 0 -1 0 0
( 0 0 1 —>< 0 + (0 1> )
0 1 0 0 1 0
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Therefore

1 0 -1 0 0,/~1 0 00 1
U={0 0 1)=< 0 -1 0)( 0 0 1)(1 0 0
1 0 O 0 0 1 0 1 0 MM 0-1

is mapped into

-1 0 0 /-1 0 0 0 1 . X
U, if + is used,
0—-1 0 0 0o 1 1 0 0)= . .
+ V, if — is used,
0 0 1 0 1 0 0 0 -1

where V=LUI;'. Thus, in this case, T—»T=ILTI;", and either U-U or
U—LUI;". Since T and U generate(?) My, the automorphism is inner.

Case 2.
-1 -1 0
T—>< 0 -1 0).
0 0 1

0 1 0 0 -1
(1 0 0)—)(—1 0 0},
0 0 -1 0 0-1

and one finds in this case that

0-1 0 -1
U——)( 0 0 1) or O 0 —1].
-1 0 O 1 0 O

If we set Z=TU?, then

1 0 0
(10) Q 1 0) = (UZ71)Uz>.
0 1

Now certainly the left side of (10) maps into

-1 0 0
(-1 -1 o),
0 0 1

(® L. K. Hua and I. Reiner, loc, cit,

Then
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whereas, knowing T7 and U", we can compute Z7 and thence can find the
image of the right side of (10). We readily find (for either value of U) that

the right side of (10) maps into
1T - -
(3 . )

and hence we have a contradiction.
Therefore case 2 cannot occur, and so if either 4 or B equals I?, the
automorphism is inner. Suppose hereafter that

(i o)
A=B= :
-1 0

In this case we have
Case 1*,

Then as before

0 1 0 0 1 0
(—1 0 0) and (l 0 0)
0o 0 1 0 0 -1

are invariant, and again Ur= U or V. After a further inner automorphism by
a factor of I; (in the latter case) we also have U— U. But then

T—T-, U-U-.

(This automorphism is easily shown to be a non-inner automorphism.)

Case 2*,
-1 0 O
T-—)( 1 -1 0).
0 OEE1

Then
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0 1 0 0-1 0
<1 0 O)——»(-l 0 0),
0 0 -1 0 0 -1

and again we find that there are two possibilities for U7, each of which leads
to a contradiction, just as in case 2. Therefore Theorem 3 holds when # = 3.

6. A fundamental lemma. Theorem 3 will be proved by induction on #;
the result has already been established for =2 and 3. In going from n—1 to
n, the following lemma is basic:

LEMMA 2. Let n =4, and define Jy=(—1) +I®=Y. I'n any automorphism
of My, Ji=+AJ1A! for some A EM,.

Proof. By Corollary 1, JJEM;, and J} is an involution. After a suitable
inner automorphism, we may assume that J{=W(x, v, z) (as defined by (4)),
where 2x+vy+2z=n and x4y is odd. Every element of I, which commutes
with J; maps into an element of M, which commutes with W. Every matrix
in M} maps into a matrix in IM;". Combining these facts, we see that the
group ®; consisting of those elements of M} which commute with J; is
isomorphic to &,, the corresponding group for W. If we prove that this can
happen only for x=0, y=1, 3=n—1 or x=0, y=n—1, 2=1, the result will
follow.

The group ®, consists of the matrices in M} of the form (£1)+X;,
X:EM.1, and so clearly &=, ;.

The group ®. is easily found to consist of all matrices CEIY of the form
(we illustrate the case where x=2):

r a; 0 as 0 0 .--0 2/31"‘233_

ay — dl as — dz
d; ds a1--- oy Bi--- B
2 2 2%
as 0 as 0 0 ---0 231 e 23; rows
as — d3 as — d4
5 da 5 d4 Y1ttt Yy 51...52
C =
a —2a 1 —240
. X . . v 0 rc:>yws
€y _2511 $v — 28y
N1 0 01 0
: 0 4 r:ws
L 0 .
e 2x 6. y 4

columns columns columns
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For the moment put

K_( 1 0)+ +( 1 0)4_[(,‘_23)
"\=1/2 1) Teems \—1/2 1 :

Then a simple calculation gives:

'al 0 as 0 0 ---0 Zﬂl"'Zﬁz—

0 do O d: a1-°-ay 0---0
az O ag O 0--:0 26y - -+ 26,
0 ds 0 de  vi+c vy 0---0
xkcx-1= |9 T 0~
U 0
0 —2, 0 —2f
m O 6, O
. . . X 0 .
7. 0 6, 0 -
and so C is similar to
a as 26, - - 2B, d, ds apcc ot oay
as ay 28y - - - 26, ds ds Vit Yy
m 0, + | -2 -2
. . . . . -
"73 éz —éfv _éfu
_ S1 2R, = I S: Q2=
B [Q1 Tl] 2 [2R2 Tz] y ’
x 3 x y

with a fixed similarity factor depending only on W. Therefore =@, where
®=0(x, y, 2) is the group of matrices in IM; of the form

[Sl ZRI]x + l: Sz Qz]x
Ql T1 2 2R2 Tz y ’
x z x y

where S$;=3S; (mod 2). Here 2x+y+2=n and x+ is odd.

We wish to prove that IM,_1=@(x, y, 2) only when x=0, y=1, z=n—1
or x=0, y=n—1, z=1. In order to establish this, we shall prove that in all
other cases the number of involutions in @ which are nonsimilar in @ is greater
than the number of involutions in M., which are nonsimilar in M,_;;



1951] AUTOMORPHISMS OF THE UNIMODULAR GROUP 345

this latter number is, of course, 4, (given by (6)2.
We shall briefly denote the elements of @ by 4 + B, where

S:1 2R S
A= < ! l) and B = ( : Qz).
Ql Tl 2R2 Tz

If A,+B; and 4,4 B; are two involutions in &, where either
in 9)2;4., or

in M4y, then certainly
A+B, 5:5A2+Bz

in ® (these may be similar in I%,, however). Therefore, the matrices 4+ B,
where

A=I@® 4 (=DN® + L4 ... 4+1L,

(c1 terms)

B=Iw 4 (—N®+L+...41L,

(2 terms)

obtained by taking different sets of values of (a1, b1, €1, a2, bz, c2), if they lie
in ©, are certainly nonsimilar in @. Here we have

a1+b1+261=x+z, a2+b2+202=x+y, b1+b2+c1+czeven.

If x>0, we impose the further restriction that ;< (z+1)/2, 2= (y+1)/2,
and that in B instead of L we use L’. These conditions will insure that
A+BE®. We certainly do not (in general) get all of the nonsimilar involu-
tions of ® in this way, but instead we obtain only a subset thereof. Call the
number of such matrices N.
For x=0, we have N = B,B, + (4, — B,)(A. — B.). Since ¥ is odd,
Ay=2B,, and therefore
N = ByA, = .ByAn—y.
Case 1. n even. Then N=(y+1)(y+3)(n—y+1)(n—y-+3)/32. If neither
y nor n—y is 1 (certainly neither can be zero), then
G+ Dr—-—y+1) 24nrn—2) and (y+ 3)(n—y+ 3) = 6n,
so that
N = (24/32) n(n — 2).

For n=4, x=0, either y=1 or 2=1. For n=6, we have N>A4,_;. Hence in
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this case ® is not isomorphic to M,—;1. (If either y or n—y =1, then W(x, y, 2)
=+J1.)

Case 2. n odd. Then N=(y+1)(y+3)(n—y+2)2/32. We find again that
N>A, forn=5. .

This settles the cases where x =0. Suppose that x20 hereafter. Then N
is the number of solutions of

a+bi+20=x+3 a+b+2cc=241y b+ b2+ c1+ c2 even,

z+1 y+1

0= = ’ 0=c=s—:
2 2

Using [r] to denote the greatest integer less than or equal to 7, we readily
find that N is given by

T (B )

By considering separately the cases where ¥ and z are both even, one even
and one odd, and so on, it is easy to prove that N=4,_, in all cases except
when both y and z are zero. Leaving aside this case for the moment, consider
the matrix 4+ 1=+ €@, where 4,E M. is given by

1 2 2... 2
0—-1 0--- 0
A4y=]10 0 -—-1.--- 0
O 0 O0----1
The matrix A,+I@=+» is certainly an involution in ®. Since, in M.y,
1 0.-- 0
LJo=1--- 0
A0= =A11
0 0----—1

Ao+I=*+ can be similar (in @) only to that matrix (counted in the N
matrices) of the form 4,4 I¢=+», But from

@ az:-- @y 2by---2b, a G- ay; 2by--- 20,

......................

we obtain
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al=ag=---=a,=261,

which is impossible. Hence @ contains at least N4-1 nonsimilar involutions,
and therefore © is not isomorphic to M., in these cases.

We have left only the case y=3=0, x=n/2; then # is singly even. Here
we may choose 4 = W(cy, by, a1), B=W(c1, bs, az), where

a1+ b1 + 2¢, = x, as + b2+ 261 = w, by + b2 even.

Then A+4+BE®, and the various matrices are nonsimilar. The number of
such matrices is (x+1)(x+2)(x+3)/12, which is greater than 4, for n=14.
For n=6, M._, contains an element of order 5, while & does not. For n =10,
M._1 contains an element of order 7, while ® does not. This completes the
proof of the lemma.

7. Proof of Theorem 3. We are now ready to give a proof of Theorem 3 by
induction on #n. Hereafter, let # =4 and suppose that Theorem 3 holds for
n—1. If 7 is any automorphism of M,, by Corollary 1 and Lemma 2 we know
that 7 takes M into itself, and J]= + AJ, AL If we change 7 by a suitable
inner automorphism, then we may assume that J,— %+ J;. When # is odd, cer-
tainly J,—Ji; when % is even, by multiplying 7 by the automorphism
XeEM,—(det X)X if necessary, we may again assume J,—J;.

Therefore, every M&MMF which commutes with J; goes into another

such element, that is,
(il n')' (:l:l n’)
n x/ \ n x/

Since this induces an automorphism on M,_1, we have det X* =det X, so that
the plus signs go together, as do the minus signs. Furthermore, by our induc-
tion hypothesis,

X7 = + AX*47,

where 4 EM,—; and either X*=X for all XEM,—; or X*=X'"! for all
X EM,.—1; here the minus sign can occur only for X EM,_,, and if it occurs
for one such X, it occurs for all X &EM,_,. After changing our original auto-
morphism by a factor of I®4+A4-!, we may assume that X7= + X*

Let J, be obtained from I®™ by replacing the »th diagonal element by —1.
Then

1 0.--0 0 -1 w
0 0 1--.0 0)*
T = - .0 o
0 1 0 o1 0
0 0 —1 S0 —1
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The minus sign here is impossible by Lemma 2, since n=4. Hence J1J, is
invariant, and therefore so is J,. By the same reasoning all of the
J, w=1, - - -, n) are invariant.

From the above remarks we see that for X &M,

<1 n’)’ (1 W ) (X n)' (A,,X*A:‘ n)
n x/ \n ax*a7/)’ \w 1) W 1)’

where 4,EM,_1, and in fact A;=1. Now suppose that ZEM;}_,, and form
I®4-Z. Since it commutes with both J; and J,, its image must do likewise.

But then
1 n -1 1 n
A 1 A 1T = —
n Z n Z

for every ZEM_,. Setting
a /
= %)
y 4

we obtain t’Z =y, y=2y. Since this holds for all ZEM; _,, we must have
r=y=n, so that 4, is itself decomposable. A similar argument (considering
the matrices commuting with both J; and J,, for v=3, - - -, n) shows that
A, is diagonal. Correspondingly, all of the 4, are diagonal. It is further clear
that all of the 4, (w=1, - - -, n) are sections of a single diagonal matrix D®,
Using the further inner automorphism factor D!, we may henceforth assume
that X7=X* for every decomposable X €M, where either X*=X always
or X*=X'"1! always. Since I is generated by the set of decomposable ele-
ments of M, the theorem is proved.
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