AUTOMORPHISMS OF THE UNIMODULAR GROUP

BY

L. K. HUA AND I. REINER

Notation. Let \mathfrak{M}_n denote the group of $n \times n$ integral matrices of determinant ± 1 (the unimodular group). By \mathfrak{M}_n^+ we denote that subset of \mathfrak{M}_n where the determinant is +1; \mathfrak{M}_n^- is correspondingly defined. Let $I^{(n)}$ (or briefly I) be the identity matrix in \mathfrak{M}_n , and let X' represent the transpose of X. The direct sum of the matrices A and B will be represented by $A \stackrel{\cdot}{+} B$;

$$A \stackrel{\bullet}{=} B$$

will mean that A is similar to B. In this paper, we shall find explicitly the generators of the group \mathfrak{A}_n of all automorphisms of \mathfrak{M}_n .

1. The commutator subgroup of \mathfrak{M}_n . The following result is useful, and is of independent interest.

THEOREM 1. Let \Re_n be the commutator subgroup of \mathfrak{M}_n . Then trivially $\Re_n \subset \mathfrak{M}_n^+$. For n = 2, \Re_n is of index 2 in \mathfrak{M}_n^+ , while for n > 2, $\Re_n = \mathfrak{M}_n^+$.

Proof. Consider first the case where n = 2. Define

(1)
$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

It is well known that S and T generate \mathfrak{M}_2^+ . An element X of \mathfrak{M}_2^+ is called *even* if, when X is expressed as a product of powers of S and T, the sum of the exponents is even; otherwise, X is called *odd*. Since all relations satisfied by S and T are consequences of

$$S^2 = -I, \qquad (ST)^3 = I,$$

it follows that the parity of $X \in \mathfrak{M}_2^+$ depends only on X, and not on the manner in which X is expressed as a product of powers of S and T. Let \mathfrak{E} be the subgroup of \mathfrak{M}_2^+ consisting of all even elements; then clearly \mathfrak{E} is of index 2 in \mathfrak{M}_2^+ . It suffices to prove that $\mathfrak{E} = \mathfrak{R}_2$.

We prove first that $\Re_2 \subset \mathfrak{E}$. Since the commutator subgroup of a group is always generated by squares, it suffices to show that $A \in \mathfrak{M}_2$ implies $A^2 \in \mathfrak{E}$. For $A \in \mathfrak{M}_2^+$, this is clear. If $A \in \mathfrak{M}_2^-$, set A = XJ = JY, where

$$J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

Presented to the Society, December 29, 1950; received by the editors January 8, 1951.

and X and $Y \in \mathfrak{M}_2^+$. Then $A^2 = XY = XJ^{-1}XJ$. Hence we need only prove that if $X \in \mathfrak{M}_2^+$, X and $J^{-1}XJ$ are of the same parity. This is easily verified for X = S or T; since S and T generate \mathfrak{M}_2^+ , and $J^{-1}X_1X_2J = J^{-1}X_1J \cdot J^{-1}X_2J$, the result follows.

On the other hand we can show that \mathfrak{CR}_2 . For, \mathfrak{G} is generated by T^2 and ST, since $TS = (ST \cdot T^{-2})^2$. However, $T^2 = TJT^{-1}J^{-1} \in \mathfrak{R}_2$, and therefore also $(T')^{-2} \in \mathfrak{R}_2$. Furthermore, $ST = TST^{-1}S^{-1}(T')^{-2}T^2 \in \mathfrak{R}_2$. This completes the proof for n = 2.

Suppose now that n > 2, and define

(3)
$$R = \begin{pmatrix} 0 \cdots 0 & (-1)^{n-1} \\ 1 \cdots 0 & 0 \\ \cdots & \ddots & \vdots \\ 0 \cdots & 1 & 0 \end{pmatrix} \in \mathfrak{M}_{n}^{+}, \quad S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + I^{(n-2)},$$
$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + I^{(n-2)}.$$

(The symbols S and T defined here are the analogues in \mathfrak{M}_n^+ of those defined by (1). It will be clear from the context which are meant.) For n>2 we have(¹)

$$T' = \left[R^{-1}(TR)^{-(n-2)}R(TR)^{n-2} \right] (TR)^{-1} \left[R(TR)^{-(n-2)}R^{-1}(TR)^{n-2} \right] (TR) \in \mathfrak{R}_n.$$

Further $S = TST^{-1}S^{-1}(T')^{-2}T \in \Re_n$. Finally, for odd *n* there exists a permutation matrix *P* such that $R^2 = P^{-1}RP$, whence $R = R^{-1}P^{-1}RP \in \Re_n$. For even *n*, *R* represents the monomial transformation

$$\begin{pmatrix} x_1 & x_2 \cdots & x_{n-1} & x_n \\ x_2 & x_3 \cdots & x_n & -x_1 \end{pmatrix},$$

which is a product of

$$\begin{pmatrix} x_1 & x_2 & x_3 \cdots x_{n-1} & x_n \\ x_2 & -x_1 & x_3 \cdots x_{n-1} & x_n \end{pmatrix}, \quad \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \cdots x_n \\ -x_3 & x_2 & x_1 & x_4 \cdots x_n \end{pmatrix}, \\ \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \cdots x_n \\ x_4 & x_2 & x_3 & -x_1 \cdots x_n \end{pmatrix}, \cdots, \begin{pmatrix} x_1 & x_2 \cdots x_{n-1} & x_n \\ x_n & x_2 \cdots x_{n-1} & -x_1 \end{pmatrix}.$$

each factor of which is similar to S (and hence is in \Re_n). Since T and R generate \mathfrak{M}_n^+ , the theorem is proved.

COROLLARY 1. In any automorphism of \mathfrak{M}_n , always $\mathfrak{M}_n^+ \to \mathfrak{M}_n^+$.

Proof. For n > 2 this is an immediate corollary, since the commutator subgroup goes into itself in any automorphism. For n=2, let $S \rightarrow S_1$ and

⁽¹⁾ L. K. Hua and I. Reiner, Trans. Amer. Math. Soc. vol. 65 (1949) p. 423.

 $T \rightarrow T_1$. Then $ST \in \Re_2$ implies $S_1T_1 \in \Re_2$, so det $(S_1T_1) = 1$. Further, $S^2 = -I$ implies $S_1^2 = -I$, so det $S_1 = 1$, since the minimum function of S_1 is $x^2 + 1$, and the characteristic function must therefore be a power of $x^2 + 1$. This completes the proof when n = 2.

2. Automorphisms of \mathfrak{M}_2^+ . We wish to determine the automorphisms of \mathfrak{M}_2 . Since every automorphism of \mathfrak{M}_2 takes \mathfrak{M}_2^+ into itself, we shall first determine all automorphisms of \mathfrak{M}_2^+ . For $X \in \mathfrak{M}_2^+$, define $\epsilon(X) = +1$ or -1, according as X is even or odd.

THEOREM 2. Every automorphism of \mathfrak{M}_2^+ is of one of the forms

(I)
$$X \in \mathfrak{M}_2^+ \to AXA^{-1}$$
 $A \in \mathfrak{M}_2$

or

(II)
$$X \in \mathfrak{M}_2^+ \to \epsilon(X) \cdot AXA^{-1}, \qquad A \in \mathfrak{M}_2.$$

That is, the automorphism group of \mathfrak{M}_2^+ is generated by the set of "inner" automorphisms $X \to AXA^{-1}$ $(A \in \mathfrak{M}_2)$ and the automorphism $X \to \epsilon(X) \cdot X$.

Proof. Let τ be an automorphism of \mathfrak{M}_2^+ ; it certainly leaves $I^{(2)}$ and $-I^{(2)}$ individually unaltered. Let S and T (as given by (1)) be mapped into S^{τ} and T^{τ} . Then $(S^{\tau})^2 = -I$. Since all second order fixed points are equivalent, there exists a matrix $B \in \mathfrak{M}_2$ such that $BS^{\tau}B^{-1}=S$. Instead of τ , consider the automorphism $\tau': X \to BX^{\tau}B^{-1}$, which leaves S unaltered. Assume hereafter that τ leaves S invariant. (It is this sort of replacement of τ by τ' which we shall mean when we refer to some property holding "after a suitable inner automorphism.") Set

$$T^{\tau} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

From $(ST)^3 = I$ we obtain $(ST^r)^3 = I$, whence b - c = 1. Since det $T^r = 1$, we get

$$ad = 1 + bc = c^2 + c + 1 > 0.$$

Set $N = \lfloor a+d \rfloor$. If $N \ge 3$, consider the elements generated by S and $T^r \pmod{N}$. Since $a+d \equiv 0 \pmod{N}$, we find that $(T^r)^2 \equiv I \pmod{N}$. Furthermore $(ST^r)^3 \equiv I \pmod{N}$; therefore S and T^r generate \pmod{N} at most the 12 elements

$$\pm I$$
, $\pm S$, $\pm T^{\tau}$, $\pm ST^{\tau}$, $\pm T^{\tau}S$, $\pm ST^{\tau}S$.

But if τ is an automorphism, S and T^{τ} generate \mathfrak{M}_{2}^{+} , which has more than 12 elements (mod N) for $N \geq 3$.

Therefore $N \leq 2$. Since ad > 0, either a = d = 1 or a = d = -1, and thence b = 1, c = 0 or b = 0, c = -1. There are 4 possibilities for T^{τ} :

[November

$$T^{\tau} = \begin{cases} T_{0} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, & T_{2} = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}, \\ T_{1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, & T_{3} = \begin{pmatrix} -1 & 0 \\ -1 & -1 \end{pmatrix}. \end{cases}$$

Since S and T generate \mathfrak{M}_2^+ , to determine τ it is sufficient to specify S^{τ} and T^{τ} . Thus every automorphism of \mathfrak{M}_2^+ is of the form $S \rightarrow BSB^{-1}$, $T \rightarrow BT_iB^{-1}$ (for some i, i = 0, 1, 2, 3), where $B \in \mathfrak{M}_2$. If J is given by (2), we have:

$$T_0 = T$$
, $T_1 = STS^{-1}$, $T_2 = -JTJ^{-1}$, $T_3 = -SJTJ^{-1}S^{-1}$

and also $S = -JSJ^{-1}$. The possible automorphisms are:

$$\begin{split} i &= 0: \qquad S \to BSB^{-1}, \qquad T \to BTB^{-1}. \\ i &= 1: \qquad S \to BS \cdot S \cdot S^{-1}B^{-1}, \qquad T \to BS \cdot T \cdot S^{-1}B^{-1}. \\ i &= 2: \qquad S \to - BJ \cdot S \cdot J^{-1}B^{-1}, \qquad T \to - BJ \cdot T \cdot J^{-1}B^{-1}. \\ i &= 3: \qquad S \to - BSJ \cdot S \cdot J^{-1}S^{-1}B^{-1}, \qquad T \to - BSJ \cdot T \cdot J^{-1}S^{-1}B^{-1}. \end{split}$$

These automorphisms are of two types: for i = 0 and 1, $S \rightarrow ASA^{-1}$, $T \rightarrow ATA^{-1}$, which imply that $X \in \mathfrak{M}_2^+ \rightarrow AXA^{-1}$; for i = 2 and $3, S \rightarrow -ASA^{-1}, T \rightarrow -ATA^{-1}$, which imply that $X \in \mathfrak{M}_2^+ \rightarrow \epsilon(X) \cdot AXA^{-1}$. This completes the proof.

3. Automorphisms of \mathfrak{M}_n^+ and \mathfrak{M}_n . We are now faced with the problem of determining the automorphisms of \mathfrak{M}_2 from those of \mathfrak{M}_2^+ . We shall have the same problem for \mathfrak{M}_n and \mathfrak{M}_n^+ . As we shall see, the passage from \mathfrak{M}_n^+ to \mathfrak{M}_n is trivial, and most of the difficulty lies in determining the automorphisms of \mathfrak{M}_n^+ . In this paper we shall prove the following results:

THEOREM 3. For n > 2, the group of those automorphisms of \mathfrak{M}_n^+ which are induced by automorphisms of \mathfrak{M}_n is generated by

(i) the set of all "inner" automorphisms

$$X \in \mathfrak{M}_n^+ \to AXA^{-1} \qquad (A \in \mathfrak{M}_n),$$

and

(ii) the automorphism

$$X \in \mathfrak{M}_n^+ \to X'^{-1}$$
.

REMARK. When n=2, the automorphism (ii) is the same as $X \rightarrow SXS^{-1}$, hence is included in (i). The automorphism $X \rightarrow \epsilon(X) \cdot X$ occurs only for n=2. Furthermore, for odd n all automorphisms of $\mathfrak{M}_{n,j}^+$ are induced by automorphisms of $\mathfrak{M}_{n,j}$.

THEOREM 4. The generators of \mathfrak{A}_n are (i) the set of all inner automorphisms

$$X \in \mathfrak{M}_n \to AXA^{-1} \qquad (A \in \mathfrak{M}_n),$$

(ii) the automorphism $X \in \mathfrak{M}_n \to X'^{-1}$,

(iii) for even n only, the automorphism

$$X \in \mathfrak{M}_n \to (\det X) \cdot X,$$

and

(iv) for n = 2 only, the automorphism

$$X \in \mathfrak{M}_2^+ \to \epsilon(X) \cdot X, \qquad X \in \mathfrak{M}_2^- \to \epsilon(JX) \cdot X,$$

where J is given by (2).

Further, when n = 2, the automorphism (ii) may be omitted from this list.

Let us show that Theorem 4 is a simple consequence of Theorem 3. Let τ be any automorphism of \mathfrak{M}_n . By Corollary 1, τ induces an automorphism on \mathfrak{M}_n^+ which, by Theorems 2 and 3, can be written as:

$$X \in \mathfrak{M}_n^+ \to \alpha(X) \cdot A X^* A^{-1},$$

where $A \in \mathfrak{M}_n$, $\alpha(X) = 1$ for all X or $\alpha(X) = \epsilon(X)$ for all X (this can occur only when n = 2), and where either $X^* = X$ for all X or $X^* = X'^{-1}$ for all X.

Let Y and $Z \in \mathfrak{M}_n^-$; then

$$Y^{\tau}Z^{\tau} = (YZ)^{\tau} = \alpha(YZ) \cdot A(YZ)^*A^{-1},$$

whence

$$Y^{\tau} = \alpha(YZ) \cdot A Y^{*}Z^{*}A^{-1}(Z^{\tau})^{-1}.$$

Let $Z \in \mathfrak{M}_n^-$ be fixed; then

$$Y^{\tau} = \alpha(YZ) \cdot AY^*B \qquad \text{for all } Y \in \mathfrak{M}_n$$

where A and B are independent of Y. But then

$$AY^*B \cdot AY^*B = (Y^{\tau})^2 = (Y^2)^{\tau} = \alpha(Y^2)A(Y^2)^*A^{-1},$$

so that

$$(BA)Y^*(BA) = \alpha(Y^2)Y^*.$$

Since this is valid for all $Y \in \mathfrak{M}_n^-$, we see that of necessity $\alpha(Y^2) = 1$ for all Y, and $BA = \pm I$. This shows that either $Y^{\tau} = \alpha(YZ) \cdot A Y^*A^{-1}$ for all $Y \in \mathfrak{M}_n^-$, or $Y^{\tau} = -\alpha(YZ) \cdot A Y^*A^{-1}$ for all $Y \in \mathfrak{M}_n^-$. If n = 2 and $\alpha(YZ) = \epsilon(YZ)$, it is trivial to verify that either $\epsilon(YZ) = \epsilon(JY)$ for all $Y \in \mathfrak{M}_2^-$ or $\epsilon(YZ) = -\epsilon(JY)$ for all $Y \in \mathfrak{M}_2^-$.

The remainder of the paper will be concerned with proving Theorem 3. 4. Canonical forms for involutions. In the proof of Theorem 3 we shall use certain canonical forms of involutions under similarity transformations.

LEMMA 1. Under a similarity transformation, every involution $X \in \mathfrak{M}_n$ such

that $X^2 = I^{(n)}$ can be brought into the form

(4)
$$W(x, y, z) = L + \cdots + L + (-I)^{(y)} + I^{(z)},$$

where 2x+y+z=n and

$$L = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}.$$

Proof. We prove first, by induction on n, that every $X \in \mathfrak{M}_n$ satisfying $X^2 = I$ is similar to a matrix of the form

(5)
$$\binom{I^{(l)} \quad 0}{M \quad -I^{(n-l)}}.$$

For n = 1 and 2, this is trivial. Let the theorem be proved for n, and assume that $X^2 = I^{(n+1)}$, where $n \ge 2$. Then $X^2 - I = 0$, or (X - I)(X + I) = 0. If X - I is nonsingular, then X = -I and the result is obvious. Hence, supposing that X - I is singular (so that $\lambda = 1$ is a characteristic root of X), there exists a primitive column vector $\mathbf{t} = (t_1, \cdots, t_{n+1})'$ with integral elements such that $\mathbf{t}'X = \mathbf{t}'$. Choose $P \in \mathfrak{M}_{n+1}$ with first row \mathbf{t}' . Then

$$PXP^{-1} = \begin{pmatrix} 1 & \mathfrak{n}' \\ \mathfrak{x} & X_1 \end{pmatrix},$$

where n denotes a vector whose components are 0; thus

$$X \stackrel{s}{=} \begin{pmatrix} 1 & \mathfrak{n}' \\ \mathfrak{x} & X_1 \end{pmatrix}.$$

But

$$I^{(n+1)} = X^{2} \stackrel{s}{=} \begin{pmatrix} 1 & \mathfrak{n}' \\ (I + X_{1})\mathfrak{x} & X_{1}^{2} \end{pmatrix}$$

shows that $X_1^2 = I^{(n)}$ and $(I+X_1)\mathfrak{x} = \mathfrak{n}$. By the induction hypothesis,

$$X_1 \stackrel{\bullet}{=} \begin{pmatrix} I^{(m)} & 0 \\ M & -I^{(n-m)} \end{pmatrix},$$

and, after making the similarity transformation, we have (as a consequence of $(I+X_1)\mathfrak{x}=\mathfrak{n}$)

$$\begin{pmatrix} 2I^{(m)} & 0 \\ T & M & 0 \end{pmatrix} \mathfrak{x} = \mathfrak{n}.$$

Therefore

1951]

$$\mathfrak{x} = (0, \cdots, 0, *, \cdots, *)',$$
(*m* terms) (*n*-*m* terms)

where * denotes an arbitrary element. Thus

$$X \stackrel{s}{=} \begin{pmatrix} 1 & n' & & \\ 0 & & & \\ \vdots & I^{(m)} & 0 & \\ 0 & & & \\ \vdots & & & \\ \vdots & & & \\ \vdots & M & -I^{(n-m)} \end{pmatrix} = \begin{pmatrix} I^{(m+1)} & 0 & \\ \overline{M} & -I^{(n-m)} \end{pmatrix}.$$

This completes the first part of the proof.

Suppose we now subject (5) to a further similarity transformation by

$$\binom{A^{(l)}}{C} \quad 0 \\ C \quad D^{(n-l)} \in \mathfrak{M}_n.$$

A simple calculation shows that we obtain a matrix given by (5) with M replaced by \overline{M} , where $\overline{M} = 2CA^{-1} + DMA^{-1}$. Choosing firstly C = 0, A and D unimodular, we find that $\overline{M} = DMA^{-1}$, and by proper choice of A and D we can make \overline{M} diagonal. Supposing this done, secondly put A = I, D = I; we find that $\overline{M} = M + 2C$. Since C is arbitrary, we can bring \overline{M} into the form

$$\begin{pmatrix} I^{(k)} & 0 \\ 0 & 0 \end{pmatrix},$$

where k is the rank of M. Since we can interchange two rows and simultaneously interchange the corresponding columns by means of a similarity transformation, the lemma follows.

It is easily seen that

(6)

$$W(x, y, z) \stackrel{\bullet}{=} W(\bar{x}, \bar{y}, \bar{z})$$

only when $x = \bar{x}$, $y = \bar{y}$, and $z = \bar{z}$. Furthermore, changing the order of terms in the direct summation does not alter the similarity class. The number A_n of nonsimilar involutions in \mathfrak{M}_n is therefore equal to the number of solutions of 2x+y+z=n, $x \ge 0$, $y \ge 0$, $z \ge 0$. This gives

$$A_{n} = \begin{cases} \left(\frac{n+2}{2}\right)^{2}, & n \text{ even,} \\ \frac{(n+1)(n+3)}{4}, & n \text{ odd.} \end{cases}$$

Let B_n be the number of nonsimilar involutions in \mathfrak{M}_n^+ , where the similarity factors are in \mathfrak{M}_n . One easily obtains

(7)
$$B_n = \begin{cases} (A_n - 1)/2, & \text{if } n \equiv 0 \pmod{4}, \\ A_n/2, & \text{otherwise.} \end{cases}$$

5. Automorphisms of \mathfrak{M}_3^+ . We shall now prove Theorem 3 for n=3. Let

$$I_{1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad I_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \in \mathfrak{M}_{3}^{+}.$$

Then $I_1^2 = I^{(3)}$. Let τ be any automorphism of \mathfrak{M}_3^+ and let $X = I_1^\tau$; then $X^2 = I^{(3)}$. By Lemma 1, the matrices I_1 , I_2 , and $I^{(3)}$ form a complete system of nonsimilar involutions in \mathfrak{M}_3^+ . Therefore

$$X \stackrel{*}{=} I_1 \text{ or } I_2.$$

After a suitable inner automorphism, we may assume that either $I_1 \rightarrow I_1$ or $I_1 \rightarrow I_2$. We shall show that this latter case is impossible by considering the normalizer groups of I_1 and I_2 . The normalizer group of I_1 , that is, the group of matrices $\in \mathfrak{M}_3^+$ which commute with I_1 , consists of all elements of \mathfrak{M}_3^+ of the form

$$\begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & e \end{pmatrix},$$

and is isomorphic to \mathfrak{M}_2 . That of I_2 consists of all elements of \mathfrak{M}_3^+ of the form

$$\begin{pmatrix} a & 0 & 0 \\ (a-e)/2 & e & f \\ -h/2 & h & i \end{pmatrix},$$

and is isomorphic to that subgroup \mathfrak{G} of \mathfrak{M}_2 consisting of the elements

Since e and i are both odd, \mathfrak{G} contains no element of order 3, and hence is not isomorphic to \mathfrak{M}_2 . But then $I_1 \rightarrow I_2$ is impossible.

We may assume thus that after a suitable inner automorphism, I_1 is invariant. Thence elements of \mathfrak{M}_3^+ which commute with I_1 map into elements of the same kind, so that

$$\binom{X \quad \mathfrak{n}'}{\mathfrak{n} \quad \pm 1} \in \mathfrak{M}_{\mathfrak{s}}^{+} \to \binom{X^{\tau} \quad \mathfrak{n}'}{\mathfrak{n} \quad \pm 1}.$$

Since this induces an automorphism $X \to X^{\tau}$ on \mathfrak{M}_2 , we see that det $X^{\tau} = \det X$, and hence the plus signs go together, and so do the minus signs. By Theorem 2 and that part of Theorem 4 which follows from Theorem 2, there exists a matrix $A \in \mathfrak{M}_2$ such that $X^{\tau} = \pm AXA^{-1}$; here, the plus sign certainly occurs when X is an even element of \mathfrak{M}_2^+ , and if the minus sign occurs for one odd element of \mathfrak{M}_2^+ , then it occurs for *every* odd element of \mathfrak{M}_2^+ . By use of a further inner automorphism using the factor $A^{-1} + I^{(1)}$, we may assume that

(8)
$$\binom{X \quad \mathfrak{n}'}{\mathfrak{n} \quad \pm 1} \in \mathfrak{M}_{\mathfrak{s}}^{+} \to \binom{\pm X \quad \mathfrak{n}'}{\mathfrak{n} \quad \pm 1},$$

so that

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \to M \quad \text{or} \quad M \to N = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Since

$$N = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot M \cdot \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

we may assume (after a further inner automorphism, if necessary) that I_1 , M, and N are all invariant under the automorphism (but (8) need not hold).

Thus, after a suitably chosen inner automorphism, we have I_1 , M, and N invariant. Therefore there exist A, B, and $C \in \mathfrak{M}_2$ such that

(9)
$$\begin{pmatrix} X & \mathfrak{n} \\ \mathfrak{n}' & \pm 1 \end{pmatrix} \in \mathfrak{M}_{\mathfrak{s}}^{+} \rightarrow \begin{pmatrix} \pm AXA^{-1} & \mathfrak{n} \\ \mathfrak{n}' & \pm 1 \end{pmatrix},$$
$$\begin{pmatrix} \pm 1 & \mathfrak{n}' \\ \mathfrak{n} & X \end{pmatrix} \in \mathfrak{M}_{\mathfrak{s}}^{+} \rightarrow \begin{pmatrix} \pm 1 & \mathfrak{n}' \\ \mathfrak{n} & \pm BXB^{-1} \end{pmatrix},$$
$$\begin{pmatrix} a & 0 & b \\ 0 & \pm 1 & 0 \\ c & 0 & d \end{pmatrix} \in \mathfrak{M}_{\mathfrak{s}}^{+} \rightarrow \begin{pmatrix} \alpha & 0 & \beta \\ 0 & \pm 1 & 0 \\ \gamma & 0 & \delta \end{pmatrix},$$

where

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \pm C \begin{pmatrix} a & b \\ c & d \end{pmatrix} C^{-1},$$

and n = (0, 0)'. Here, the +1 on the left goes with the +1 on the right al-

1951]

ways (and the -1's go together); further, when X is an even element of \mathfrak{M}_2^+ , the plus sign occurs before AXA^{-1} , BXB^{-1} , and CXC^{-1} , while if the minus sign occurs before one of these for any odd $X \in \mathfrak{M}_2^+$, it occurs there for every odd $X \in \mathfrak{M}_2^+$.

Now we may assume that at most one of A, B, and C has determinant -1; for if both A and B (say) have determinant -1, apply a further inner automorphism (with factor N) which leaves I_1 , M, and N invariant and changes the signs of det A and det B. Suppose hereafter, without loss of generality, that det $A = \det B = 1$.

Next, N is invariant, but by (9) goes into

$$\begin{pmatrix} \pm A \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} A^{-1} & \mathfrak{n}' \\ \mathfrak{n} & -1 \end{pmatrix},$$

so that

$$\pm A \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} A^{-1} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

This gives two possibilities:

$$A = I^{(2)}$$
 or $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

The same holds true for B (but not necessarily for C, since det $C = \pm 1$). Suppose firstly that either A or B is $I^{(2)}$, say $A = I^{(2)}$. Then

$$T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} \pm \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Case 1. T invariant. Then

$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

are both invariant. (The first matrix is invariant in virtue of the remarks after (9); the second is invariant because it is M times the first.) For either possible choice of B we find that

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 \\ 0 & \pm \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{pmatrix}.$$

Therefore

$$U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

is mapped into

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & \pm \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{cases} U, & \text{if } + \text{ is used,} \\ V, & \text{if } - \text{ is used,} \end{cases}$$

where $V = I_1 U I_1^{-1}$. Thus, in this case, $T \rightarrow T = I_1 T I_1^{-1}$, and either $U \rightarrow U$ or $U \rightarrow I_1 U I_1^{-1}$. Since T and U generate(²) \mathfrak{M}_3^+ , the automorphism is inner. Case 2.

$$T \to \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Then

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

and one finds in this case that

$$U \to \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}.$$

If we set $Z = TU^2$, then

(10)
$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (UZ^{-1})^2 UZ^2.$$

Now certainly the left side of (10) maps into

$$\begin{pmatrix} -1 & 0 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

1951]

⁽²⁾ L. K. Hua and I. Reiner, loc. cit.

whereas, knowing T^{τ} and U^{τ} , we can compute Z^{τ} and thence can find the image of the right side of (10). We readily find (for either value of U^{τ}) that the right side of (10) maps into

$$\begin{pmatrix} 1 & \cdot & \cdot \\ 3 & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix},$$

and hence we have a contradiction.

Therefore case 2 cannot occur, and so if either A or B equals $I^{(2)}$, the automorphism is inner. Suppose hereafter that

$$A = B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

In this case we have

$$T \rightarrow \begin{pmatrix} \pm \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Case 1*.

$$T \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Then as before

$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

are invariant, and again $U^{\tau} = U$ or V. After a further inner automorphism by a factor of I_1 (in the latter case) we also have $U \rightarrow U$. But then

$$T \to T'^{-1}, \qquad U \to U'^{-1}.$$

(This automorphism is easily shown to be a non-inner automorphism.) Case 2^* .

$$T \rightarrow \begin{pmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Then

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

and again we find that there are two possibilities for U^r , each of which leads to a contradiction, just as in case 2. Therefore Theorem 3 holds when n = 3.

6. A fundamental lemma. Theorem 3 will be proved by induction on n; the result has already been established for n = 2 and 3. In going from n - 1 to n, the following lemma is basic:

LEMMA 2. Let $n \ge 4$, and define $J_1 = (-1) \dotplus I^{(n-1)}$. In any automorphism τ of \mathfrak{M}_n , $J_1^{\tau} = \pm A J_1 A^{-1}$ for some $A \in \mathfrak{M}_n$.

Proof. By Corollary 1, $J_1^r \in \mathfrak{M}_n^-$, and J_1^r is an involution. After a suitable inner automorphism, we may assume that $J_1^r = W(x, y, z)$ (as defined by (4)), where 2x+y+z=n and x+y is odd. Every element of \mathfrak{M}_n which commutes with J_1 maps into an element of \mathfrak{M}_n which commutes with W. Every matrix in \mathfrak{M}_n^+ maps into a matrix in \mathfrak{M}_n^+ . Combining these facts, we see that the group \mathfrak{G}_1 consisting of those elements of \mathfrak{M}_n^+ which commute with J_1 is isomorphic to \mathfrak{G}_2 , the corresponding group for W. If we prove that this can happen only for x=0, y=1, z=n-1 or x=0, y=n-1, z=1, the result will follow.

The group \mathfrak{G}_1 consists of the matrices in \mathfrak{M}_n^+ of the form $(\pm 1) + X_1$, $X_1 \in \mathfrak{M}_{n-1}$, and so clearly $\mathfrak{G}_1 \cong \mathfrak{M}_{n-1}$.

The group \mathfrak{G}_2 is easily found to consist of all matrices $C \in \mathfrak{M}_1^+$ of the form (we illustrate the case where x = 2):

$$C = \begin{bmatrix} a_{1} & 0 & a_{2} & 0 & 0 & \cdots & 0 & 2\beta_{1} & \cdots & 2\beta_{z} \\ \frac{a_{1} - d_{1}}{2} & d_{1} & \frac{a_{2} - d_{2}}{2} & d_{2} & \alpha_{1} & \cdots & \alpha_{y} & \beta_{1} & \cdots & \beta_{z} \\ a_{3} & 0 & a_{4} & 0 & 0 & \cdots & 0 & 2\delta_{1} & \cdots & 2\delta_{z} \\ \frac{a_{3} - d_{3}}{2} & d_{3} & \frac{a_{4} - d_{4}}{2} & d_{4} & \gamma_{1} & \cdots & \gamma_{y} & \delta_{1} & \cdots & \delta_{z} \\ \frac{a_{3} - d_{3}}{2} & d_{3} & \frac{a_{4} - d_{4}}{2} & d_{4} & \gamma_{1} & \cdots & \gamma_{y} & \delta_{1} & \cdots & \delta_{z} \\ \frac{a_{3} - d_{3}}{2} & d_{3} & \frac{a_{4} - d_{4}}{2} & d_{4} & \gamma_{1} & \cdots & \gamma_{y} & \delta_{1} & \cdots & \delta_{z} \\ \frac{a_{3} - d_{3}}{2} & d_{3} & \frac{a_{4} - d_{4}}{2} & d_{4} & \gamma_{1} & \cdots & \gamma_{y} & \delta_{1} & \cdots & \delta_{z} \\ \frac{a_{3} - d_{3}}{2} & d_{3} & \frac{a_{4} - d_{4}}{2} & d_{4} & \gamma_{1} & \cdots & \gamma_{y} & \delta_{1} & \cdots & \delta_{z} \\ \frac{a_{3} - d_{3}}{2} & d_{3} & \frac{a_{4} - d_{4}}{2} & d_{4} & \gamma_{1} & \cdots & \gamma_{y} & \delta_{1} & \cdots & \delta_{z} \\ \frac{a_{3} - d_{3}}{2} & d_{3} & \frac{a_{4} - d_{4}}{2} & d_{4} & \gamma_{1} & \cdots & \gamma_{y} & \delta_{1} & \cdots & \delta_{z} \\ \frac{a_{3} - d_{3}}{2} & d_{3} & \frac{a_{4} - d_{4}}{2} & d_{4} & \gamma_{1} & \cdots & \gamma_{y} & \delta_{1} & \cdots & \delta_{z} \\ \frac{a_{3} - d_{3}}{2} & d_{3} & \frac{a_{4} - d_{4}}{2} & d_{4} & \gamma_{1} & \cdots & \gamma_{y} & \delta_{1} & \cdots & \delta_{z} \\ \frac{a_{3} - d_{3}}{2} & d_{3} & \frac{a_{4} - d_{4}}{2} & d_{4} & \gamma_{1} & \cdots & \gamma_{y} & \delta_{1} & \cdots & \delta_{z} \\ \frac{a_{1} - 2e_{1}}{2} & \frac{c_{1}}{2} & \frac{c_{1}}{2} & \frac{c_{2}}{2} & \frac{c_{2}}{2} & \frac{c_{2}}{2} & \frac{c_{3}}{2} & \frac$$

For the moment put

$$K = \begin{pmatrix} 1 & 0 \\ -1/2 & 1 \end{pmatrix} + \cdots + \begin{pmatrix} 1 & 0 \\ -1/2 & 1 \end{pmatrix} + I^{(n-2x)}.$$

Then a simple calculation gives:

$$KCK^{-1} = \begin{bmatrix} a_1 & 0 & a_2 & 0 & 0 & \cdots & 0 & 2\beta_1 & \cdots & 2\beta_z \\ 0 & d_1 & 0 & d_2 & \alpha_1 & \cdots & \alpha_y & 0 & \cdots & 0 \\ a_3 & 0 & a_4 & 0 & 0 & \cdots & 0 & 2\delta_1 & \cdots & 2\delta_z \\ 0 & d_3 & 0 & d_4 & \gamma_1 & \cdots & \gamma_y & 0 & \cdots & 0 \\ 0 & -2\epsilon_1 & 0 & -2\zeta_1 & & & & \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & U & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & U & 0 & 0 \\ 0 & -2\epsilon_y & 0 & -2\zeta_y & & & \\ \eta_1 & 0 & \theta_1 & 0 & & \\ \vdots & \vdots & \vdots & \vdots & 0 & V \\ \eta_z & 0 & \theta_z & 0 & & \end{bmatrix}$$

and so C is similar to

$$\begin{bmatrix} a_1 & a_2 & 2\beta_1 \cdots 2\beta_z \\ a_3 & a_4 & 2\delta_1 \cdots 2\delta_z \\ \eta_1 & \theta_1 & & \\ \vdots & \vdots & V \\ \eta_z & \theta_z \end{bmatrix} + \begin{bmatrix} d_1 & d_2 & \alpha_1 \cdots \alpha_y \\ d_3 & d_4 & \gamma_1 \cdots \gamma_y \\ -2\epsilon_1 & -2\zeta_1 & & \\ \vdots & \vdots & V \end{bmatrix}$$
$$= \begin{bmatrix} S_1 & 2R_1 \\ Q_1 & T_1 \end{bmatrix}_z^x + \begin{bmatrix} S_2 & Q_2 \\ 2R_2 & T_2 \end{bmatrix}_y^x,$$

with a fixed similarity factor depending only on W. Therefore $\mathfrak{G}_2 \cong \mathfrak{G}$, where $\mathfrak{G} = \mathfrak{G}(x, y, z)$ is the group of matrices in \mathfrak{M}_n^+ of the form

$$\begin{bmatrix} S_1 & 2R_1 \\ Q_1 & T_1 \end{bmatrix}_z^x + \begin{bmatrix} S_2 & Q_2 \\ 2R_2 & T_2 \end{bmatrix}_y^x,$$

where $S_1 \equiv S_2 \pmod{2}$. Here 2x + y + z = n and x + y is odd.

We wish to prove that $\mathfrak{M}_{n-1} \cong \mathfrak{G}(x, y, z)$ only when x=0, y=1, z=n-1or x=0, y=n-1, z=1. In order to establish this, we shall prove that in all other cases the number of involutions in \mathfrak{G} which are nonsimilar in \mathfrak{G} is greater than the number of involutions in \mathfrak{M}_{n-1} which are nonsimilar in \mathfrak{M}_{n-1} ;

[November

344

this latter number is, of course, A_{n-1} (given by (6)).

We shall briefly denote the elements of \bigotimes by A + B, where

$$A = \begin{pmatrix} S_1 & 2R_1 \\ Q_1 & T_1 \end{pmatrix} \text{ and } B = \begin{pmatrix} S_2 & Q_2 \\ 2R_2 & T_2 \end{pmatrix}.$$

If A_1+B_1 and A_2+B_2 are two involutions in \mathfrak{G} , where either

$$A_1 \neq A_2$$

in \mathfrak{M}_{x+z} or

1951]

 $B_1 \neq B_2$

in \mathfrak{M}_{x+y} , then certainly

$$A_1 \dot{+} B_1 \not= A_2 + B_2$$

in \mathfrak{G} (these may be similar in \mathfrak{M}_n , however). Therefore, the matrices A + B, where

$$A = I^{(a_1)} + (-I)^{(b_1)} + L + \cdots + L,$$

$$B = I^{(a_2)} + (-I)^{(b_2)} + L + \cdots + L,$$

(c₁ terms)

obtained by taking different sets of values of $(a_1, b_1, c_1, a_2, b_2, c_2)$, if they lie in \emptyset , are certainly nonsimilar in \emptyset . Here we have

$$a_1 + b_1 + 2c_1 = x + z$$
, $a_2 + b_2 + 2c_2 = x + y$, $b_1 + b_2 + c_1 + c_2$ even.

If $x \neq 0$, we impose the further restriction that $c_1 \leq (z+1)/2$, $c_2 \leq (y+1)/2$, and that in *B* instead of *L* we use *L'*. These conditions will insure that $A \downarrow B \in \mathfrak{G}$. We certainly do not (in general) get all of the nonsimilar involutions of \mathfrak{G} in this way, but instead we obtain only a subset thereof. Call the number of such matrices *N*.

For x=0, we have $N = B_y B_z + (A_y - B_y)(A_z - B_z)$. Since y is odd, $A_y = 2B_y$, and therefore

$$N = B_{\mathbf{y}}A_{\mathbf{z}} = B_{\mathbf{y}}A_{\mathbf{n}-\mathbf{y}}.$$

Case 1. *n* even. Then N = (y+1)(y+3)(n-y+1)(n-y+3)/32. If neither y nor n-y is 1 (certainly neither can be zero), then

$$(y+1)(n-y+1) \ge 4(n-2)$$
 and $(y+3)(n-y+3) \ge 6n$,

so that

$$N \ge (24/32) n(n-2).$$

For n=4, x=0, either y=1 or z=1. For $n \ge 6$, we have $N > A_{n-1}$. Hence in

this case W is not isomorphic to \mathfrak{M}_{n-1} . (If either y or n-y=1, then $W(x, y, z) = \pm J_1$.)

Case 2. n odd. Then $N = (y+1)(y+3)(n-y+2)^2/32$. We find again that $N > A_{n-1}$ for $n \ge 5$.

This settles the cases where x=0. Suppose that $x\neq 0$ hereafter. Then N is the number of solutions of

$$a_1 + b_1 + 2c_1 = x + z, \quad a_2 + b_2 + 2c_2 = x + y, \quad b_1 + b_2 + c_1 + c_2 \text{ even},$$

 $0 \le c_1 \le \frac{z+1}{2}, \qquad 0 \le c_2 \le \frac{y+1}{2}.$

Using [r] to denote the greatest integer less than or equal to r, we readily find that N is given by

$$\frac{1}{2} \left[\frac{z+3}{2} \right] \left[\frac{y+3}{2} \right] \left(x+z+1 - \left[\frac{z+1}{2} \right] \right) \left(x+y+1 - \left[\frac{y+1}{2} \right] \right).$$

By considering separately the cases where y and z are both even, one even and one odd, and so on, it is easy to prove that $N \ge A_{n-1}$ in all cases except when both y and z are zero. Leaving aside this case for the moment, consider the matrix $A_0 + I^{(x+y)} \in \emptyset$, where $A_0 \in \mathfrak{M}_{x+z}$ is given by

$$A_{0} = \begin{pmatrix} 1 & 2 & 2 \cdots & 2 \\ 0 & -1 & 0 \cdots & 0 \\ 0 & 0 & -1 \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 \cdots & -1 \end{pmatrix}.$$

The matrix $A_0 + I^{(x+y)}$ is certainly an involution in \mathfrak{G} . Since, in \mathfrak{M}_{x+z} ,

$$A_{0} \stackrel{*}{=} \begin{pmatrix} 1 & 0 \cdots & 0 \\ 0 & -1 \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 \cdots & -1 \end{pmatrix} = A_{1},$$

 $A_0+I^{(x+y)}$ can be similar (in \mathfrak{G}) only to that matrix (counted in the N matrices) of the form $A_1+I^{(x+y)}$. But from

we obtain

$$a_1=a_2=\cdots=a_x=2b_1,$$

which is impossible. Hence \mathfrak{G} contains at least N+1 nonsimilar involutions, and therefore \mathfrak{G} is not isomorphic to \mathfrak{M}_{n-1} in these cases.

We have left only the case y=z=0, x=n/2; then *n* is singly even. Here we may choose $A = W(c_1, b_1, a_1)$, $B = W(c_1, b_2, a_2)$, where

$$a_1 + b_1 + 2c_1 = x$$
, $a_2 + b_2 + 2c_1 = x$, $b_1 + b_2$ even.

Then $A + B \in \mathfrak{G}$, and the various matrices are nonsimilar. The number of such matrices is (x+1)(x+2)(x+3)/12, which is greater than A_{n-1} for $n \ge 14$. For n=6, \mathfrak{M}_{n-1} contains an element of order 5, while \mathfrak{G} does not. For n=10, \mathfrak{M}_{n-1} contains an element of order 7, while \mathfrak{G} does not. This completes the proof of the lemma.

7. **Proof of Theorem 3.** We are now ready to give a proof of Theorem 3 by induction on n. Hereafter, let $n \ge 4$ and suppose that Theorem 3 holds for n-1. If τ is any automorphism of \mathfrak{M}_n , by Corollary 1 and Lemma 2 we know that τ takes \mathfrak{M}_n^+ into itself, and $J_1^\tau = \pm A J_1 A^{-1}$. If we change τ by a suitable inner automorphism, then we may assume that $J_1 \rightarrow \pm J_1$. When n is odd, certainly $J_1 \rightarrow J_1$; when n is even, by multiplying τ by the automorphism $X \in \mathfrak{M}_n \rightarrow (\det X) \cdot X$ if necessary, we may again assume $J_1 \rightarrow J_1$.

Therefore, every $M \in \mathfrak{M}_n^+$ which commutes with J_1 goes into another such element, that is,

$$\begin{pmatrix} \pm 1 & \mathfrak{n}' \\ \mathfrak{n} & X \end{pmatrix}^r = \begin{pmatrix} \pm 1 & \mathfrak{n}' \\ \mathfrak{n} & X^r \end{pmatrix}.$$

Since this induces an automorphism on \mathfrak{M}_{n-1} , we have det $X^r = \det X$, so that the plus signs go together, as do the minus signs. Furthermore, by our induction hypothesis,

$$X^{\tau} = \pm A X^* A^{-1},$$

where $A \in \mathfrak{M}_{n-1}$ and either $X^* = X$ for all $X \in \mathfrak{M}_{n-1}$ or $X^* = X'^{-1}$ for all $X \in \mathfrak{M}_{n-1}$; here the minus sign can occur only for $X \in \mathfrak{M}_{n-1}^-$, and if it occurs for one such X, it occurs for all $X \in \mathfrak{M}_{n-1}^-$. After changing our original automorphism by a factor of $I^{(1)} + A^{-1}$, we may assume that $X^r = \pm X^*$.

Let J_{ν} be obtained from $I^{(n)}$ by replacing the ν th diagonal element by -1. Then

$$J_{1}J_{n} = \begin{pmatrix} -1 & 0 \cdots 0 & 0 \\ 0 & 1 \cdots 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 \cdots & 1 & 0 \\ 0 & 0 \cdots & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & \mathfrak{n}' \\ & & \\ \mathfrak{n} \pm \begin{pmatrix} 1 \cdots & 0 & 0 \\ \vdots & \ddots & 0 & 0 \\ 0 \cdots & 1 & 0 \\ 0 & \cdots & 0 & -1 \end{pmatrix}^{*}$$

1951]

The minus sign here is impossible by Lemma 2, since $n \ge 4$. Hence J_1J_n is invariant, and therefore so is J_n . By the same reasoning all of the J_r ($\nu = 1, \dots, n$) are invariant.

From the above remarks we see that for $X \in \mathfrak{M}_{n-1}^+$,

$$\begin{pmatrix} 1 & \mathfrak{n}' \\ \mathfrak{n} & X \end{pmatrix}^r = \begin{pmatrix} 1 & \mathfrak{n}' \\ \mathfrak{n} & A_1 X^* A_1^{-1} \end{pmatrix}, \cdots, \begin{pmatrix} X & \mathfrak{n} \\ \mathfrak{n}' & 1 \end{pmatrix}^r = \begin{pmatrix} A_n X^* A_n^{-1} & \mathfrak{n} \\ \mathfrak{n}' & 1 \end{pmatrix},$$

where $A_r \in \mathfrak{M}_{n-1}$, and in fact $A_1 = I$. Now suppose that $Z \in \mathfrak{M}_{n-2}^+$, and form $I^{(2)} \dotplus Z$. Since it commutes with both J_1 and J_2 , its image must do likewise. But then

$$A_1 \begin{pmatrix} 1 & \mathfrak{n}' \\ \mathfrak{n} & Z \end{pmatrix} A_1^{-1} = \begin{pmatrix} 1 & \mathfrak{n}' \\ \mathfrak{n} & \overline{Z} \end{pmatrix}$$

for every $Z \in \mathfrak{M}_{n-2}^+$. Setting

$$A_1 = \begin{pmatrix} a & \mathfrak{x}' \\ \mathfrak{y} & A \end{pmatrix}$$

we obtain $\mathfrak{r}'Z = \mathfrak{r}', \mathfrak{n} = \overline{Z}\mathfrak{n}$. Since this holds for all $Z \in \mathfrak{M}_{n-2}^{+}$, we must have $\mathfrak{r} = \mathfrak{n} = \mathfrak{n}$, so that A_1 is itself decomposable. A similar argument (considering the matrices commuting with both J_1 and J_r , for $\nu = 3, \dots, n$) shows that A_1 is diagonal. Correspondingly, all of the A_r are diagonal. It is further clear that all of the A_r ($\nu = 1, \dots, n$) are sections of a single diagonal matrix $D^{(n)}$. Using the further inner automorphism factor D^{-1} , we may henceforth assume that $X^r = X^*$ for every decomposable $X \in \mathfrak{M}_n^+$, where either $X^* = X$ always or $X^* = X'^{-1}$ always. Since \mathfrak{M}_n^+ is generated by the set of decomposable elements of \mathfrak{M}_n^+ , the theorem is proved.

TSING HUA UNIVERSITY, PEKING, CHINA. UNIVERSITY OF ILLINOIS, URBANA, ILL.