AUTOMORPHISMS OF THE UNIMODULAR GROUP

BY
L. K. HUA AND I. REINER

Notation. Let \mathfrak{M}_{n} denote the group of $n \times n$ integral matrices of determinant ± 1 (the unimodular group). By \mathfrak{M}_{n}^{+}we denote that subset of \mathfrak{M}_{n} where the determinant is $+1 ; \mathfrak{M}_{n}^{-}$is correspondingly defined. Let $I^{(n)}$ (or briefly I) be the identity matrix in \mathfrak{M}_{n}, and let X^{\prime} represent the transpose of X. The direct sum of the matrices A and B will be represented by $A \dot{+} B$;

$$
A \stackrel{s}{=} B
$$

will mean that A is similar to B. In this paper, we shall find explicitly the generators of the group \mathfrak{A}_{n} of all automorphisms of \mathfrak{M}_{n}.

1. The commutator subgroup of \mathfrak{M}_{n}. The following result is useful, and is of independent interest.

TheOrem 1. Let \mathfrak{R}_{n} be the commutator subgroup of \mathfrak{M}_{n}. Then trivially $\mathfrak{R}_{n} \subset \mathfrak{M}_{n}^{+}$. For $n=2, \mathfrak{R}_{n}$ is of index 2 in \mathfrak{M}_{n}^{+}, while for $n>2, \Re_{n}=\mathfrak{M}_{n}^{+}$.

Proof. Consider first the case where $n=2$. Define

$$
S=\left(\begin{array}{rr}
0 & 1 \tag{1}\\
-1 & 0
\end{array}\right), \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

It is well known that S and T generate \mathfrak{M}_{2}^{+}. An element X of \mathfrak{M}_{2}^{+}is called even if, when X is expressed as a product of powers of S and T, the sum of the exponents is even; otherwise, X is called odd. Since all relations satisfied by S and T are consequences of

$$
S^{2}=-I, \quad(S T)^{3}=I
$$

it follows that the parity of $X \in \mathfrak{M}_{2}^{+}$depends only on X, and not on the manner in which X is expressed as a product of powers of S and T. Let \mathbb{F} be the subgroup of \mathfrak{M}_{2}^{+}consisting of all even elements; then clearly \mathbb{G} is of index 2 in \mathfrak{M}_{2}^{+}. It suffices to prove that $\mathbb{E}=\mathfrak{R}_{2}$.

We prove first that $\Re_{2} \subset \mathbb{E}$. Since the commutator subgroup of a group is always generated by squares, it suffices to show that $A \in \mathfrak{M}_{2}$ implies $A^{2} \in \mathbb{E}$. For $A \in \mathfrak{M}_{2}^{+}$, this is clear. If $A \in \mathfrak{M}_{2}^{-}$, set $A=X J=J Y$, where

$$
J=\left(\begin{array}{rr}
1 & 0 \tag{2}\\
0 & -1
\end{array}\right)
$$

Presented to the Society, December 29, 1950; received by the editors January 8, 1951.
and X and $Y \in \mathfrak{M}_{2}^{+}$. Then $A^{2}=X Y=X J^{-1} X J$. Hence we need only prove that if $X \in \mathfrak{M}_{2}^{+}, X$ and $J^{-1} X J$ are of the same parity. This is easily verified for $X=S$ or T; since S and T generate \mathfrak{M}_{2}^{+}, and $J^{-1} X_{1} X_{2} J=J^{-1} X_{1} J \cdot J^{-1} X_{2} J$, the result follows.

On the other hand we can show that $£ \subset \Re_{2}$. For, $£$ is generated by T^{2} and $S T$, since $T S=\left(S T \cdot T^{-2}\right)^{2}$. However, $T^{2}=T J T^{-1} J^{-1} \in \Re_{2}$, and therefore also $\left(T^{\prime}\right)^{-2} \in \Re_{2}$. Furthermore, $S T=T S T^{-1} S^{-1}\left(T^{\prime}\right)^{-2} T^{2} \in \Re_{2}$. This completes the proof for $n=2$.

Suppose now that $n>2$, and define

$$
\begin{gather*}
R=\left(\begin{array}{cc}
0 \cdots & \left(\begin{array}{cc}
\cdots & (-1)^{n-1} \\
1 \cdots & 0
\end{array} 0^{2}\right. \\
\cdots \cdots & \cdot \\
0 \cdots & 0
\end{array}\right) \in \mathfrak{M}_{n}^{+}, \quad S=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)+I^{(n-2)} \tag{3}\\
T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)+I^{(n-2)}
\end{gather*}
$$

(The symbols S and T defined here are the analogues in \mathfrak{M}_{n}^{+}of those defined by (1). It will be clear from the context which are meant.) For $n>2$ we have ${ }^{1}$)

$$
T^{\prime}=\left[R^{-1}(T R)^{-(n-2)} R(T R)^{n-2}\right](T R)^{-1}\left[R(T R)^{-(n-2)} R^{-1}(T R)^{n-2}\right](T R) \in \Re_{n}
$$

Further $S=T S T^{-1} S^{-1}\left(T^{\prime}\right)^{-2} T \in \Re_{n}$. Finally, for odd n there exists a permutation matrix P such that $R^{2}=P^{-1} R P$, whence $R=R^{-1} P^{-1} R P \in \Re_{n}$. For even n, R represents the monomial transformation

$$
\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n-1} \\
x_{2} & x_{3} & x_{n} \\
x_{n} & -x_{1}
\end{array}\right)
$$

which is a product of

$$
\left.\begin{array}{l}
\left(\begin{array}{rrrr}
x_{1} & x_{2} & x_{3} \cdots & x_{n-1} \\
x_{2}-x_{1} & x_{3} \cdots & x_{n-1} & x_{n}
\end{array}\right), \quad\left(\begin{array}{rrrr}
x_{1} & x_{2} & x_{3} & x_{4} \cdots \\
-x_{n} \\
-x_{3} & x_{2} & x_{1} & x_{4} \cdots
\end{array} x_{n}\right.
\end{array}\right) .
$$

each factor of which is similar to S (and hence is in \Re_{n}). Since T and R generate \mathfrak{M}_{n}^{+}, the theorem is proved.

Corollary 1. In any automorphism of \mathfrak{M}_{n}, always $\mathfrak{M}_{n}^{+} \rightarrow \mathfrak{M}_{n}^{+}$.
Proof. For $n>2$ this is an immediate corollary, since the commutator subgroup goes into itself in any automorphism. For $n=2$, let $S \rightarrow S_{1}$ and

[^0]$T \rightarrow T_{1}$. Then $S T \in \Re_{2}$ implies $S_{1} T_{1} \in \Re_{2}$, so det $\left(S_{1} T_{1}\right)=1$. Further, $S^{2}=-I$ implies $S_{1}^{2}=-I$, so $\operatorname{det} S_{1}=1$, since the minimum function of S_{1} is $x^{2}+1$, and the characteristic function must therefore be a power of $x^{2}+1$. This completes the proof when $n=2$.
2. Automorphisms of \mathfrak{M}_{2}^{+}. We wish to determine the automorphisms of \mathfrak{M}_{2}. Since every automorphism of \mathfrak{M}_{2} takes \mathfrak{M}_{2}^{+}into itself, we shall first determine all automorphisms of \mathfrak{M}_{2}^{+}. For $X \in \mathfrak{M}_{2}^{+}$, define $\epsilon(X)=+1$ or -1 , according as X is even or odd.

Theorem 2. Every automorphism of \mathfrak{M}_{2}^{+}is of one of the forms

$$
\begin{equation*}
X \in \mathfrak{M}_{2}^{+} \rightarrow A X A^{-1} \quad A \in \mathfrak{M}_{2} \tag{I}
\end{equation*}
$$

or

$$
\begin{equation*}
X \in \mathfrak{M}_{2}^{+} \rightarrow \epsilon(X) \cdot A X A^{-1}, \quad A \in \mathfrak{M}_{2} \tag{II}
\end{equation*}
$$

That is, the automorphism group of \mathfrak{M}_{2}^{+}is generated by the set of "inner" automorphisms $X \rightarrow A X A^{-1}\left(A \in \mathfrak{M}_{2}\right)$ and the automorphism $X \rightarrow \epsilon(X) \cdot X$.

Proof. Let τ be an automorphism of \mathfrak{M}_{2}^{+}; it certainly leaves $I^{(2)}$ and $-I^{(2)}$ individually unaltered. Let S and T (as given by (1)) be mapped into S^{τ} and T^{r}. Then $\left(S^{r}\right)^{2}=-I$. Since all second order fixed points are equivalent, there exists a matrix $B \in \mathfrak{M}_{2}$ such that $B S^{\tau} B^{-1}=S$. Instead of τ, consider the automorphism $\tau^{\prime}: X \rightarrow B X^{\tau} B^{-1}$, which leaves S unaltered. Assume hereafter that τ leaves S invariant. (It is this sort of replacement of τ by τ^{\prime} which we shall mean when we refer to some property holding "after a suitable inner automorphism.") Set

$$
T^{\tau}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

From $(S T)^{3}=I$ we obtain $\left(S T^{\tau}\right)^{3}=I$, whence $b-c=1$. Since det $T^{r}=1$, we get

$$
a d=1+b c=c^{2}+c+1>0
$$

Set $N=|a+d|$. If $N \geqq 3$, consider the elements generated by S and T^{r} $(\bmod N)$. Since $a+d \equiv 0(\bmod N)$, we find that $\left(T^{\tau}\right)^{2} \equiv I(\bmod N)$. Furthermore $\left(S T^{\tau}\right)^{3} \equiv I(\bmod N)$; therefore S and T^{τ} generate $(\bmod N)$ at most the 12 elements

$$
\pm I, \pm S, \pm T^{\tau}, \pm S T^{\tau}, \pm T^{\tau} S, \pm S T^{\tau} S
$$

But if τ is an automorphism, S and T^{τ} generate \mathfrak{M}_{2}^{+}, which has more than 12 elements $(\bmod N)$ for $N \geqq 3$.

Therefore $N \leqq 2$. Since $a d>0$, either $a=d=1$ or $a=d=-1$, and thence $b=1, c=0$ or $b=0, c=-1$. There are 4 possibilities for T^{r} :

$$
T^{\tau}= \begin{cases}T_{0}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), & T_{2}=\left(\begin{array}{rr}
-1 & 1 \\
0 & -1
\end{array}\right) \\
T_{1}=\left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right), & T_{3}=\left(\begin{array}{rr}
-1 & 0 \\
-1 & -1
\end{array}\right)\end{cases}
$$

Since S and T generate \mathfrak{M}_{2}^{+}, to determine τ it is sufficient to specify S^{τ} and T^{\top}. Thus every automorphism of \mathfrak{M}_{2}^{+}is of the form $S \rightarrow B S B^{-1}, T \rightarrow B T_{i} B^{-1}$ (for some $i, i=0,1,2,3$), where $B \in \mathfrak{M}_{2}$. If J is given by (2), we have:

$$
T_{0}=T, \quad T_{1}=S T S^{-1}, \quad T_{2}=-J T J^{-1}, \quad T_{3}=-S J T J^{-1} S^{-1}
$$

and also $S=-J S J^{-1}$. The possible automorphisms are:
$i=0: \quad S \rightarrow B S B^{-1}, \quad T \rightarrow B T B^{-1}$.
$i=1: \quad S \rightarrow B S \cdot S \cdot S^{-1} B^{-1}, \quad T \rightarrow B S \cdot T \cdot S^{-1} B^{-1}$.
$i=2: \quad S \rightarrow-B J \cdot S \cdot J^{-1} B^{-1}, \quad T \rightarrow-B J \cdot T \cdot J^{-1} B^{-1}$.
$i=3: \quad S \rightarrow-B S J \cdot S \cdot J^{-1} S^{-1} B^{-1}, \quad T \rightarrow-B S J \cdot T \cdot J^{-1} S^{-1} B^{-1}$.
These automorphisms are of two types: for $i=0$ and $1, S \rightarrow A S A^{-1}, T \rightarrow A T A^{-1}$, which imply that $X \in \mathfrak{M}_{2}^{+} \rightarrow A X A^{-1}$; for $i=2$ and $3, S \rightarrow-A S A^{-1}, T \rightarrow-A T A^{-1}$, which imply that $X \in \mathfrak{M}_{2}^{+} \rightarrow \epsilon(X) \cdot A X A^{-1}$. This completes the proof.
3. Automorphisms of \mathfrak{M}_{n}^{+}and \mathfrak{M}_{n}. We are now faced with the problem of determining the automorphisms of \mathfrak{M}_{2} from those of \mathfrak{M}_{2}^{+}. We shall have the same problem for \mathfrak{M}_{n} and \mathfrak{M}_{n}^{+}. As we shall see, the passage from \mathfrak{M}_{n}^{+}to \mathfrak{M}_{n} is trivial, and most of the difficulty lies in determining the automorphisms of \mathfrak{M}_{n}^{+}. In this paper we shall prove the following results:

Theorem 3. For $n>2$, the group of those automorphisms of \mathfrak{M}_{n}^{+}which are induced by automorphisms of $\mathfrak{M n}_{n}$ is generated by
(i) the set of all "inner" automorphisms

$$
\begin{equation*}
X \in \mathfrak{M}_{n}^{+} \rightarrow A X A^{-1} \tag{n}
\end{equation*}
$$

and
(ii) the automorphism

$$
X \in \mathfrak{M}_{n}^{+} \rightarrow X^{\prime-1}
$$

Remark. When $n=2$, the automorphism (ii) is the same as $X \rightarrow S X S^{-1}$, hence is included in (i). The automorphism $X \rightarrow \epsilon(X) \cdot X$ occurs only for $n=2$. Furthermore, for odd n all automorphisms of $\mathfrak{M}_{n_{\mathrm{J}}}^{+}$are induced by automorphisms of \mathfrak{M}_{n}.

Theorem 4. The generators of $\mathfrak{\Re}_{n}$ are
(i) the set of all inner automorphisms

$$
\begin{equation*}
X \in \mathfrak{M}_{n} \rightarrow A X A^{-1} \tag{n}
\end{equation*}
$$

(ii) the automorphism $X \in \mathfrak{M}_{n} \rightarrow X^{\prime-1}$,
(iii) for even n only, the automorphism

$$
X \in \mathfrak{M}_{n} \rightarrow(\operatorname{det} X) \cdot X
$$

and
(iv) for $n=2$ only, the automorphism

$$
X \in \mathfrak{M}_{2}^{+} \rightarrow \epsilon(X) \cdot X, \quad X \in \mathfrak{M}_{2}^{-} \rightarrow \epsilon(J X) \cdot X
$$

where J is given by (2).
Further, when $n=2$, the automorphism (ii) may be omitted from this list.
Let us show that Theorem 4 is a simple consequence of Theorem 3. Let τ be any automorphism of \mathfrak{M}_{n}. By Corollary $1, \tau$ induces an automorphism on \mathfrak{M}_{n}^{+}which, by Theorems 2 and 3, can be written as:

$$
X \in \mathfrak{M}_{n}^{+} \rightarrow \alpha(X) \cdot A X^{*} A^{-1}
$$

where $A \in \mathfrak{M}_{n}, \alpha(X)=1$ for all X or $\alpha(X)=\epsilon(X)$ for all X (this can occur only when $n=2$), and where either $X^{*}=X$ for all X or $X^{*}=X^{\prime-1}$ for all X.

Let Y and $Z \in \mathbb{M}_{n}^{-}$; then

$$
Y^{\tau} Z^{\tau}=(Y Z)^{\tau}=\alpha(Y Z) \cdot A(Y Z)^{*} A^{-1}
$$

whence

$$
Y^{\tau}=\alpha(Y Z) \cdot A Y^{*} Z^{*} A^{-1}\left(Z^{\tau}\right)^{-1}
$$

Let $Z \in \mathbb{M n}_{n}^{-}$be fixed; then

$$
Y^{\tau}=\alpha(Y Z) \cdot A Y^{*} B \quad \text { for all } Y \in \mathfrak{M}_{n}^{-}
$$

where A and B are independent of Y. But then

$$
A Y^{*} B \cdot A Y^{*} B=\left(Y^{\tau}\right)^{2}=\left(Y^{2}\right)^{\tau}=\alpha\left(Y^{2}\right) A\left(Y^{2}\right)^{*} A^{-1}
$$

so that

$$
(B A) Y^{*}(B A)=\alpha\left(Y^{2}\right) Y^{*}
$$

Since this is valid for all $Y \in \mathfrak{M}_{n}^{-}$, we see that of necessity $\alpha\left(Y^{2}\right)=1$ for all Y, and $B A= \pm I$. This shows that either $Y^{\tau}=\alpha(Y Z) \cdot A Y^{*} A^{-1}$ for all $Y \in \mathfrak{M n}_{n}^{-}$, or $Y^{\tau}=-\alpha(Y Z) \cdot A Y^{*} A^{-1}$ for all $Y \in \mathbb{M}_{n}^{-}$. If $n=2$ and $\alpha(Y Z)=\epsilon(Y Z)$, it is trivial to verify that either $\epsilon(Y Z)=\epsilon(J Y)$ for all $Y \in \mathfrak{M}_{2}^{-}$or $\epsilon(Y Z)=-\epsilon(J Y)$ for all $Y \in M_{2}^{-}$.

The remainder of the paper will be concerned with proving Theorem 3.
4. Canonical forms for involutions. In the proof of Theorem 3 we shall use certain canonical forms of involutions under similarity transformations.

Lemma 1. Under a similarity transformation, every involution $X \in \mathbb{M}_{n}$ such
that $X^{2}=I^{(n)}$ can be brought into the form

$$
\begin{equation*}
W(x, y, z)=L \underset{(x \text { terms })}{\dot{+}} \dot{+} L \dot{+}(-I)^{(y)}+I^{(z)}, \tag{4}
\end{equation*}
$$

where $2 x+y+z=n$ and

$$
L=\left(\begin{array}{rr}
1 & 0 \\
1 & -1
\end{array}\right)
$$

Proof. We prove first, by induction on n, that every $X \in \mathbb{M}_{n}$ satisfying $X^{2}=I$ is similar to a matrix of the form

$$
\left(\begin{array}{cc}
I^{(l)} & 0 \tag{5}\\
M & -I^{(n-l)}
\end{array}\right)
$$

For $n=1$ and 2, this is trivial. Let the theorem be proved for n, and assume that $X^{2}=I^{(n+1)}$, where $n \geqq 2$. Then $X^{2}-I=0$, or $(X-I)(X+I)=0$. If $X-I$ is nonsingular, then $X=-I$ and the result is obvious. Hence, supposing that $X-I$ is singular (so that $\lambda=1$ is a characteristic root of X), there exists a primitive column vector $\mathrm{t}=\left(t_{1}, \cdots, t_{n+1}\right)^{\prime}$ with integral elements such that $\mathrm{t}^{\prime} X=\mathrm{t}^{\prime}$. Choose $P \in \mathbb{M}_{n+1}$ with first row t^{\prime}. Then

$$
P X P^{-1}=\left(\begin{array}{cc}
1 & \mathfrak{n}^{\prime} \\
\mathfrak{x} & X_{1}
\end{array}\right)
$$

where \mathfrak{n} denotes a vector whose components are 0 ; thus

$$
X \stackrel{\varepsilon}{=}\left(\begin{array}{ll}
1 & \mathfrak{n}^{\prime} \\
\mathfrak{x} & X_{1}
\end{array}\right)
$$

But

$$
I^{(n+1)}=X^{2} \stackrel{!}{=}\left(\begin{array}{cc}
1 & \mathfrak{n}^{\prime} \\
\left(I+X_{1}\right) \mathfrak{x} & X_{1}^{2}
\end{array}\right)
$$

shows that $X_{1}^{2}=I^{(n)}$ and $\left(I+X_{1}\right) \mathfrak{x}=\mathfrak{n}$. By the induction hypothesis,

$$
X_{1} \stackrel{\&}{=}\left(\begin{array}{lc}
I^{(m)} & 0 \\
M & -I^{(n-m)}
\end{array}\right)
$$

and, after making the similarity transformation, we have (as a consequence of $\left.\left(I+X_{1}\right) \mathfrak{r}=\mathfrak{n}\right)$

$$
\left(\begin{array}{ll}
2 I^{(m)} & 0 \\
\mathfrak{Z} M & 0
\end{array}\right) \mathfrak{x}=\mathfrak{n} .
$$

Therefore

$$
\mathfrak{x}=\underset{(m \text { terms })}{(0, \ldots,} 0,{ }_{(n-m \text { terms })}^{*}, \ldots, *^{\prime}
$$

where * denotes an arbitrary element. Thus

$$
X \stackrel{s}{=}\left(\begin{array}{ccc}
1 & & \mathfrak{n}^{\prime} \\
0 & & \\
\vdots . & I^{(m)} & 0 \\
\dot{0} & & \\
* & & \\
\vdots & M & \\
\vdots & &
\end{array}\right)=\left(\begin{array}{cc}
I^{(n-m)} \\
\bar{M} & -I^{(n-m)}
\end{array}\right)
$$

This completes the first part of the proof.
Suppose we now subject (5) to a further similarity transformation by

$$
\left(\begin{array}{lc}
A^{(l)} & 0 \\
C & D^{(n-l)}
\end{array}\right) \in \mathfrak{M}_{n}
$$

A simple calculation shows that we obtain a matrix given by (5) with M replaced by \bar{M}, where $\bar{M}=2 C A^{-1}+D M A^{-1}$. Choosing firstly $C=0, A$ and D unimodular, we find that $\bar{M}=D M A^{-1}$, and by proper choice of A and D we can make \bar{M} diagonal. Supposing this done, secondly put $A=I, D=I$; we find that $\bar{M}=M+2 C$. Since C is arbitrary, we can bring \bar{M} into the form

$$
\left(\begin{array}{ll}
I^{(k)} & 0 \\
0 & 0
\end{array}\right)
$$

where k is the rank of M. Since we can interchange two rows and simultaneously interchange the corresponding columns by means of a similarity transformation, the lemma follows.

It is easily seen that

$$
W(x, y, z) \stackrel{\bullet}{=} W(\bar{x}, \bar{y}, \bar{z})
$$

only when $x=\bar{x}, y=\bar{y}$, and $z=\bar{z}$. Furthermore, changing the order of terms in the direct summation does not alter the similarity class. The number A_{n} of nonsimilar involutions in \mathfrak{M}_{n} is therefore equal to the number of solutions of $2 x+y+z=n, x \geqq 0, y \geqq 0, z \geqq 0$. This gives

$$
A_{n}= \begin{cases}\left(\frac{n+2}{2}\right)^{2}, & n \text { even } \tag{6}\\ \frac{(n+1)(n+3)}{4}, & n \text { odd }\end{cases}
$$

Let B_{n} be the number of nonsimilar involutions in \mathfrak{M}_{n}^{+}, where the similarity factors are in \mathfrak{M}_{n}. One easily obtains

$$
B_{n}=\left\{\begin{array}{lr}
\left(A_{n}-1\right) / 2, & \text { if } n \equiv 0(\bmod 4) \tag{7}\\
A_{n} / 2, & \text { otherwise }
\end{array}\right.
$$

5. Automorphisms of \mathfrak{M}_{3}^{+}. We shall now prove Theorem 3 for $n=3$. Let

$$
I_{1}=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad I_{2}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \in \mathfrak{M}_{3}^{+}
$$

Then $I_{1}^{2}=I^{(3)}$. Let τ be any automorphism of \mathfrak{M}_{3}^{+}and let $X=I_{1}^{\tau}$; then $X^{2}=I^{(3)}$. By Lemma 1, the matrices I_{1}, I_{2}, and $I^{(3)}$ form a complete system of nonsimilar involutions in \mathfrak{M}_{3}^{+}. Therefore

$$
X \stackrel{\varepsilon}{=} I_{1} \text { or } I_{2}
$$

After a suitable inner automorphism, we may assume that either $I_{1} \rightarrow I_{1}$ or $I_{1} \rightarrow I_{2}$. We shall show that this latter case is impossible by considering the normalizer groups of I_{1} and I_{2}. The normalizer group of I_{1}, that is, the group of matrices $\in \mathfrak{M}_{3}^{+}$which commute with I_{1}, consists of all elements of \mathfrak{M}_{3}^{+}of the form

$$
\left(\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & e
\end{array}\right)
$$

and is isomorphic to \mathfrak{M}_{2}. That of I_{2} consists of all elements of \mathfrak{M}_{3}^{+}of the form

$$
\left(\begin{array}{ccc}
a & 0 & 0 \\
(a-e) / 2 & e & f \\
-h / 2 & h & i
\end{array}\right)
$$

and is isomorphic to that subgroup \mathbb{B} of \mathfrak{M}_{2} consisting of the elements

$$
\left.\left(\begin{array}{rl}
e & f \\
h & i
\end{array}\right) \in \mathfrak{M}_{2}, \quad \begin{array}{rl}
e & \equiv 1 \\
& \text { where } \\
h & \equiv 0 \\
i & \equiv 1
\end{array}\right\}(\bmod 2)
$$

Since e and i are both odd, © \mathcal{F} contains no element of order 3 , and hence is not isomorphic to \mathfrak{M}_{2}. But then $I_{1} \rightarrow I_{2}$ is impossible.

We may assume thus that after a suitable inner automorphism, I_{1} is invariant. Thence elements of \mathfrak{M}_{3}^{+}which commute with I_{1} map into elements of the same kind, so that

$$
\left(\begin{array}{rr}
X & \mathfrak{n}^{\prime} \\
\mathfrak{n} & \pm 1
\end{array}\right) \in \mathfrak{M}_{3}^{+} \rightarrow\left(\begin{array}{rr}
X^{\tau} & \mathfrak{n}^{\prime} \\
\mathfrak{n} & \pm 1
\end{array}\right)
$$

Since this induces an automorphism $X \rightarrow X^{\tau}$ on \mathfrak{M}_{2}, we see that $\operatorname{det} X^{\tau}=\operatorname{det} X$, and hence the plus signs go together, and so do the minus signs. By Theorem 2 and that part of Theorem 4 which follows from Theorem 2, there exists a matrix $A \in \mathfrak{M}_{2}$ such that $X^{\tau}= \pm A X A^{-1}$; here, the plus sign certainly occurs when X is an even element of \mathfrak{M}_{2}^{+}, and if the minus sign occurs for one odd element of \mathfrak{M}_{2}^{+}, then it occurs for every odd element of \mathfrak{M}_{2}^{+}. By use of a further inner automorphism using the factor $A^{-1} \dot{+} I^{(1)}$, we may assume that

$$
\left(\begin{array}{rr}
X & \mathfrak{n}^{\prime} \tag{8}\\
\mathfrak{n} & \pm 1
\end{array}\right) \in \mathfrak{M}_{3}^{+} \rightarrow\left(\begin{array}{rr}
\pm X & \mathfrak{n}^{\prime} \\
\mathfrak{n} & \pm 1
\end{array}\right)
$$

so that

$$
M=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \rightarrow M \quad \text { or } \quad M \rightarrow N=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Since

$$
N=\left(\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot M \cdot\left(\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

we may assume (after a further inner automorphism, if necessary) that I_{1}, M, and N are all invariant under the automorphism (but (8) need not hold).

Thus, after a suitably chosen inner automorphism, we have I_{1}, M, and N invariant. Therefore there exist A, B, and $C \in \mathbb{M}_{2}$ such that

$$
\begin{align*}
\left(\begin{array}{rr}
X & \mathfrak{n} \\
\mathfrak{n}^{\prime} & \pm 1
\end{array}\right) & \in \mathfrak{M}_{3}^{+} \rightarrow\left(\begin{array}{cc}
\pm A X A^{-1} & \mathfrak{n} \\
\mathfrak{n}^{\prime} & \pm 1
\end{array}\right) \\
\left(\begin{array}{rr}
\pm 1 & \mathfrak{n}^{\prime} \\
\mathfrak{n} & X
\end{array}\right) & \in \mathfrak{M}_{3}^{+} \rightarrow\left(\begin{array}{cc}
\pm 1 & \mathfrak{n}^{\prime} \\
\mathfrak{n} & \pm B X B^{-1}
\end{array}\right), \tag{9}\\
\left(\begin{array}{rrr}
a & 0 & b \\
0 & \pm 1 & 0 \\
c & 0 & d
\end{array}\right) & \in \mathfrak{M}_{3}^{+} \rightarrow\left(\begin{array}{ccc}
\alpha & 0 & \beta \\
0 & \pm 1 & 0 \\
\gamma & 0 & \delta
\end{array}\right)
\end{align*}
$$

where

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)= \pm C\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) C^{-1}
$$

and $\mathfrak{n}=(0,0)^{\prime}$. Here, the +1 on the left goes with the +1 on the right al-
ways (and the -1 's go together); further, when X is an even element of \mathfrak{M}_{2}^{+}, the plus sign occurs before $A X A^{-1}, B X B^{-1}$, and $C X C^{-1}$, while if the minus sign occurs before one of these for any odd $X \in \mathfrak{M}_{2}^{+}$, it occurs there for every odd $X \in \mathfrak{M}_{2}^{+}$.

Now we may assume that at most one of A, B, and C has determinant -1 ; for if both A and B (say) have determinant -1 , apply a further inner automorphism (with factor N) which leaves I_{1}, M, and N invariant and changes the signs of $\operatorname{det} A$ and det B. Suppose hereafter, without loss of generality, that $\operatorname{det} A=\operatorname{det} B=1$.

Next, N is invariant, but by (9) goes into

$$
\left(\begin{array}{cc}
\pm A\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right) A^{-1} & \mathfrak{n}^{\prime} \\
\mathfrak{n} & \\
-1
\end{array}\right)
$$

so that

$$
\pm A\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right) A^{-1}=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

This gives two possibilities:

$$
A=I^{(2)} \quad \text { or } \quad\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

The same holds true for B (but not necessarily for C, since $\operatorname{det} C= \pm 1$).
Suppose firstly that either A or B is $I^{(2)}$, say $A=I^{(2)}$. Then

$$
T=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \rightarrow\left(\pm\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right) \begin{array}{l}
0 \\
0 \\
0
\end{array} 0081\right)
$$

Case 1. T invariant. Then

$$
\left(\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \text { and }\left(\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

are both invariant. (The first matrix is invariant in virtue of the remarks after (9) ; the second is invariant because it is M times the first.) For either possible choice of B we find that

$$
\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{r}
-1
\end{array} \begin{array}{ll}
0 & 0 \\
0 \\
0
\end{array} \pm\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .\right.
$$

Therefore

$$
U=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

is mapped into
where $V=I_{1} U I_{1}^{-1}$. Thus, in this case, $T \rightarrow T=I_{1} T I_{1}^{-1}$, and either $U \rightarrow U$ or $U \rightarrow I_{1} U I_{1}^{-1}$. Since T and U generate $\left({ }^{2}\right) \mathfrak{M}_{3}^{+}$, the automorphism is inner.

Case 2.

$$
T \rightarrow\left(\begin{array}{rrr}
-1 & -1 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then

$$
\left(\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

and one finds in this case that

$$
U \rightarrow\left(\begin{array}{rrr}
0 & -1 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{rrr}
0 & -1 & 0 \\
0 & 0 & -1 \\
1 & 0 & 0
\end{array}\right)
$$

If we set $Z=T U^{2}$, then

$$
\left(\begin{array}{lll}
1 & 0 & 0 \tag{10}\\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(U Z^{-1}\right)^{2} U Z^{2}
$$

Now certainly the left side of (10) maps into

$$
\left(\begin{array}{rrr}
-1 & 0 & 0 \\
-1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

${ }^{(2}$) L. K. Hua and I. Reiner, loc. cit.
whereas, knowing T^{\top} and U^{τ}, we can compute Z^{\top} and thence can find the image of the right side of (10). We readily find (for either value of U^{r}) that the right side of (10) maps into

$$
\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
3 & \cdot & \cdot \\
. & \cdot & .
\end{array}\right)
$$

and hence we have a contradiction.
Therefore case 2 cannot occur, and so if either A or B equals $I^{(2)}$, the automorphism is inner. Suppose hereafter that

$$
A=B=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

In this case we have

$$
T \rightarrow\left(\begin{array}{c}
\pm\left(\begin{array}{rrr}
1 & 0 \\
-1 & 1
\end{array}\right) \\
0 \\
0
\end{array} 0\right.
$$

Case 1*.

$$
T \rightarrow\left(\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then as before

$$
\left(\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \text { and }\left(\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

are invariant, and again $U^{r}=U$ or V. After a further inner automorphism by a factor of I_{1} (in the latter case) we also have $U \rightarrow U$. But then

$$
T \rightarrow T^{\prime-1}, \quad U \rightarrow U^{\prime-1}
$$

(This automorphism is easily shown to be a non-inner automorphism.)
Case 2*.

$$
T \rightarrow\left(\begin{array}{rrr}
-1 & 0 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then

$$
\left(\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

and again we find that there are two possibilities for U^{r}, each of which leads to a contradiction, just as in case 2 . Therefore Theorem 3 holds when $n=3$.
6. A fundamental lemma. Theorem 3 will be proved by induction on n; the result has already been established for $n=2$ and 3 . In going from $n-1$ to n, the following lemma is basic:

Lemma 2. Let $n \geqq 4$, and define $J_{1}=(-1) \dot{+} I^{(n-1)}$. In any automorphism τ of $\mathfrak{M}_{n}, J_{1}^{T}= \pm A J_{1} A^{-1}$ for some $A \in \mathfrak{M}_{n}$.

Proof. By Corollary 1, $J_{1}^{\tau} \in \mathfrak{M}_{n}^{-}$, and J_{1}^{τ} is an involution. After a suitable inner automorphism, we may assume that $J_{1}^{\tau}=W(x, y, z)$ (as defined by (4)), where $2 x+y+z=n$ and $x+y$ is odd. Every element of \mathfrak{M}_{n} which commutes with J_{1} maps into an element of \mathfrak{M}_{n} which commutes with W. Every matrix in \mathfrak{M}_{n}^{+}maps into a matrix in \mathfrak{M}_{n}^{+}. Combining these facts, we see that the group \mathbb{E}_{1} consisting of those elements of \mathfrak{M}_{n}^{+}which commute with J_{1} is isomorphic to \mathfrak{G}_{2}, the corresponding group for W. If we prove that this can happen only for $x=0, y=1, z=n-1$ or $x=0, y=n-1, z=1$, the result will follow.

The group \mathfrak{B}_{1} consists of the matrices in \mathfrak{M}_{n}^{+}of the form $(\pm 1) \dot{+} X_{1}$, $X_{1} \in \mathfrak{M}_{n-1}$, and so clearly $\mathscr{H}_{1} \cong \mathfrak{M}_{n-1}$.

The group S_{2} is easily found to consist of all matrices $C \in \mathfrak{M}_{1}^{+}$of the form (we illustrate the case where $x=2$):

For the moment put

$$
K=\left(\begin{array}{cc}
1 & 0 \\
-1 / 2 & 1
\end{array}\right)+\cdots+\left(\begin{array}{cc}
1 & 0 \\
-1 / 2 & 1
\end{array}\right)+I^{(n-2 x)} .
$$

Then a simple calculation gives:
and so C is similar to

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ccc}
a_{1} & a_{2} & 2 \beta_{1} \cdots 2 \beta_{z} \\
a_{3} & a_{4} & 2 \delta_{1} \cdots 2 \delta_{z} \\
\eta_{1} & \theta_{1} & \\
\vdots & \vdots & V \\
\eta_{z} & \dot{\theta}_{z} &
\end{array}\right]+\left[\begin{array}{ccc}
d_{1} & d_{2} & \alpha_{1} \cdots \alpha_{y} \\
d_{z} & d_{4} & \gamma_{1} \cdots \gamma_{y} \\
-2 \epsilon_{1} & -2 \zeta_{1} & \\
\vdots & \vdots & U
\end{array}\right]} \\
-\underbrace{}_{2 \epsilon_{y}} & -2 \zeta_{y}
\end{array}\right]
$$

with a fixed similarity factor depending only on W. Therefore $\mathfrak{G}_{2} \cong \mathfrak{G}$, where $\mathfrak{G}=\mathfrak{G}(x, y, z)$ is the group of matrices in \mathfrak{M}_{n}^{+}of the form

$$
\underset{x}{\left.\left[\begin{array}{cc}
S_{1} & 2 R_{1} \\
Q_{1} & T_{1}
\end{array}\right]_{z}^{x}+\underset{x}{x}+\underset{y}{S_{2}} \begin{array}{cc}
Q_{2} \\
2 R_{2} & T_{2}
\end{array}\right]_{y}^{x}, ~}
$$

where $S_{1} \equiv S_{2}(\bmod 2)$. Here $2 x+y+z=n$ and $x+y$ is odd.
We wish to prove that $\mathfrak{M}_{n-1} \cong \mathfrak{O}(x, y, z)$ only when $x=0, y=1, z=n-1$ or $x=0, y=n-1, z=1$. In order to establish this, we shall prove that in all other cases the number of involutions in © © which are nonsimilar in © \mathbb{C} is greater than the number of involutions in \mathfrak{M}_{n-1} which are nonsimilar in \mathfrak{M}_{n-1};
this latter number is, of course, A_{n-1} (given by (6)).
We shall briefly denote the elements of (G) by $A+B$, where

$$
A=\left(\begin{array}{cc}
S_{1} & 2 R_{1} \\
Q_{1} & T_{1}
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
S_{2} & Q_{2} \\
2 R_{2} & T_{2}
\end{array}\right) .
$$

If $A_{1}+B_{1}$ and $A_{2} \dot{+} B_{2}$ are two involutions in \mathbb{G}, where either

$$
A_{1} \neq A_{2}
$$

in \mathfrak{M}_{x+z} or

$$
B_{1} \neq B_{2}
$$

in \mathfrak{M}_{x+y}, then certainly

$$
A_{1}+B_{1} \neq A_{2}+B_{2}
$$

in (\oiint) (these may be similar in \mathfrak{M}_{n}, however). Therefore, the matrices $A+B$, where

$$
\begin{aligned}
& A=I^{\left(a^{a}\right)}+(-I)^{\left(b_{1}\right)}+L+\underset{\left(a_{\text {a terss }}\right)}{\cdots}+L, \\
& B=I^{\left(a_{a}\right)}+(-I)^{\left(b_{2}\right)}+L+\underset{\left(c_{\mathrm{a}} \text { terms }\right)}{\ldots}+L,
\end{aligned}
$$

obtained by taking different sets of values of ($a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}$), if they lie in \mathfrak{G}, are certainly nonsimilar in \mathfrak{B}. Here we have

$$
a_{1}+b_{1}+2 c_{1}=x+z, \quad a_{2}+b_{2}+2 c_{2}=x+y, \quad b_{1}+b_{2}+c_{1}+c_{2} \text { even. }
$$

If $x \neq 0$, we impose the further restriction that $c_{1} \leqq(z+1) / 2, c_{2} \leqq(y+1) / 2$, and that in B instead of L we use L^{\prime}. These conditions will insure that $A+B \in(G$. We certainly do not (in general) get all of the nonsimilar involutions of © in this way, but instead we obtain only a subset thereof. Call the number of such matrices N.

For $x=0$, we have $N=B_{y} B_{z}+\left(A_{y}-B_{y}\right)\left(A_{z}-B_{z}\right)$. Since y is odd, $A_{y}=2 B_{y}$, and therefore

$$
N=B_{y} A_{z}=B_{y} A_{n-y} .
$$

Case 1. n even. Then $N=(y+1)(y+3)(n-y+1)(n-y+3) / 32$. If neither y nor $n-y$ is 1 (certainly neither can be zero), then

$$
(y+1)(n-y+1) \geqq 4(n-2) \quad \text { and } \quad(y+3)(n-y+3) \geqq 6 n \text {, }
$$

so that

$$
N \geqq(24 / 32) n(n-2) .
$$

For $n=4, x=0$, either $y=1$ or $z=1$. For $n \geqq 6$, we have $N>A_{n-1}$. Hence in
this case $\left(\mathbb{S}\right.$ is not isomorphic to \mathfrak{M}_{n-1}. (If either y or $n-y=1$, then $W(x, y, z)$ $= \pm J_{1}$.)

Case 2. n odd. Then $N=(y+1)(y+3)(n-y+2)^{2} / 32$. We find again that $N>A_{n-1}$ for $n \geqq 5$.

This settles the cases where $x=0$. Suppose that $x \neq 0$ hereafter. Then N is the number of solutions of

$$
\begin{gathered}
a_{1}+b_{1}+2 c_{1}=x+z, \quad a_{2}+b_{2}+2 c_{2}=x+y, \quad b_{1}+b_{2}+c_{1}+c_{2} \text { even, } \\
0 \leqq c_{1} \leqq \frac{z+1}{2}, \quad 0 \leqq c_{2} \leqq \frac{y+1}{2} .
\end{gathered}
$$

Using [r] to denote the greatest integer less than or equal to r, we readily find that N is given by

$$
\frac{1}{2}\left[\frac{z+3}{2}\right]\left[\frac{y+3}{2}\right]\left(x+z+1-\left[\frac{z+1}{2}\right]\right)\left(x+y+1-\left[\frac{y+1}{2}\right]\right) .
$$

By considering separately the cases where y and z are both even, one even and one odd, and so on, it is easy to prove that $N \geqq A_{n-1}$ in all cases except when both y and z are zero. Leaving aside this case for the moment, consider the matrix $A_{0} \dot{+} I^{(x+y)} \in \mathfrak{B}$, where $A_{0} \in \mathfrak{M}_{x+z}$ is given by

$$
A_{0}=\left(\begin{array}{rrrr}
1 & 2 & 2 \cdots & 2 \\
0 & -1 & 0 & \cdots \\
0 & 0 & -1 \cdots & 0 \\
. & . & \cdots & \cdot \\
0 & 0 & 0 & \cdots
\end{array}\right)
$$

The matrix $A_{0} \dot{+} I^{(x+y)}$ is certainly an involution in \mathbb{E}. Since, in \mathfrak{M}_{x+z},

$$
A_{0} \stackrel{\varepsilon}{=}\left(\begin{array}{rrr}
1 & 0 \cdots & 0 \\
0 & -1 \cdots & 0 \\
. & \cdots & . \\
0 & 0 \cdots & -1
\end{array}\right)=A_{1}
$$

$A_{0}+I^{(x+y)}$ can be similar (in (S) only to that matrix (counted in the N matrices) of the form $A_{1}+I^{(x+y)}$. But from
we obtain

$$
a_{1}=a_{2}=\cdots=a_{x}=2 b_{1}
$$

which is impossible. Hence (5) contains at least $N+1$ nonsimilar involutions, and therefore (\mathbb{F}) is not isomorphic to \mathbb{M}_{n-1} in these cases.

We have left only the case $y=z=0, x=n / 2$; then n is singly even. Here we may choose $A=W\left(c_{1}, b_{1}, a_{1}\right), B=W\left(c_{1}, b_{2}, a_{2}\right)$, where

$$
a_{1}+b_{1}+2 c_{1}=x, \quad a_{2}+b_{2}+2 c_{1}=x, \quad b_{1}+b_{2} \text { even. }
$$

Then $A+B \in(\xi)$, and the various matrices are nonsimilar. The number of such matrices is $(x+1)(x+2)(x+3) / 12$, which is greater than A_{n-1} for $n \geqq 14$. For $n=6, \mathfrak{M}_{n-1}$ contains an element of order 5 , while (\$3 does not. For $n=10$, \mathfrak{M}_{n-1} contains an element of order 7 , while (\mathcal{F} does not. This completes the proof of the lemma.
7. Proof of Theorem 3. We are now ready to give a proof of Theorem 3 by induction on n. Hereafter, let $n \geqq 4$ and suppose that Theorem 3 holds for $n-1$. If τ is any automorphism of \mathfrak{M}_{n}, by Corollary 1 and Lemma 2 we know that τ takes \mathfrak{M}_{n}^{+}into itself, and $J_{1}^{\tau}= \pm A J_{1} A^{-1}$. If we change τ by a suitable inner automorphism, then we may assume that $J_{1} \rightarrow \pm J_{1}$. When n is odd, certainly $J_{1} \rightarrow J_{1}$; when n is even, by multiplying τ by the automorphism $X \in \mathfrak{M}_{n} \rightarrow(\operatorname{det} X) \cdot X$ if necessary, we may again assume $J_{1} \rightarrow J_{1}$.

Therefore, every $M \in \mathfrak{M}_{n}^{+}$which commutes with J_{1} goes into another such element, that is,

$$
\left(\begin{array}{rr}
\pm 1 & \mathfrak{n}^{\prime} \\
\mathfrak{n} & X
\end{array}\right)^{\tau}=\left(\begin{array}{rr}
\pm 1 & \mathfrak{n}^{\prime} \\
\mathfrak{n} & X^{\tau}
\end{array}\right)
$$

Since this induces an automorphism on \mathfrak{M}_{n-1}, we have $\operatorname{det} X^{\tau}=\operatorname{det} X$, so that the plus signs go together, as do the minus signs. Furthermore, by our induction hypothesis,

$$
X^{\tau}= \pm A X^{*} A^{-1}
$$

where $A \in \mathfrak{M}_{n-1}$ and either $X^{*}=X$ for all $X \in \mathfrak{M}_{n-1}$ or $X^{*}=X^{\prime-1}$ for all $X \in \mathfrak{M}_{n-1}$; here the minus sign can occur only for $X \in \mathbb{M}_{n-1}^{-}$, and if it occurs for one such X, it occurs for all $X \in \mathbb{M}_{n-1}^{-}$. After changing our original automorphism by a factor of $I^{(1)} \dot{+} A^{-1}$, we may assume that $X^{\tau}= \pm X^{*}$.

Let J_{ν} be obtained from $I^{(n)}$ by replacing the ν th diagonal element by -1 . Then

The minus sign here is impossible by Lemma 2 , since $n \geqq 4$. Hence $J_{1} J_{n}$ is invariant, and therefore so is J_{n}. By the same reasoning all of the $J_{\nu}(\nu=1, \cdots, n)$ are invariant.

From the above remarks we see that for $X \in \mathfrak{M}_{n-1}^{+}$,

$$
\left(\begin{array}{ll}
1 & \mathfrak{n}^{\prime} \\
\mathfrak{n} & X
\end{array}\right)^{\top}=\left(\begin{array}{cc}
1 & \mathfrak{n}^{\prime} \\
\mathfrak{n} & A_{1} X^{*} A_{1}^{-1}
\end{array}\right), \cdots,\left(\begin{array}{ll}
X & \mathfrak{n} \\
\mathfrak{n}^{\prime} & 1
\end{array}\right)^{\tau}=\left(\begin{array}{cc}
A_{n} X^{*} A_{n}^{-1} & \mathfrak{n} \\
\mathfrak{n}^{\prime} & 1
\end{array}\right)
$$

where $A_{\nu} \in \mathfrak{M}_{n-1}$, and in fact $A_{1}=I$. Now suppose that $Z \in \mathfrak{M}_{n-2}^{+}$, and form $I^{(2)} \dot{+}$. Since it commutes with both J_{1} and J_{2}, its image must do likewise. But then

$$
A_{1}\left(\begin{array}{ll}
1 & \mathfrak{n}^{\prime} \\
\mathfrak{n} & Z
\end{array}\right) A_{\mathfrak{1}}^{-1}=\left(\begin{array}{cc}
1 & \mathfrak{n}^{\prime} \\
\mathfrak{n} & \bar{Z}
\end{array}\right)
$$

for every $Z \in \mathfrak{M}_{n-2}^{+}$. Setting

$$
A_{1}=\left(\begin{array}{ll}
a & \mathfrak{z}^{\prime} \\
\mathfrak{y} & A
\end{array}\right)
$$

we obtain $\mathfrak{r}^{\prime} Z=\mathfrak{q}^{\prime}, \mathfrak{y}=\bar{Z} \mathfrak{y}$. Since this holds for all $Z \in \mathfrak{M}_{n-2}^{+}$, we must have $\mathfrak{r}=\mathfrak{y}=\mathfrak{n}$, so that A_{1} is itself decomposable. A similar argument (considering the matrices commuting with both J_{1} and J_{ν}, for $\nu=3, \cdots, n$) shows that A_{1} is diagonal. Correspondingly, all of the A_{ν} are diagonal. It is further clear that all of the $A_{\nu}(\nu=1, \cdots, n)$ are sections of a single diagonal matrix $D^{(n)}$. Using the further inner automorphism factor D^{-1}, we may henceforth assume that $X^{\tau}=X^{*}$ for every decomposable $X \in \mathfrak{M}_{n}^{+}$, where either $X^{*}=X$ always or $X^{*}=X^{\prime-1}$ always. Since \mathfrak{M}_{n}^{+}is generated by the set of decomposable elements of \mathfrak{M}_{n}^{+}, the theorem is proved.

Tsing Hua University,
Peking, China.
University of Illinois,
Urbana, Ill.

[^0]: ${ }^{(1)}$ L. K. Hua and I. Reiner, Trans. Amer. Math. Soc. vol. 65 (1949) p. 423.

