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If in an associative algebra 31 a new composition is introduced by putting

[ab] =ab — ba, 21 becomes a nonassociative algebra 2I¿ with a skew-symmetric

product satisfying the Jacobi identity [[aô]c] +[[èc]a]+[[ca]&] =0. Fur-

thermore, any abstract algebra having these properties is isomorphic to a

subalgebra of some 2l¿. These algebras, called Lie algebras, have been exten-

sively studied, and in this paper we shall often refer to some of the many

known results. If, on the other hand, we consider the system denoted by 21/

comprising 21 and the product {ab} =ab-\-ba, we observe that 2lj is a com-

mutative, nonassociative algebra such that { { {aa}è}a} = { {aa}, {ba}\.

Such algebras and their subalgebras are special Jordan algebras. This terminol-

ogy is necessary since they are not characterized by the above properties.

Abstract algebras defined by these properties are simply Jordan algebras.

The starting point for our discussion is the observation that in an asso-

ciative algebra [[a&]c] = { {c&}a} — { {ca}&}, so that any special Jordan

algebra may be treated as a subspace of an associative algebra closed under

triple Lie products. Jacobson has characterized subspaces of Lie algebras

closed under triple Lie products and called them Lie triple systems. Further,

if in any Jordan algebra 21 we introduce the ternary composition [abc]

= { {cb}a} — { {ca}b}, 21 becomes a Lie triple system, the associator Lie

triple system of 21. Also, the mappings xRa— {xa\ in a Jordan algebra con-

stitute a Lie triple system which is a homomorph of the associator Lie triple

system and is called the multiplication Lie triple system of the Jordan algebra.

Suggested by these relations is the possibility of using Lie algebra methods

and results in the study of Jordan algebras. Jacobson [7](3) has successfully

done this, and it is not our present purpose to pursue further such applications

of Lie triple systems. We shall, rather, regard such connections as motiva-

tion for the abstract study of the structure and classification of these systems.

In section I we introduce some fundamental concepts and note some re-

sults of Jacobson concerning imbeddings of Lie triple systems in Lie alge-

bras. Section II develops notions of the radical, semi-simplicity, and solv-

ability as defined for Lie triple systems including proofs of the existence of a

semi-simple subsystem complementary to the radical and of the decomposi-
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tion of a semi-simple system into the direct sum of simple ideals. Section III

is somewhat of a digression concerned with the extension to Lie triple sys-

tems of linear transformations certain Lie algebra criteria for complete re-

ducibility. In section IV we determine all simple Lie triple systems over an

algebraically closed field.

In the sequel we shall presume well known results concerning Lie algebras

and suppose throughout that each vector space is finite-dimensional over a

field of characteristic 0.

I. Fundamental concepts and imbeddings

Definition 1.1. A Lie triple system (L.t.s.) is a vector space X over a field

3> and a mapping denoted by [xyz] of ÏXÏXÏ into X satisfying:

(i)   [ ] is trilinear.

(ii) «[xryz] = [(a.r);yz] = [x(ay)z] = [x;y(o:z)] for all a in <ï>.

(iii)   [xyz] = — [yxz].

(1.1) (iv)   [[xyz]t;w]+ [[;yxzi]zw] + [yx[zi'w]] + [zz>[x;yw]] =0.

(v) [xyz ] + [yzx ] + [zxy ] = 0.

(vi)   [[x;yz]i>w]-|- [[y.w]zíf ] + [[wz;y]xw] + [(zz>x];yw] =0.

(vii)   [ [[x3>z]í/w]¿tt] + [[[;yxz]fl/]wzí] + [[[;yxz>]zw]/w]

+ [[[xyv]zt]wu]+R + S = 0,

where R and 5 are obtained by cyclically permuting the pairs (*, y), (z, v),

(w, t) in the displayed terms.

Definition 1.2. If X and U are L.t.s. over 3>, a homomorphism of % into

U is a linear transformation H of X into U satisfying:

[xyz]H= [{xH){yH){zH)l

The meaning of isomorphism is now clear. If Ï, §), and S are subsets of a

L.t.s. X, by [ï?)5] we mean the set whose elements have the form ^¿[x.^iZ,]

where x,- is in 3E, y< in §), and z,- in $. Thus a subsystem of % is a subspace U

such that [UUU]ÇU.
Definition 1.3. An ideal of a L.t.s. % is a subspace 33 for which [93ÏÏ]

Ç23.
If 33 is an ideal, consider the collection {x + 33} of cosets and denote it by

Î-33. If we define a product by [(x+33)(y + 33)(z+33)j = [x;yz] + 33, £-33

becomes a L.t.s., the difference L.t.s. of % modulo 33. The mapping x—>x + 33

is a homomorphism of X onto X — 33 with kernel 33. Conversely, let 33 be the

kernel of a homomorphism of X onto a L.t.s. U. [vxy]H= [(vH)(xH)(yH) ] =0

if v is in 33, so that 33 is an ideal. Ideals, then, are precisely kernels of homo-
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morphisms. Notice also that the ideals of X — 93 may be written as 9B — 93,

where SB is an ideal of SE containing 93.

Among the linear transformations in a L.t.s. those of the following type will

be of particular interest:

Definition 1.4. A derivation of a L.t.s. SE is a linear transformation D of S£

into X such that [xyz]D=[(xD)yz]+[x(yD)z]+[xy(zD)].

It is readily verified that the set SD(SE) of derivations of X is a Lie alge-

bra of linear transformation acting in X, the derivation algebra of X. Further,

if a,-, bi, i = l, •••,«, are arbitrary in X, the identities (1.1) show that

x—> ̂ 2i [üibix] is a derivation in X. Derivations of this type form a subalgebra

SDo(SE) of SD(SE), the algebra of inner derivations of X.

In any associative algebra 2Í, the subspaces closed under [[<z6]e] =a¿>c

— bac — cab +cba are L.t.s. In fact, asean be verified from (1.1), any subspace

of a Lie algebra closed under [[a&]c] is a L.t.s.; and, as we shall indicate, the

identities (1.1) completely characterize such systems.

Definition 1.5. An imbedding of a L.t.s. X in a Lie algebra 8 is a linear

transformation x—>xR of X into 2 such that

(i)   [x^z]Ä= [[icÄyÄ]zÄ] and

(ii) the enveloping Lie algebra of the image set XR is 8.

It is immediate that if X is a L.t.s. contained in a Lie algebra 2, and

[xyz] = [[xy]z], then [XX] is a subalgebra of 8 and SE + [XX] is also. Thus if

X is an abstract L.t.s. and R is any imbedding, the enveloping algebra of XB

is XRJr [XRXS]. These facts derive from the relations in a Lie algebra which

may be written

(i)   [[ÜK3Í], [CO]] Ç [[[2M]?]0] + [[[2M]OM

(Ü) [[[arando] s [[mm], ppo]] + [[[srai]oM

for any subspaces 9JÎ, 9Î, Sp, Q of the algebra.

In [7] Jacobson has settled the problem of the existence of a 1-to-l im-

bedding by constructing for any L.t.s. X a particular imbedding 5 such that

]^t[af¿>f]=0, a,, bi in SE, if and only if ^,- [a,o,x]=0 for every x in SE, and

such that %s = Ts(B [XSXS]. Since this construction will be of later use, we

shall call it the standard imbedding of SE, and hereafter, when confusion will

not result, we may suppose an abstract L.t.s. SE already imbedded in a 1-to-l

manner in a Lie algebra and simply write 8 = SE+ [SESE].

Definition 1.6. An imbedding U of a-L.t.s. SE is called universal, and

%u = Xu+[XuXu] is a universal Lie algebra of SE if and only if, for any

imbedding R of SE, the mapping xu—>xR is single-valued and can be extended

to a Lie algebra homomorphism of 2u onto %r.

The existence and, in the obvious sense, uniqueness of a universal im-

bedding U is proved in [7], and the standard imbedding shows that U is

1-to-l and SEc;n[SEc/SEc']=0. If R is any imbedding, 8B is finite-dimensional

since, if dim SE = w, dim 8h^«+w(« —l)/2.
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The standard imbedding is not necessarily universal. Consider an re-dimen-

sional L.t.s. X in which all products are 0. We verify that 2s is the «-dimen-

sional zero Lie algebra and that X has a 1-to-l imbedding U0 in which

dim £i/0 = «(ra + l)/2. Theorem 7.3 of [7] shows, however, that in the im-

portant case where 2s is semi-simple, 5 is universal.

We shall later investigate more fully the connection between L.t.s. and

automorphisms of Lie algebras. For the present it suffices to verify the

following assertion:

Theorem 1.1. If X is a L.t.s. imbedded in a Lie algebra 2 such that 2 = X

© [££], then X is the set of skew-symmetric elements relative to a unique auto-

morphism of period 2 in 2.

Proof. For x in S write x = xi+x2, Xi in X and x2 in [££]. Let xA =x2 —Xi.

A is a linear transformation such that A2 = I, and

[(xA), (yA)] = [xiyi] + [x2y2] - [xiy2\ - [x2yi],

while

[xy]A =  [xiyij.4 + [ofg^pi + [xiy2\A + [x2y^A

= [xiyi] + [x2y2] — [xiy2] — [x2yi].

Since X generates 2, A is unique. We shall say that X is the L.t.s. determined by

A.
We may also observe that if 2u is universal for X, and A is the auto-

morphism of 2u determining X, then every automorphism of X is the con-

traction of a unique automorphism of 2u commuting with A.

II. The radical

A. Solvable and semi-simple Lie triple systems. As in the study of alge-

bras we shall introduce a "radical" for L.t.s., from this obtain the notion of

semi-simplicity, and discuss the implications of these definitions. We begin

by noting a relation between ideals in a L.t.s. and those in an enveloping Lie

algebra. In [7] it is shown by using (1.2) that if 33 is an ideal in the L.t.s. X,

and if X+ [XX] =2, then 33+ [3333] is an ideal in 33+ [53£] which is an ideal
in 2, the ideal generated by 33.

If 33 is an ideal in a L.t.s. X, put 33(1) = [£3333] and 33<*> = [SiSB»-«««*-»].

Lemma 2.1. For each k, 33w is an ideal in X. Thus 33233(10 • • • 333(*>.

Proof. By (1.2), [33(1>££] = [[£3333]££]ç [[£33£]33£] + [[[£33],
[£33]]£]. By (1.1) (iii) and (v), [SB<»SE£]c [33332l] + [[£«£], [£33]]
ç [£3333]+ [£3333] =33(1). Since 33(« = (33(A;-l>)<1>, each S3(i) is an ideal.

Definition 2.1. An ideal 33 in a L.t.s. £ is solvable in X if there is a posi-

tive integer k for which 33(i) =0.

One justification for the adoption of this definition is the observation that

if £ is a L.t.s., 2 a Lie algebra such that £+ [££] =2, and 9î a solvable ideal
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in 8, then 93 = 9tnSE is a solvable ideal in SE. For [SE93]Çi [SE9î]ç«R, and 93(1)
= [SE9393]ç:[9î93]ç:[9îUi]=9(t». Since 9i<» = (»<*-»)<", we get WiQW» for
each k. Another corollary of this relation is that if 9Î is a solvable ideal in a

Lie algebra 8, then dt is a solvable L.t.s. ideal in the L.t.s. 8. Before pursuing

the idea further it is well to remark that if U and 93 are ideals in a L.t.s., UÇ93,

and 93 is solvable, then U is also; and if Wk) is solvable, so is 93.

Lemma 2.2. IfU and 93 are solvable ideals in a L.t.s. X, so is tt + 93 = [u-\-v ],

u in U, v in 93.

Proof. (U+93)(1)ç:[SEUU]+[SE9393] +[SEU93] +[SE93U]ÇU(1) + 93C1,+Un93-
Suppose (U+93)wçUw + 93w+llPi93.

(U + «)<*"> = [SE(U + 33)<fc> (U + 93)<*>]

S [SE(U(i) + 93w + Un93)(U + 33)w]

S U(i+1) + 93<fc+1) + U n 93.

There must, therefore, be an integer n such that (U + 93)<n)ÇUPi93, which is

solvable by the remark above. Applying the same remark twice more,

we see that U + 93 is solvable. Now form 9î(SE) = 2Z„ 93„, 93„ solvable in X.

Since 9i(SE) is solvable, it is the unique maximal solvable ideal in SE.

Definition 2.2. The radical 9Î(S£) of a L.t.s. SE is the unique maximal

solvable ideal whose existence is established in Lemma 2.2 In case 3î(SE) =0,

SE is semi-simple.

Theorem 2.3. If 9Î is the radical of a L.t.s. X, X — 9Î is semi-simple, and if

93 is an ideal in X such that SE —93 is semi-simple, then 9339Î.

Proof. The ideals of SE — 9í have the form U —8Î where U is an ideal con-

taining 9Î. Since (U-3i)(« = (U<*>+SR) -9Î, if U-SR is solvable, then, for some

n, U(n)Ç9î. This implies that U is solvable in SE, hence U = 9?, and SE —9Î is

semi-simple. Suppose SE —93 is semi-simple and consider the solvable ideal of

£-93, I={r + 93}, r in «R. Since ̂  = 0, 3ÎÇ93.
The succeeding theorems are intended to establish the connection be-

tween the radical 9ï(SE) of a L.t.s. SE and the radical 9î(8) of an enveloping

Lie algebra and to determine the general structure of a semi-simple L.t.s.

Lemma    2.4.   //   SE+[SESE]=8,    then    [SESEj^C X)-è»è./i    [£<»£<"-*>].

(SE° = SE.)

Proof. [SESE](1) = [[SESE], [£ï]]ç [[£££]£] = [£<»£]. Suppose [SSE]*'-1'

££-*»(-wi [SE^SEC-1-«].

[XX]M ■= [[SESE]«"-1', [££]<*-»]

Q 2 [[SE^Î^-^lJSEt^SE'"-1-»]]-
n-lä/tä(n-l)/2, n-lâ»'È(n-l)/2
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We examine an arbitrary term in this expansion. By the skew symmetry

of products it is necessary to consider only the case k^i.

[[£(*)£(»-!-*)],   [£C¡)£(»-l-¿)]]

C [[£(*)£(»-!-*)£(«]£(»-i-')] + [[£(*>£(»-i-*)£(»-i-o]£(>>]

Ç [[££<i)£<i)]£<"-1-«] + [[££t"-1-i>£(»-1-i)]£(i>]

because n — k^n — ¿áí+l, and therefore k^n — i—1. From this follows

[[£<*)£<»-1-*)], [X^Xin-1-i)]]Q[X<-i+1)X(-"-1-i)]+[£("-¡)£(i)], and we see

that each term in the expansion above is contained in a term of the required

form. This lemma shows that if £ is a solvable L.t.s., [££] is a solvable sub-

algebra of any enveloping algebra of £.

Theorem 2.5. // £ is a L.t.s. such that £+ [££] =8, then

E(£(B/2)      if n is even,
\X(k)X(n~k~1)] + s

-ÜAC-iHÍ \%Un+l)m ijnis odd.

Proof. 8(1) = [88] =£<1) + [££]. 2™QXm + [£<1>£(»]+ [£<»SE]Ç3:<«

+ [£(1)£]. Suppose the asserted result holds for an even integer n. In 8("+1)

= [8(n)8<n)], by the proof of the preceding lemma any product of terms not in-

volving the final term is included in X!«è*ë»/2 [£(*>£(b-*>]. [sc<»3:(»-*-«$:<»/*>]
çz[XX(nlî)X(nm]QXM+1) since k^n/2, and [XM2)X(nl2) ]=[£«"+1-1)/2)

j((n+i-i)/2) j jf n ¡s 0ddt the argument is similar, and we conclude by calculat-

ing [£(*>£<B-*-1)£«B+1"2>]Ç£«"+r)/«. From this result and the discussion

following Definition 2.1 derives the following assertion:

Corollary 2.6. Any enveloping Lie algebra of a solvable L.t.s. is solvable,

and if a L.t.s. has some solvable enveloping Lie algebra, it is solvable.

We turn now to semi-simple L.t.s. and their enveloping Lie algebras.

Theorem 2.7. If X is a semi-simple L.t.s., then the universal Lie algebra 2u

of X is semi-simple.

Proof. Let S be the standard imbedding of £ and 8s the enveloping Lie

algebra. Recall that if 2s is semi-simple, 8s^8t7. H 9î = 9î(8s), then9în£s = 0

since it is a solvable ideal in £s. Let A be the automorphism of 8s which de-

termines Xs. Since 9M is solvable, 9M=9Î. This implies that fôe [£«£«],

and therefore [3i£s]C3fP\£s = 0. In the standard imbedding we must then

have 9Î=0. Since homomorphic images of semi-simple Lie algebras are semi-

simple, an immediate consequence of this theorem is that any enveloping

Lie algebra of a semi-simple L.t.s. is semi-simple.

Theorem 2.8. Let A be an automorphism of period 2 in a Lie algebra 2

such that either (i) 8 is simple or (ii) 8 =8i©82, 8, a simple ideal, 2iA = 82. // £
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is the L.t.s. of elements of 2 skew-symmetric relative to A, then X is simple.

(Dim £^1, and T has no proper ideals.)

Proof. Let 8 = £©5, where ^ is the set of elements fixed relative to A.

It is easily verified that £ is a L.t.s., [££]Çg, and [£g]Ç£. £ ©[££] is an

ideal in 8 since

[(£ © [££])(£ © g)] S [££] + £ + [2$] + [XX%]
c £ + [££] + [8££]

S £ © [££]•
In case (i), 8 = £©[££], and if 33^0 is an ideal in £, 33©[33£] is an ideal

in 8, so that 33©[33£]=8, hence 33 = £and £ is simple.

In case (ii), £©[££] is invariant with respect to A and therefore dif-

ferent from 8i and 82. Again £ffi [££] =2 and any ideal 33 in £ generates an

invariant ideal S3© [33£] in 2. But 8 has no proper ideals invariant with re-

spect to A.

Theorem 2.9. // £ is a semi-simple L.t.s., then £ = £iffi£2ffi • ■ • ©£,

where £,• is a simple ideal in X, and, conversely, any L.t.s. with this structure

is semi-simple.

Proof. Let £ be imbedded in its universal algebra 2u, and write 2u

= £© [££]• By Theorem 2.7, 2u is semi-simple and has the decomposition

8(/=8i©82© ■ • • ®Ln where 8t- is a simple ideal in 8c/. Let A be the auto-

morphism in 2u determining £: Since A2 = I, by renumbering the components

of 8c/ we get 2u = 2i®2iA® ■ ■ ■ ©8,08^ ©85+i© • • • ©8r where, for

i>q, 2iA =8¿. Let WIí = 2í+2íA for i = \, • • ■ , r. We now verify that if x is

in £ and x= ^,- x¿, x, in 5D?¿, then x{A = — x¿; and, in fact, £ = £i©£2© • • •

ffi£r where £, = £P\9}?;. By Theorem 2.8, £,• is simple. Since [£¿£,] =0 if ir*j,

[£¿££] = [£í£í£i]C£f and £,■ is an ideal in £. It also follows immediately

that the only ideals in £ are sums of the components £,-. Since £j is an ideal

in £t-, the converse is established.

Corollary 2.10. // £ is semi-simple, £(1> =£.

Theorem 2.11. If X is semi-simple, every derivation is inner.

Proof. Let 8c/ = £© [££], and let D be a derivation in £. The mapping in

[££][xy].D= [(xD), y]+[x, (yD)] is single-valued since 2u=2s and there-

fore determines a derivation D in 2u extending D. Since 2u is semi-simple,

D is inner. Thus if we denote for a in 2u the derivation x—>[xa] by Ad a, then

for some a in 2u, D — Ad a. But since £(Ad a)ç^£, a must be in [££], which

is to say D is inner.

It follows from the argument above that any derivation of a semi-simple

L.t.s. has a unique extension to a derivation of its universal Lie algebra.

Next we discuss the universal Lie algebras of simple L.t.s.
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Theorem 2.12. Let 8 be a Lie algebra such that W^ =1; then as a L.t.s,

8 has a 1-to-l imbedding in the Lie algebra 90? = 8©8, 8 anti-isomorphic to 8.

Proof. Let x—>x be an anti-isomorphism of 8 onto 8- Consider the subset

of ffl given by SE= {x-f-x}, for x in 8, and the mapping x—»x+x of 8 onto SE.

This is a L.t.s. isomorphism and [SESE] Q {x — x}. But every element of 8 may

be written x = ^ [xix2]. In 90? we have x — x=[(xi + Xi)(x2-\-x2)], so that

[SESE] = {x-xJ, and SE© [SESE] = 2».
If 8 is a Lie algebra such that 8(1) =8, then every L.t.s. ideal of 8 is a Lie

algebra ¡deal(4), for [9388]Ç93 implies that [893] = [8893]ç; [9388]Ç93. In
particular, we shall have occasion to use the fact that a simple Lie algebra is a

simple L.t.s.

Return to the proof of Theorem 2.9 and notice that in order for 8t/ to be

universal for SE it is necessary and sufficient that each 9DÎ,- be universal for

each SE». Thus, if SE is simple, either (i) 8y is simple or (ii) 8t/ = 8i©8iyl, A an

automorphism of period 2 in 2u, and SE the skew-symmetric elements relative

to A. In case there is a L.t.s. isomorphism of a L.t.s. SE onto a Lie algebra 8, we

shall call SE the L.t.s. of the Lie algebra 8. By Theorem 2.12, if SE is the L.t.s. of

a simple Lie algebra, (ii) holds. If (ii) holds, and x = xi — x\A is in SE, x—>Xi is a

L.t.s. isomorphism of SE into 8i. But the set {xi} is a L.t.s. ideal in 8i, so that

the mapping x—»Xi is onto 8i. We have proved, then, the following result:

Theorem 2.13. // SE is a simple L.t.s. imbedded in its universal Lie algebra

2u, then either

(i) S£ is the L.t.s. of a (simple) Lie algebra, and 2u = 2i®2¡, where the 8i are

ideals isomorphic to the Lie algebra X or

(ii) SE is not the L.t.s. of a Lie algebra and 2v is simple.

Theorems 1.1, 2.8, and 2.13 prove that the following comprise all simple

L.t.s.:
(i) the L.t.s. of simple Lie algebras,

(ii)  the L.t.s. of elements skew-symmetric relative to automorphisms of

period 2 in simple Lie algebras.

This is the characterization which will be used to determine the simple L.t.s.

If 8 is a Lie algebra, any automorphism or anti-automorphism is a L.t.s.

automorphism of 8. If 8 is simple, the properties of the universal algebra given

in Theorem 2.13 can be used to get the converse. We omit the argument since

a proof of the more general statement which follows has already been given(5).

Theorem 2.14. Every L.t.s. homomorphism of a semi-simple Lie algebra

maps each simple component isomorphically, anti-isomorphically, or into 0.

Next we establish the general connection between the radical of a L.t.s.

and that of an enveloping Lie algebra.

(4) For this observation the author is indebted to the referee.

(5) Theorem 14_in [4].
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Lemma 2.15. If SE is a L.t.s., and 8 = SE + [SESE], then 9î(8)nSE = 9?(SE).

Proof. 5R(8)P\SE is an ideal solvable in SE, hence 9?(8)HSEÇ:9Î(SE). H U is
an ideal solvable in SE, U is solvable in U, so that, by Corollary 2.6, U+ [UU]

is a solvable subalgebra of 8. But since, as we remarked at the beginning

of this section, U+ [UU] is subinvariant in 8, and Schenkman [8] has shown

that every subinvariant subalgebra of 8 is in 3î(8), UCZ8?(8) and $tf(SE)Ç9î(8).

Theorem 2.16. If X is a L.t.s., and 8 = SE + [SESE], then 9í(8)=9í(SE)

+ [»(£), X].

Proof. By Lemma 2.15, 9î(8)29î(SE)+ [9Î(SE), SE]=$ft0. In8-9Î0 consider
the collection SE = (SE+9îo) — 9îo of cosets determined by elements of SE. SE is a

L.t.s., SE+ [SESE] =8 — 9î0, and Lemma 2.15 shows that under the natural map-

ping SE=SE —9Î(SE). Thus SE and hence also 8 — 9îo are semi-simple, and the

latter implies that 8t029î(8).

B. The Levi decomposition. In this section we shall deduce the analogue

for L.t.s. of Levi's theorem, which states that in any Lie algebra 8 (over a

field of characteristic 0) there is a subalgebra © each that 8 — 9Î(8)=©. In

the theory of Lie algebras this theorem is derived from a more abstract

formulation, the so-called second Whitehead lemma(6). Although we have,

been unable to prove a second Whitehead lemma for L.t.s., it is possible to use

the corresponding result for Lie algebras to get a Levi theorem. As for Lie

algebras there is a first Whitehead lemma for L.t.s., from which Theorems

2.17 and 2.18 can be derived. This is not done here since they also follow

easily from the connections between L.t.s. and Lie algebras.

A L.t.s. of linear transformations is a subspace © of the associative alge-

bra of linear transformations on a vector space, such that, if Si is in ©,

i=l, 2, 3, then [[5i52]53] = [Si^-S^] is also in ©.

Definition 2.3. A representation of a L.t.s. SE is a homomorphism of SE

into a L.t.s. of linear transformations. If SE+ [SESE] =8, the mapping x—->Ad x

acting in 8 is a representation of SE, an adjoint representation. In general, if

SDÎ is a Lie algebra containing a L.t.s. SE, x—>Ad x acting in 90Î is a representa-

tion of SE.

Theorem 2.17. Any representation of a semi-simple L.t.s. is completely

reducible.

Proof. Let SE be semi-simple and 5 be a representation of SE in the space

X. ©(SE) = {S(/)} is a semi-simple L.t.s. of linear transformations, so that

©(SE) + [©(SE), ©(SE)]=8is a semi-simple, hence completely reducible, Lie

algebra. Finally, XiQX is invariant with respect to ©(SE) if and only if

X12QX1.

Theorem 2.18. If X is a semi-simple subsystem of the L.t.s. U, then any

(6) A discussion of the first and second Whitehead lemmas can be found in [3].
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derivation of X into U can be extended to an inner derivation in U.

Proof. Suppose U already imbedded, by the standard imbedding, in a Lie

algebra ÜÜc. Let £+ [££] =8, and let D be a derivation of £ into U. First we

prove that D can be extended to a derivation D of 8 into ÜTJc. To accomplish

this define D on [££] by setting, for x,-, y,- in £,

E [*«*]£ = £ [(***%.] + £ [*(y*D)].
i i i

If Z? is single-valued, it is clearly a derivation. Suppose £¿ [x,;y¿]=0.

?,i [xiyit]D=0, so that

(2.1) £ [(xiD)^] + £ [*,(?*!>)<] = 0.
» i

We have to show y0= ^l[(xiD)yi]+ £i[x,-(y,-Z))] =0. Consider the represen-

tation /—>Ad t = S(t) acting in 90?. By the preceding theorem this representa-

tion is completely reducible. Suppose, for some element y in 5D? of the form

y = Z¿ ZiS(ti), we have yS(t) =0 for all tint. 9tt = (y) ©9? where 9W5(i) Ç9Î
for all í in £. Therefore, y is in 9Í, and y = 0. Taking y =yo and applying (2.1)

proves that Z) is uniquely defined. Since 8 is semi-simple, D can be extended

to an inner derivation D0 in 9J?(7). Suppose Z>0 = Ad (w+a) for u in U and a

in [Uli], and let £>i=Ad a. Since £D = £D0ÇU, tDa = tD1 for each í in £, and

Di is an inner derivation in U.

For the remainder of this section we suppose, unless otherwise indicated,

that

(i) U is a L.t.s. imbedded by the standard imbedding in a Lie algebra W,

(ii) 9Î is the radical of 9JÎ, 9î(U) the radical of U,

(iii) 8KU)<» = [U, SR(U), SR(U)]=0,
(iv) 8 = SW-«, £ = (U+5R)-9î,
(v) Z = X!©X2, where Xx = 9i(U) and X2= [U, 9l(U)]. By (i), (iii), and

Theorem 2.16, [9x9î]=0. By Lemma 2.15, under the natural mapping,

£^U-9f(U). Thus £ is semi-simple, so is 8, and £+ [££] =8.

Now let 33 be a subspace of U complementary to 3i(U). Let u{t) be any

element of U such that the coset ü(t) determined by u{t) in L is t. If u(t)

= r(t)-\-v(t) corresponds to the above decomposition of U, v(t) =t, and v(t) is

uniquely determined by t. In fact v(t) is a 1-to-l linear transformation of

£ onto 33. [f(*i), v(t2), v(h)]= [ht2h]=v([hhh]) so that

(2.2) [v(h), v(t2), v(h)] - v([ht2t3]) = r(ht2t3)

is in 8t, therefore in 9î(U). Besides this trilinear function on £x£X£ to

9Î(U), we introduce for each t in £ the linear transformation in X = 9î defined

by xS(t) = [x, v(t)]. Observe that t—>S(t) is a representation of £ in X inde-

pendent of 33, for if 33o replaces 33, then t = v0(t) =i(t) and vo(t)—v(t) is in

(7) This is a consequence of the first Whitehead lemma for Lie algebras.
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3?(U). Thus [x, v0(t)]= [x, v(t)] since [9?9î]=0. That S is a representation

follows from (2.2). In addition we have

(2.3) XiSit) G X2,    and    X2S{t) Ç X^ for all t in SE.

Lemma 2.19. A necessary and sufficient condition that there exist a semi-

simple subsystem 93o of U such that U = 3i(U) © 93o « that there exist a linear trans-

formation f of X into Xi such that

r{ht2t3) = f([ht2t3]) - f(h)S(t2)S(l3) + /(/,)5(/i)5(i,) +f(h)[S(t1),S(t2)].

Proof. LetU = 3î(U)©93=3t(tl)©93o. Let /(/) =v0(t) -v(t). Since v0(t) = v(t)

= /, f(t) takes SE into 9?(U) =X¡. 93o is a subsystem if and only if the function

roihhh) associated with 93o is identically 0.

[vo(h), Vo(h), Vo(t»)] = Vo([hhh]) + r0(ht2t3).

[v(h) + f{h), v(h) + f(h), v(h) + f(ts)] = v([ht2h\) + f([ht2h]) + roihhh).

ro{hhh) = r(hhh) - f([hhh]) - [/(/,), vfa), v(t2)]

+ [f(h), v(t2), v(h)] - [f(t2), v(h), v(t3)]

+ [f(h),v(h),v(h)]

= r(ht2t3) - f([ht2h]) - f(h)S(h)S(k)

+ f(h)S(t2)S(h) - f(t2)S(h)S(h) + f(h)S(t2)S(h).

Theorem 2.20. If U is a L.t.s. such that 3Î(U)(1)=0, then there is a semi-

simple subsystem 93o of 11 such that U = 9t(U)ffi93o.

Proof. By Lemma 2.19 it is sufficient to produce a function/ satisfying

the relation stated in that lemma. Let 9? be a subspace complementary to 3Î

in 90?. Since if U = 3Î(U)©93, 9?n9? = 0, we may suppose that 93ÇZ9?. Again

we may consider the unique element nil) in 9? such that ñ(l) (in 93? — 9?) is /.

The condition that 93Ç9? is equivalent to the statement that if t is in SE,

n(t) =v{t). x—>[x, n(l) ] is therefore the extension of the representation of (2.2)

to 8 and will also be denoted by S. The second Whitehead lemma for Lie

algebras then asserts that if q(hl2) = [«(/i), n(k)]— n([lj2]), there is a linear

transformation g of 8 into X satisfying q(hl2) =g([hl2]) — g(h)S(l2) + g(l2)S(h).

Next we observe the following relation between the functions r and q.

[v(h), v(t2), »(*,)] - [n([ht2]), »(/,)] + [n([ht2]), v(h)] - v([ht2t3])

= r(ht2h) = q([ht2], h) + q(ht2)S(t3).

In terms of g we now have

r(ht2t3) = g([ht2t3]) - g([ht2])S(t3) + g(t3)[S(h),S(t2)]

+ g([hh])S(t3) - g(h)S(t2)S(t3) + g(h)S(h)S(k)

= g([ht2h]) - g(h)S(t2)S(t3) + g(t2)S(h)S(t3) + g(h)[S(h), S(h)].
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Decompose g(t) by setting g{t) =f(t)-\-h(t), where/(/) is in Xi and h{t) is in

X2. f is a linear transformation of £ into X\, and

r(hhh) = f([hkk]) - f(h)S(t2)S(t3) + f(t2)S(h)S(ts) + /(<,)[S(h), S(h)]

+ h{[hhh]) - h(h)S(h)S(t3) + h(t2)S(h)S(t3)

+   Ä(/3)[S(0,S(/2)].

But since r(tit2t3) and f(ti)S(t2)S(t3) are in Xi, while a(¿i)5(/2)5(/3) is in X2 by

(2.3), the sum of the last four terms in the expression above is 0, and the

function / satisfies the condition of Lemma 2.19.

Theorem 2.21. IfU is any L.t.s., then there is a semi-simple subsystem 33o

suchthat Vi = 9Î(U)©330.

Proof. Let U = U — 9i(1)- We reduce the proof of this theorem to the case

for which it is known from Theorem 2.20. Our result holds whenever the

dimension of 11 is 1. We may suppose therefore that a decomposition is

possible for all L.t.s. of lower dimension than U. We may also suppose that

SK^VO so that dim U<dim 11. Let $o_be theradical of ji If ^ (U)is the set of

elements of U determined by 9î(tl), 9î(U)Ç9î0, and if 9^=0, ^C^cuc^

so that 9îo is solvable and 9îo = 3î(U). By the induction hypothesis, for some

semi-simple subsystem 330 of Ü, ÏÏ=5R(U) ©JBo- But 33o has the form 33o = 330
— 3i(1) for some subsystem 33o29î(1>. Since 33o is semi-simple, 9î(1) is theradical

of 33o- Since 330 5^11, we may again assume 33o = 9í(1) ©33 for some semi-simple

subsystem 33 of 33o- Because 33Pi9î(U)=0, U = 9Î + 330 = 9Î©33.

III. Completely reducible Lie triple systems

Relations between the structure of a Lie algebra of linear transforma-

tions and its complete reducibility are given in the following theorems, all of

which may be found in Jacobson [5]:

Theorem A. A Lie algebra 2 of linear transformations is completely reducible

if and only if 8 = 8(1)©Ë(8) where 8(1) is semi-simple and the elements of the

center (5(8) have simple elementary divisors.

Theorem B. If 2 is a completely reducible Lie algebra, then any nilpotent

element d of 2 is contained in a 3-dimensional simple subalgebra \d, e, f\ of 2,

where [de] =/, [df]=d, [ef]=—e.

Theorem C. If 2 is a Lie algebra such that every nilpotent element d is con-

tained in a 3-dimensional simple subalgebra, and (5(8) is splittable(s), then 2 is

completely reducible.

(8) Any linear transformation has a unique decomposition as the sum of two commuting

transformations, one of which is nilpotent, and one of which has simple elementary divisors.

If, for each element in an algebra, these components also belong to the algebra, the algebra is

spliUable,
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Theorem D. // 8 is a completely reducible Lie algebra, and ÜD? a completely

reducible subalgebra, then the centralizer(9) of 3JÎ in 2 is completely reducible.

Using these results we can establish analogues for L.t.s.

Definition 3.1. The center S(£) of a L.t.s. £ is the set of elements c in £

such that [c££]=0. (£(£) is an ideal in £ and 6(£)Ç9Î(£).

Theorem 3.1. A L.t.s. of linear transformations £ is completely reducible if

and only ifX = £(1) ©(£(£), the elements of £(£) have simple elementary divisors,

and £(1) is semi-simple.

Proof. Let 8 = £+[££]. Suppose £ is completely reducible. Then by

Theorem A, 8=8(1)©S(8), and by Theorem 2.16, S(8) =$(8) =9î(£)
+ [9Î(£), £]. Thus 9t(£)Ç6(8), and [91(30, S]=0, so that 81(3:) =6(8)
= S(£). By Theorem 2.21, £ = £(1)©6(£) and £(1) must be semi-simple. Now

let £ = £(1)ffi£(£), £(1) be semi-simple, and the elements of S(£) have simple

elementary divisors. The last assertion implies that the adjoint mappings de-

termined by elements of E(£) acting in the full algebra of linear transforma-

tions in £ have simple elementary divisors. [6(£), £(1)]Ç [[(£(£), ££]£] =0

so that 9Î(8) =(£(£) +[(£(£), £(£)]. Since [<£(£), S(£), S(£)]=0, if S is in
g(£), Ad C restricted to 9Î(8) satisfies (Ad C)2 = 0. By the remark above,

Ad C=0and [6(£), S(£)] = 0. It is immediate that S(£) =S(8) and 8 = £(1)
+ [£C1)£(1)]©6(£) where 8(1) =£(1)+[£(1)£(1)] is semi-simple. Theorem A

shows 8 is completely reducible, therefore T is also. Notice that the condition

£ = £<»©(£(£), £<» semi-simple, is equivalent to 9î(£) =(£(£) and to the

statement £(1) is semi-simple.

Corollary 3.2. If 8 = £+[££] is completely reducible, then 8 = (£(1)
+ [£(1)£(1'])©6(£), S(£)=g(8), 8<l> = £(1) + [£(1)£(1>].

Also of use will be the following decomposition of a completely reducible

L.t.s. obtained by decomposing £(1) according to Theorem 2.9: £ = £o©7"i

©£(£), where £o and £i are semi-simple ideals, Xa(~^ [£o£o] =0, and £i is a

Lie algebra.

In what follows, by {d, e\ we shall mean the 2-dimensional, simple L.t.s.

with basis elements d and e and the multiplication table [dee] =e, [edd] =d.

Theorem 3.3. Let X be a L.t.s. such that every nilpotent element d is con-

tained in a 2-dimensional simple subsystem and such that E(£) is splittable, then

X is completely reducible.

Proof. In a Lie algebra 8 of matrices, [8, 9Î(8) ] is contained in the radical

of the enveloping associative algebra(10). Thus, if £+ [££] =8, [9?(£), XX]

^[^(8), 8], and every element d^O in [$(£), ££] is nilpotent. If {d, e]

= 33, 33CZJt(£), and 33 is solvable in itself, which is impossible since 93 is

(') Those elements of 8 commuting with each element of W.

C1») Theorem 2 in [5].
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simple. We have, then, [Üí(£), 33] =0, or 9î(£) =6(3). For the same reason

6(3) contains no nonzero nilpotent elements. Since 6(£) is splittable, the ele-

ments of 6(£) have simple elementary divisors. By Theorem 3.1, £ is com-

pletely reducible.

Theorem 3.4. If X is a completely reducible L.t.s., then any nilpotent ele-

ment d is contained in a 2-dimensional simple subsystem \d, e\.

Proof. Let 8 = £+[££], and, using Corollary 3.2, set 8 = 8i©8o, 8i = £i,

8o = £o©6(£)©[£o£o]. The result has been proved(11) in case 8i = 0; i.e.,

£n[££]=0. In particular the assertion holds in £0. Theorem B shows the

theorem is valid in £1. Let d in £ be nilpotent and d = d0-\-di, di in 8». If a and

b are linear transformations satisfying [a&]=a, then a is nilpotent. Let

\d, g, h) be a 3-dimensional simple subalgebra of 8. [dh] =d= [d\h]-\- [doh]

so that [dih]=di, [d0h] =d0. ¿1 and do are therefore nilpotent, and d0 is in

£0. Let {dlt ei} and {¿0, e0} be 2-dimensional simple subsystems of £1 and

£0 respectively. If e = e1+e0, then e is in £ and [dee] = [do+di. eo+d, «o+«i]

= [¿0eoßo]+ [diCid] =ea-\-ex = e. Also [edd]=d.

Definition 3.2. If U is a subset of a L.t.s. £, the centralizer 33 of U in £

is the set of elements v of £ such that [z>U£]=0.

Theorem 3.5. If U is a completely reducible subsystem of a completely re-

ducible L.t.s. X, then the centralizer 33 of U in X is completely reducible.

Proof. Let £+[££] =8 and U+ [UU] = 3H. 822«, and both 8 and 9JÎ are
completely reducible Lie algebras. Corollary 3.2 shows that [U33] =0. Clearly

93+[3333] is contained in the centralizer 9i of 9JÎ in 8, which is completely

reducible by Theorem D. As in Corollary 3.2, write 8 = 8o©8i©6(£), where

8o = £offi [£o£o], and 81 = £1. Corresponding to this decomposition repre-

sent an element v in 33 by v = Vo-{-Vi-\-vc. If iî = w0+Mi+«c, [î>m]=[î>o«o]

+ [viUi] =0, and [v0u0] = [viUi] =0 so that [v0U] = [^lll] =0, proving that the

components of v are again in 33. For n in 9? let «=«0+«i+«c+w' where n'

is in [£o£o]. By the argument above «0, «i, and nc are in 33. Thus [nv]

= [«0^0]+ [»i»i]+ [n'v0] is in 33+[9333] since [n'v0] is in 33. Now

[9c, (93 + [9333])] £ 33 + [9393] + [[9393]9c]

£ 93 + [3333] + [[9Î33]93] £ 93 + [9393].

As an ideal of a completely reducible Lie algebra, 93 + [3333 ] is again completely

reducible, for the ideals of such an algebra are sums of the simple ideals of

9Î(1) and arbitrary subspaces of 6(9c) and therefore satisfy Theorem A.

IV. Simple Lie triple systems

Theorem 2.9 reduces the study of the structure of semi-simple L.t.s. and

(") Lemma 4 in [5].
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the determination of semi-simple L.t.s. to an investigation of simple L.t.s.

A. Derivations of simple Lie triple systems. Again, since every derivation

of a semi-simple L.t.s. is inner, Theorem 2.9 reduces the study of derivations

to simple systems. If SE is simple, then in any imbedding [SESE]=SD(SE), the

derivation Lie algebra of SE. We now determine the structure of SD(SE) and

the way in which these transformations act in SE.

To begin, we observe that Jacobson's proof in [5] of the complete re-

ducibility of the derivation algebra of a semi-simple Jordan algebra is readily

translated into a proof of the following theorem:

Theorem 4.1. A simple L.t.s. X is completely reducible with respect to SD(SE).

Theorem A, section III now enables us to assert:

Corollary 4.2. If X is simple, [XX] is the direct sum of its center and a

semi-simple ideal.

Lemma 4.3. Let X be a simple L.t.s. Either X is irreducible with respect to

SD(SE), or SE=Ui©U2, U¿ irreducible and [U,U<] =0.

Proof. Suppose SE is not irreducible and Ui is a proper subspace such that

Ui1)(SE)CUi. If we suppose SE imbedded in a Lie algebra 8, then subspaces

11 of SE invariant with respect to SD(SE) are characterized by [SESEU]ÇU.

(a) [UilbJ is an ideal in [SESE], for [[SESE], [UxUi]]ç: [[SESEUi]Ui]Ç [UilbJ.
(b) If 9J? is an ideal in [SESE], then [90?S£] is an invariant subspace of SE,

for [SESE[90ÎSE]]ç[[£ESE9J?]î] + [[SESESE]90?]ç:[90?SE] + [90?SE].
(c) If U2 is an invariant subspace such that SE=UiffiU2, then [U1U1U2] =0.

On the one hand [UiUill2]Ç [SESEU2]ÇU2, while on the other, [UiUOk]

ÇtlUULjçll!.
(d) [U1U1U1]  is an ideal in  SE.  We see this by getting

[[UiUiUjSESE] £ [[UJli], [U!SE]SE] + [[U.UtSEjUiSE]       (by (1.2))

Ç [U1U1SE] + [U1U1SE] (by (a))

Ç [UiUtU,] (by (c)).

(e) [UiUi]=0 since 8 is a standard enveloping algebra and [U1U1SE]
= [UiUiUi]=0.

(f) Ui is irreducible. Suppose SE = 93i©932© • • • ©93r, each 93,- is ir-

reducible, and r>2. [93i©93¿, 93i©93¿] =0= [93i93,] by (e). But this means

that [931SE]=0= [93iSESE], which is impossible. We conclude then that r^2,

and that Ui and U2 are irreducible.

Lemma 4.4. If X is not irreducible with respect to SD(SE), the center §( [SESE])

5^0, and SE = UiffiU2, U< irreducible isomorphic zero subsystems of X.

Proof. From Lemma 4.3 we know that SE = Ui©U2 where each U< is an ir-

reducible zero subsystem of SE. Let D be the linear transformation in 8 defined
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by uiD = ui for ui in lli, u2D= —u2 for u2 in U2, and [XX]D = 0. Since [uiU2]D

= 0= [wiW2] — [uiu2], it can be verified that D is a derivation in 8. Since XD

££, D = Ad c for some ein [££], and from the definition of D, c is in 6( [££]).

Because Ad c is in [Ad £, Ad £], it is a sum of commutators and tr (Ad c) =0.

Since Ad c is the zero transformation in [33], the same must be true of the

restriction of Ad c to 3. An immediate consequence is that dim Ui = dim U2,

which is another way of saying Ui^U2.

Theorem 4.5. If X is a simple L.t.s. over an algebraically closed field, then

either

(i) 3 is irreducible with respect to X) (3) and X) (3) is semi-simple, or

(ii) 3 is the direct sum of two irreducible, isomorphic, zero subsystems, and

the center of 3) (3) is 1-dimensional.

Proof. If 3 is not irreducible, then, by Lemma 4.4, 6( [33]) ^0. If 6( [££])

5^0, then £ cannot be irreducible, for, as is well known, in an algebraically

closed field the only transformations commuting with an irreducible Lie alge-

bra of linear transformations are the scalar multiples of the identity, and

since every element of Ad 6([££]) is a sum of commutators, it has trace 0

and cannot be the identity. It remains to prove, then, that if 6([3£])?¿0,

it is 1-dimensional.

In case 6([££])^0, £ = Ui©U2, U< irreducible. If c^O is in 6([££]),

because the base field is algebraically closed, Hi and tt2 can be decomposed rel-

ative to Ad 6([££]) into direct sums of 1-dimensional invariant subspaces

(Theorem D, section III). Let Mi in Ui and u2 in U2 be elements chosen from

such a basis. [[mi«2]c]= [[«ic]m2] + [w^i^c] ]=o:i[miM2] + !a2[wiw2]=0. Thus

ai=— a2, and there is a scalar a5¿0 such that [x!c]=axi for all Xi in Hi,

and [x2c] = — ax2 for all x2 in U2. It is immediate from this that any element

of 6( [££]) is a scalar multiple of any other.

B. The determination of simple Lie triple systems. Section IIA provides

the basis for the determination of all simple L.t.s. by reducing the problem to

the study of automorphisms of period 2 in simple Lie algebras. In this section

we shall carry out this project in detail for the case of an algebraically closed

base field, a property we assume henceforth. The results given below on the

automorphisms of the infinite classes of simple Lie algebras can be found in

Jacobson [6]. The exceptional algebras will be treated separately later.

These infinite classes are as follows:

Class A: The algebras 2t„ of w + 1 by re + 1 matrices of trace zero.

Class B: The algebras 93n of 2w + l by 2m+ 1 skew-symmetric matrices.

Class C : The algebras 6„ of 2n by 2« matrices skew-symmetric relative to

the involution A-*Q-1A'Q where
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Class D: The algebras SD„, n>2, of 2« by 2n skew-symmetric matrices.

Let $„ be the full n by n matrix algebra. The involution used in defining

class C will be denoted by X—>X, and will be called the symplectic involution

in <!>„. We have associated with each simple L.t.s. a unique simple Lie algebra.

We shall say that the L.t.s. belongs to the Lie algebra and denote the class of

L.t.s. belonging to the Lie algebras in class A by class A, and so on. If class

0 denotes the L.t.s. isomorphic to simple Lie algebras, we may consider this

class completely determined and will not discuss it further. Every L.t.s. in

one of the infinite classes is then determined by an automorphism in a

simple Lie algebra of the corresponding class. Clearly two distinct auto-

morphisms of a Lie algebra may determine isomorphic L.t.s.

Definition 4.1. Automorphisms G and II of a Lie algebra 8 will be called

similar if there is an automorphism K of 8 such that G = K~1HK.

It is an easy matter to observe that automorphisms determine isomorphic

L.t.s. if and only if they are similar. We are thus required to determine the

similarity classes among the automorphisms of period 2 in the simple Lie

algebras. In the sequel superscript capitals denote automorphisms, capital

letters denote matrices or linear transformations, while small letters are ele-

ments of the base vector space. The automorphisms of the algebras in the

infinite classes may be given as follows:

.   Class A: (i) AG = G~1AG;
(ii) Aa=-H~1A'H.

Class B: D: AG = G~1AG, where GG'=yI^0, y in 3>. (SD4 has additional

automorphisms and will be discussed with the exceptional algebras.)

Class C:A° = G-1AG, where GQ~1G'Q = yI^0.
Thus, associated with each automorphism are matrices which determine

it. These will often be denoted by the same letter.

Lemma 4.6. Automorphisms G and H are similar if and only if there is a

matrix J and a scalar p such that for matrices determining G and H we have :

Class A: (i) G=pJ-1HJ or G=PJ-1(H')~1J;

(ii) G=pJ'(H')-1J or G=pJ'HJ.
Class B: D: G=pJ~lHJ, where JJ'=yI¿¿0.

Class C: G=pJ~1HJ, where JQ~1J'Q=yI^0.

Proof. Class A(i); suppose for the automorphisms G and H we have

G = J~lHJ where / is also of type (i). G-^AG = J~1H~lJAJ-lHJ and

A (J-1HJ)G-1 = (J~1HJ)G~1A for each n by n matrix of trace 0. This implies

that J~1HJG~1 = p~1I, and the converse is obtained by reversing the argu-

ment. Suppose now we have for the automorphisms G and II, G = J~lHJ

where J is of type (ii). G~lAG= -{H-l{J-1)'A'J-^H)J = J-'H'JAJ-^H')-^

so that again we get G =pJ~1(H')~1J.

Class A(ii); suppose the automorphism of similarity J is of type (i).

-G^A'G^ -J^H-^J'^A'J'IIJ for every n by n matrix A of 'race 0.
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As before this is equivalent to G=pI'HJ. If J is also of type (ii), we obtain

- G-1 A'G = I-UI'(I-1)'A'I'(H-1)'I so that G = pi'(H')~lJ. The calculations

for classes B, C, and D are similar to those in the first part of class A(i).

Lemma 4.7. An automorphism G is of period 2 if and only if G is determined

by a matrix G such that in:

Class A(i) G2 = I, (ii) G = G' orG=-G',

Class B G2 = I and G=G',

Class CG! = 7 and G = G or G2= —I and G= —G,

Class D G2 = I and G = G' or G2— —I and G = —G'.

Proof. If the matrix G\ determines the automorphism G of type (i) in

class A, G\ commutes with all n by n matrices of trace 0, hence G^—pI. If

G2=p~ll2Gi, G2 also determines G and G\ = I. If G\ determines an auto-

morphism of period 2 of type (ii), G\{G'^)~l=yI, or G\=yG[. But then

G[=yd, Gi=y2Gu y2 = l, and y= ±1.

If G is an automorphism in a Lie algebra of class B, applying the same

procedure as above, we select a matrix G determining G such that G2=yl,

GG' = I. Then yG'= G, G'=yG, and ?=±1. If G2 = I, G'=G, and when G2
= — I, G'= —G, which is impossible when the number of rows is odd as in

this case. The same method yields the results for class D and when applied

to G instead of G' includes class C. In what follows Pn,r is the diagonal n by n

matrix:

F4f4-1-L 0 | -/,_, J

Theorem 4.8. Every L.t.s. of class A is isomorphic to one of the following:

(i) the matrices of trace 0 skew-symmetric relative to the automorphism

A i'»,'= P~ÏAP

(ii) the symmetric matrices of trace 0,

(iii) the symplectic symmetric matrices of trace 0 (n even).

Proof, (i) First we prove that every automorphism of period 2 of type (i)

is similar to an automorphism determined by a matrix Pn,r- By Lemma 4.6

any matrix "similar" in the usual sense to one determining such an auto-

morphism G determines a similar automorphism. Let R be the underlying

«-dimensional vector space, and let Go be a linear transformation in R with

matrix G, G2 = I. Any matrix for Go obtained by a change of basis in R will

therefore determine an automorphism similar to the one determined by G.

G20 = I, (/ = Go)(/+Go)=0. Let £0 = l/2(7-G0) and E* = l/2(/+G0). These

transformations form a complete set of orthogonal projections, so that

R = RE0®RE*. xGo = x for x in RE0, and xG0= — x for x in RE*. Relative to

any basis eit • • ■ , en where e\, ■ ■ • , e, are in RE0 and er+i, ■ ■ ■ , e„ are in

RE*, Go will have a matrix of the form P„,r.
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(ii) Consider now an automorphism in 2ln_i determined in type (ii) by

a matrix for which G' = G. Lemma 4.6 shows that any cogredient matrix will

determine a similar automorphism. It is well known that any nonsingular

symmetric matrix is cogredient to the identity matrix, which determines the

automorphism A-^ — A'.

(iii) Suppose for an automorphism of type (ii) we have a matrix for

which G''= —G. This implies that R is even-dimensional. Thinking of G as

the matrix of an alternate nondegenerate bilinear form over R, and recalling

the fact that any such matrix is cogredient to the matrix Q, we conclude

that the automorphism determined by G is similar to the one determined

by Q, which is A« = -QrxA'Q= -A.
In the proof of the next two theorems we make further use of the ter-

minology and properties of bilinear forms.

Theorem 4.9. Every L.t.s. of classes B and D is isomorphic to one of the

following :
(i) the L.t.s. of skew-symmetric matrices which are, in addition, skew-sym-

metric relative to an automorphism Pn,r,

(ii) the L.t.s. of skew-symmetric matrices which are, in addition, symplectic

symmetric (Class D only).

Proof, (i) Let (x, y) be a symmetric, nondegenerate bilinear form over R.

Let G be a matrix determining an automorphism of a Lie algebra of class B

or D. Let G2 = I, and suppose, using Lemma 4.7, that G = G'. To establish

(i) it is sufficient to prove that if G is the matrix of a linear transformation

Go relative to a Cartesian basis for R, then there is a Cartesian basis for R

made up of bases for REa and RE%. The change of basis matrix J will then be

orthogonal, and by Lemma 4.6 some P„,r matrix will determine an auto-

morphism similar to the given one.

Now assume that Go is a linear transformation which has matrix G rela-

tive to a basis/i, • • • ,/„, Cartesian for (x, y). RE0 is nonisotropic (i.e., (x, y)

restricted to RE0 is nondegenerate), for if (x(I — G0), yo(I—G0)) =0 for some

y0 and all x in R, since G0 is orthogonal, (x, y0(I—Go)) =0 for all x in R. Thus

yo(I—Go)=0, and yo is in RE*. It is clear now that if Sx is the orthogonal

complement of a subspace 5 in R, we have (RE0)1=RE*. Since any non-

isotropic subspace has a Cartesian basis, we select such a basis e\, • ■ ■ , er

for RE0 and another er+i, • ■ ■ , e„ for RE*. The remark above on orthogonal

complements proves that d, • • • , en is a Cartesian basis for R.

(ii) If the dimension n of R is even, there are automorphisms of period 2

having matrices for which G' = —G. Assume again that G0 is a transforma-

tion having G as a matrix relative to some Cartesian basis. Again it is suffi-

cient to prove that there is a Cartesian basis for R with respect to which G0

has Q as a matrix. First choose a vector e{ for which (el ,el) = \. Let e{ = el Go-

(el ,el) = (el G„, el G0) = (el, el ) = 1 and (el, el ) = (el, el G0) = - (el G0, el )
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= -{e{, e/Go)=0. Let 51 = (e1')ffi(e2'). If (aie{ +a2e2', 50=0, («W

+a2e2, e{)=0 and «1 = 0; also (aie/ +a2e2, e2) =0 and a2 = 0. 5i is there-

fore nonisotropic, i? = 5i©5^, and this implies Sf is also nonisotropic. Work-

ing in Si, we may continue this procedure until a basis e[ , ■ ■ ■ , el is chosen.

This basis is Cartesian and the form Q for the matrix of Go is achieved if

we make the further orthogonal change of basis:

ei = ei, e„+i = e2, e2 = e3, ev+2 = e4, etc., where v = n/2.

In the next theorem Pn,„/2,r stands for the « by « matrix

It

0

0

— I(n/2)-r

0
Ir

0 ~I<n. /2)-r      _1

Theorem 4.10. Every L.t.s. of class C is isomorphic to one of the following:

(i) the L.t.s. of symplectic skew-symmetric matrices which are, in addition,

skew-symmetric relative to an automorphism Pn.n/2,r,

(ii) the L.t.s. of symplectic skew-symmetric matrices which are, in addition,

symmetric.

Proof. Let (x, y) be an alternate nondegenerate bilinear form over R, and

let G, a matrix determining an automorphism of period 2 in 6„/2, be the matrix

of a transformation Go relative to a symplectic basis for R. The theorem will

be proved if it can be shown that when (i) G = G, there is a symplectic basis

with respect to which G0 has matrix ?,,„/2,ri and that when (ii) G= —G, a

symplectic basis exists relative to which G0 has matrix Q. This final condition

on symplectic skew-symmetric matrices holds if and only if they are sym-

metric.

(i) G — G. Since we may assume G2 = I, the calculation of Theorem 4.8

applies and gives {REa)L=RE*, and a similar argument establishes, in this

instance, a symplectic basis e{, ■ ■ ■ , e/ for RE0 and another e,'+1, • • • , el

for RE0*. s must therefore be even. Let r = s/2 and v = n/2. To form a sym-

plectic basis for R take e,=e/, i= 1, • • ■ , r, ev+i = e'T+i, i = \, ■ ■ • , r, er+i

~ es+i>   * — 11 , w    r,  e„-|_r_|-¿ — ev+r+i , i=l, v — r. «i, , e„ is sym-

plectic and Go has a matrix P„,„/2,r relative to it.

(ii) G= —G. In this case there is a vector e{ such that [e{, e{G0) ^0, so

that an e\ can be selected for which {e,\, eiGo) = 1. Let ev+\ = eiGo. ev+iGt> = — eit

and («i, e„+i) = l. 5i = (ei) ©(e„+i) is nonisotropic, 5iffi5¿- = .R, 5j"- is noniso-

tropic, and Si contains a vector e2 for which (e2, e2G0) ¿¿0. Again we may as-

sume (e2, e2Go) = l and set ev+2 = e2G0. Continuing, we obtain the required

symplectic basis e\, ■ • • , en.

Using the representations provided by Theorems 4.8, 4.9, and 4.10, the
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form of the matrices representing each simple L.t.s. SE belonging to one of

the infinite classes can be described. From these [SESE] can be determined

and from this the structure of SD(SE) deduced. We confine ourselves to the list

below of the structures of the algebras SD(SE). Cn,r stands for the «by» matrix

[AI-?-"I
L 0 | -r/(n - r)In-r J

M

r/(n — r)l

Lie algebra L.t.s. Derivation algebra

(i) Xi, i=0, ■••,»-!,        3)(SEí)^2I<©2í„_i_1©(Cn+1,,-+1)
(ii) U SD(U)£ëSD(„+i)/2 (n odd)

SD(U)^93„/2       (n even)

[(iii) 93 ®(93)^e(n+i)/2 (n odd)

Sn

(i) Xi, i = \, ■ ■ ■ , n-i, SD(SE,-)^93t-©S)„-
(i) St,-, * = 1, • ■ ■ , »-1, SDiJE^S.©^-,-
(ii) U 3)(U)^2fn-i©((2)
(i)    Xi, *-i, • • • , n-i, 3) (£<)=©< ©$«-<

SD„ ̂(ii)   Ui, »-1, • • "• ,»-1, 3)010^»íeS^-i-í
(iii) 93 2)(93)^2I„_i©(0

In order to determine the simple L.t.s. which belong to the exceptional

Lie algebras @2, $4, @6, S7, ®g, which, together with the infinite classes, exhaust

simple Lie algebras (over an algebraically closed field of characteristic 0),

it will be necessary to employ the structure theory for semi-simple Lie alge-

bras developed by Cartan, Weyl, and others. We therefore summarize briefly

some of these results.

Let 8 be a semi-simple Lie algebra and x an element of 8. R" is the set of

elements y of 8 such that, for some n, (ai —Ad x)n annihilates y. An element

x is regular if dim R° = min {dim i?J|, y in 8. A Cartan subalgebra § of 8 is

a maximal commutative subalgebra containing a regular element. If x is

regular, i?° is a Cartan subalgebra. Relative to Ad §, 8 is completely re-

ducible, and the matrices of Ad § may be simultaneously diagonalized rela-

tive to a "canonical" basis hi, • ■ • , hr, e\, ■ ■ ■ , e„ where hi, • - •, h, is a

basis for ¿p. This gives [eih] =a(A)e¿ for some linear function a defined on ^.

It turns out that i?¡¡ is 1-dimensional so that we may indicate these functions

by writing ea, ■ ■ ■ , e„ instead of «1, • • • , ea. The functions a are the roots

of ^, and the ea are root vectors. If a is a root so is — a, but no other nonzero

rational multiple of a is. Among the roots there are precisely r linearly inde-

pendent. If cc+ ß is a root not zero, [eaeß] =Naßea+ß and [e„e-a] =ha is in £>,

while [eaeß] =0 if a+ß is not a root. Further, the Na,ß may be taken to be

rational, and each ha a rational combination of the hi. The mapping a—±ha is

1-to-l and linear so that we may consider the roots imbedded in §. In par-

ticular the "roots" ha span §. It is possible to order the roots linearly and

among the positive roots call those which are not sums of other positive
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roots, simple. The set it of simple roots (also a fundamental root basis) is

linearly independent, and any root may be obtained from x by the operations

of addition (within the set of roots) and multiplication by —1. Any positive

root 4> then has the unique expression <j> = ^piCti, a; in ir, where pi is a non-

negative integer. It follows from this that the set [ea\, a or —a a simple root,

generate 8.

In case $ is the field of complex numbers, Gantmacher [2] has determined

the form of the automorphisms with simple elementary divisors in any simple

Lie algebra. His results lead to the determination of all complex simple

L.t.s., and this information, we shall show, is enough to do the same for any

algebraically closed field. As applied to our situation, Gantmacher's results

establish the facts given in the next three theorems.

Let A be an automorphism with simple elementary divisors in a complex

simple Lie algebra 8. For some Cartan subalgebra § of 8, &A =§. A is inner

if, for some §, hA=h for all h in !q. A is outer otherwise. Automorphisms A

and B with simple elementary divisors are inner similar if for some inner

automorphism C, A = C~lBC. Now fix a Cartan subalgebra § and a canonical

basis.

Theorem G. Any automorphism A of period 2 in 8 is inner similar to an

automorphism A o such that ¡qA 0 = ^>. A o can be chosen so that h A ü — h for all h

in § */ and only if A is inner.

Let 5 be the class of automorphisms of period 2 in 8. If 7\- is a linear trans-

formation in §, let Si be the elements of 5 which are inner similar to an auto-

morphism inducing in § the transformation 7\.

Theorem H. There exist liner transformations To, 7\, • • • , T» of $ such

that S — So^JSiU ■ ■ ■ yJSk and 5,P\5y = 0 if i^j. {Tí} can be chosen so that

To is the identity and hence, by Theorem G, 5o is the set of inner automorphisms

of period 2.

Any automorphism A such that IqA =§ sends roots into roots; that is,

haA=ha* for some root a*. These images determine completely a linear

transformation in §. The next assertion is then immediate from Theorem H.

Theorem I. (i) For A in So, A isinnear similar to an automorphism A o such

that h A o — hfor all h in § and eaA 0 = ±ea.

(ii) For A in 5,-, î^O, A is inner similar to an automorphism Ao such that

hA0 = hTi and eaA0= +ea* if haTi = ha*.

The only simple exceptional Lie algebra with outer automorphisms is 6e,

and 5 = 50W5i at most, except for 3)4, in which case 5 = 5oU5iW52U53.

Using Theorem I we can give an explicit method for determining a kind of

canonical basis for every L.t.s. determined by an inner automorphism of

period 2.
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As before fix a Cartan subalgebra £> and a canonical basis of a complex

simple Lie algebra 8. Let 7r= [cti, ■ ■ ■ , ay} be the set of simple roots.

Theorem 4.11. Let A(eav • ■ • , ear) be any function on eav ■ ■ ■ , e„r

such that eaiA = +eai; then A(ea¡, ■ ■ ■ , eUr) can be extended uniquely to an inner

automorphism of period 2 in 8, and any such automorphism is inner similar to

an automorphism inducing such a function.

Proof. The final statement of the theorem is true by Theorem I. To estab-

lish the first part define hA = h for all h in §. Let x( — ) be the subset of ir con-

sisting of roots at such that if A represents the given function, eaiA = — eai. If

a is a positive root, a = X^a¿a>' where a,^0 is an integer. Let N(a) = ( — 1) Zo>

and define eaA =N(ct)ea if a^O. If a<0, set eaA =N( — ct)ea. This defines a

linear transformation A in 8. A will be an automorphism if [hea]A = [h(eaA)]

and [fia^M = [(e»A)(eflA)\. The only case where this is not immediate is

when a-\-ß =y is a root. Leta= ^alai,^3= ^è.-a», and 7= "^dod. c¡ = a¿+o¿.

[(eaA)(eßA)] = Naßey if and only if N(a)N(ß) = l. [eaeß]A =NaßeyA =Naßey if

and only if N(y) = l. We have however the relation N(y) = ( — 1) 2c«

= ( — 1) Zo¡(— 1) 2b' = N(a)N(ß). Moreover A is uniquely determined by its

effect on eav ■ ■ ■ , ear since this uniquely determines the effect on e_ai, • • • ,

e-a„ and the subalgebra generated by these elements is 8.

It is now an easy matter, if we use a Cartan subalgebra and a canonical

basis, to determine multiplication tables for all simple L.t.s. belonging to a

given simple Lie algebra via an inner automorphism of period 2.

As for L.t.s. which arise from outer automorphisms, the only cases which

have not already been discussed are SD4 and (§6- In SD4 there are four inner simi-

larity classes of automorphisms of period 2. Two of these, including 50, de-

termine L.t.s. listed in the preceding discussion of the infinite classes.

Referring to [2, p. 134], we may verify that although not inner similar to

an element of Si, the automorphisms of S2 and S3 are in fact similar to those

in Si. Thus SD4 possesses no L.t.s. not already mentioned.

In (Se choose a canonical basis hi, • • • , ä6, ea, ■ ■ ■ relative to a Cartan

subalgebra H. S = S0^JSi and Ti can be taken to be the following trans-

formation (12):

6

hiTi =-Ä2+l/3E h,
¿-i

6

h2Ti = - hi + 1/3 2 hi,
¿-i

6

h3Ti = - A4 + 1/3 E K

n [2, p. ui].
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6

hiTi = — h3 + 1/3 X h» etc-
! = 1

The roots take the form aP<I(h) = ocpq( ̂X.-A.O = XP — \,¡ for £5^3, and />, q

= 1, • • • , 6. There are also roots apq,(h) = X„+X,J+XS1 — apqs(h), where p, q,

and s are all distinct, p, q, s = l, • ■ ■ , 6; and finally a0(h)= ^2t=i X¿ and

—cto(h). Denote the root vectors corresponding to these roots by epq, epq3,

e'MS, eo, and e¿ respectively. Oj2, ct23, «34, a^, a6o, and «135 form a set of simple

roots. It follows from Theorem I and the form of 7\ that any outer auto-

morphism of period 2 is inner similar to an automorphism A such that

ei2^l = ± en,    e23A = + e4i,    «34-4 =  + e34,    «45-4 = ± ei3,

(4.1)
«56^4   =   ±   «56,      6135^4   =    ±   EUS.

Relative to A, 66 decomposes into the direct sum of 24 two-dimensional in-

variant subspaces, 24 one-dimensional invariant subspaces, and £>. ÍQ, in

turn, splits into the direct sum of a four-dimensional subspace of fixed ele-

ments and a two-dimensional subspace of elements h such that hA = — h.

From this fact regarding § it follows that if any 4 of the signs in (4.1) are

specified, all 6 are uniquely determined. Since A is completely determined by

the table (4.1), we obtain all L.t.s. determined by outer automorphisms in @6

by assigning all permissible arrangements of signs in (4.1) and calculating

the effect of A on the remainder of the basis elements by using the multiplica-

tion table for 6e-

Precisely two nonisomorphic L.t.s., £1, £2, arise in this way. Dim £i = 26

and dim £2=42. Thus [£i£i] has 52 dimensions while [£2£2] has 36 dimen-

sions. It is possible to show that each [£¿£,] has a Cartan subalgebra of

dimension 4. Using this fact together with Corollary 4.2 and the representa-

tion of [£¿£¿] given by restricting Ad [£,£,-] to 3,-, the representation theory

for semi-simple Lie algebras allows us to conclude that [3i3i]=3Í4(13) and

[£2£2]^64.

Next we provide an illustration of the results obtainable from Theorem

4.11 and complete the determination of L.t.s. of class 6e.

Suppose A is an inner automorphism of period 2 in @6- One possibility

is that ei2A = —en, eiti+iA =eíií+i for i = 2, 3, 4, 5, and ei36A =e13f,- Of course,

hA=h for all h in §. From the multiplication table we can compute that

for 32 of the ea, eaA = — ea. Thus the L.t.s. £3 belonging to A is 32-dimen-

sional and [£s£s] has 46 dimensions. Knowing the general structure of

[£3£a], we obtain from an examination of its multiplication table the fact

that [£3£3]=®6©(c) where (c) indicates the 1-dimensional center of [£3£3].

It turns out that only one other L.t.s. £4 arises from the inner automorphisms

(13) It follows from the theorem of [l ] that £1 = SB'1', where SES = 355(1)© (1) is the associator

L.t.s. of the exceptional simple Jordan algebra.
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of @6. £4 has dimension 40, [£4£4] dimension 38, and [£4£4]=2Í6©2Ii.

Although we have provided an explicit method for calculating all complex

simple L.t.s., we have yet to show what can be done if the base field is arbi-

trary but algebraically closed. In this case we use the fact, noted before, that

any simple Lie algebra has a basis for which the multiplication table is

rational; that is, all basis products are rational combinations of the basis

elements. Let * denote Kronecker products, V be the complex field, and P

the rational field. The assertion amounts to the statement that there is a

natural algebra 8 over P for which (8 over P)*r=8. The algebra 8$

= (8 over P)*í> is then a simple Lie algebra over "J>, the natural counterpart

of 8. This argument is symmetric and establishes a natural connection from

which it is possible to obtain the simple Lie algebras over <i> from the com-

plex simple algebras. It is clear that all that is needed to use the same type

of argument for L.t.s. is a proof of the fact that every simple L.t.s. has a ra-

tional multiplication table.

Lemma 4.12. If A is an automorphism of period 2 in a simple Lie algebra

2 over an algebraically closed field, then there is a Cartan subalgebra !q of 2

for which &A =fg.

Proof. Let £ be the L.t.s. determined by A. It is clear that if [££] is not

semi-simple, a Cartan subalgebra will consist of a Cartan subalgebra for

[££](1) together with the 1-dimensional center. Let £>i be a Cartan sub-

algebra of [££]. §1 is a commutative subalgebra of 8, and the representation

theory for semi-simple Lie algebras shows that Ad h has simple elementary

divisors for each h in §1. Let hi be a regular element of §1. §1 is then the

intersection of i?°x with [33]. The condition that each Ad h has simple ele-

mentary divisors implies that §1 is contained in a Cartan subalgebra § of 8.

Clearly ¡qQR° for each h in §1. Let hr in § be regular in 8. Suppose for some x

¡n €)i = l°l-$¡> h in §1, [xArJ^O. We may assume x is also in 3. From this it

follows that [xhr] is in §x. [[xAr]Âr] =0. But Ad hr has simple elementary

divisors. Thus [xhr] =0, and §? = §. Since dim i?°r = dim R^, hi is regular in 8,

and í?aj is the required invariant Cartan subalgebra.

Theorem 4.13. Every simple L.t.s. has a rational multiplication table.

Proof. Let A determine the simple L.t.s. 3 in 8. Choose a Cartan sub-

algebra § for which ¿p2i = §. Since any automorphism maps roots into roots,

haA =ha' for some root a*. From this it follows that A sends root vectors

into root vectors, and, in fact, eaA =yea>. Since A is of period 2, 7= ±1.

Choose in 8 a canonical rational basis with respect to ÍQ. Selecting a basis for

£> from {ha\ preserves the rationality, for [ea, hß]=a(hß)ea and a(hg) is a

rational combination of a(hi), ■ ■ ■ , a(hr). X will then have a basis of ele-

ments of the form ha, ha±ha-, ea, and ea±ea', and consequently a rational

multiplication table.
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