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Introduction. The group A (G) of all continuous and open automorphisms

of a locally compact topological group G may be regarded as a topological

group, the topology being defined in the usual fashion from the compact and

the open subsets of G (see §1). In general, this topological structure of A(G)

is somewhat pathological. For instance, if G is the discretely topologized addi-

tive group of an infinite-dimensional vector space over an arbitrary field, then

A(G) already fails to be locally compact.

On the other hand, if G is a connected Lie group, we shall show without

any difficulty that the compact-open topology of A(G) coincides with the

topology obtained by identifying A (G) with a closed subgroup of the linear

group of automorphisms of the Lie algebra of G, as was done by Chevalley

(in [l]) in order to make A(G) into a Lie group. We shall then deduce that

A (G) is a Lie group whenever the group of its components, G/Go, is finitely

generated^), where Go denotes the component of the identity element in G.

The other questions with which we shall be concerned are the following:

Let /(Go) denote the group of the inner automorphisms of Go, and let E(Go, G)

denote the natural image in A (Go) of A(G). Regard /(Go) and E(G0, G) as

subgroups of A (Go). Are these subgroups closed in ^4(G0)? Is E(G0, G)

topologically, as well as group-theoretically, isomorphic with the corresponding

factor group of A (G) ?

We shall show, under the assumption that G/Go is finitely generated, that

these questions are related as follows: The natural continuous homomorphism

of A (G) onto E(Go, G) is open if and only if E(G0, G) is closed in A (G0). Under

the stronger assumption that G /Go is finite, a sufficient condition for E(G0, G)

to be closed in A (Go) is that 7(G0) be closed in ^4(G0). Finally, in order to

throw some light on the difficulties which are involved here, we shall give a

simple example in which /(Go) and E(G0, G) are not closed in ^4(G0). In this

example, G has only two components and Go is homeomorphic with Eu-

clidean 5-space.

1. Topological preparation. We shall describe the topology of a group G

in terms of a fundamental system 33 of neighborhoods V of the identity ele-

ment. A system 33 of subsets of G will define a Hausdorff topology consistent

with the group operations if and only if it satisfies the following conditions(2) :
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(') I am indebted to the referee for the remark that my original requirement, "G/Go finite",

can be relaxed to the present one.

(2) We are taking these from §2 of [4].
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I. The intersection of all FG25 is the set consisting of the identity element

of G only.

II. If Vi and V2 are sets belonging to S3, there is a FG23 such that

FÇZ FiP\ Vt.
III. For every FG23 there is a IFG33 such that W^WQ V.

IV. For every g£G and FG33 there is a WG% such that WQgVg~K

The neighborhoods of the identity element are then all the sets containing

a set belonging to 33.

If C is any compact subset of G and FG23, we denote by N(C, V) the

set of all aG^4(G) for which a(x)x~lÇ. V and a_1(x)x_1G V, whenever ï£C.

We claim that if G is locally compact, the system of these N(C, V) satisfies

conditions I-IV above. In fact, I holds quite evidently. If VQ ViC\ F2, we

clearly have N(Ci\JC2, V)QN(Ch Vi)r\N(C2, V2), so that II is satisfied.
In order to verify III we proceed as follows: Since G is locally compact,

given FG33, there is a compact set C0 and a F0G23 such that F0CC0

and FoFoFoÇZF. From the identity (ß-1a)(c)c-1=[ß~1(a(c)c~1)(a(c)c-1)-1]

• [a(c)c_1][/3_1(c)c_1] we can see immediately that we have then

N(CKJC0, F«)"1 N(CUC0, V0)ÇZN(C, V), which shows that III is satisfied.

Finally, we have, with aEA(G), crlN(a(C), a(V))aQN(C, V), whence IV

holds.
From now on, if G is any locally compact group, -4(G) will denote the

group of all continuous and open automorphisms of G, with the topology

defined by the N(C, V), where C ranges over the compact subsets of G and F

over the set of neighborhoods of the identity element in G.

Next we shall prove two elementary results which we shall need later on.

Lemma 1. Let G be a topological group, U a neighborhood of the identity

element, C a compact subset of G. Then the intersection of all the sets c~lUc,

with cGC, is a neighborhood of the identity element.

Proof. We can find FGS3 such that VVV^QU. Then we have y~lUy

3 F, for every y G F. Since C is compact, there are elements c\, ■ • ■ , cn in C

such that C is contained in the union of the n sets Fc¿. Now if c is any element

in C, we write c=yc,, with yG F. Then c~1 Uc = c^y1 l/yc^cí1 Fe¿. Hence the

intersection of all the sets c~lUc contains the finite intersection of the c¡'1Vc,

and is therefore a neighborhood of the identity element.

Lemma 2. Suppose that G is connected and locally compact. Let C be a com-

pact subset of G, Va neighborhood of the identity, and S a compact neighbor-

hood of the identity. Then there exists a neighborhood W of the identity such that

N(S, W)QN(C, V).

Proof. Since G is connected and 5 a neighborhood of the identity, we have

G = U£.i Sn. Since C is compact and since Sn<ZSn+\ it follows that CÇ.Sm,

for some m. Now choose a neighborhood T of the identity such that TmQ V,
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and put W=f)x^smx~1Tx. By Lemma 1, IF is a neighborhood of the identity,

for Sm is compact(3). Now let aÇE.N(S, W) and c(ElC. We have c=xu ■ • ■ , xm,

with x¿£S. Put ck=X\ ■ ■ ■ xk, and suppose we have already shown

that a(ck)Ct1GTk. Then we have a(ck+i)c¿+1 = (a(ck)c¿1)ck(a(xk+1)x¿¿1)ct~1

Ç:TkckWcî1Ç.Tk+l. Hence we get <x(c)c~~xÇzTmÇ^V, which clearly suffices to

establish our lemma.

2. Automorphism groups. Let G be a connected Lie group. An auto-

morphism aÇzA(G) induces an automorphism à of the Lie algebra © of G.

We denote by A (©) the group of automorphisms of ®, with the topology in-

duced by that of the full linear group of which A(@) is clearly a closed sub-

group. It is shown in [l] that the mapping a—*â is a group isomorphism of

A(G) onto a closed subgroup of A(&). (If G is simply-connected the image of

of A (G) coincides with A (©).) We shall prove the following result:

Theorem 1. Let G be a connected Lie group. Then the group isomorphism

a—»à of A (G) onto the corresponding closed subgroup of A(@) is also a homeo-

morphism.

Proof. We denote by e the "exponential mapping" of ® into G(4). We have

then, for aÇ_A(G), eà=ae, and e gives an analytic isomorphism between a

neighborhood of 0 in ® and a neighborhood of the identity in G. Let z\, • ■ •, z„

be a linear basis for ® such that the corresponding solid sphere $2 of radius 2,

in the Euclidean metric defined by our basis, around 0 in ®, is mapped by

e 1-1 and analytically onto the canonical sphere Z2 = e(<32) around the identity

element in G. For any positive real number p, £p will denote the closed solid

sphere of radius p around 0 in @, and we set Zp = e(£p).

Now if N is any neighborhood of the identity in A(&), there is a real

number s such that 0<s<l and such that every tG^(@) satisfying t(z¡)

— z»£,3s belongs to N. It follows from the elementary properties of the ex-

ponential mapping e that there is a real number q>l and a real number r,

5>r>0, such that, for all a, &G3n we have e(a)e(b) =e(a-\-b-{-c), with \c\

<q-\a\ -¡bl, where \u\ denotes the distance of u from 0 in @. Let a

EN(Zr, Zr2/22). Then, for O^t^r, a(e(tzi))e(tzl)-l=e(ui(t)), where «,■(«)

G3r2/23- Hence e(tà(zi))=e(ui(t))e(tZi)=e(ui(t)-\-tzi+vi(t)), with | »,•(<) I

<q\ui(t)\t^rs/2. In particular, this shows that tà(z/) remains in ¿2r as t

varies from 0 to r, and that we must have r(a(z¡) —z.) =M,(r) +ü,-(r). Therefore,

\ä(zi) — Zi\ t£¡r/2q+r2/2<r<s, whence á£./V. Thus we have shown that

N(Zr, Zr*/tq)'ÇZN, and this implies that the mapping a—>á is continuous.

On the other hand, given any neighborhood V of the identity in G, we

can find a real number r>0 such that e(w+z)£ Ve(z) whenever | z\ ^ 1 and

\u\ ^r, because e is uniformly continuous on ¿2- Hence if à is such that

à(z) -zESr for all zGSu then a(x)x~1E V for all xGZi. Since the N(ZU V)

(3) If A and B are compact, so is AB; see §3 of [4].

«See §VIII, Chap. IV, of [l].
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constitute a fundamental system of neighborhoods of the identity in A(G),

by Lemma 2, and since the à satisfying the above conditions make up a

neighborhood of the identity in the image of .4(G) in A(&), we conclude

that the mapping à—>a is also continuous. This completes the proof of

Theorem 1.

Theorem 2. Let G be a Lie group, and let Go denote the component of the

identity in G. Suppose that the group of components, G/Go, is finitely generated.

Then A (G) is a Lie group and has at most countably many components.

Proof. Our assumption on G/Go means that there is a finite set

gi, • • • , gm of elements of G such that every component P of G is of the form

P=pGo, where p is a product of g.'s (with repetitions allowed). Now let B

denote the subgroup of A (G) which consists of all those automorphisms that

map each component of G onto itself. It is clear from the form pGo of a com-

ponent that we have N((gi, ■ ■ ■ , gm), Gà)Ç.B, whence we see that B is open

in .4(G). (Note that Go is open in G.) Furthermore, since A(G)/B is iso-

morphic with a subgroup of the automorphism group A (G/G<¡) of the finitely

generated group G/G0, it follows that A(G)/B has at most countably many

elements. Hence it will suffice to prove that B is a Lie group with at most

countably many components.

Let H be the semi-direct product (G%XA(G0))a whose elements are the

m + 1-tuples (ci, ■ ■ • , cm, a) ,with c¿GGo and aG-<4(Go), and where products

are defined by the formula (clF ■ • ■ , cm, a) (d\, ■ ■ ■ , dm, ß) = (cia(di), • • • ,

cma(dm), aß). If we topologize H by the natural product topology it is evident,

since A (G0) is a Lie group, that H is a Lie group. Furthermore, since A (Go)

may, according to Theorem 1, be identified with a subgroup of the full linear

group, its topology satisfies the second axiom of countability, and the same

holds therefore for H.

Now we define a mapping <j> of B into H by setting <p(b) = (gï1b(gi), • • • ,

gmlb(gm), ß), where ß is the restriction of b to Go- It is immediately seen that

<t> is a continuous isomorphism of B into H. We show next that <j>~1 maps <f>(B)

continuously onto B. For this it suffices to show that, if Fis any neighborhood

of the identity in G and C any compact subset of G, there is a neighborhood

M of the identity in H for which <frl(Mr\<t>(B))QN(C, V). Now, since C is

compact, there is a finite set pi, • • • , pk of products of the g.'s such that

GÇU*.! pjG». Let 5=U*_1(^_1C)r\Go, and let IF be a neighborhood of the
identity in Go. Note that 5 is compact, so that the corresponding subset

N0(S, W) of .4 (Go) is a neighborhood of the identity in A(G0). Put U

= WX • ■ -XWXN0(S, W). Then U is a neighborhood of the identity in H,

and so is M = Ur\U~l. Since every element of C can be written in the form

c = pjS, with s G S, it is not hard to see that, with a suitable choice of W, the

neighborhood M will satisfy our above requirement. Hence 0 is a homeo-

morphism of B onto 0(-B).



1952] THE AUTOMORPHISM GROUP OF A LIE GROUP 213

Now for each component P of G select an explicit product p of g.'s such

that P = pG. Let rj = (c\, • • ■ , cm, a) be an arbitrary element H. Let p' denote

the element of G which is obtained from p by replacing each g,- by giC(. For

x£Go, define rj(px) =p'a(x). Then rj is evidently a homeomorphism of G

onto itself. It follows that 77 will belong to <p(B) if and only if rj(uv) =rj(u)ij(v),

for all u,vÇzG. This shows that <f>(B) is closed in H. Hence <¡>(B) is a Lie group.

Since H satisfies the second axiom of countability, so does <p(B). Since the

components of a Lie group are open sets, it follows that the number of com-

ponents of B is at most countable. Hence also B is a Lie group with at most

countably many components, and our proof is complete.

3. The restriction homomorphism. Let G be a Lie group, Go the com-

ponent of the identity element in G. We assume that G/Go is finitely gen-

erated, or—which is equivalent—that G is generated by a compact subset.

The restriction of automorphisms to Go evidently gives a continuous homo-

morphism, p say, of A(G) onto a subgroup E(Go, G) of .4(Go). Let R denote

the kernel of p. It is natural to inquire under what conditions A(G)/R is

¡somorphic, as a topological group, with E(Go, G), or, equivalently, under what

conditions p is open. A superficial answer is given by the following theorem:

Theorem 3. The restriction homomorphism p of A(G) onto E(Go, G) is

open if and only if E(G0, G) is closed in A (Go).

Proof. Suppose first that p is open. Then E(G0, G) is homeomorphic with

A(G)/R and hence is locally compact. It follows from this, as is well known,

that E(G0, G) is closed in A(G0)(b). Conversely, if E(G0, G) is closed in

A (Go), then it is locally compact. Furthermore, as a subspace of A (Go), it

satisfies the second axiom of countability. By Theorem 2, A(G) is locally

compact and satisfies the second axiom of countability. By a well known

result(6), the continuous homomorphism p must therefore be open. This

completes the proof.

We shall now give an example in which E(G0, G) is not closed in A (Go) :

Let C denote the additive group of the complex numbers, R the additive

group of the real numbers, both with the ordinary topology. We form the

semi-direct product Go = (CXCXR)h with the multiplication

(ci, C»; r)(c[, c'2, t) = (ex + e*™c[, c2 + e2*ihrc2', r + /),

where h is a fixed irrational real number. Evidently, Go is a Lie group, and

its underlying space is Euclidean 5-space.

Next we construct a semi-direct product G of Go by a group of order 2,

with a generator g such that g2 is the identity element (0, 0, 0) of Go and G,

(5) See §3 of [4].

(6) Theorem 13, chap. Ill, in [3].
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and g(ci, c2, r)g~l=y(clt c2, r) = (c~i, c2, —r), where c denotes the complex

conjugate of c.

With 5, t arbitrary real numbers, let a=a,,t be the automorphism of G0

which is defined by setting a(ci, c2, r) — (e2ri,Ci, e2rUc2, r). We shall determine

the extensions of a to G. Let äG-4(G) be such that p(a) =a. We must have

&(g) =gz, with zGGo. If we write down the equations which express the fact

that ä is a homomorphism, we find that we must have: (1) y(z)z = (0, 0, 0),

and (2) zay(x) = ya(x)z, for all xGGo.

Conversely, every element zGGo which satisfies these conditions defines

an extension 5G^4(G) of a.

Write z = (ci, c2, r). If we write down conditions (2) with x = (0, 0, u), we

find that we must have Ci = 0 = c2. Then condition (1) holds with arbitrary

rGi?. If we rewrite conditions (2) with z = (0, 0, r) and all xGGo, we find that

they are equivalent to the condition that r-\-2s and hr-\-2t be integers. Now,

since h is irrational, we can find a sequence of integers fe„ such that the con-

gruence class mod 1 of hkn/2 approaches the congruence class of 1/3 as « be-

comes large. Put s„ = l/2hn and t„ = l/2n+hk„/2. Let a„ =as„,¡„. If r„= — kn

— l/hn, then it satisfies our above conditions on r, whence we conclude that

each an belongs to E(Go, G). On the other hand, an evidently approaches

the automorphism a0,i/3 in -4(G0), and we claim that a0,i/s^.E(Go, G). In

fact, the conditions for the number r needed for extending a0,i/3 become r = m,

and hr = n — 2/3, where m and n are integers. But these conditions are in-

compatible, because h is irrational. Hence E(Go, G) is not closed in A (Go).

It will be apparent from the next theorem that in the above example the

group /(Go) of the inner automorphisms of Go is not closed in A (Go) ; a fact

which could also be shown quite directly by considering the above auto-

morphisms a,,(.

Theorem 4. If G/Go is finite and I (Go) is closed in A (Go), then the restric-

tion homomorphism p of A (G) onto E(G0, G) is open.

Proof. Let B denote the subgroup of -4(G) whose elements map each

component g.Go, i=l, ■ ■ ■ , m, of G onto itself. We claim that it suffices to

show that the restriction of p to B is an open homomorphism of B onto p(B).

In fact, if this has been proved, we may conclude that p(B) is homeomorphic

with B/RC\B, where R is the kernel of p, and hence that p(B) is locally

compact. This implies that p(B) is closed in E(G0, G). Since A(G)/B is finite,

so is £(Go, G)/p(B). Hence the complement of p(B) in E(Go, G) is the union

of a finite number of cosets of p(B) and hence is closed. Hence p(B) is open

in £(Go, G). It follows that p is an open homomorphism of A (G) onto E(G0, G),

which proves our claim.

Now let us observe that our assumption on /(Go) implies that the natural

homomorphism of G0 onto /(Go) is open, as well as continuous. Indeed, the

continuity is independent of our assumption; for, given a compact subset
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C of Go and a neighborhood V of the identity in G0, it is clear that for each

cÇzC we can find a neighborhood Vc of the identity such that wxw_1x_1£ V

for all «G Vc and x£cFc. Since C is compact, there is a finite subset c\, • • • ,

cq of C such that CçA)\=iCiVCi. Then, if W=Ç\\^Vei, we have uxu~lx~lÇ: V,

for all uÇEiW and x£:C, which proves that the natural homomorphism of

Go onto I (Go) is always continuous. Now if /(Go) is closed in A (Go), then it is a

connected Lie group. Since Go is also a connected Lie group, the continuous

natural homomorphism of Go onto /(Go) must automatically be open.

It will be convenient to identify B with the closed subgroup <f>(B) of the

group H which we introduced in the proof of Theorem 2. It is easy to check

that <t>(Ri~}B) is precisely the set of elements (zi, • • • , zm, l)£iZ, where 1

stands for the identity automorphism of G0, and where the elements z, belong

to the center, Z0, say, of Go and satisfy the relations gflZigjZj = zku,j), the

index k(i,j) being determined by the relation g¿gjGg*(¿,y)Go.

What we still have to prove therefore amounts to the following: Given a

neighborhood U of the identity in Go, there is a neighborhood M of the

identity in A (Go), such that, for every element (clt ■ ■ ■ , cm, a)(E.4>(B) with

aÇzM, we can find elements z, as above and such that z,CiÇ_ U(7).

Since Zo is a Lie group, there is a neighborhood D of the identity in Go

which has the following properties:

(1) For every z£Z>P\Z0, there is an element tÇz.DC\Zo such that tm = z.

(2) If s, t belong to (g^DgjDD-^C^Zo and sm = tm, then s=t.

(3) DDQU.
Let us choose a neighborhhod 5 of the identity in Go such that S2mÇ.D.

Let 7, denote the inner automorphism u-^gï1ugi, and choose a neighborhood

V of the identity in G0 such that V=V~1 and VyaiYÏ1(VV)<^S, for all

i, j, k.
Now observe that if <j>(b) = (c\, ■ ■ • , cm, a), then yiay¡'1a~l(x) =c,xc¡"1, for

every x£Go. Since the homomorphism of Go onto /(G0) is open, we can find

a neighborhood M' of the identity in A (Go) such that every automorphism

belonging to I(Go)(~^M' is effected by an element belonging to V. Choose a

neighborhood M of the identity in A (Go) such that, for every a G M, we have

YiaYi^ar'G-M7, for each », and also a(a(i, j))a(i, j)_1G V, for each pair (*', j),

where a(i, j) =g¡T¿)g»gy.

Now let a£¥ and (ci, • • • , cm, a) =4>(b). Then the inner automorphism

of Go which is effected by c¿ is also effected by an element i\£ V, whence

Ci = t¿üi, with tiGZo. We haveyi(c/)cj=gjlgílb(gig¡) =g¿lgTlgHi,t¡cHi,j)a(a(i,j))

(7) For the argument which now follows I am indebted to T. Nakayama. The idea of this

proof is that if a is "small" enough the c,- can be replaced by "small" elements. This possibility

is due to the fact that a factor set, defined on G/Go, and with sufficiently small values in Zo, must

be a transformation set, because unique divisibility holds near the identity in Z<¡. Such a device

has been used by Iwasawa on p. 510 of [2] in dealing with the automorphisms of a compact

group.
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= a(i,j)~1Ckii.j)Ot(o(i, j)), whence y¡(ti)tjtt^íí=a(i,j)-ivHi,f)a(a(i, j))v, ^/(ej ')

=yr(al\i.ñ(PHi.j)a(a(i,j))a(i, jy^v^yjfo^GS2. Hence YlT-i 7y(¿»)¿A_1(»,y)
GS2mÇ,D, i.e., yi(t)t-^GDC\Zo, where t=h ■ ■ ■ tm. By property (1) of D,

there are elements UjÇ.DC\Zo such that uf= 7¡(t)^1^', and then we have

(yAui)ujut-(¡j))m = (yj(ti)tjtü¡J))m. By property (2) of D, it follows that

yj(ui)uju¿i}J)=yj(ti)tjtxlj). Set zi = uiÇ1. Then gJ1Zigjzi = zkii,j), and Zid = uffli

(ElDDQU. This is what we had to prove in order to establish Theorem 4.

Corollary. // Go/Z0 is compact, or if Go is semisimple, then the restric-

tion homomorphism of A (G) onto E(Go, G) is open.

Proof. If Go/Zo is compact, so is I(G0), and hence /(Go) is closed in .4 (Go).

If Go is semisimple, then /(G0) coincides with the component of the identity

in A (Go), and hence is closed in A (Go).
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