THE AUTOMORPHISM GROUP OF A LIE GROUP ## BY G. HOCHSCHILD **Introduction.** The group A(G) of all continuous and open automorphisms of a locally compact topological group G may be regarded as a topological group, the topology being defined in the usual fashion from the compact and the open subsets of G (see §1). In general, this topological structure of A(G) is somewhat pathological. For instance, if G is the discretely topologized additive group of an infinite-dimensional vector space over an arbitrary field, then A(G) already fails to be locally compact. On the other hand, if G is a connected Lie group, we shall show without any difficulty that the compact-open topology of A(G) coincides with the topology obtained by identifying A(G) with a closed subgroup of the linear group of automorphisms of the Lie algebra of G, as was done by Chevalley (in [1]) in order to make A(G) into a Lie group. We shall then deduce that A(G) is a Lie group whenever the group of its components, G/G_0 , is finitely generated(1), where G_0 denotes the component of the identity element in G. The other questions with which we shall be concerned are the following: Let $I(G_0)$ denote the group of the inner automorphisms of G_0 , and let $E(G_0, G)$ denote the natural image in $A(G_0)$ of A(G). Regard $I(G_0)$ and $E(G_0, G)$ as subgroups of $A(G_0)$. Are these subgroups closed in $A(G_0)$? Is $E(G_0, G)$ topologically, as well as group-theoretically, isomorphic with the corresponding factor group of A(G)? We shall show, under the assumption that G/G_0 is finitely generated, that these questions are related as follows: The natural continuous homomorphism of A(G) onto $E(G_0, G)$ is open if and only if $E(G_0, G)$ is closed in $A(G_0)$. Under the stronger assumption that G/G_0 is finite, a sufficient condition for $E(G_0, G)$ to be closed in $A(G_0)$ is that $I(G_0)$ be closed in $A(G_0)$. Finally, in order to throw some light on the difficulties which are involved here, we shall give a simple example in which $I(G_0)$ and $E(G_0, G)$ are not closed in $A(G_0)$. In this example, G has only two components and G_0 is homeomorphic with Euclidean 5-space. 1. **Topological preparation.** We shall describe the topology of a group G in terms of a fundamental system \mathfrak{B} of neighborhoods V of the identity element. A system \mathfrak{B} of subsets of G will define a Hausdorff topology consistent with the group operations if and only if it satisfies the following conditions(2): Received by the editors May 1, 1951. ⁽¹⁾ I am indebted to the referee for the remark that my original requirement, " G/G_0 finite", can be relaxed to the present one. ⁽²⁾ We are taking these from §2 of [4]. - I. The intersection of all $V \in \mathfrak{V}$ is the set consisting of the identity element of G only. - II. If V_1 and V_2 are sets belonging to \mathfrak{V} , there is a $V \in \mathfrak{V}$ such that $V \subseteq V_1 \cap V_2$. - III. For every $V \in \mathfrak{V}$ there is a $W \in \mathfrak{V}$ such that $W^{-1}W \subseteq V$. - IV. For every $g \in G$ and $V \in \mathfrak{V}$ there is a $W \in \mathfrak{V}$ such that $W \subseteq g V g^{-1}$. The neighborhoods of the identity element are then all the sets containing a set belonging to \mathfrak{B} . If C is any compact subset of G and $V \in \mathfrak{B}$, we denote by N(C, V) the set of all $\alpha \in A(G)$ for which $\alpha(x)x^{-1} \in V$ and $\alpha^{-1}(x)x^{-1} \in V$, whenever $x \in C$. We claim that if G is locally compact, the system of these N(C, V) satisfies conditions I-IV above. In fact, I holds quite evidently. If $V \subseteq V_1 \cap V_2$, we clearly have $N(C_1 \cup C_2, V) \subseteq N(C_1, V_1) \cap N(C_2, V_2)$, so that II is satisfied. In order to verify III we proceed as follows: Since G is locally compact, given $V \in \mathfrak{B}$, there is a compact set C_0 and a $V_0 \in \mathfrak{B}$ such that $V_0 \subseteq C_0$ and $V_0 V_0 \subseteq V$. From the identity $(\beta^{-1}\alpha)(c)c^{-1} = [\beta^{-1}(\alpha(c)c^{-1})(\alpha(c)c^{-1})^{-1}] \cdot [\alpha(c)c^{-1}][\beta^{-1}(c)c^{-1}]$ we can see immediately that we have then $N(C \cup C_0, V_0)^{-1} N(C \cup C_0, V_0) \subseteq N(C, V)$, which shows that III is satisfied. Finally, we have, with $\alpha \in A(G)$, $\alpha^{-1}N(\alpha(C), \alpha(V))\alpha \subseteq N(C, V)$, whence IV holds. From now on, if G is any locally compact group, A(G) will denote the group of all continuous and open automorphisms of G, with the topology defined by the N(C, V), where C ranges over the compact subsets of G and V over the set of neighborhoods of the identity element in G. Next we shall prove two elementary results which we shall need later on. LEMMA 1. Let G be a topological group, U a neighborhood of the identity element, C a compact subset of G. Then the intersection of all the sets $c^{-1}Uc$, with $c \in C$, is a neighborhood of the identity element. **Proof.** We can find $V \in \mathfrak{B}$ such that $VVV^{-1} \subseteq U$. Then we have $y^{-1}Uy \supseteq V$, for every $y \in V$. Since C is compact, there are elements c_1, \dots, c_n in C such that C is contained in the union of the n sets Vc_i . Now if c is any element in C, we write $c = yc_i$, with $y \in V$. Then $c^{-1}Uc = c_i^{-1}y^{-1}Uyc_i \supseteq c_i^{-1}Vc_i$. Hence the intersection of all the sets $c^{-1}Uc$ contains the finite intersection of the $c_i^{-1}Vc_i$ and is therefore a neighborhood of the identity element. Lemma 2. Suppose that G is connected and locally compact. Let C be a compact subset of G, V a neighborhood of the identity, and S a compact neighborhood of the identity. Then there exists a neighborhood W of the identity such that $N(S, W) \subseteq N(C, V)$. **Proof.** Since G is connected and S a neighborhood of the identity, we have $G = \bigcup_{n=1}^{\infty} S^n$. Since C is compact and since $S^n \subseteq S^{n+1}$, it follows that $C \subseteq S^m$, for some m. Now choose a neighborhood T of the identity such that $T^m \subseteq V$, and put $W = \bigcap_{x \in S^m} x^{-1}Tx$. By Lemma 1, W is a neighborhood of the identity, for S^m is compact(3). Now let $\alpha \in N(S, W)$ and $c \in C$. We have $c = x_1, \dots, x_m$, with $x_i \in S$. Put $c_k = x_1 + \dots + x_k$, and suppose we have already shown that $\alpha(c_k)c_k^{-1} \in T^k$. Then we have $\alpha(c_{k+1})c_{k+1}^{-1} = (\alpha(c_k)c_k^{-1})c_k(\alpha(x_{k+1})x_{k+1}^{-1})c_k^{-1} \in T^k c_k W c_k^{-1} \subseteq T^{k+1}$. Hence we get $\alpha(c)c^{-1} \in T^m \subseteq V$, which clearly suffices to establish our lemma. 2. Automorphism groups. Let G be a connected Lie group. An automorphism $\alpha \in A(G)$ induces an automorphism $\dot{\alpha}$ of the Lie algebra \mathfrak{G} of G. We denote by $A(\mathfrak{G})$ the group of automorphisms of \mathfrak{G} , with the topology induced by that of the full linear group of which $A(\mathfrak{G})$ is clearly a closed subgroup. It is shown in [1] that the mapping $\alpha \to \dot{\alpha}$ is a group isomorphism of A(G) onto a closed subgroup of $A(\mathfrak{G})$. (If G is simply-connected the image of of A(G) coincides with $A(\mathfrak{G})$.) We shall prove the following result: THEOREM 1. Let G be a connected Lie group. Then the group isomorphism $\alpha \rightarrow \dot{\alpha}$ of A(G) onto the corresponding closed subgroup of $A(\mathfrak{G})$ is also a homeomorphism. **Proof.** We denote by e the "exponential mapping" of \mathfrak{G} into G(4). We have then, for $\alpha \in A(G)$, $e\dot{\alpha} = \alpha e$, and e gives an analytic isomorphism between a neighborhood of 0 in \mathfrak{G} and a neighborhood of the identity in G. Let z_1, \dots, z_n be a linear basis for \mathfrak{G} such that the corresponding solid sphere \mathfrak{Z}_2 of radius 2, in the Euclidean metric defined by our basis, around 0 in \mathfrak{G} , is mapped by e 1-1 and analytically onto the canonical sphere $Z_2 = e(\mathfrak{Z}_2)$ around the identity element in G. For any positive real number p, \mathfrak{Z}_p will denote the closed solid sphere of radius p around 0 in \mathfrak{G} , and we set $Z_p = e(\mathfrak{Z}_p)$. Now if N is any neighborhood of the identity in $A(\mathfrak{G})$, there is a real number s such that 0 < s < 1 and such that every $\tau \in A(\mathfrak{G})$ satisfying $\tau(z_i) - z_i \in \mathcal{B}_s$ belongs to N. It follows from the elementary properties of the exponential mapping e that there is a real number q > 1 and a real number r, s > r > 0, such that, for all a, $b \in \mathcal{B}_r$, we have e(a)e(b) = e(a+b+c), with $|c| < q \cdot |a| \cdot |b|$, where |u| denotes the distance of u from 0 in \mathfrak{G} . Let $\alpha \in N(Z_r, Z_{r^2/2q})$. Then, for $0 \le t \le r$, $\alpha(e(tz_i))e(tz_i)^{-1} = e(u_i(t))$, where $u_i(t) \in \mathcal{B}_{r^2/2q}$. Hence $e(t\dot{\alpha}(z_i)) = e(u_i(t))e(tz_i) = e(u_i(t)+tz_i+v_i(t))$, with $|v_i(t)| < q|u_i(t)|t \le r^3/2$. In particular, this shows that $t\dot{\alpha}(z_i)$ remains in \mathcal{B}_{2r} as t varies from 0 to r, and that we must have $r(\dot{\alpha}(z_i)-z_i)=u_i(r)+v_i(r)$. Therefore, $|\ddot{\alpha}(z_i)-z_i| \le r/2q+r^2/2 < r < s$, whence $\ddot{\alpha} \in N$. Thus we have shown that $N(Z_r, Z_{r^2/2q})^* \subseteq N$, and this implies that the mapping $\alpha \rightarrow \dot{\alpha}$ is continuous. On the other hand, given any neighborhood V of the identity in G, we can find a real number r>0 such that $e(u+z) \in Ve(z)$ whenever $|z| \le 1$ and $|u| \le r$, because e is uniformly continuous on \mathfrak{Z}_2 . Hence if $\dot{\alpha}$ is such that $\dot{\alpha}(z) - z \in \mathfrak{Z}_r$ for all $z \in \mathfrak{Z}_1$, then $\alpha(x)x^{-1} \in V$ for all $x \in Z_1$. Since the $N(Z_1, V)$ ⁽³⁾ If A and B are compact, so is AB; see §3 of [4]. ⁽⁴⁾ See §VIII, Chap. IV, of [1]. constitute a fundamental system of neighborhoods of the identity in A(G), by Lemma 2, and since the $\dot{\alpha}$ satisfying the above conditions make up a neighborhood of the identity in the image of A(G) in $A(\mathfrak{G})$, we conclude that the mapping $\dot{\alpha} \rightarrow \alpha$ is also continuous. This completes the proof of Theorem 1. THEOREM 2. Let G be a Lie group, and let G_0 denote the component of the identity in G. Suppose that the group of components, G/G_0 , is finitely generated. Then A(G) is a Lie group and has at most countably many components. **Proof.** Our assumption on G/G_0 means that there is a finite set g_1, \dots, g_m of elements of G such that every component P of G is of the form $P = pG_0$, where p is a product of g_i 's (with repetitions allowed). Now let B denote the subgroup of A(G) which consists of all those automorphisms that map each component of G onto itself. It is clear from the form pG_0 of a component that we have $N((g_1, \dots, g_m), G_0) \subseteq B$, whence we see that B is open in A(G). (Note that G_0 is open in G.) Furthermore, since A(G)/B is isomorphic with a subgroup of the automorphism group $A(G/G_0)$ of the finitely generated group G/G_0 , it follows that A(G)/B has at most countably many elements. Hence it will suffice to prove that B is a Lie group with at most countably many components. Let H be the semi-direct product $(G_0^m \times A(G_0))_A$ whose elements are the m+1-tuples $(c_1, \dots, c_m, \alpha)$, with $c_i \in G_0$ and $\alpha \in A(G_0)$, and where products are defined by the formula $(c_1, \dots, c_m, \alpha)$ $(d_1, \dots, d_m, \beta) = (c_1\alpha(d_1), \dots, c_m\alpha(d_m), \alpha\beta)$. If we topologize H by the natural product topology it is evident, since $A(G_0)$ is a Lie group, that H is a Lie group. Furthermore, since $A(G_0)$ may, according to Theorem 1, be identified with a subgroup of the full linear group, its topology satisfies the second axiom of countability, and the same holds therefore for H. Now we define a mapping ϕ of B into H by setting $\phi(b) = (g_1^{-1}b(g_1), \cdots, g_m^{-1}b(g_m), \beta)$, where β is the restriction of b to G_0 . It is immediately seen that ϕ is a continuous isomorphism of B into H. We show next that ϕ^{-1} maps $\phi(B)$ continuously onto B. For this it suffices to show that, if V is any neighborhood of the identity in G and G any compact subset of G, there is a neighborhood G of the identity in G of the identity in G of products of the G of the identity in G of the identity in G of products of the G is compact, there is a finite set f of products of the G is such that $G \subseteq \bigcup_{j=1}^k f_j G_0$. Let $G = \bigcup_{j=1}^k f_j G_0$, and let G be a neighborhood of the identity in G of G of G of G of the identity in G of G of G of G of the identity in G of G of G of G of the identity in G of G of G of G of the identity in G of G of G of G of the identity in G of the identity in G of G of G of G of the identity in G of the identity in G of G of G of G of the identity in G of the identity in G of G of G of G of G of the identity in G of G of G of G of the identity in G of the identity in G of G of G of G of G of G of the identity in G of o Now for each component P of G select an explicit product p of g_i 's such that P = pG. Let $\eta = (c_1, \dots, c_m, \alpha)$ be an arbitrary element H. Let p' denote the element of G which is obtained from p by replacing each g_i by g_ic_i . For $x \in G_0$, define $\tilde{\eta}(px) = p'\alpha(x)$. Then $\tilde{\eta}$ is evidently a homeomorphism of G onto itself. It follows that η will belong to $\phi(B)$ if and only if $\tilde{\eta}(uv) = \tilde{\eta}(u)\tilde{\eta}(v)$, for all $u, v \in G$. This shows that $\phi(B)$ is closed in H. Hence $\phi(B)$ is a Lie group. Since H satisfies the second axiom of countability, so does $\phi(B)$. Since the components of a Lie group are open sets, it follows that the number of components of B is at most countable. Hence also B is a Lie group with at most countably many components, and our proof is complete. 3. The restriction homomorphism. Let G be a Lie group, G_0 the component of the identity element in G. We assume that G/G_0 is finitely generated, or—which is equivalent—that G is generated by a compact subset. The restriction of automorphisms to G_0 evidently gives a continuous homomorphism, ρ say, of A(G) onto a subgroup $E(G_0, G)$ of $A(G_0)$. Let R denote the kernel of ρ . It is natural to inquire under what conditions A(G)/R is isomorphic, as a topological group, with $E(G_0, G)$, or, equivalently, under what conditions ρ is open. A superficial answer is given by the following theorem: THEOREM 3. The restriction homomorphism ρ of A(G) onto $E(G_0, G)$ is open if and only if $E(G_0, G)$ is closed in $A(G_0)$. **Proof.** Suppose first that ρ is open. Then $E(G_0, G)$ is homeomorphic with A(G)/R and hence is locally compact. It follows from this, as is well known, that $E(G_0, G)$ is closed in $A(G_0)(^5)$. Conversely, if $E(G_0, G)$ is closed in $A(G_0)$, then it is locally compact. Furthermore, as a subspace of $A(G_0)$, it satisfies the second axiom of countability. By Theorem 2, A(G) is locally compact and satisfies the second axiom of countability. By a well known result(6), the continuous homomorphism ρ must therefore be open. This completes the proof. We shall now give an example in which $E(G_0, G)$ is not closed in $A(G_0)$: Let C denote the additive group of the complex numbers, R the additive group of the real numbers, both with the ordinary topology. We form the semi-direct product $G_0 = (C \times C \times R)_h$ with the multiplication $$(c_1, c_2, r)(c_1', c_2', r') = (c_1 + e^{2\pi i r} c_1', c_2 + e^{2\pi i h r} c_2', r + r'),$$ where h is a fixed irrational real number. Evidently, G_0 is a Lie group, and its underlying space is Euclidean 5-space. Next we construct a semi-direct product G of G_0 by a group of order 2, with a generator g such that g^2 is the identity element (0, 0, 0) of G_0 and G, ⁽⁵⁾ See §3 of [4]. ⁽⁶⁾ Theorem 13, chap. III, in [3]. and $g(c_1, c_2, r)g^{-1} = \gamma(c_1, c_2, r) = (\bar{c}_1, \bar{c}_2, -r)$, where \bar{c} denotes the complex conjugate of c. With s, t arbitrary real numbers, let $\alpha = \alpha_{s,t}$ be the automorphism of G_0 which is defined by setting $\alpha(c_1, c_2, r) = (e^{2\pi is}c_1, e^{2\pi it}c_2, r)$. We shall determine the extensions of α to G. Let $\tilde{\alpha} \in A(G)$ be such that $\rho(\tilde{\alpha}) = \alpha$. We must have $\tilde{\alpha}(g) = gz$, with $z \in G_0$. If we write down the equations which express the fact that $\tilde{\alpha}$ is a homomorphism, we find that we must have: (1) $\gamma(z)z = (0, 0, 0)$, and (2) $z\alpha\gamma(x) = \gamma\alpha(x)z$, for all $x \in G_0$. Conversely, every element $z \in G_0$ which satisfies these conditions defines an extension $\tilde{\alpha} \in A(G)$ of α . Write $z = (c_1, c_2, r)$. If we write down conditions (2) with x = (0, 0, u), we find that we must have $c_1 = 0 = c_2$. Then condition (1) holds with arbitrary $r \in R$. If we rewrite conditions (2) with z = (0, 0, r) and all $x \in G_0$, we find that they are equivalent to the condition that r + 2s and hr + 2t be integers. Now, since h is irrational, we can find a sequence of integers k_n such that the congruence class mod 1 of $hk_n/2$ approaches the congruence class of 1/3 as n becomes large. Put $s_n = 1/2hn$ and $t_n = 1/2n + hk_n/2$. Let $\alpha_n = \alpha_{s_n,t_n}$. If $r_n = -k_n - 1/hn$, then it satisfies our above conditions on r, whence we conclude that each α_n belongs to $E(G_0, G)$. On the other hand, α_n evidently approaches the automorphism $\alpha_{0,1/3}$ in $A(G_0)$, and we claim that $\alpha_{0,1/3} \notin E(G_0, G)$. In fact, the conditions for the number r needed for extending $\alpha_{0,1/3}$ become r = m, and hr = n - 2/3, where m and n are integers. But these conditions are incompatible, because h is irrational. Hence $E(G_0, G)$ is not closed in $A(G_0)$. It will be apparent from the next theorem that in the above example the group $I(G_0)$ of the inner automorphisms of G_0 is not closed in $A(G_0)$; a fact which could also be shown quite directly by considering the above automorphisms $\alpha_{s,t}$. THEOREM 4. If G/G_0 is finite and $I(G_0)$ is closed in $A(G_0)$, then the restriction homomorphism ρ of A(G) onto $E(G_0, G)$ is open. **Proof.** Let B denote the subgroup of A(G) whose elements map each component g_iG_0 , $i=1,\cdots,m$, of G onto itself. We claim that it suffices to show that the restriction of ρ to B is an open homomorphism of B onto $\rho(B)$. In fact, if this has been proved, we may conclude that $\rho(B)$ is homeomorphic with $B/R \cap B$, where R is the kernel of ρ , and hence that $\rho(B)$ is locally compact. This implies that $\rho(B)$ is closed in $E(G_0, G)$. Since A(G)/B is finite, so is $E(G_0, G)/\rho(B)$. Hence the complement of $\rho(B)$ in $E(G_0, G)$ is the union of a finite number of cosets of $\rho(B)$ and hence is closed. Hence $\rho(B)$ is open in $E(G_0, G)$. It follows that ρ is an open homomorphism of A(G) onto $E(G_0, G)$, which proves our claim. Now let us observe that our assumption on $I(G_0)$ implies that the natural homomorphism of G_0 onto $I(G_0)$ is open, as well as continuous. Indeed, the continuity is independent of our assumption; for, given a compact subset C of G_0 and a neighborhood V of the identity in G_0 , it is clear that for each $c \in C$ we can find a neighborhood V_c of the identity such that $uxu^{-1}x^{-1} \in V$ for all $u \in V_c$ and $x \in c V_c$. Since C is compact, there is a finite subset c_1, \dots, c_q of C such that $C \subseteq \bigcup_{i=1}^q c_i V_{c_i}$. Then, if $W = \bigcap_{i=1}^q V_{c_i}$, we have $uxu^{-1}x^{-1} \in V$, for all $u \in W$ and $x \in C$, which proves that the natural homomorphism of G_0 onto $I(G_0)$ is always continuous. Now if $I(G_0)$ is closed in $A(G_0)$, then it is a connected Lie group. Since G_0 is also a connected Lie group, the continuous natural homomorphism of G_0 onto $I(G_0)$ must automatically be open. It will be convenient to identify B with the closed subgroup $\phi(B)$ of the group H which we introduced in the proof of Theorem 2. It is easy to check that $\phi(R \cap B)$ is precisely the set of elements $(z_1, \dots, z_m, 1) \in H$, where 1 stands for the identity automorphism of G_0 , and where the elements z_i belong to the center, Z_0 , say, of G_0 and satisfy the relations $g_j^{-1}z_ig_jz_j=z_{k(i,j)}$, the index k(i,j) being determined by the relation $g_ig_j \in g_{k(i,j)}G_0$. What we still have to prove therefore amounts to the following: Given a neighborhood U of the identity in G_0 , there is a neighborhood M of the identity in $A(G_0)$, such that, for every element $(c_1, \dots, c_m, \alpha) \in \phi(B)$ with $\alpha \in M$, we can find elements z_i as above and such that $z_i c_i \in U(7)$. Since Z_0 is a Lie group, there is a neighborhood D of the identity in G_0 which has the following properties: - (1) For every $z \in D \cap Z_0$, there is an element $t \in D \cap Z_0$ such that $t^m = z$. - (2) If s, t belong to $(g_t^{-1}Dg_jDD^{-1})\cap Z_0$ and $s^m=t^m$, then s=t. - (3) $DD \subseteq U$. Let us choose a neighborhhod S of the identity in G_0 such that $S^{2m} \subseteq D$. Let γ_i denote the inner automorphism $u \to g_i^{-1} u g_i$, and choose a neighborhood V of the identity in G_0 such that $V = V^{-1}$ and $V \gamma_i \gamma_j \gamma_k^{-1}(VV) \subseteq S$, for all i, j, k. Now observe that if $\phi(b) = (c_1, \dots, c_m, \alpha)$, then $\gamma_i \alpha \gamma_i^{-1} \alpha^{-1}(x) = c_i x c_i^{-1}$, for every $x \in G_0$. Since the homomorphism of G_0 onto $I(G_0)$ is open, we can find a neighborhood M' of the identity in $A(G_0)$ such that every automorphism belonging to $I(G_0) \cap M'$ is effected by an element belonging to V. Choose a neighborhood M of the identity in $A(G_0)$ such that, for every $\alpha \in M$, we have $\gamma_i \alpha \gamma_i^{-1} \alpha^{-1} \in M'$, for each i, and also $\alpha(a(i,j))a(i,j)^{-1} \in V$, for each pair (i,j), where $a(i,j) = g_{a(i,j)}^{-1} g_i g_j$. Now let $\alpha \in M$ and $(c_1, \dots, c_m, \alpha) = \phi(b)$. Then the inner automorphism of G_0 which is effected by c_i is also effected by an element $v_i \in V$, whence $c_i = t_i v_i$, with $t_i \in Z_0$. We have $\gamma_j(c_i)c_j = g_j^{-1}g_i^{-1}b(g_ig_j) = g_j^{-1}g_i^{-1}g_{k(i,j)}c_{k(i,j)}\alpha(a(i,j))$ ⁽⁷⁾ For the argument which now follows I am indebted to T. Nakayama. The idea of this proof is that if α is "small" enough the c_i can be replaced by "small" elements. This possibility is due to the fact that a factor set, defined on G/G_0 , and with sufficiently small values in Z_0 , must be a transformation set, because unique divisibility holds near the identity in Z_0 . Such a device has been used by Iwasawa on p. 510 of [2] in dealing with the automorphisms of a compact group. $=a(i,j)^{-1}c_{k(i,j)}\alpha(a(i,j)), \text{ whence } \gamma_j(t_i)t_jt_{k(i,j)}^{-1}=a(i,j)^{-1}v_{k(i,j)}\alpha(a(i,j))v_j^{-1}\gamma_j(v_i^{-1})\\ =\gamma_j\gamma_i\gamma_k^{-1}{}_{(i,j)}(v_{k(i,j)}\alpha(a(i,j))a(i,j)^{-1})v_j^{-1}\gamma_j(v_i^{-1}) \in S^2. \text{ Hence } \prod_{i=1}^m \gamma_j(t_i)t_jt_k^{-1}{}_{(i,j)}\\ \in S^{2m}\subseteq D, \text{ i.e., } \gamma_j(t)t^{-1}t_j^m\in D\cap Z_0, \text{ where } t=t_1\cdots t_m. \text{ By property } (1) \text{ of } D,\\ \text{there are elements } u_j\in D\cap Z_0 \text{ such that } u_j^m=\gamma_j(t)t^{-1}t_j^m, \text{ and then we have }\\ (\gamma_j(u_i)u_ju_{k(i,j)}^{-1})^m=(\gamma_j(t_i)t_jt_{k(i,j)}^{-1})^m. \text{ By property } (2) \text{ of } D, \text{ it follows that }\\ \gamma_j(u_i)u_ju_{k(i,j)}^{-1}=\gamma_j(t_i)t_jt_{k(i,j)}^{-1}. \text{ Set } z_i=u_it_i^{-1}. \text{ Then } g_j^{-1}z_ig_jz_j=z_{k(i,j)}, \text{ and } z_ic_i=u_iv_i\in DD\subseteq U. \text{ This is what we had to prove in order to establish Theorem 4.}$ COROLLARY. If G_0/Z_0 is compact, or if G_0 is semisimple, then the restriction homomorphism of A(G) onto $E(G_0, G)$ is open. **Proof.** If G_0/Z_0 is compact, so is $I(G_0)$, and hence $I(G_0)$ is closed in $A(G_0)$. If G_0 is semisimple, then $I(G_0)$ coincides with the component of the identity in $A(G_0)$, and hence is closed in $A(G_0)$. ## **BIBLIOGRAPHY** - 1. C. Chevalley, Theory of Lie groups, Princeton, 1946. - 2. K. Iwasawa, On some types of topological groups, Ann. of Math. vol. 50 (1949) pp. 507-557. - 3. L. Pontrjagin, Topological groups, Princeton, 1939. - 4. A. Weil, L'intégration dans les groupes topologiques et ses applications, Paris, 1938. University of Illinois, Urbana, Ill.