BANACH SPACES WITH THE EXTENSION PROPERTY

BY
J.L. KELLEY()

It is the object of this note to complete a characterization of those Banach
spaces B with the Hahn-Banach extension property: each bounded linear
function F on a subspace of any Banach space C with values in B has a linear
extension F’ carrying all of C into B such that || F'|| =|| F]|. It is shown here
that:

THEOREM. Each such space B is equivalent to the space Cx of continuous
real-valued functions on an extremally disconnected compact Hausdorff space
X, Cx having the usual supremum norm.

Recently, in these Transactions, Nachbin [N] and, independently,
Goodner [G] have shown that if B has the extension property and if its unit
sphere has an extreme point, then B is equivalent to a function space of this
sort; both authors have also proved that such a function space has the
extension property. The above theorem simply omits the extreme point hy-
pothesis, and so establishes the equivalence.

My original proof, of which the proof given here is a distillate, depends
on an idea of Jerison [J]. Briefly, letting X be the weak* closure of the set
of extreme points of the unit sphere of the adjoint B*, B can be shown
equivalent to the space of all weak* continuous real functions f on X such
that f(x) = —f(—x), and then properties of X are deduced which imply the
theorem. The same idea occurs implicitly in the proof below.

NotE. Goodner asks [G, p. 107] if every Banach space having the ex-
tension property is equivalent to the conjugate of an abstract (L)-space. It
is known (this is not my contribution) that the Birkhoff-Ulam example
([B, p. 186] or [HT, p. 490]) answers this question in the negative, the
pertinent Banach space being the bounded Borel functions on [0, 1] modulo
those functions vanishing except on a set of the first category, with ”f“
=inf {K: lf(x)| = K save on a set of first category}.

1. Preliminary definitions and remarks. A point x is an extreme point of
a convex subset K of a real linear space if x is not an interior point of any
line segment contained in K (i.e., if x=ty+(1—1)z, 0<t<1, yEK, and
2CK, then x=y=2). A set L is a support of K if L is a convex, nonvoid
subset of K such that each line segment contained in K which has an interior
point in L is contained in L. If x is an extreme point of L and L is a sup-

Presented to the Society, September 6, 1951; received by the editors July 26, 1951.
(") This work was done under Contract N 7-onr-434, Task Order III, Navy Department,
the Office of Naval Research, U.S.A.

323



324 J. L. KELLEY [March

port of K, then x is an extreme point of K. If F is a linear function carrying
a convex set K into a convex set M and L is a support of M, then F-}(L)N\K
is either void or a support of K.

For each Banach space B the adjoint space is denoted by B* and the
weak* topology for B* is the topology of pointwise convergence of functionals.
Each convex, norm-bounded, weak* closed subset K (=convex, weak* com-
pact subset) is, according to the classic theorem of Krein and Milman, the
smallest convex weak* closed set which contains all extreme points of K.
(See, for example, [K].) If F is a bounded linear function on B to a Banach
space C, then F*, the adjoint function, carries C* into B* in a weak® con-
tinuous fashion, and in particular, the image of the unit sphere of C* is weak*
compact.

A compact Hausdorff space is extremally disconnected if the closure of each
open set is open. If X is a compact Hausdorff space, then Cx is the Banach
space of all real-valued continuous functions on X, with the usual supremum
norm. For each x& X there is assigned a functional e., by setting e.(f) =f(x)
for fE€Cx. This functional e, is the evaluation at x. It is known (see [AK])
that the set of extreme points of the unit sphere of C% is precisely E\J(—E),
where E is the set of all evaluations. Moreover, if E has the relativized
weak* topology, then the function e carrying x into e, maps X homeo-
morphically onto E.

2. Proof of the theorem. Let B be a Banach space with the property: if
H is a linear isometry of B into a Banach space C, then there is a linear
map G of norm one carrying C onto B such that GH is the identity map of B
onto itself. Let X be the weak™ closure of the set of all extreme points of the
unit sphere of B*. Then X is weak* compact. In what follows, a subset of X
is “open” if it is “open in the relativized weak* topology for X,” and the
closure U° of a subset U of X is the weak* closure of U.

Suppose, now, that U and V are open subsets of X such that both UNV
and [—(UVU V) [N\(UUV) are void, and [— (U V) |\J(UUV) is dense in X.
We construct a space Y, by setting Y=({0} X U‘)U({l} X V*), so that ¥
consists of disjoint copies of U®and Ve The set Y is topologized by agreeing
that if U, is open in U¢ and V; is open in V¢, then {0} X U; and {1} XV,
are each open in Y. Let H be the map of B into Cy defined, for b&EB, u& U°,
vE Ve by: H(b)((0, u)) =u(b), H(b)((1, v)) =v(d). The basic result about this
construction is:

LEMMA. The map H is a linear isometry of B onto Cy. Moreover, U\ V*
and [— (U V) N (UJ V*) are void, and H* maps the set of evaluations in
Cy weak* homeomorphically onto U\J Ve.

Proof. We first verify that H is a linear isometry. The unit sphere .S of
B* is weak* compact and, for each bE B, the linear functional &', whose value
at 3EB* is 2(b), is weak* continuous, and maps .S onto the closed interval
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[=]I2]l, ||2]| - The set of points at which the functional b’ assumes the value
”b is a support of S and hence contains an extreme point x, which is a
member of X. Either x or —x belongs to U°U V*, and consequently || H ()|
=|x(5)| =||3||. On the other hand, since UUV* is a subset of the unit
sphere of B*, ||H(b)|| =||?]|, so that H is an isometry.

Next, a small calculation. Suppose e, < Cy is the evaluation at (0, u),
and that b&EB. Then H*(e,u)(b) is, by definition of H*, e, (H (b)), which
from the definition of e, is H(b)((0, %)), and using the definition of H
this is #(b). Consequently, the valuation at (0, #) maps under H* onto u,
and similarly the evaluation at (1, v) maps onto .

If uE€ U and u is an extreme point of the unit sphere .S of B*, then H*~1(u)
intersects the unit sphere T" of C¥ in a set which is a support of S. This sup-
port, being weak* compact, consists of a single point or else contains at
least two extreme points (the Krein-Milman theorem). Each extreme point
of the support is also an extreme point of T". But the extreme points of T are
+ evaluations, and since & V*, the only extreme point which can map
onto # under H* is €(,4, in view of the preceding paragraph. Consequently,
H*1(4)NT consists of the single point e, and similarly, if v& 1V and v is
an extreme point of S, then H*-1(v) T = {e(l,,,) }

Now let G be a linear function of norm one carrying Cy onto B so that
GH is the identity on B. Then G¥* carries the unit sphere S of B* into the
unit sphere T of C§and (GH)* = H*G*is the identity on B*. If u € U and »is an
extreme point of .S, then necessarily G*(u) =e(,4), in view of the preceding
paragraph, and if €V and v is an extreme point of S, then G*(v) =eq v-
Because such points are dense in U and in V the function G* carries a dense
subset of X onto a weak* dense subset of E\U(—E), where E is the set of
evaluations. Because X and E\J(— E) are weak* compact G* carries X onto
E\U(—E). Now H*G* is the identity on B*, and if #& U and « is an extreme
point of .S, then G*H*(e(o,4) =G*(u) =€(0,4, and similarly for v&V and v
extreme, so that G¥*H* is the identity on a dense subset of E\J(— E). Conse-
quently G* is, on X, a homeomorphism, and H* is, on E\J(— E), the inverse
of this homeomorphism. From the structure of E\J(—E) it follows (see pre-
liminary remarks) that U\ Ve and [— (U°J V<) |N\(U\J V¢) are void, and
it is also clear that H* maps E homeomorphically onto Us\U Ve.

It remains to show that H maps B onto Cy. The image G*(S) of the unit
sphere S of B* is convex and weak* compact, and each extreme point of the
unit sphere T of Cy, as was shown in the preceding paragraph, belongs to
G*(S). From the Krein-Milman theorem it follows that TCG*(S), and since
G* has norm one, T=G*(S). Since H*G* is the identity on B* and since G*
maps B* onto Cy, it follows that H* is 1-1. Because H* is 1-1 it is true that
H maps B onto Cy, for otherwise there is a nonzero linear functional on Cy
which vanishes on the range of H (a closed subspace) and H* applied to this
functional gives the zero of B*. The proof of the lemma is then complete.
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The theorem is now established as follows. Choose, using Zorn’s Lemma,
an open subset W of X maximal with respect to the property that (— W)
MW be void. Then (— W)\UW is dense in X. Applying the lemma to U= W,
V=void set, it follows that (— W)\ (W°) is void, and that W* is open as well
as closed in X. Moreover H is an isometry of B onto Cy, where ¥ is homeo-
morphic to We. Proceeding, let U be any open subset of W¢and let V=W U-".
Applying the lemma again, we see that U\ V* is void so that U* is open and
it is proven that W¢® is extremally disconnected, which establishes the
theorem. :
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