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1. Introduction. Of the reasons for the advanced and elegant development

of the theory of abelian operator algebras on a hilbert space, none perhaps

is more decisive than the essential measure-theoretic character of such alge-

bras. Particularly in the multiplicity theory, in which the invariants of

weakly closed rings turn out to be purely measure-theoretic objects, the

analogies and interplay between measure theory and spectral theory provide

the most critical methods. To a remarkable degree, this same connection sub-

sists between the general theory of weakly closed operator algebras and

measure theory, or properly speaking, "noncommutative measure theory."

The study of rings of operators—fostered in the main by J. von Neumann,

and advanced in the more recent works of J. Dixmier, I. Kaplansky, I.

Segal, R. Godement, and many others—as we know, hinges on noncommuta-

tive notions of dimension and invariant integrals, and gives rise to natural

and fruitful notions of L2 and ii systems. In the last analysis, the multi-

plicity theory for general rings will probably derive from an extension of

measure theory to this noncommutative situation.

The present memoir is devoted to a natural step in this general integration

theory: our central objective is the generalization of the classical Radon-

Nikodym theorem (for finite measure spaces) to any finite ring of operators.

Briefly put, our formulation of this theorem runs as follows. We consider any

I/í/*-algebra M which is <r-finite, in the sense that any collection of mutually

disjoint projections in M is at most countable, and finite, in the sense that no

projection in M less than the identity is equivalent mod M to the identity;

this class of rings contains all factors of type In and Hi, as well as all abelian

rings whose commutants have cyclic vectors. In the role of measures (or

rather, integrals) we consider positive functionals (= states) on M which are

countably additive ( = CA) on sequences of mutually orthogonal projections

in M. Between two such states a and p a notion of absolute continuity is de-

fined by setting <r<p(M) in event p(P) =0 implies <r(P) =0, for each projec-

tion P in M. We then associate with each CA state p of M a hilbert space

L2(M, p), whose elements are closed densely-defined operators belonging to

M, and prove (in §5) the key theorem: if <r<p(M), then a{A) =p(T*AT), for

some T in L2(M, p).

In attacking the main problem, we begin in §3 by considering the case

in which the CA state p is canonical (that is, of the form p(A) = (Ax, x)). By
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appealing to techniques suggested by the Murray-von Neumann "BT-

theorem" [8, Lemma 9.2.1], we show for this case that the finiteness of all

cyclic projections E%M'p] in M is both necessary and sufficient for the unre-

stricted validity of the Radon-Nikodym theorem. Before passing to the global

case, we ascribe a notion of "length" to the identity / in a cr-finite finite

fF*-algebra M, this being the smallest (finite or infinite) number of cyclic

projections in M whose union is /, and prove in §4 that any cr-finite finite

W*-sdgebra is invariantly expressible as a central direct sum of finite fF*-alge-

bras uniformly of finite length. With these facts in hand, we show that any

CA state of a cr-finite finite IF*-algebra has the form XXi (Axit x¿), where

n (= °o, 1, 2, • ■ • ) is the length of the identity in M, and use this concrete

representation in conjunction with the remarkable calculus of unbounded

operators so characteristic of finite rings to construct L2(M, p) and prove

the Radon-Nikodym theorem.

The existence of unitarily invariant CA states on any finite ring (a fact

established by Dixmier in [3]) plays an essential role in our proof of the

global theorem, and in event the state p is unitarily invariant, the system

L2(M, p) enjoys some remarkable properties (cited below) and the Radon-

Nikodym theorem itself assumes a sharper form. There is a distinct advantage

in considering all CA states, however; by virtue of this generality, we obtain

easily a number of topological by-products bearing out the strong topological

restrictions imposed by the algebraic notion of finiteness. It is shown, for

example, that any (algebraic) *-isomorphism between finite PF*-algebras is

bicontinuous in the strongest topology, and that a *-isomorphic image of a

cr-finite finite fF*-algebra in a cr-finite ring is always weakly closed.

In the concluding section, by analyzing the Z,2-system of a finite ring

formed with respect to a unitarily invariant state, we show that any cr-finite

finite IF*-algebra is *-isomorphic to the bounded algebra in a finite if-system

(a structure defined by Ambrose in [l] which generalizes in the finite case

the L2-system of a discrete group) and, furthermore, that two cr-finite finite

IF*-algebras are *-isomorphic if and only if their associated ii-systems are

unitarily equivalent. Besides providing a rich prototype model for cr-finite

finite T/F*-algebras—much akin to the algebra of multiplications by bounded

measurable functions on L% of a finite measure space—this theorem shows

that the classification of cr-finite finite tF*-algebras up to *-isomorphisms is

tantamount to the classification of finite ii-systems up to unitary equivalence.

Our technical resources in this work are drawn heavily from the funda-

mental paper of Murray and von Neumann [8]. Of the main results in

§§5 and 6, Theorems 4 and 5 were originally conjectured to the author by

I. E. Segal, as were several of the corollaries by I. Kaplansky. For these

sources, the author wishes to acknowledge his very deep gratitude.

2. Countably additive states. This section is devoted to an exposition of

preliminary materials,  centering on  the concept of  "countably additive
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states." The principal result (Theorem 1) is a local Radon-Nikodym theorem,

which shows that each CA state of a cr-finite IF*-algebra has a local canonical

form (Ax, x). This leads to a simple proof of the von Neumann trace formula

[9, Theorem 3], and to a proof that any CA state of a <r-finite W*-algebra is

strong sequentially continuous.

Notation 2.1. Let § be a fixed complex hilbert space. By a ring of

operators (or simply a ring) M on § we mean a self-adjoint algebra of oper-

ators on § closed in the weak neighborhood topology. Following Segal, we

call a ring M a W*-algebra if M contains the identity operator. Of the funda-

mental properties of Il^*-algebras, we shall make most use of the following

two: if M' ( = the "commutant of M") denotes the collection of all bounded

linear operators on § which commute with all elements of M, then ( M')' = M ;

and if Mp denotes the collection of all projections in M, then M is the small-

est uniformly closed *-algebra on § containing Mp, and, furthermore, Mp

is a complete lattice under the natural (extrinsic) definitions of meet and

join—namely, if 3D? and 9? are subspaces in §, if Em and Egi denote the projec-

tions on these subspaces, and if 9Jcffi9c and 90^9? denote respecthely the

smallest closed subspace of § containing Wl and 9? and the intersection of

9Jc and 9Î, then Essi\/Em = Ew®3i and Ew/\E<n = Emnyi- We shall call a pro-

jection P in M a-finite if any family of mutually orthogonal projections in

M and less than P is at most countable; in particular, M itself is cr-finite if

the identity in M is cr-finite. (Segal in [15] uses the term "countably decom-

posable" for this concept.) If x is any vector in ¡£>, [Mx] will denote the closure

of the manifold [^4x|^4 in M]. Notice that -E[M'xi£Ai/> and that E[wx\ is

cr-finite.

In our work, a state p of any uniformly closed self-adjoint algebra M

containing the identity operator I ( = C*-algebra) will be any nonzero com-

plex-valued linear functional on M with the property that p(A) SïO, for each

non-negative self-adjoint (=SA) A in M. We call a state normalized if

p(I) = 1 (this in apposition to the usual convention, by which all states are

normalized). Certain elementary properties of states of C*-algebras (with

identity) will be used in the sequel without due remark—for example, the

fact that states are continuous in the uniform topology, the fact that they are

real, in the sense that p(A*) =p(A), for all A, and the fact that they satisfy the

Schwarz inequality, \p(B*A)\2^p(B*B)p(A*A), for all A and B. For a dis-

cussion of these facts, see Neumark [12, §6]. If AÇ^M and if p is a state of

M, we denote by pa that state of M defined by the equation Pa(B) =p(A*BA).

And finally, by a canonical state wx of M, we mean a functional on M of the

form ux(A) = (^4x, x), where x is any nonzero vector in §.

Definition 2.1. A state p of the W*-algebra M is called countably additive

( = CA) in case p( ^Pn) = ^,p(Pn), for each sequence {Pn} of mutually

orthogonal projections in At.

Our discussions will be focused on CA states of cr-finite rings. In this sec-
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tion, at least, it would come to the same thing to discuss completely additive

states of an arbitrary ring.

Lemma 2.1. With each CA state of a a-finite W*-algebra M there is associ-

ated a unique projection E„ with the following property: for each Q in Mp,

p(Q)=0 if and only if Q(I-E„) = Q.

Proof. Let N=[P in MP\p(P)=0]. If {P»},Gs is a maximal set of

mutually orthogonal nonzero projections in N, it follows by cr-finiteness and

countable additivity that the projection / —-Ep= 2^SP, likewise belongs

to N. Observe that, for any Q in N, we have Q\J(I — Ep)EiN; in fact, Q

\f(I — E„) is the projection on the range of Q-\-I—E„, and by the spectral

theorem, if p(A) =0, for any non-negative SA A in M, then E[Ran«0 ai GA7. It

follows that (I — Ep) is maximal in N, and our conclusion is easily obtained.

Suggestively, we shall call the projection E„ the carrier projection of the

CA state p. Notice that, for any canonical state wx, Eux = E[M> »j.

Before introducing the general notion of absolute continuity, we shall

describe a much restrictive concept (called "subordination" by Neumark,

who introduces this notion in [12, §9]) which will nonetheless play an im-

portant role.

Definition 2.2. Two states er and p of the C*-algebra M are in the rela-

tion cr«p(Af) if, for each sequence [An] in M such that p(A*An)-M), it fol-

lows also that <r(A*An)^>0.

As is easily seen, this is equivalent to the existence of a (positive) con-

stant K such that Kp—a is a state.

Lemma 2.2. Let p be a state of the C*-algebra M. Then p«.ax(M) if and only

if p =utz(M), for some T in M'.

Proof. It is plain that ü)tx<&Ux(M), for any T in M'. Conversely, given

P<£(jSx(M), define a bilinear form [Ax, Bx] on the manifold Mx by setting

[Ax, Bx]=p(B*A). The ascribed properties of p show that [Ax, Bx] is

bounded, positive semidefinite, and hermitian bilinear. Such a bilinear form

always has a representation [Ax, Bx] = (Ax, T0Bx), where To is a bounded

non-negative SA operator on [Mx]. In addition, (Ax, T0CBx)=p((CB)*A)

=p((B*)C*A) = (Ax, CToBx), for all A, B, C in M, so that T0C=CT0 on
[Afx]. Therefore, ToE{mX] is a non-negative SA operator in M', and by virtue

of the spectral theorem, ToE[mx] has a square root T in M'. This operator T

gives the desired representation, p=utx(M).

Definition 2.3. Let er and p be states of the l4v*-algebra M. We shall say

that cr is absolutely continuous with respect to p, and write cr<p(M), if p(P) =0

implies er(P)=0, for each P in MP. If in addition p<er(Af), we shall write

p~-er(M).

An alternative definition of a<p(M) for CA states is the following:

p(A*An)-+0 implies a(A*A.n)—>0, for each uniformly bounded sequence {^4n}
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in M. This fact is an easy consequence of Lemma 2.3 below.

Theorem 1. Let p be a CA state of the a-finite W*-algebra M, and let E

be any projection in M, 0<E^Ep. Then there exists a projection P in M,

0<P¿E, and a vector x in § such that pp=ux(M).

Proof. Choose any vector z such that p(E) ^ (Ez, z). According to Lemma

2.2, it will suffice to exhibit a P in MP, 0<P^E, such that pP«.uPz(M).

In turn, we assert, it suffices to exhibit a P in MP, 0<P^E, such that p(Q)

=*fe(0)i f°r all Q m Mp satisfying Q^P. In fact, this being true, it follows

that pp(A)^ù3pz(A), for all non-negative SA A in M—as one sees by ex-

pressing PAP as a uniform limit of finite linear combinations ^«íQí, with

«< = 0, QiÇz&Ip, and Qi^P, and applying the inequality to these linear com-

binations—and the relation pp<£wpz(M) is therefore satisfied.

We establish the assertion in question by an indirect argument (as in

[9, Lemma 1.2.2.]). Suppose that, for any nonzero projection P^E, there

exists a nonzero projection Q^P such that p(Q)>uz(Q). We then define

an ordered set of projections \Qa\ as follows: Ç/i is any nonzero projection

^E such that p(Qi) >co2(<2i); suppose that Qa is defined for a<6 with the

properties that 0<Qa^E, the Qa are mutually orthogonal, andp(Ç„) >coz(Qa) ;

then if the projection £fl=£—^3„<9 Qa is 0, Qe is not defined, and otherwise,

Qe is any nonzero projection ^Ee such that p(Qe) >uz(Qe). The set {Qa} so

defined is countable, since E is cr-finite, and writing Qa = Qan, we have

E=J2n Qan and p(E) = J^n p(Q<,n) > £„ <«>*((?«„) =">,(£) ^p(-E), a contradic-
tion. The theorem is proved.

Roughly, the gist of this theorem is the following: if a and p are CA

states of M in the relation a<p(M), then there exists a sequence \Pn} of

mutually orthogonal projections in M such that E„ = ^„P„ and crp„<Kpp„(M),

for each n.

Remark 2.1. The trace T on a finite factor M is a CA state of M satisfy-

ing the additional condition T(AB) = T(BA), for all A and B in M. J. von

Neumann has proved in [9] that T has the form y.Li coIt., for appropriate

vectors x¿. We shall give here a simple proof of this result, based on Theorem

1. To this end, choose a nonzero projection P in M and a vector x such that

Tp=ux(M). We may assume that P divides the identity operator /, in the

sense that /= y,?_i UiPU*, where the Ui are unitary operators in M and

the projections UiPU* are mutually orthogonal. We compute 7\^4)

= T,LiT(A UiPU*) = JXiT{UfA UiP) = ZtiT(PUfA UiP) = Y.U<¿uiX(A),
for each A in M. This is the desired formula.

Strictly speaking, the notion of countable additivity is a lattice property

of states. But, as we show now, it has topological implications.

Lemma 2.3. Let p be a CA state of the a-finite W*-algebra M, and let {A„}

be a uniformly bounded sequence in M. Then p(^4^yl„)—>0 if and only if

AHEP-^Q strongly.
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Proof. The proof will depend on the assertion (*): there exist mutually

orthogonal projections Pn in M and vectors x„ and yn in § such that E

= X)» Pn, Pnyn = Xn, and the additional relations p(APn) = (Axn, yn), p(A*A)

^myn||2 hold for all n and all A in M.
To prove (*), we apply Theorem 1 exhaustively to obtain mutually

orthogonal projections Pn and vectors x„, with Ep= X^» P» and Pnx„ = x„,

satisfying the relations ppn=cûXr%(M). For each n, define a linear functional/„

on the manifold Mxn by the equation fn(Axn)=p(APn); since |p(ylP„)|2

ííp(/)|]vlxn||2, /„ is well defined and bounded. By extending/„ to [Mx„] and

applying the Riesz lemma, we can choose a vector y„ in [Mx„] such that

/„(^4x„) =(Axn, y„). Next, choose a sequence {5„,¿j in M such that lim¿ Sn,%xn

=y„. Applying the Schwarz inequality, we obtain | 04y„, ^4y„)|2 =

\imi\p(A*ASn,iPn)\ 2Sp(A*A) (lim,p(Pn5*^*^5„.,Pn)) =p(A*A)(Ayn,Ayn).
Therefore, ||^43in||2^p(^4*^4), and assertion (*) is proved.

Suppose now that p(A*Ai)—*Q, for some uniformly bounded sequence

{.4»} in M. It follows by (*) that A{yn—*0, for each n. Since the Ai are uni-

formly bounded, it follows that A(z—>0, for each vector z in the subspace

[M'y„]. And by the same token, it follows that Ai—»0 strongly on the sub-

space 2„© [ilf'yn]. Let Q be the projection on this subspace. For each

», we conclude from (*) that p((I-Q)Pn) =0. Therefore (p(I-Q))2

= (p((I-Q)(I- En-i Pn))Yûp(I-Q)p(E9- XXi-P») for each N, and since
limjv p(Ep— X^n-i Pn)=0, we conclude that p(I— Q)=0. This shows that

Q^EP, and we have proved that vl¿Ep—K) strongly.

Conversely, suppose that AiE„—>0 strongly. If we choose the projections

Pn in (*) and write Qn= X^n=i Pn, it follows explicitly that lim¿ p(A*AíQn)

= 0, for each N. But since the Ai are uniformly bounded, there exists a con-

stant K such that \p(A*Ai)-p(A*AiQN)\2^Kp(I—Qif),îor alliand N. It is
trivial to conclude that lim, p(^4f^4¿) =0. The lemma is proved.

Using the fact that a strongly convergent sequence is uniformly bounded,

we obtain the following corollary to Lemma 2.3: a state of a er-finite W*-a\ge-

bra is CA if and only if it is strong sequentially continuous.

3. On cyclic projections in IF*-algebras. The crux of the duality theory

for factors, as treated by Murray and von Neumann in [8, p. 174 et seq.],

rests in the following (profound) question: given a W*-algebra if on § and

a vector x in §, does each vector y in the subspace [Mx] have the form Tx, T

being a closed densely-defined operator belonging to M ? A partial (and effec-

tive) answer is obtained by these authors [loc. cit. Lemma 9.2.1]: in any

event, an arbitrary vector y in [Mx] has the form y = BTx, where B is a

bounded operator in M and T is a closed densely-defined operator belonging

to M. Descriptively, we shall call this result the "BT-Theorem," and the

first result, when valid, the "T-Theorem" for [Mx].

As it develops, this very question is the crux of the Radon-Nikodym

theorem in the cyclic case, p<wx(M). In fact, the theorem "wv<(jox(M) im-
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plies <>}y=o)TX(M), for all such y" already implies the T-Theorem for [Afx].

By means of the BT-Theorem and a trace argument, one can easily show

that the finiteness of the projection E\mx] in M' is sufficient for the validity

of the T-Theorem for [Mx]. In this section, we prove (in Theorem 2) that

the finiteness of E[mx\ is also necessary for the strict validity of the T-Theorem

on [Afx], or even on [Af'x]; and in turn, that this is necessary and sufficient

for the validity of the Radon-Nikodym theorem in the cyclic case, for either

M or M'. Our proof, incidentally, makes no use of the trace, but does depend

in part on techniques of Murray and von Neumann.

Notation 3.1. Let M be a FF*-algebra on §. We recall first some con-

cepts from the dimension theory for M (see [6] and [8]). By a partial isometry

V in M we mean an operator in M such that both V* V and VV* belong to

Mp; the range of V* V is called the initial domain of V, and the range of VV*

is called the terminal domain of V. Two projections P and Q in M are called

equivalent mod M (symbolically, P~Q (M)) if there exists a partial isometry

Fin If such that V*V = P and VV* = Q. If only VV*^Q, we say then that

P is equivalent to part of Q mod M, and write P<Q (M). It is known that

P<Q (M) and Q<P (M) together imply P~Q (M). A projection P in M is

called finite if P is not equivalent mod M to any projection Q<P, infinite if P

is not finite, and purely infinite if there is no finite projection Q in M less

than P. The TF*-algebra M itself is finite, infinite, or purely infinite accord-

ing as the identity / in M is finite, infinite, or purely infinite.

A closed densely-defined operator T on ÍQ is said to "belong to M" (sym-

bolically, Tr¡M) if TU= UT, for each unitary operator U in M'. (The fol-

lowing criterion is often useful: if Mq is any strongly dense subalgebra of M',

then a closed densely-defined operator T belongs to M if and only if TA ^>A T,

for each A in M'0.) Throughout our work, we shall denote by C(M) the col-

lection of all closed densely-defined operators on § belonging to M. An im-

portant technique in treating elements of C(M) is the polar decomposition:

each T in C(M) can be written in one and only one way as a product VH,

where II is a (possibly unbounded) non-negative SA operator in C(M), and

where F is a partial isometry in M with initial domain = [Range H] and

terminal domain = [Range T].

We shall now formally describe the concept involved in the T-Theorem.

Definition 3.1. Let M be a IF*-algebra on § and z a vector in ¿p. A

vector x is integrable (M, z) if there exists a T in C(M) such that x = Tz.

(Necessarily, of course, x£ [-Mz].) More generally, a state p of M is called

integrable (M', z) if there exists a vector x integrable (M', z) such that p

=o,x(M).

For ad hoc reasons, the term "square-integrable" might be preferred.

Consider, for example, a maximal abelian W*-algebra M and a normalized

cyclic vector z for M; by one form of the spectral theorem, we know that M

is isomorphic to the space of all continuous functions C(X) on some compact
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hausdorff space X. Viewed as a state of C(X), uz induces a regular probabil-

ity measure p. on X, and it is easily seen that [Mz] is unitarily equivalent

to L2(X, n).
A vague point in Definition 3.1 is cleared up by the following lemma,

which shows that x integrable (M', z) and <t>y = a>x(M) imply that y is also

integrable (M', z).

Lemma 3.1. The vector x is integrable (M', z) if and only if there exists a SA

operator H in C(M'), with [Range H]C. [Mz], such that ux=uHz(M).

Proof. Assume first that x is integrable (M', 2), so that x = Tz, for some

T in C(M'). Since both TEiMz\ and its adjoint (TE[mz))*12Eimz]T* are

densely-defined, the operator TE[Mz) has a closed extension T, which ob-

viously belongs to M' and satisfies x = Tz. Applying the polar decomposi-

tion, write T= VH, H being a SA operator in C(M') and V a partial isometry

in M' with initial domain = [Range H\. We have VH = VHE[Mz], so

V*VHE[mz]—HE[mz]=II, and hence (HE[Mz])*=E[Mz]H = H; in other

words,  [Range 7i]ç[Mz], and obviously, 0}x—(aHz(M).

Conversely, if 03x=o¡[¡z(M), we must show that x—Tz, for some T in

C(M). Now, the fact that ||.4x||2 = ||.<4iZz||2, for all A in M, implies that the

operator V0 defined on the manifold M(Hz) by the equation Vo(AHz)=Ax

(A in M) is isometric. Obviously, Vo extends to a partial isometry V in M'

with initial domain [M(Hz)] and terminal domain [Mx]. Let T= VH. It is

easy to verify that J'GC(M'), and by definition, x = Tz.

The next two lemmas are patterned after the Murray-von Neumann

proof of the BT-Theorem (and involve ideas due originally to Friedrichs).

Though we could obviate these lemmas by alterations later on, they have

some independent interest. In particular, Lemma 3.2 already yields the

Radon-Nikodym theorem in the cyclic case for a maximal abelian ring, it

being easy to convert the prescribed convergence condition into the usual

absolute continuity relation.

Lemma 3.2. A state p of the W*-algebra M is integrable (M', z) if (and only

if)t for each sequence {An} in M with the properties that lim„ Anz — 0 and

limn,TO p((An—Am)*(An — Am))=0, it results also that lim„ p(A*An) = 0.

Proof. Define a bilinear form Q(Az, Bz) on the manifold Mz in § by setting

Q(Az, Bz) = (Az, Bz)+p(B*A). The properties of the state p and the original

inner product ( , ) on § together imply that Q( , ) is an inner product. Let

ÍSR denote the completion of Mz in this new inner product. We see, by our defi-

nition, that there is a natural mapping </> from 9Jc in £>, defined as follows: if a

vector £ in aft is a limit (in the new inner product) of a sequence {^„z}, then

(/>(£) =lim„ A„z (in the original inner product). In this context, as the reader

can easily check, the convergence condition on p is equivalent to the follow-

ing condition: the natural mapping $ is one-one. In what follows, therefore,
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we can identify 9)2 with <p(ÏBl) (£[Afz]). The new norm (Q(x, x))1/2 of an

element x in 9)2 will be denoted ||x||0, and the (original) norm of any x in §

will be denoted ||x||.

By virtue of the inequality | (y, x)| ^||y||0||x||, for any x in [Mz] and y in

9JÎ, we see that/(y) = (y, x) is a bounded linear functional on 9J?. According to

the Riesz lemma, there exists a unique x* in 9Jc such that (y, x) =Q(y, x*),

for all y in 9Jc. We assert that the operator H defined on [Mz] by the equa-

tion Hx — x* is bounded and positive SA; in fact,

(Hx, y) = Q(x*, y*) = Q(y*, x*) = (x, Hy),

so II is symmetric, and (Hx, x) =Q(x*, x*) =0, x* being 0 only if (y, x) =0,

for all y in 9}?, or consequently, only if x = 0, so H is positive ; and the assertion

follows from the fact that an everywhere defined symmetric operator is

bounded SA.

We prove next that H(Ax) =A(Hx), for all A m M and x in [Mz], or

what is the same, that (^4x)*=^4x*. Observe that 9JÎ reduces M; in fact, if

\An\ is p-cauchy (in the sense that lim„,m p((^4„ — Am)*(AH — Am)) =0), then

so is |^4^4„}, for each A in M—as follows from the inequalities

Kp((An-Am)*(An-Am))^p((An-Am)*A*A(An-Am)), K being a constant

so chosen that KI^A*A—therefore, if {Anz} is ||0-cauchy, so is

{A A nz}; likewise if {¿4„z} and }5„z} are ||o-equivalent, then so are {^4^4„z}

and {^42?nz} ; and these two facts obviously secure our assertion. By similar

reasoning, we see that the contractions of A and A* to 9JÎ are ||0-bounded.

Now, by definition of Q( , ), Q(ABz, Cz)=Q(Bz, A*Cz), for all A, B, C in
M. Therefore, by continuity, Q(Ax, y)=Q(x, A*y), for all x and y in 9JÎ.

Using this fact, we have Q(y, (.4x)*) = (y, Ax)=(A*y, x)=Q(A*y, x*)

= Q(y, Ax*). Therefore, (^4x)*=.4x*, as asserted.

Being a positive SA operation on [iWfa], H will have a positive SA inverse

H~l on [Mz]. Notice that H~l*%I (really, ElMz]) on Domain H~l = Range H,

because (H~1x*, x*) = (x, x*) =Q(x*, x*) è (x*, x*). Therefore, by the spectral

theorem, (if-1 —I) has a positive SA square root T on [Mz], and Domain

T2 = Domain (H~l — I) = Domain H~l. Also, since F is a baire function of H,

and since H commutes with all elements of M on [Mz], it follows likewise

that A Tx= TAx, for all x in Domain T and all A in M.

Choose a sequence |x„} in Range H which converges to z in the ||0-norm

(noting that the range of H is ||o-dense in 93Î). These vectors x„ G Domain T2

£Domain T, and we have (T(xn — xm), T(xn — xm)) = (xn — xm, T2(xn — xm))

a closed operator, this implies z G Domain T and limn Txn = z. Therefore, on

the one hand, lim„ (ATx„, Tx„) = (ATz, Tz), and on the other hand,

lim„ (yirxn, 7x„)=lim„ (TAxn, Z'x„)=lim„ ((Axn, H~lxn) — (Axn, xn))

= lim„ (Q(Axn, x„) — (^4xn, x„))=Q(Az, z) — (Az, z)=p(A). It results that

P=utz(M). Finally, by setting T = 0 on the subspace §©[ikfz], we obtain
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rGC(M'), and the proof is completed.

Lemma 3.3. Let {p,} be a sequence of states of the W*-algebra M which

are integrable (M', z) and which satisfy XXi P»(-0 < °°- Then the state p of M

defined by the equation p(A) = XXi P»C<4) ** itself integrable (M', z).

Proof. It will suffice to prove that p satisfies the convergence con-

dition of Lemma 3.2—that is, assuming that lim„ A„z = 0 and

lim„,m p((An — Am)*(An — Am))=0, for some fixed sequence [An] in M, to

show that lim„ p(A*An)=0. Consider such a sequence. As follows easily

from the Schwarz inequality, p(A*An)^p(A*Am)+p((A„ — Am)*(An — Am))

+2[p(A*lAm)p((An-Am)*(An-Am))]l'\ for all m and n. This shows that

the numbers p(^4*^4„) are uniformly bounded, and moreover, that if some

subsequence of the p(A*An) tends to 0, then so does the original sequence.

We shall exhibit such a subsequence.

By definition, we may write pj=wBl(M) for each i, where y¿ is a vector

integrable (M', z). Now, extract a subsequence [Bn\ of the {An\ such that

||-Bny¿||2^ 1/2*, whenever i^n. We shall prove, by an indirect argument,

that lim„ p(B^Bn) = 0. Suppose that there exists a S>0 with the following

property: given A7, S< XX ff ll^n^'ll2! f°r a^ sufficiently large n. Then, for
each n sufficiently large, there exists a least integer M„ such that 8/2

= XX"ff II-^»y»!!2- We assert that n can be chosen so that Mn^n; in fact,

otherwise XXff ||-S«3'í||2<8/2, for all n sufficiently large, so XX» ll-S»3'¿||2
>S/2; but this is impossible, since lim„ XX» ||^«y¿||2 = 0 (as °ne

sees by choosing m and k properly in the inequality XX» ll^y«'!!2

= 2[XX-i ||(5»-5„)y,-||í+El1»||Bmy<||»],validforaIl*á»). This being so,
one can therefore construct a divergent series XXi ll-^*«)^'!!*» in which the

index <p(i) is not less than i, for each i. This is a contradiction, however, by

virtue of our choice of the subsequence \Bn} ■ Therefore, no such S exists, and

given any e>0, we can find an N such that XXff ||-Sny»||2<e/2, for some n

arbitrarily large. Moreover, XXi H-S^ijl2 <e/2, for n sufficiently large, as fol-

lows from our assumption that each y i is integrable (M', z). Therefore, for

such n, p(B*Bn)= XXi ||-#»yi||2<e, completing the proof.

Both the T-Theorem for [Mz] and the Radon-Nikodym theorem in the

cyclic case p<coz(M) hinge on the existence of certain duality relationships

between [Mz] and [M'z], as described in the following (fundamental)

lemma; in Theorem 2, we correlate these notions with the dimension theory.

In stating this lemma, by the dual of a condition on a IF*-algebra M we shall

mean the same condition stated for the commutant M' of M.

Lemma 3.4. The following conditions on a W*-algebra M and a vector z in

§ are equivalent:

(1) If Q' is a projection in M' satisfying O^Q'<ElM,h then [M'Q'z]

C[M' z] properly;
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(2) If Q' is a projection in M' satisfying O^Q' ^E[Mz], then there exists a

projection Q in M such that [MQz] = [MQ'z];

(3) If x is integrable (M', z) and if ù3y<g.ù)x(M), then y is integrable (M', z);

(4) Each vector in [M'z] is integrable (M', z) ;

(5) If p is any CA state of M satisfying p<cûz(M), then there exists a

vector x integrable (M', z), such that p=cox(M);

and each of the dual conditions (1'), (2'), (3'), (4'), and (5').

Proof. The scheme of proof runs as follows: we show first that (1) implies

(2); thereupon, we demonstrate the equivalence of (2), (3), (4) and their

duals; next, these are proved equivalent to (1) and (1'); and finally, the

equivalence of these conditions with (5) and (5') is proved.

(1)—>(2): Observe first that (1) implies the following condition (*): for

any nonzero projection Q' in M' satisfying Q'^E[mZ], there exists a projec-

tion R in ikf such that Rz^O and Q'Rz = Rz. In fact, the projection R' = E[Mz]

— Q' is (strictly) less than E\mï\, and so by (1), the projection R on [M'z]

0[M'R'z] is nonzero. Hence Rz^O and Rz-Q'Rz = RR'z = 0, as desired. We

prove in turn that (*) implies (2).

If Q' =0, we put <2 = 0. Otherwise we define Q by the following transfinite

induction. Let Q\ be any projection in M such that QiZ^O and Q'Q\Z = Q\Z

(by (*)). So then, [MQlZ]Q [MQ'z]. Suppose that Qa is defined for all a<d

with the properties that the subspaces [Af<2«z] are non-null, mutually

orthogonal, and contained in [MÇ'z]. Let R¡ be the projection on /.a<6

© [MQaz]. If Q'-Ré =0, then Q, is not defined. Otherwise, apply (*) to the

projection Q' — R¡ in place of Q' to obtain a projection 0> in M such that

Qez¿¿0and(Q'-R¿)Qez = Qez. Itresultsthat [MQtz]ç\M(Q'-R¡)z] = [MQ'z]
© 2Za<«ffi [MÇcz], so therefore [M<2«z] is orthogonal to the subspaces

[AfÇ„z], for a<6. Since the projection [MÇ'z] is cr-finite, we can enumerate

the Qa so defined, and it follows that [MQ'z]=^,„®[MQanz]. Let Q

= V„<2«„. Since [MQanz]Q [MQz] for all n, we have [MQ'z]^ [MQz]. On the

other hand, Q'Qanz = Qanz, so that (Qa„)(I — Q')z = 0, for all n. Hence

(QaiV • • ■ VQan)(I-Q')z = 0, for all n. Hence (I-Q')Qz = Q(I-Q')z = 0, so
(I-Q')[MQz]=0. Therefore, [MQz]ç[MQ'z], so that equality follows,

proving (2).

(2)—>(3): By Lemma 3.1, we can assume that x = Hz, where H is a SA

operator belonging to M' with [Range//]£ [Mz]. By Lemma 2.2, ù}v=03ax(M),

for some bounded operator A in M'. Again by Lemma 3.1, we can assume that

A is bounded SA with [Range ^4]£ [Afx](£ [Afz]). Condition (3) will clearly

follow if we can prove that the linear operator AH has a closed extension.

We shall prove first that P'H has a closed extension, where P' is any pro-

jection in M' such that P'^E[Mz]- To do this, it will suffice to prove that

(P'H)* = HP' is densely defined. In turn, since P'§ = P'[Mz]=[MP'z],

it will suffice to prove that the manifold (Domain H)C\[MP'z] is dense in
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[MP's]. Using condition (2), choose a projection P in M such that [MPz]

= [MP'z]. Since zGDomain H, and since HGC(M'), the manifold MPz is

contained in Domain H. Therefore, (Domain II)i\[MP'z]'^MPz, which is

dense in [MP'z]. It follows that P'H has a closed extension (in C(M'), of

course).

Turning to the general case, we shall show that AH satisfies the following

obvious criterion for the existence of a closed extension: if }x„| is any se-

quence of vectors in Domain AH such that xn—*0 and AHxn-^>y, then neces-

sarily y = 0. To this end, let 9Jî= [v in [Mx]| j4z> = 0], and let P = EiMx] — Pan-

It is easy to see that PG(M')P and that PA =AP. Furthermore, let E(\) be

the spectral resolution of A and let 8„ denote the interval (— °o, — i/n)

KJ(l/n, +oo). Set An=f,„ \d(PEx) and En=fSnd(PEx). It follows easily

from our definitions that An has a bounded inverse on P„§ and that V„Pn

= P[Eange a] (Q[Mz]). Now then, if lim,- AHxi = y, then lim¿ An(EnH)Xi

= Eny, so that limj (E„H)xi=A~1Eny. Since EnH has a closed extension, by

the preceding paragraph, it is easy to conclude that An1Eny = 0. Therefore,

£„y = 0, for all n, so that y = £[Range A]y = 0. Condition 3 is therefore estab-

lished.

(3)—>(4): The BT-Theorem as cited above can be stated as follows:

given y in [M'z], there exists an x integrable (M', z) such that o}y<s.ü)x(M).

According to (3), this means that y is itself integrable (M', z).

(4)—K2'): In fact, let Q be a projection in M satisfying O^Q^Ewz].

By dualizing the proof of the implication (1)—>(2), we see it will suffice to

exhibit a projection R' in M' such that R'z^O and P'zG [M'Çz]. Now, the

vector <2zG [M'z], and it is therefore integrable (M', z) by assumption.

We write Qz = Tz, for some T in C(M'), and observe that ATzG [M'Qz], for

each A in M'. If T= VH is the polar decomposition of T, then also A Hz

G [M'Qz], for each A in M'. But, by the spectral theorem, we can obviously

choose an A in M' with the property that AHz = R'zPá0, R' being some pro-

jection in M', and for such an A, we also have (A V*)Tz = R'z. The implica-

tion is verified.

By duality, it now follows that (2')-»(3')->(4')-*(2). We shall complete

the first part of the proof by showing that conditions (2), (3), (4) and their

duals imply (1) and (1').

Suppose that (1) fails. Then there exists in M' a projection Qó, Q¿ <E[M¡],

such that [M'Ço'z]= [M'z]. Now if condition (2) holds for the vector z, it

obviously holds for the vector QÓ z and projections Q'^Ql. Moreover, each

vector in [M'Ço'z] will then be integrable (M1, Q¿z). Since we are assuming

that zG [M'<2o' z], we have z = T(Q¿z), for some Pin C(M'). Furthermore,

(7—Ço')2 is a nonzero vector in [Mz], and we can choose a sequence \An} in

M such that\imn Anz = (I—Qó)z. We have \imnAnQ¿ z = 0 and lim„ P(^4„Ç0'z)

= (I—QÓ)z. Since Pis assumed to be closed, we must also have (I—Qo)z = 0,

a contradiction. Therefore, (2)^(1), and dually, (2')->(l') (->(2')).
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It is obvious that (5)—»(4). We shall complete the proof by showing that

(3)—>(5). We shall assume for convenience that the CA state p is normalized.

First, we prove an assertion (**) : given n mutually orthogonal projections

Pi, • • • , Pn in M with the property that each state ppi is integrable (M', z),

then the state p(p1+...+pn) of M is itself integrable (M', z). In fact, let r

= 2j?„i pp:(M), and write R = Pi-\- ■ ■ ■ +P„. By Lemma 3.3, r is integrable

(M', z). The assertion (**) will follow from (3) if we show that pr<íCt(M).

In turn, this will follow if we show that ps(v4)^[£Xi (pP<(A))112]2, for

each non-negative SA A in M. But, for such an A, pR(A)= £)*=i Pr(APí)

áaiJpS((41'!)(i1'!Pi))|áMi)]1'2[ZLI (p(PiAPi)y'2], by the

Schwarz inequality, and the desired inequality follows.

Next, we show there exists an increasing sequence {Qn} in Mp such that

Ep= YlnQn, p(I—Qn) = 1/4", and Pi.Qn+l-Qn) is integrable (M', z), for each n.

To see this, apply Theorem 1 exhaustively to obtain a sequence {Pn} in

Mp such that E„= ^» Pn and pPn=o3Xn(M), for some vector x„ in [ikf'z].

By (4), which is implied by (3), the pPn are integrable (M1, z). Now, choose

an index nx such that p(I— (Pi+ • ■ • +P»1))í£l/4, and set Çi=Pi + • • ■

+Pni. Then, choose an index m2 exceeding wi such that p(J—(Pi+ • • •+PB2))

i£l/42, and set Ç2 = Pi + • • • +Pnr Proceed in this fashion to define the

Qn. Now, P(Qn+1-Qm)=P(P„m+l+---+rnm+1), and by the assertion (**), this state

is integrable (M', z).

Finally, let R„ = Qn — Qn-i when n^2, and Ri = Qi. We have p(Rn)

gp(I-<2„)+p(/-<2n-i) ^5/4", so that X« 2npRn(I) < oo. But the states

2"Pä„ are integrable (M', z) by construction, and we may therefore apply

Lemma 3.3 to conclude that the state X= 23„ 2npn„(M) is itself integrable

(M', z). We assert that p<5CX(M). In fact, consider any non-negative SA A

in M such that X(^)^l. It follows that [pRn(A)]^2^\(A)/(21'2)n. Putting

K= ZXi [l/(21/2)]n, we conclude from the inequality in (**) that p0„(^4)

^K2\(A), for all n. Therefore, since p is strong sequentially continuous,

p(A)^K2\(A). In other words, p<g\(M). By condition (3), p is integrable

(M', z), as desired. This completes the proof of Lemma 3.4.

Notice that the various conditions of this lemma are properties of z and

M, and not of the subspace [Mz] ; a priori, condition (1) for z need not imply

(1) for an arbitrary vector x such that [Mx] = [Mz]. The hypotheses of

Theorem 2 are set to avoid this difficulty.

Theorem 2. The following conditions on a W*-algebra M on !q and a vector

z in § are equivalent:

(A) The projection E[mZ] in M' is finite;

(B) If x is any vector in [Mz] and if y is any vector in [Mx], then y is

integrable (M, x) ;

(C) If x is any vector in [Mz], and if p is any CA state of M' in the relation

p<wx(M'), then there exists a vector y integrable (M, x) such that p=íoy(M');

and each of the dual conditions (A'), (B'), and (C).
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Proof. The equivalence of (B), (C), (B'), and (C) follows from Lemma 3.4.

In proving the equivalence of (A) and (A') (a result announced by Kaplansky

in [5]), we shall make use of the following key corollary to the BT-Theorem

(see [8, p. 178]): for any vectors x and y, E\Mx\<E[My\ (M1) implies E\wx\

<E[M'v\ (M).

First, assume that the condition (1') of Lemma 3.4 holds and that E[Wz]

is infinite. There will exist then a partial isometry V in M and a projection

Q<E[M>z] such that V*V = E{M<z\ and VV* = Q. As is easily seen, [M'Qz]

= [M'Vz]. Using the above corollary to the BT-Theorem, we see this implies

that E[mqz]~E[mvz] (M'). Since (1')<-»(1) in Lemma 3.4 and since [MFi]

= [Mz], we must have E[mi.qz)] <E[mz]- Therefore, the projection E[Mz] in

M' is infinite also. By duality, if E[Mz\ is infinite, then so is £[Vi}- Hence, as-

suming condition (1'), E[Mz] is finite if and only if E[m-z] is finite. On the

other hand, assume that condition (1') is violated. Then, for some Q<E[Wz],

[MQz]= [Mz]. As before, this implies that E[M'z]~Q (M), so that EiM>z] is

infinite. Since (1) is also violated, E[mz] is likewise infinite. From this argu-

ment we can draw two conclusions: that conditions (A) and (A') are equiva-

lent, and that either of these conditions implies condition (1) of Lemma 3.4.

Again by Lemma 3.4, it is easy to conclude that either (A) or (A') implies

(B).
To complete the proof, we must show that (B) implies (A) (or the dual

(B') implies (A')). We shall do this by assuming that the projection E\m>z\ is

infinite and that (B') holds and showing that these assumptions together

lead to a contradiction. In what follows, we shall write E[Wz\ =R and denote

by V and 5 respectively a partial isometry in M and a projection in M

suchthat V*V=Rand VV* = S<R.

Consider the three subspaces [yG§| ((I— V)x, y)=0, for all jcG§],

[;yG§|y= V*y], and [yGC>|3'= Vy]. We assert that these subspaces coin-

cide. In fact, [y|((7— V)x, y)=0]=[y\y=V*y]Q[y\Ry=y and Vy = Sy].

Now, if y belongs to the latter set, then ||5y||2 = || Fy||2 = ||y||2 = ||(J-5)v||2

+||Sy||2, so (I—S)y = 0 and Vy = Sy=y. Therefore, this set is contained in

[y\y = Vy]. But, in turn, it is easy to see that [y|y= Fy]ç [y\y = V*y]. The

assertion is proved.

The projection F on [y\ Vy=y] is in M, since this subspace reduces M'.

It is easy to see that (V—F) is a partial isometry in M with initial domain

(R—F)Q and terminal domain (S—F)&. Moreover (V—F) has no fix points.

Therefore, if V has fix points, we can replace the projection R by the pro-

jection E[m'(r-f)z], the projection 5 by the projection S—F, and the partial

isometry V by the partial isometry V—F—this, without altering our as-

sumption, (B') and not (A')- Accordingly, we shall assume that F has no fix

points.

In this event, (7— V) has dense range in §, for [y| ((7— V)x, y) = 0, for

all x in ^]=0. There exists, therefore, a closed symmetric operator H in
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C(M) of which V is the Cayley transform; one has H=i(I+ V)(I— V)~l, and

Domain 11= Range (I— V). So the vector x = (/— V)z belongs to Domain H.

We show next that [M'x] = [M'z] and that (Domain H)C\[M'(R-S)x] =0.

In fact, if y G [M'z]o [M'x], then ((/- V*)y, M'z)=0, so y = V*y; because V

(and therefore V*) has no fix points, this means that y = 0. Also, if

(i-F)y<G (Domain H)r\[M'(R-S)z], then (J-P)y=0 and (I- V)y

= (R-S)(I- V)y = (I- V)y-S(I- V)y, so that Sy= Vy. As we have seen

above, this implies that y= Vy, so then y = 0.

We are now in a position to get a contradiction. Since (B') holds, so must

condition (2') of Lemma 3.4 hold for the vector x. Now, the proof of the

implication (2)—>(3) in Lemma 3.4 gave rise to the following fact: if P is

any projection in M less than E[M>X], and if T is an element of C(M) whose

domain contains x, then (Domain T)C\[M'Px] is dense in [M'Px]. In the

present case, we take for P the projection R — S and for T the operator H.

By the preceding paragraph, (Domain H)C\[M'(R — S)x] =0, a contradic-

tion. Theorem 2 is proved.

Notice that, in condition (C) of Theorem 2, the vector y such that

p—Uy(M') can be chosen alternatively as a vector integrable (M', x); this

fact follows readily from (B') and Lemma 3.1.

Theorem 2 puts a definite limitation on the class of I4T*-algebras for

which the Radon-Nikodym theorem will hold without further restriction on

the CA states involved—this, as long as one insists on having closed operators

for the Radon-Nikodym derivatives. As we see, the amenable lF*-algebras are

those in which all cyclic projections are finite. Unfortunately, besides purely

infinite rings, this excludes even certain factors in the pairing (II«,, llx). A

partial Radon-Nikodym theorem does hold in the cyclic case, however, for

the class of PF*-algebras containing no purely infinite projections; by drop-

ping integrability conditions, we prove in the corollary to follow that at least

the topological part of the Radon-Nikodym theorem remains valid for such

algebras.

Corollary 3.1. Let M be a cr-finite W*-algebra on ÍQ. There exist in M two

orthogonal central projections Ne and Ni with the properties that Ne-\-N{ = I, TV,-

is (maximal) purely infinite, and each projection P in M less than Ne is the union

of an increasing sequence of finite projections. Moreover, if x is any vector such

that NiX = 0, and if p is any CA state of M in the relation p<ux(M), then

there exists a vector y in [M'x]C\ [Mx] such that p =u,,(M).

Proof. We call two projections P and Q in M parallel, and write P\\Q, in

case there exists a central projection separating P and Q—that is, a projec-

tion N in MC\M' such that NP — P and NQ = 0. Given any two projections

P and Q in M, according to a theorem of Dixmier [3, Theorem 6] (which was,

effectively, first proved by Maeda [7]), there exists a central projection N

such that PN is equivalent to part of QN mod M, and (I—N)Q is equivalent
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to part of (I — N)P mod M. In other words, if two projections are not parallel,

then part of one is equivalent to (a nonzero) part of the other.

If a projection Q is purely infinite, then so is the minimal central projec-

tion Nq with the property that NqQ = Q. In fact, it is obvious by the Dixmier

criterion that any finite projection P in M will necessarily satisfy P\\Q. If

Nq were not purely infinite, there would exist by definition a nonzero finite

P^Nq. This and the fact that P\\Q would contradict the minimality of Nq.

Assume that there exist purely infinite projections in M. It follows that

there exist purely infinite central projections. Let {N„} be a maximal se-

quence of mutually orthogonal purely infinite central projections (^0), and

let Ni= ^2nNn. The projection A7,- is purely infinite, for if P is any finite

projection satisfying P^N, then necessarily PA7„ = 0 for all n, so that

P= X^n PA7n = 0. We assert that A7,- is actually the maximal purely infinite

projection in M; in other words, we assert that NtQ = Q, for any purely in-

finite projection Q in M. To prove this, it suffices to show that N(Nq = Nq,

with Nq defined as above. But it is easy to see that Nq — NqNí is either 0 or

purely infinite. The last possibility is ruled out by the maximality of A7,-. There-

fore, a unique maximal purely infinite projection exists, and this projection is

central.

Define Ne = I — A7,-, and let P be any projection in M satisfying P^Ne. It

follows by construction that there exists a finite projection Pi^P. By exhaus-

tion, there exists a sequence {Pn} of mutually orthogonal finite projections

in M such that P= XZ» Pn- By a theorem of Kaplansky [6, Theorem 6.2],

the (lattice) union of a finite number of finite projections in any IF*-algebra

is itself finite. Therefore, XXi Pi1S an increasing sequence of finite projec-

tions in M whose union is P. The first part of the corollary is proved.

We consider now a vector x such that A7,x = 0 and a CA state p of M in

the relation p<ux(M). It follows that NeE[wX] = E[m'x\, so we may choose

an increasing sequence {P»} of finite projections in M whose LUB is E[M'x]-

It is clear that pPn<uPnX(M). Therefore, by Theorem 2 (and the remark

following Theorem 2), there exist vectors yn in [ii7nï] such that pPn

=o)Vn(M). In order to show that p=w¡,(M), for some vector in y [Mx] (and

necessarily in [M'x]), it will suffice to prove that a cauchy sequence {z„}

exists with the properties that w2n=w1,!1(M) and z„G[Mx]; the limit y of

such a sequence will trivially meet our requirements.

We construct such a sequence by induction. Put Zi=yi, and suppose that

Zi is defined for tg« and satisfies the conditions wZi = u„,.(M), z,G [Mx], and

PjZi = Zj whenever i^j. We define zn+\ as follows: by definition of the y„,

0}PnVn+l=uVn=03zn(M); as in Lemma 3.1, it follows that there exists a partial

isometry V in M' with initial domain [MP„y„+1] and terminal domain [Mzn]

such that V'(Pnyn+i) =z„; now, the projection R=E[My„+t]\/E[Mz„] is finite,

being the union of two finite projections, and the projections E[MPnVn+1) and

EiMzj are equivalent mod M and less than R; by a well known property of
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finite projections, it follows that the projections R — E[MPnSn+l] and R — E[mz„]

are likewise equivalent mod M; on these grounds, we can enlarge the initial

domain of the partial isometry V defined above so that V will satisfy the

additional condition (V')*V'= V'(V')* = R; this being done, we set zB+i

= F'y„+i; it results that Uzn+i = <¿v'V„+1 = (*>yn+1(M) (since (V')*V =R) and

that P„Zn+i= V'(Pnyn+i) =z»; this completes the construction. To conclude,

we shall show that the sequence {z„} so defined is cauchy. In fact, if n^m,

tnen   \\Zn      Zm\\    ~\Zn,   Zn)   I   \Zjn,   Zm)       \-inZm,   Zji)        \Zn,   -LnZm)        \Zm,   Zm)        \Zn,   Zn)

=p(Pm) —p(P„), which tends to 0 with n and m. This proves the corollary.

4. A structure theorem for finite rings. The identity J in a cr-finite finite

IF*-algebra M can be expressed in many ways as a sum ^n E[m'x„\ of mu-

tually orthogonal cyclic projections in M. It is a question of some importance

in the study of finite PF*-algebras to determine when the identity can be

expressed as a finite sum of cyclic projections. While this property is realized

in the "extreme" examples of finite TF*-algebras, factors, and cr-finite abelian

IF*-algebras, examples show it is not realized in all finite PF*-algebras (a

fact leading to some topological anomalies, as we shall see in §5). Precise

criteria are developed below for the existence in a finite I/f/*-algebra of a finite

number of cyclic projections whose union is the identity (see Lemma 4.4).

The main result (Theorem 3) is a fragment of the multiplicity theory for finite

rings: any cr-finite finite W/*-algebra is invariantly expressible as a direct sum

of finite PF*-algebras, all central projections in a given summand being the

union of the same minimal finite number of cyclic projections. This fact en-

ables us, in later work, to treat these summands as the generic case.

Definition 4.1. A lF*-algebra M is essentially finite if each cyclic projec-

tion in M (that is, each projection of the form E[wz\) is finite (in M).

Using Theorem 2, we see that the commutant M' of an essentially finite

IF*-algebra M is itself essentially finite.

Lemma 4.1. Let R be a nonzero a-finite projection in an essentially finite

W*-algebra M. Then there exists a cyclic projection Q in M, Q^R, which is

maximal in the sense that any cyclic projection (in M) less than R is equivalent

to part of Q mod M.

Proof. We show first that the LUB P of any increasing sequence {P„} of

cyclic projections in M and less than R is itself a cyclic projection. In fact,

choose vectors xn of norm 1/2" such that Pn = E[M'x„], and define p= ^„ o)x„.

Plainly, p is a CA state of M with the property that its carrier projection

EP=P. Moreover, pPri<aXn(M), and it follows by Theorem 2 that there

exist vectors y„ such that ppn=coVn(M). By the same argument used in the

proof of the Corollary 3.1, we see that the y„ can be chosen to form a cauchy

sequence and, of course, that the limit y of this cauchy sequence will satisfy

p=u)y(M). It is obvious that E[M'y] =£P(=P), therefore P is cyclic.

We prove next that, given cyclic projections P and Q (each being less than
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R), there exists a cyclic projection Q' in M such that Q^Q'^R and P

<Q'(M). By the comparability theorem of Dixmier cited above, there

exists a central projection N and a projection Pi^P such that NP■<NQ (M)

and (I—N)Pi=Pi'-^(I—N) Q (M). According to the latter equivalence, there

exists a partial isometry Fin M such that VPiV* = (I — N)Q. By a method

analogous to that used in Corollary 3.1, we see that F can be so chosen that

V*V=VV* = (I-N)P. After this alteration, we let Q' = NQ+ V(I-N)P V*.
Trivially, Q g Q' û R and P < Q' (M). That Q' is cyclic follows from the fact

that the sum of any two parallel cyclic projections is itself cyclic.

Finally, we construct a maximal cyclic projection ^R by transfinite in-

duction. Let {Pa}a<T be a well-ordering of nonzero cyclic projections ;£P

(obviously such exist). Define Qi = Pi, and suppose that Qa is defined for

a<6<r with the properties that Pa<Qß (M) and QauQß =R, whenever

a^ß<6. Let Q0=Va<eQa- By er-finiteness, this union can be replaced by a

countable union, and so by the first paragraph Q'e is cyclic. By the second

paragraph, there exists a cyclic projection Qe such that Çé = (?s = -^ and P«

<Qe (M). This defines Qe- Let ()= VaoC?«- Again by the first paragraph, it

follows that Q is a cyclic projection ^R. Moreover, by construction, if P

is any cyclic projection ¿R, then P<Q (M). This proves the lemma.

Definition 4.2. By a cyclic dissection of the identity (operator) 7 in a

IF*-algebra M we shall mean a (finite or countable) sequence {Pn\ of non-

zero mutually orthogonal cyclic projections in M with the properties that

7= X^n Pn and Pn is maximal cyclic (in the sense of Lemma 4.1) in

(7— XXV P>)> for » = 2, 3, • ■ • , and Pi is maximal cyclic in M. Two such

dissections {Pn\ and \Qn} of the identity in M are called unitarily equivalent

if there exists a unitary operator U in M such that UP„U* = Qn, for all n.

The length of such a dissection is the number (finite or ¿e) of P„ involved.

Lemma 4.2. Any o-finite essentially finite W*-algebra M has a cyclic dissec-

tion of the identity in M, and any two such dissections are unitarily equivalent

(and have, therefore, the same length).

Proof. The existence of such a dissection follows from Lemma 4.1 and

an obvious exhaustion argument. Suppose that {Pn} and {Qn\ determine

two such dissections of 7 in M. We shall prove there exists a unitary U in

M such that UPnU* = Qn, for all n.

The projections Pi and Qi must be equivalent, since each is maximal cyclic.

Therefore, there exists a partial isometry Fi in M such that V*Vi = Pi and

Vi V* = Qi. Now, if either P2 or Q2 is 0, then both are 0, for otherwise M would

contain an infinite cyclic projection. So we may suppose both are nonzero.

Again by [6, Theorem 6.2], the projection R = (Pi+P2)\/Qi is finite. As

before, R — Pi~R — Qi (M). This means that P2 is equivalent to part of

(I—Qi) mod M. Since this part of (7— QI) is then cyclic, and since Q2 is

maximal cyclic in (7 — Qi), P2 is equivalent to part of Q2. By symmetry
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(and the analogue of the Schroeder-Bernstein theorem cited earlier), P2 is

equivalent to Q2, and so there exists a partial isometry V2 in M such that

V*V2 = P2 and V2V2=Q2. Continuing inductively, one constructs for each

n such that P„^0a partial isometry F„ in M with V* Vn = Pn and VnV* = Qn.

The operator U= 2-mVn is obviously unitary, and it meets our requirements.

The proof of Lemma 4.2 shows, in fact, that any projection P in M has a

cyclic dissection, determined up to unitary equivalence.

Lemma 4.3. Let [Pi] be a finite or countable set of projections determining a

cyclic dissection of I in a W*-algebra M, and let Nn be the maximal central

projection = 2-Î-J ■'*<• Then, for each n, the projections (I— Nn)P\, ■ • ■ ,

(I — Nn)Pn are equivalent mod M.

Proof. It is obvious, of course, that the projections A7» exist, and plainly

Ni^Ntú • ■ • = A7n. As the basis of an inductive proof, we assume that the

projections (I—Ar„_i)Pi, • • • , (I—Ar„_i)P„_1 are nonzero and equivalent

mod M. Since (I— NH) s= (/ — Nn-i), it follows also that the projections

(I — Nn)Pi, ■ ■ ■ , (I — Nn)Pn_! are also mutually equivalent mod M. We may

assume they are nonzero (that is, P„+1^0).

Observe first that if N is a central projection and AfPn+i = 0, then N ¿N„.

To see this, write N = N(I- XXi -Pf)+iV(XXi p<)> and observe that it
suffices to show that N(I— ^?=i P,) =0, or what comes to the same, that

any cyclic projection R^N(I— ^"=i Ft) *s necessarily 0. Now, if R is such a

cyclic projection, it follows on the one hand that R is equivalent to part of

P„+i, by the maximality of Pn+i in (I — ^?_! Pi), and on the other hand

that P||P„+i, since NR = R and NPn+1 = 0. Clearly then P=0.

Since P„ is equivalent to part of Pn-i by definition, there exists a projec-

tion P¿^P„_i equivalent to P„ mod M. Observe that (P„-i — P'n)\\Pm+i; in

fact, if there exist equivalent projections R and R', 0<P':£ (Pn~\ — P„)

and R^Pn+i, then P„+P is a cyclic projection (being equivalent to P¿+P')

which satisfies P„<(P„+P) ^(7— YX-\ &à\ but tnis contradicts the

maximality of P„ in (/— ^Jlll Pi). Now, by construction, (I— Ar„)P„_i

> (7 - A^„)P„ > (Pn+i) mod M. Plainly, (I-Nn) (P„_! - P„)||Pn+i, so there exists

a central projection N' such that N'(I-Nn)(Pn^-P'n) = (I-Nn)(Pn^-P'n)

and N'Pn+i = 0. It follows by the second paragraph that N'^Nn, and we see

then that (I — Nn)(Pn^-P'n) =0. Recalling the definition of P'n, this says

that (I— Ar„)P„_i is equivalent to (I — NH)Pn mod M, completing the induc-

tion.

Definition 4.3. By the length of the identity I in a cr-finite essentially

finite IF*-algebra M, we mean the length m = », 1, 2, •••of any cyclic dis-

section of the identity I in M. We say that the identity in M is uniformly of

length »=«,1,2, • • • provided any nonzero central projection N in M has a

cyclic dissection of length n.

In these terms, as the reader can easily verify, the identity in any finite
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factor is uniformly of length n, for some finite n, and the identity in any

er-finite abelian IF*-algebra is (uniformly) of length 1.

At this juncture, we derive a minimax criterion which gives explicitly the

length of the identity in any er-finite finite PF*-algebra M. By a finite dimen-

sion function D on M we shall mean a real-valued function defined on the

collection MP of projections in M, and subject to the following conditions:

(i) 0<D(P) < co , for each nonzero P in MP; (ii) D is additive on finite sets of

mutually orthogonal projections; and (iii) D assumes the same value on

projections equivalent mod M. Any er-finite finite TF*-algebra has finite di-

mension functions; in fact, if T(-) denotes the center-valued trace on M

(see Dixmier [3, Theorem 10]), and if z is a vector so chosen that Ewzi is

maximal cyclic in M, then D(P) = (T(P)z, z) is a finite dimension function on

M, as follows from the properties of P() and the fact that Az = 0 entails

.4=0, for any A in C = MC\M'.

Lemma 4.4. Let M be a a-finite finite W*-algebra, let D be any finite dimen-

sion function on M, let Mp denote the collection of cyclic projections in M, and

let Cp denote the collection of nonzero central projections. Define Cm

= iniN£.Cp [suppgMp D(NP)/D(N)]. Then, cM = 0 if and only if the length of
the identity I in M is °o ; and if cm>0, the length of I is the least integer n such

that l/n^c/a- Moreover, the length of I is finite if and only if T(P) has a

bounded inverse, for some P in Mp.

Proof. First of all, we can simplify the definition of Cm by considering

only maximal cyclic projections. It is plain, in fact, that if P is any maximal

cyclic projection in M, then cM = inf>vec£ D(NP)/D(N). Now, suppose that

the identity in M has a cyclic dissection of length n< ». If Pu ■ ■ ■ , Pn is

such a dissection, we can assume that Pi = P. Considering the central projec-

tions Ni defined in Lemma 4.3, we have by that lemma the equivalences

(7-A7„_i)Pi~ • • • ~(7-A7„_i)P„_i(M). LetA7 = 7-A7„_1.Wehave7>(A7Pn)

;¿0, since otherwise it follows from definitions that P„ = 0, and also D(NPi)

= . . . =D(NPn_i). Therefore, D(N)= XXi D(NP,)>(n-\)D(NP), and
consequently cM^D(NP)/D(N) <l/(w-l). On the other hand, since P,

< P(M) for each i, we have D(NPt) ^D(NP), for each i and each A7 in CP.

Therefore, D(N)^nD(NP), for each A7 in CP, and consequently Cwsil/w.

Now, if the identity has length oo, we see by the above reasoning that

CM<l/n, for each integer n, so that cm — 0; and conversely, if cm = 0, it fol-

lows by what we have already proved that 7 cannot have finite length. It

remains to establish that the length of 7 is finite if and only if T(P) has a

bounded inverse, for some cyclic projection P in M, or what comes to the

same, if and only if T(P) has a bounded inverse, for some maximal cyclic

projection P in M.

Choose a vector z such that P = E[Wz\ is maximal cyclic in M. As we

have observed above, the function D(Q) = (T(Q)z, z) (Q in MP) is a finite
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dimension function on M. By the first paragraph, the length of I is finite if

and only if there exists a constant K such that D(N)^KD(NP), for all

N in Cp, or equivalently, if and only if u^u^cp^m^C). We shall prove

that T(P) has a bounded inverse if and only if the latter relation holds.

On the one hand, if T(P) has a bounded inverse, then so does (T(P))112,

and it is obvious that co2<5Cw(r(P))i/22(C0. Conversely, suppose that co2

«cd(r(P»«2(C). From this we infer that (i) [Cz] = [C"(7\(P))1/2z)] and

(ii) {An((T(P))1,2z)} cauchy implies {^4„z} cauchy, for any sequence \An) in

C. Since already [C((P(P))1'2z)]£ [Cz], we conclude that [C((T(P)y'2z)]

= [Cz], by applying (i) and the corollary to the BT-Theorem cited in the

first paragraph of Theorem 2. Moreover, by (ii), we see that, for any x in

[Cz], there exists a y such that (T(P))ll2y = x—or, in other words, that

Range (P(P))1'2 contains [Cz]. Since D(I — ElC'z]) =0, we have E[c>z\=I,

so that E[C'Z] is certainly maximal cyclic in C. Again by the corollary to the

BT-Theorem, we see that P[c2] is maximal cyclic in M'. Therefore, given

any vector y, there exists a partial isometry V in C such that FyG[Cz]

and V*Vy=y. Since [Cz]£Range (T(P))112, and since Range (T(P))112 re-

duces C, we conclude that y = F*FyGRange (T(P))112. Therefore, the oper-

ator((P(P))1/2)_1 = ((P(P))_I)1/2iseverywhere-definedSA,and hence bounded.

Therefore, T(P)~l is bounded, and the proof is completed.

Another easily-deduced criterion is the following: If the identity I in a

finite IF*-algebra M can be expressed in any way as a union of n < œ cyclic

projections, then the length of I is at most n. It is important to bear in mind

that there exist finite FF*-algebras whose identities have length oo ; a simple

example is the ring M formed by taking the direct sum of the full matrix

algebras Mn (» = 1, 2, • • • ) on «-dimensional unitary space.

Theorem 3. A a-finite essentially finite W*-algebra M contains one and

only one set of mutually orthogonal central projections Ln, n= °°, 1, 2, • • • ,

having the properties that 1= 22„ Ln and that L„ is either 0 or uniformly of

length n. The ring M is finite if and only if Lx = 0.

Proof. We prove first that such a set {Ln} exists. Let {P„} be any cyclic

dissection of the identity in M, and let {Nn} be the central projections de-

fined in Lemma 4.3. Define NX = LUB„ Nn, and set LX = I — NX. Assuming

that Leo5^0, we shall show that it is uniformly of length °o. Now, the projec-

tions \LxPn] form a cyclic dissection of Lx, as is easily checked, and the

assertion in question will follow if we prove that these projections are

mutually equivalent mod M. But, for each n, Lx^(I—Nn), and since

(I-N„)P!~ ■ • • ~(I-Nn)Pn(M),we have LXP^ ■ ■ ■ ~LxPn (M), prov-

ing the assertion. Next, defineLi = NiandLn = Nn — Nn-i,forn~= 2. By defini-

tion, I = Lx-\- 2^n<oo L„. Moreover, Ln is either 0 or uniformly of length n; in

fact, by definition of a cyclic dissection of I, if N is any central projection,

then NPir¿0 implies NPj^O, for all j^i; in particular, if 0<N^Ln, then
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NPi^O, for i=\, • • • , n, and A7P, = 0 for i>n, because NPn = 0 implies

N£Nn_i, or N = N(Nn — Nn^i)=0. The existence of a set [Ln] is therefore

established.

Let {Rn} be any other set of mutually orthogonal central projections with

the properties that 7= X^n Rn and Rn is either 0 or uniformly of length n.

We shall prove that Rn=Ln, for »■» », 1, 2,-* • ». Now, for each «< oo,

RnNn_i is a central projection ^Pn of length <«; therefore, RnNn-i = 0.

But, as above, P„P, = 0 for ¿>w, so Rn^Nn. In other words, Rn^Ln, for

«< oo. By the same token, PooA7n = 0, for all «< oo, so RXNX = Q and R«,^La.

Summarizing these facts, LnRm = Rm if » = m, and =0 otherwise. This and

the equality X^* 7,„ = XI» -R» together imply the conclusion, Rn=Ln, for

»= oo, 1, 2, • • • .

For each n < oo, the projection 7„ is finite, being a (finite) sum of the

finite projections LnPi, • • • , LnPn. Since a countable sum of parallel finite

projections is finite, we conclude that Nx = X^«<*> 7„ is finite. Therefore, if

LX = (I— N„) =0, M is finite. On the other hand, we have seen that 7œ is

expressible as a countable sum of mutually orthogonal mutually equivalent

projections. Since a nonzero projection of this sort is necessarily infinite, we

must have 700 = 0 whenever M is finite. The theorem is proved.

An alternative formulation of Theorem 3 is the following: a er-finite finite

IF*-algebra can be expressed in one and only one way as a central direct sum

of finite IF*-algebras Mn, « = 1, 2, • • -, M„ being either null or with identity

uniformly of (finite) length n. (In fact Mn=LnM on 7„§ serves as the wth

summand.)

5. The Radon-Nikodym theorem. In this section, we prove the main

theorem announced in the introduction together with a number of topological

corollaries. Whereas the trace has entered only incidentally in our work

heretofore, it will play a fundamental part in the global studies below—par-

ticularly, in establishing the algebraic structure of C(M).

Let M be a fixed er-finite finite PF*-algebra on the hilbert space §. We

shall devote the following series of propositions to a constructive definition

of the 72-system of a CA state of M.

(5.1) If S and TEC(M), and if T^S, then T = S.
(5.2) The sum of two elements (or even a countable number of elements) of

C(M) has a unique closed extension in C(M), and C(M) becomes a linear space

(over the complex numbers) when addition is defined by taking the closure of

sums.

(5.3) The product of two elements of C(M) has a unique closed extension in

C(M). With this multiplication, and with the linear operations of (5.2), C(M)

is an algebra.

These important facts are proved by Murray and von Neumann [8, pp.

221-229] for finite factors. When we observe that any cr-finite finite IF*-alge-

bra has a finite dimension function, in the sense expressed in §4, and that

complements of equivalent projections are equivalent in any finite IF*-alge-
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bra, the proofs given in   [8] apply almost without change to any cr-finite

finite W*-algebra. Accordingly, we omit further proof.

Let \xn\ be any sequence of vectors in & (of which all but a finite num-

ber may be 0), subject to the condition XZ» llx»l|2< °° > and iet E denote the

projection ^1 íE[m-xí\', in other words, E is the carrier projection of the state

XZ» Uzí of M. We define

S[M, E, [xn}]= [T in C(M) \ TE = T, all the x„ G Domain  T, and

Z||7xn||2< «],
n

and moreover, if S and T are elements of S[M, E, {#„}.], we define

[S, T] = XZ (5*», 3T*w).
n

(5.4) 5[M, P, {xn} ] is a linear space (under the linear operations of (5.2)),

and the bilinear form [S, T] is an inner product on S[M, E, \xn] ]■

(5.5) If £««*.= En cox„(M), and if S [M, E', {ym}], [S, T]' denotes the
corresponding system, then E = E', S[M, E, \ym}]=S[M, E, {x„}], and

[S, T]'=[S, T].
The proposition (5.4) is an obvious consequence of (5.2). Proposition

(5.5) stems from the following corollary to the spectral theorem, which

will be used frequently below: given P in C(M), there exists a sequence

{P„} in M with the property that a vector x belongs to Domain T if and

only if lim„ ||P„x||2 exists (and is finite); and in case this limit exists, it equals

||Px||2.

We shall assume in the propositions (5.6)-(5.9) to follow that the identity

7 in M has finite length.

(5.6) Given any CA state p of M, there exist vectors {x,}, {y,}

(i = 1, • • -, n), such that the projections E[M'Xi\ are mutually orthogonal, E[MVi]

= E[mxí\, ViP[Af'Vi] = V¿P[M'i,], and p= XX i wvi(-^0-
To prove this, suppose first that we have found vectors Xu • • • , x„ giving

rise to the relation p<ííXXi t>)Xi(M). In these circumstances, we shall show

that there exist vectors yi, ■ • • , yn (jiG. [Mx,]) such that p = XXi ^¿(M).

Write er= XXi t»Xi(M). By a theorem of Segal [13, Theorem l], there exists

a hilbert space &„, a linear mapping r\„ of M on a dense manifold in !q„, a

^representation A—*p,(A) of M on §„, and a cyclic vector £0 for the *-algebra

4>„(M) such that <pa(A)r),(B) =7]„(AB) and a(A) = (<f>r(A)io, ?o), for all A

and B in M. Since p«cr(M), p induces a state of <£„(M) in the relation p

«coio(ci,(M)). By Lemma 2.2, there exists a vector £ in £>„ such that p(^4)

= (<pc(A)i-, £), for all A in M. Choose a er-cauchy sequence [Ar\ in M such

that rj,(Ar)—>£ in §„, and let y, = limr Arxt in f>. It follows that p(A)

= limr (<pr(A)ri,(Ar), r¡,(Ar)) =\imr XX i «>¿,*¿04) = XXi «*tC<*}. for all 4 in
M.

Now, in view of Theorem 3, we can find vectors zi, • • • , z„ such that the
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projections P¿ = E[.w2,] are mutually orthogonal and satisfy XX i Pi = I- It

is obvious that pPi <co2j(M), for each i. Therefore, by Theorem 2, there exists

a set of vectors Xi, • ■ ■ , xn (x¿ in [M'z,]) such that pPi=uXi(M). Plainly,

p~ ^"_i Ppí (M). Also, as was shown in the proof of assertion (**) in Lemma

3.4, p« XXi PPi(M). This shows that the conditions of the above paragraph

can always be realized. It is easy to see that the vectors {x,-}, {y¿}, as de-

fined in our proof, meet all the requirements of (5.6).

Coupled with Theorem 2, proposition (5.6) provides the basis for the

proof of the Radon-Nikodym theorem. Incidentally, the space §„ alluded to

above is precisely the space L2(M, a) defined below; it is advantageous for

our purposes to take a more concrete approach in defining this notion. We

insert now what amounts to a characterization of the kernel of 4>a (see Segal

[14]).
(5.7) Given a CA state p of M, define C„ = LUB V7_i E[Mxi], taken over

[(xi, ■ ■ ■ ,x„)|p= X?-i WxíW]- Then CP<^MC\M', Cp is the GLB of
central projections ^Ep, and p(B*T*TA) =0, for all A, B in M and a fixed T

in M, if and only if TCP = 0.
If U' is any unitary operator in M', it is easy to see that U'( V?_! E\mXí\) U'*

= V«LiEt*rP'a«l- Moreover, if p=^?=i o)Xi(M), it is obvious that p

= ¿<"=i o>u'Xi(M) also. We conclude that U'CpU'*úCp, for all unitary U' in

M'. By symmetry, Cp commutes with all unitary operators in M', and conse-

quently CPGM. By definition, CP(E.M'. Therefore, Cp is central. Now, since

p(I—Cp)=0, we see that CP = EP. Moreover, if C is any central projection

satisfying CP=^C^EP, and if p— Ylï-i ^Xi(M), then (C„ — C)E[Mxi-\ =0, for
each i. We conclude easily that (Cp — C)C„ = 0, so Cp — C. The last assertion

follows directly from these two characterizations.

(5.8) Let {xi}, {yi},and {z,} (i= 1, • • • , n) be three sets of vectors having

the following properties: (i) the EiM'Xi] are mutually orthogonal; (ii) V£.1.E[jif'iej]

= y¡=\E[M'yi'\', and (iii) both E[MZi\ and E[Myi\úE[MXi], for all i. Then, there

exists a T in C(M) such that Tyi = Zi, for all i.

First, we exhibit a Pi in C(M) such that Pix,=y¿, for all i. To this end,

choose for each i an S,- in C(M) such that S,x¿ = y,- and SiE[M'Xi] =Sí; such a

choice is possible by Theorem 2. Let T\ be the closed extension in C(M) of the

sum X?_i Si (using (5.2)). By the orthogonality relations (i), StXj = Q if

îVj. Therefore, Domain (^2"=i 5.) contains each x3-, and PiXj = (2I"=1 Si)Xj

= SiXj = y¡, as desired.

Next, we show there exists a P2 in C(M) such that T2yi = Xi, for each i.

In fact, by construction and (ii), £[Ranïe t¡) = V?=1P[m'i,,] = VJLiEr**'**!■ More-

over, [Range Pi] contains each subspace [Af'yJ. Therefore, £(Range rj

= V"-iE[M'Xi]- If P denotes the projection on §©■ Xl"-i© [M'x,], it is clear

that (Pi+P)GC(M) coincides with Pi on XXi© [M'x,-], and has every-

where dense range in §. But, an element T in C(M) with dense range always

has an inverse in C(M)—in fact, in the polar decomposition T= VH, we
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can take V unitary, since M is finite; therefore, if T has dense range, so must

the SA operator H (in C(M)); and a SA operator with dense range always

has a SA inverse. If we set T2 = (Pi+P)-1, it follows that T2yi=x{, for each *,

and the assertion is proved.

To conclude, we construct (by the argument of the first paragraph) an

operator T3 in C(M) such that T3Xi = Zi, for all i. Let P = the closed extension

in C(M) of P3P2 (using (5.3)). The operator P has the desired properties.

(5.9) S[M, E, xi, ■ ■ ■ , x„] (of (5.4)) is complete in the inner product

[S, T).
Assuming that limr,, XX1 ||(7r—Ps)x¿||2 = 0, for some sequence JP»} in

S[M, E,Xi, • • • , xn], we are to exhibit a Pin S[M, E,xu • ■ • , x„] such that

limr XXi I[(7"r- — P)x¿||2 = 0. By (5.6), we can find vectors {y,}, {z,}

(i=i, ■ • • , m), such that the EiM'z-\ are mutually orthogonal, E[MVii

= ElMiih VT-iEwvi^VT-iEiM-zih and XXi »„= XXi ««W- Write w*
= limr Tryi. Applying (5.8), with x,-, yit Zi replaced by z,-, y,-, w{, we choose a

T in C(M) such that Tyi = w¡, for each i. Obviously, we may take

P in S[M, E,xi,---, x„]. It is plain that limr XD™ 1 ||(7V-P)y,j|2 = 0, and
in view of (5.5), this same relation holds with the x, replacing the y,-, proving

(5.9).
We conclude these preliminary propositions by removing the restriction

on the length of the identity in M.

(5.10) Let p be any CA state of the (arbitrary) a-finite finite W*-algebra M.

Then, there exists a sequence of vectors |x„} (of which all but a finite number

may be 0) such that p= XX wxn(M). Moreover, the space S[M, Ep, {xn}] of

(5.4) is a hilbert space under the inner product [S, T] — ̂ n(Sxn, Px„).

By Theorem 3, we can choose in Ma sequence {7,} of mutually orthogonal

central projections such that 7= X2;7; and 7¿ is uniformly of (finite) length

i. We then have p= X3¿ Plí(M). Furthermore, by (5.6), each positive func-

tional pn is expressible as a finite sum of canonical positive functionals (in

fact, * such functionals suffice for pLi). It follows that p has a representation p

= XD¿ wXi(M) of the sort described. In view of its representation as a finite

sum, each nonzero component p¿, determines a hilbert space, by (5.9). It is

trivial that 5[M, E„, [xn ] ] in the inner product [S, T] is a direct sum of these

component hilbert spaces, and accordingly, is a hilbert space itself.

Definition 5.1. Let p be a CA state of the cr-finite finite TF*-algebra M.

By L2(M, p), we shall mean the hilbert space S[M, Ep, {x„} ] in the inner

product [S, T]= XJ™ (Sx„, Px„), {x„J being any sequence of vectors such

thatp= X)«u*n(M).

In view of (5.5), this definition is independent of the particular vectors

representing p. Elements of L2(M, p) are intrinsically characterized as those

T in C(M) such that lim„ p(T*Tn) exists, {P„} being any sequence of

(bounded) operators in M such that a vector x belongs to Domain P if and

only if lim„ ||Pn*||2 exists (and equals ||Px||2). Given any T in L2(M, p), we
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denote by pr that positive functional on M defined by the equation pr(^4)

= [AT, T], where [ , ] denotes the inner product in L2(M, p).

Theorem 4. If two CA states a and p of the a-finite finite W*-algebra M are

in the relation a<p(M), then there exists a T in L2(M, p) such that a=pT(M).

Proof. By the device of (5.10), we see that it suffices to consider the case

in which the identity of M has finite length. With this assumption, then,

choose by (5.6) vectors jx,}, jy,} such that the projections JSrjr»^ are

mutually orthogonal, E[Myi-\ = ElUxi], VJjLi-EtK'»«! -. Vf-a-Etir»^ and p
= X?_i uVi(M). Write E[M'Xi] = P¿. By Corollary 3.1, choose vectors Wi in

[M'x,]n[Mx¿] such that crPi=ww,.(M). As in (5.6), we conclude that there

exist vectors z¡ in [Mm,-] such that <r= 22?_i co2i(M). Applying (5.8) (to

Xi, y¿, z,), we conclude there exists a T in C(M) such that Tyi = z¡, for all i.

Since the operator TE„ also has this latter property, we may assume that

TEL2(M, p). Therefore, <r(A)= YJl-i (ATyi} Tyi)=pT(A), for all A in M,
completing the proof.

As is evident, the Radon-Nikodym derivative P can be chosen to satisfy

T = EPT. Conversely, for any P in L2(M, p), pbpt<p(M).

Remark 5.1. Several criteria are available which enable one to reduce the

study of completely additive states of an arbitrary finite !F*-aIgebra to that of

countably additive states of a cr-finite finite IF*-algebra. More explicitly,

(1) a finite IF*-algebra is cr-finite if and only if its center is cr-finite, (2) any

finite FF*-algebra is a central direct sum of cr-finite finite IF*-algebras, and

(3) if p is a completely additive state of the finite IF*-algebra M, then M can

be expressed as the central direct sum of a cr-finite finite W*-algebra and a

finite IF*-algebra on which p vanishes. (As to the proof of these facts, (2)

and (3) are immediate corollaries of (1), and (1) follows from the fact that a

finite IF*-algebra M with a cr-finite center C admits a CA state positive on

all nonzero projections—to wit, (T(A)z, z), where z is a cyclic vector for C

and T(-) is the center-valued trace on M.) Notice, in view of (3), that

Theorem 4 holds for any finite IF*-algebra M when the state p of M is

assumed to be completely additive.

Theorem 4 assumes a somewhat sharper form when the CA state p is

unitarily invariant—that is, when p(U*AU)=p(A), for all A m M and all

unitary operators U in M. Here, at least, it is possible to show that the Radon-

Nikodym derivatives can be taken as non-negative SA operators, and that

after such a choice they are uniquely determined. The first assertion in the

following corollary is a direct generalization of the trace formula for finite

factors (see Remark 2.1); the result as such has been announced by I. Kaplan-

sky [5] in a special case (effectively, that in which M' has a cyclic vector).

Corollary 5.1. Let M be a a-finite finite W*-algebra, let T(-) denote the

center-valued trace on M, and let X be any unitarily invariant CA state of M,

with £\ = I. Then, there exists a finite or countable set of vectors {xn} such that
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the projections E[M'xn\ determine a cyclic dissection of the identity in M and

such that \(A) = XX (Axn, xn) = XX (T(A)xn, x„), for all A in M.
Moreover, if p is any CA state of M, there exists a uniquely determined

non-negative SA operator H in L2(M, X) such that p(A)=\(HAH)

= X3" (AHxn, Hxn), for all A in M.

Proof. Choose vectors {z,-} so that the projections P,=P[M'í,] form a

cyclic dissection of the identity 7 in M. We have Xpi'~wz< (M), and it follows

by Theorem 2 that, for appropriate vectors {x,}, Xp.^Ws,. (M). Obviously,

E[M'Xi]=Pi- Since X(^4P) =X(P^1), for all A and B in M, we have \(A)
= ¿< HAPi) = £, \(PiAPi) = ¿,- o>Xi(A), for all A in M.

As is shown by Dixmier [3, Theorem 12], for any A in M, the operator

T(A) belongs to the uniform closure of the set of all finite convex linear

combinations X3> oaUiAU*, where Ui is any unitary operator in M, a,2:0,

and X^«a» = 1- By the unitary invariance of X, X( X)«a¿f7»^4 U*) =\(A), for any

such linear combination. Therefore, X(P(^4)) = \(A), for all A in M.

In completing the proof, we shall assume (without loss of generality) that

the identity 7 in M is uniformly of (finite) length n. Now, given any CA state

p of M, we know by Theorem 4 that p(.¡4) = XXi utXí(A), for some T in

L2(M, X). By a simple approximation argument using the unitary invariance

of X, we see that if PG72(M, X), then also P*G72(M, X), and moreover

~k(T*T)=\(TT*). This remark and the fact that we can always write a T

in C(M) in the form HU, where H is non-negative SA in C(M) and U is

unitary in M, together show that p(A) = XXi (AHxit 77x¿), for all A in M

and some non-negative SA operator H in L2(M, X). (Of course, by (5.5), H is

independent of the particular vectors x¿ used to represent X.)

To complete the proof, we must show that this operator H is unique—

that is, that it depends only on the values of X and p. This will follow if we

prove the following assertion: if 77' is any non-negative SA operator in

L2(M, X) such that p(A) - XXi (AH'xh H'x{), for all A in M, then H = H'.
First, we prove that if T and T' are any bounded operators in 72(M, X)

such that \(T*AT)=\(T'*AT'), for all A in M, then TT* = T'T'*. In
fact, we have (in the notation of the first paragraph) \(T*APiB*T)

= \(T'*APiB*T), for all * and all A, B in M. Now \(T*APtB*T)
= \(B*TT*APi) = (T*Axi, T*Bxí), and likewise we have \(T'*APiB*T')

= (T'*Axit T'*Bxi). It follows that (TT*-T'T'*)E[Mx^ =0, for all x¿. This
is valid for all vectors Xi, • • • , x„ such that X= XXi wx,-(M). Therefore,

using (5.7), (TT*-T'T'*)Cx = 0, and since Cx = 7, this means TT* = T'T'*.

Returning to our problem, letP(X) and P'(X) denote the spectral resolu-

tions of H and H', respectively. Let X„ be an unbounded increasing sequence

of real numbers, and let P„ = £(X„), P„' =£'(X„). Plainly, limn Pn = lim„ P„

= 7. Moreover, by the spectral theorem, if we set Hn = PnH and 77n' =Pn'7P,

then the operators 77„ and 77„' are bounded non-negative SA (in M), a vector

x belongs to Domain H (respectively,  Domain H')  if and only if the
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sequence {H„x\ (respectively, {Hlx}) is cauchy, and then iîx = lim„ Hnx

(H'x = limnHlx). Let Qn = Pn/\Pl■ The sequence \Qn} plainly increases

with n. We shall show that lim„ Qn = I. In fact, for each n, the projections

PnVPn — Pn and Pn — Pl/\Pn are equivalent mod M (see [6, Theorem

5.4]). Therefore, \(Pn\JPl-Pl)=\(Pn-Pnf\Pl), for all ». Hence,

X(J-P„APn) = l-X(Pn)-X(P„')+X(PnVPn). As w^oo, the right-hand
side tends to 0. Therefore, by Lemma 2.3, I — Pnf\Pl—+0 in the strong se-

quential topology, proving the assertion. (Incidentally, this paragraph pro-

vides the basis of proof for (5.2).)

By virtue of our assumption ¿JJLj whi¡= S"-i <¿h'Xí(M) and the facts

that QnH=QnHn, QnH' = QnHl, we conclude that \((QnHn)*A(QnHn))

=\((QnHl)*A(QnH¡,)), for all A in M. We have proved, under these condi-

tions, that HnQnHn = Hl Q„Hl, for all n. By the preceding paragraph, the

manifold 9JJ = (Domain H)(~\(Domain H') is dense in the hilbert space ¿p (on

which M acts), for 9JÎ contains each subspace Qn!ç>- Moreover, the contrac-

tion of H (or H') to 9JÎ has a least closed extension, and by (5.1), this closed

extension must coincide with H (or H'). Let x and y be any vectors in W.

We have (Hx, Hy)=hmn (QnHnx, Hny) =lim„ (QJI„'x, Hly)=(H'x, H'y).

This quality will hold also when x and y belong to the domain of the least

closed extension of the contraction of H to 9JÎ, and hence for all x and y

in Domain II. We see, by symmetry, that Domain H= Domain H', and in

fact, that the operators H and H' are metrically equivalent. But by the spec-

tral theorem (in particular, by the uniqueness of square roots), two metrically

equivalent non-negative SA operators on a hilbert space always coincide.

Therefore, H = H', completing the uniqueness proof.

Recall that the strongest topology on a IF*-algebra M is that specified by

general neighborhoods of 0 of the form [A in M\ X^i-i M*i||2<l. where {x,}

is any sequence of vectors such that  /£-* ||x¿||2< °° ]•

Corollary 5.2. The strong and the strongest topologies coincide on a

a-finite essentially finite W*-algebra M if and only if the identity in M has finite

length (and a fortiori, only if M is finite).

Proof. Suppose these topologies coincide on M. Choose a sequence of

vectors {xn} such that the projections E[M>Xn\ are mutually orthogonal,

X^n E[M'Xn\=I, and ¿^m \\xn\\2<°o. By assumption, there exist vectors

yi, • • • ,y„ such that NiQN2, where NX=[A£M\ ¿J_x ||^yy||2<l] and

AT2= [¿GM| £„ pxB||2<l]. Setting P = VjElM-Vj], we have X(/-P)GiVi

QN2, for each positive real number K. This is possible only if P = 7. There-

fore, the identity I is the union of a finite number of cyclic projections and,

in turn, this implies that I has finite length and that M is finite.

On the other hand, suppose that the identity has finite length, and

consider any sequence of vectors {x„} such that ^„ ||^n||2< °°- By (5.6),

there exist vectors yx, • • • , y„ such that  ¿% uXn= 22?_i uVi(M). Plainly,



1952] THE RADON-NIKODYM THEOREM 271

any strongest neighborhood determined by the x„ coincides with a strong

neighborhood determined by the y<, and it follows that the strongest and the

strong topologies coincide on M.

By a *-isomorphism between two *-algebras Mi and M2 we mean an

algebraic isomorphism <f> of Mi with M2 which preserves adjoints, in the sense

that <t>(A*) = (<P (A))*, for each A in Mi. Such an isomorphism is called count-

ably additive if, whenever {Pn} is a sequence of mutually orthogonal projec-

tions in Mi, then XI» 7*» is in Mi if and only if XI» 4>(Pn) is in M2, and then
</>( XX 7"«) = XI» 0(7*»). It is straightforward to verify that any ""-isomorphism

between IF*-algebras is countably additive.

Corollary 5.3. ^4»y *-isomorphism between a-finite finite W*-algebras is

bicontinuous in the strongest topologies. If the identities in each of these W*-

algebras have finite length, then this *-isomorphism is weakly bicontinuous.

Proof. We shall consider only the second assertion, the proof in the gen-

eral case being altogether similar. Let Mi and M2 be er-finite finite PF*-alge-

bras on hilbert spaces ¡Qi and i£>2, both Ml and M2 having identity of finite

length, and let <j> be a ""-isomorphism of Mi on M2. Our second assertion will

plainly follow if we prove that <p is weakly continuous at 0, in Mi. Accordingly,

we shall prove that if N2 is a (general) weak neighborhood of 0 in M2, then

there exists a weak neighborhood Ni of 0 in Mi such that <p(Ni)ÇlN2.

Let A72= [A in M2| j (-4x.-, y,-)| <e, for t = l, • • • , «]. As follows easily

by polarization, it will suffice to consider the case when x< = y¿, for all i.

Define for each * a CA state p.- of Mi by the equation pt(A) = coXi(<p(A)), A in

Mi. Applying (5.6), we choose vectors zi,,-, • • • , zB<1< in §i such that p,-

= XXi Uzj^M). Let 7T = maxi »,-, and define A7i= [.4 in Mt\ \ (Azíj, zi%j)\
<e/K, for all * and j]. It is easily verified that N2^<f>(Ni).

The hypothesis of er-finiteness in the first assertion of this corollary is

not really necessary, as follows from the fact that a *-isomorphism between

IF^-algebras is necessarily completely additive, in conjunction with (3) of

remark 5.1. In fact, any completely additive ""-isomorphism of a finite W*-

algebra in a PF*-algebra is (relatively) strongest continuous.

We prove now what is by all rights the strongest of the topological corol-

laries of Theorem 4—that, under appropriate er-finiteness conditions, a CA

*-isomorphic image of a finite IF*-algebra is itself a (finite) T/F*-algebra. For

related results, see von Neumann [ll] and Dixmier [2].

Corollary 5.4. Let <p be a countably additive *-isomorphism of a a-finite

finite W*-algebra M on a hilbert space § in a cr-finite W*'-algebra M0 on a hilbert

space §o- Suppose that the image <p(M) of M in M0 tí dense in Mo in the weak

neighborhood topology. Then the image <¡>(M) coincides with Mo-

Proof. Since a countable central direct sum of weakly closed rings is itself

weakly closed,  we see,  by appealing to the decomposition afforded  by
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Theorem 3, that it will suffice to assume the identity in M has finite length.

This done, we shall prove that the closure of 4>(M) in the strongest topology

coincides with Mo- Since the strongest closure of a *-algebra coincides with its

weak closure (see e.g. [2, Theorem 8]), this will establish our assertion.

Let Po be an element (in Mo, necessarily) belonging to the strongest

closure of <t>(M). By the cr-finiteness of Mo, we can choose a sequence [xr] of

vectors in §0 such that 2^r ||xr||2< so, the subspaces [ili£cr] are mutually

orthogonal, and §0= ^r© [M¿xr]. Since by definition each strongest

neighborhood of Po contains an element of <f>(M), there exists for each n an

element An\n M such that ^r || (<j>(An) — Po)*r|| < 1/«- Let p be that state of

M defined by p(^4) = ^r o>Xr(<p(A)), A in M. Since <6 is CA, it is easily seen

that p is CA. Moreover, it follows easily from our definition and the algebraic

properties of <j> that lim„im p((An — Am)*(An — Am))=0. Now, according to

(5.6), there exist vectors £i, •••,£# in $ such that p= X^-i uii(M). In

addition, since L2(M, p) is complete (by (5.9)), there exists a P in L2(M, p)

such that lim„ "ii. ||L4„ — P)£,-|] =0. We shall devote the remainder of the

proof to showing that TE:M and <p(T) =T0.

Using the polar decomposition, we write P= UH, where U is a unitary

operator in M and ii is a non-negative SA element in L2(M, X); recall also

that this decomposition is unique. Let P(X) be the spectral family of H.

Since the mapping c/> is continuous in the strong sequential topology (as fol-

lows from the remark after Corollary 5.3), it is easy to see that £0(X) =<j>(E(\))

is a spectral family on ^v Let H0 be the unique non-negative SA operator

on £>o having P0(X) as its spectral family, and define (p(T)=<f>(U)Ho. It is

clear that <t>(T)<=C(M0). Define Hn = E(n)H and (H0)n = E0(n)H0. For each

n, Hn and (H0)„ are bounded non-negative SA operators. Moreover, by the

continuity of c/> and the spectral theorem, (Ho)n=(f>(Hn), and in addition the

following criterion holds: a vector £ in § (or a vector x in §o) belongs to

Domain H (or Domain H0) if and only if limn ||ü„x||2 exists (or lim„ ||(iio)„x||2

exists), and then ü£ = lim„ Hn% (or ü0x = lim„ (H0)nx).

Applying our definitions, we have X¡<- ||(-ñro)nXr||2= ^r coXr(Hl)

= Z)li ll-önkll2» for a11 n- But the ?*£Domain H, since HGL2(M, p), and
therefore lim„ XXi ||-^nfi||2 exists. It results that each vector xr belongs to

Domain H0. In addition, lim„ .¡4„£,- = limn UHJa = UHi-i■. = P£¿, for each i.

Therefore, lim, p((An- UHn)*(An- UHn)) =0. Therefore, <p(T)xr = <j>(U)HoXr

= lim„ c6(¿7)cí>(ií„)xr = limn 0(^4n)xr = PoXr, for each r. The operator P0 is by

definition bounded, and the operator c5(P) is closed. Moreover, To=<p(T)

everywhere on a dense manifold in ^)0—in fact, on all finite sums ^,- P,x„

where the P,G(M0)'. Therefore, T0=<t>(T) everywhere on §0, and the

operator <£(P) is bounded. Notice then that <¡>(T) is the strong sequential

limit of the <¡>(UHn). We shall complete the proof by showing that H (and

therefore T) is itself bounded.

In view of the fact that an everywhere defined SA operator is bounded,
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it will suffice to prove that 77 is everywhere defined. This will result if we

prove that, for each vector £ in §, lim„ ||i7„£||2 exists. Now, <p(M) is a C*-alge-

bra (see [14], also [4]). We define on </>(M) a positive functional r by the

equation r((p(A)) =œ((A) (A in M), and in these terms it will suffice to prove

that the numbers r(<p(Hl)) are uniformly bounded. But r is necessarily

(uniformly) continuous on <p(M), and since the operators <p(Hn) tend to

</>(77) in the strong sequential topology, the <p(Hn) are uniformly bounded.

Putting these facts together, the assertion follows.

Remark 5.2. Let M be a factor of type IL (on a separable hilbert space,

by definition). We shall show that no CA state of M can be pure, in the sense,

e.g., of [13]. To this end, construct (as in (5.6) or [13]) the cyclic *-repre-

sentation <f>p of M on $£>„, where p is a given CA state of M. As is well known,

the state p is pure if and only if the *-algebra <pP(M) is irreducible. Suppose

that p is pure, then. The representation <j>„ will have kernel 0, since M con-

tains no nontrivial uniformly closed 2-sided ideals, and it is easily seen that

this *-isomorphism is countably additive. By using the fact that M contains

a strong-sequentially dense (uniformly) separable C*-subalgebra (see Segal

[16]), it follows readily that ¡Qp is separable. The er-finiteness conditions of

Corollary 5.4 are satisfied, and we see that <t>P(M) is a W*-aIgebra. By our

assumption, <p„(M) must therefore coincide with the ring of all bounded

linear operators on §p. But this is impossible, since M is a Hi, and it follows

that p cannot be pure.

6. Associated i7-systems. Consider a fixed CA unitarily invariant state

X of the er-finite finite IF*-aIgebra M, the identity of which has finite length.

We shall analyze the structure of L2(M, X) in some detail, drawing from this

analysis the conclusion that 72(M, X) can in a natural way be assigned the

structure of an TZ-system (see Ambrose [l ]) whose bounded algebra contains

an identity for multiplication. In Theorem 5, we then show that any cr-finite

finite IF*-algebra is *-isomorphic to the IF*-algebra 8 of left multiplications by

elements of the bounded algebra in some finite TPsystem, and that this rep-

resentation of M by S enjoys the uniqueness properties described in the intro-

duction. Incidentally, the fact that the algebra 8 on any finite 77-system is

necessarily cr-finite affords a natural motive for using er-finiteness hypotheses.

Developments along the lines of this section are made by Murray and von

Neumann for factors in the pairing (IL, IL, a =1) in [9] and by von Neumann

(for infinite factors) in [10, especially Theorem V].

In the following series of propositions ((6.1)—(6.10)), we denote by X a

fixed unitarily invariant CA state of the er-finite finite TF*-algebra M, and we

assume that the carrier projection E\ = 7. Moreover, we shall require through-

out that the identity in M have finite length. The hilbert space L2(M, X)

with inner product [X, Y] is defined as in §5. We shall make the following

convention about products of elements in C(M): if 5, TÇE.C(M), then S o T

will denote the ordinary operator product of 5 and P, whereas ST will de-
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note the unique closed extension of 5 o P in C(M) (which exists by (5.3)).

We define an adjoint operation X—>X* on L2(M, X) as follows: if X

G_L2(M, X), then X* is the (operator) adjoint of X (as an element of C(M)).

(6.1) If X<EL2(M,\), then X*EL2(M,~K), and [X, X] = [X*, X*].
For elements A in M, the relation [A, A] = [A*, A*] is an obvious conse-

quence of the unitary invariance of X. For a general X in 72(M, X), the result

follows by a now familiar approximation argument (based on the existence of

a sequence {Xn} in M suchthat [X, X]=lim„ [Xn, Xn] and [X*, X*]

= lim„ [X*n, X*]).

With each X in 72(M, X) we associate an operator Lx on L2(M, X) de-

fined as follows: let Z\, ■ • • , zn be any finite set of vectors such that X

= XX-1 w*,(M) ; then an element Y of L2(M, X) belongs to Domain Lx if the

vectors Yzu • ■ • , Yzn G Domain X, and then LxY=XY. (Notice that this

requirement is stronger than the condition XFG72(M, X) alone.) In view of

(5.5), we see that this definition does not depend on the particular z; chosen

to represent X in canonical form.

(6.2) For each X in L2(M, X), Lx is a closed operator on L2(M, X) with

domain containing M (viewed as a dense subspace of L2(M, X)).

By (6.1) and definition, A*X*<=L2(M, X) for each,4 in M. Also (A*X*)*
= (A*oX*)* = XAEL2(M, X), by (6.1) and (5.3). Since A* is bounded,
(A* o X*)* = X o A. Therefore, by definition, ^4GDomain Lx.

To conclude, we show that Lx is closed—if { Ym} is a sequence in L2(M, X)

belonging to Domain 7jf, if limOT Fm= FG72(M, X), and if \LxYm] iscauchy,

then FGDomain Lx and XY=\imm XYm. Write X= XX i w^(M). Since

[Lx(Ym- Yp), Lx(Ym- Yp)]= XXi \\X(YmZi- Fpz,)||2 tends to 0 with m and

p, and since X is closed, it follows that Fz¡GDomain X and (XY)zi = X(Yzî)

= limm X(YmZi) =limm (XYm)zi, for each i. That is, XF = limm XYm in

72(M, X).

(6.3) The operator La (A in L2(M, X)) is everywhere defined if and only if

AEM.
If A G.M, it is obvious that La is everywhere defined. Conversely, suppose

that La is everywhere defined. By definition, therefore, if X= XXi uzt(M)

is any representation of X, each subspace [Mz,] ÇDomain A. Let y be any

vector in £). By Corollary 5.1, there exist vectors Zi, • • • , z„ such that

X= XXi w«,.(M) and yG [M'zi]. Since y is therefore integrable (M', zi), we

can find a partial isometry V in M' such that (V')*V'y = y and F'yG[Mzi]

(see Lemma 3.1). By what we have proved, [Mzi]ÇDomain A. Therefore,

V'y G Domain A, and also (F')*F'y=yGDomain A. Therefore A is every-

where defined on the hilbert space §. Since a closed everywhere defined

operator is bounded, A (£M.

Let zAi(M, X) denote the collection of all LA (A in 72(M, X)) which are

everywhere defined on L2(M, X) (or, what comes to the same thing, which

are bounded). It is plain that zA¡(M, X) is a *-algebra of operators (with
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identity) on L2(M, X).

(6.4) For A in M, the mapping A-^>L¿ is a *-isomorphism of M onto

*Ai(M, X).
This is proved in a much more general context by Segal in [13, Theorem

!]•

Before proceeding further with the study of left multiplications, it will

be convenient to introduce a notion of right multiplication by elements of

L2(M, X). With each X in L2(M, X) we associate a (linear) operator Rx on

L2(M, X) defined as follows: for any Fin L2(M, X), RxY is defined if and only

if LyX is defined, and then RxY = LyX.

In particular, if 4£¥, then Ra is everywhere defined by (6.2). Moreover

Ra is a closed operator (viz. bounded), for if Xn—>0, then lim„ [RaXh, RaX„]

= lim„ [La-X*, La'X*] =0, using (6.1) and the fact that LA' is bounded. This

collection of operators Ra (A in M) forms a *-algebra of operators with

identity; for all A, B in M and all scalars a, ß, one has R«xA+ßB) =«Pa+j3Pb,

Rba =RaRb, (Ra')* = Ra, and P/ = the identity operator on L2(M, X), as one

verifies by the method cited in (6.4), making additional use of the unitary

invariance of X.

(6.5) zAi(M, X) if the commutant of the *-algebra of operators Ra (A in M).

As such, <tAi(M, X) is a a-finite finite W*-algebra of operators on L2(M, X).

Let T be any bounded operator on L2(M, X) commuting with all the Ra-

In particular, we have TRaI = RaTI, and if we write T(I) =X, this becomes

T(A) =XA =LxA, by (6.2). Therefore, Lx—T densely, and since Lx is

closed, Lx=T everywhere. So by (6.3), XÇ^M, and by definition, T

Ç^zAi(M, X). Since the commutant of any *-algebra of operators is a W*-

algebra, iAi(M, X) is necessarily a PF*-algebra. And since zAi(M, X) is

*-isomorphic with the cr-finite finite IF*-algebra M, by (6.4), oAi(M, X) is

itself a c-finite finite IF*-algebra. (Of course, the latter fact follows also by

Corollary 5.4.)

(6.6) For any elements X and Y in L2(M, X), XÇzDomain Ly if and only

if Y* ÇzDomain Lx:
We shall use the following fact: given any two elements S, T in C(M),

there exists a sequence \Rm] of projections in M with the following proper-

ties: the operators SRm and TRm are bounded for each m, and a vector x

belongs to Domain 5 (or Domain P) if and only if limm (SRm)x exists (or

limm(PPm)x exists). The existence of such a sequence was established in the

uniqueness proof of Corollary 5.1.

In the present circumstances, writing X = ^"_i w2,.(M), we know by defini-

tion that the z.GDomain X, Xz.GDomain Y, and by (6.1) that the z,-

G Domain Y*, and we are to prove that the F*z, G Domain X*. Choose a

sequence {Rm} of the sort described above for the operators Fand X*. We

must then show that lim,, „.XXi \\(X*Rp-X*Rm)(Y*Zi)\\2 = 0. Now

Zli\\(X*RP-X*Rm)(Y*Zi)\\2=ZtA\^*ppY*-^*^Y*)4\2 = ̂ y^))
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XXi \\(YRPX- YRnX)zi\\*= JXi \\(YRP- FPm)(Xz,)||2, which tends to 0
with m, p since -Xz.GDomain Y. This proves the proposition.

(6.7) For each X in L2(M, X), LxE.C(tAi(M, X)).
In view of (6.5) and a criterion cited earlier, it will suffice to prove that if

XG72(M, X) and if AEM, then LxRa^RaLx—that is, for each F in

Domain Lx, it is true that F4GDomain Lx and that X(YA) = (XY)A.

Now, if FGDomain Lx, then X*GDomain Lt; by (6.6). In the familiar

fashion, choose a sequence { Ym\ in M such that F„x—»F*x, for each x in

Domain Y*. By (6.1), limm Ym= Fin 72(M, X). Moreover, limm XYm = XY

in 72(M, X), because limm [XYm-XY, XYm-XY]=limm [(Y*-Y*)X*,

(Y*- Y*)X*]=bmm Ç"=1 \\(Y*- F*)(X*z,-)||2 = 0, by our choice of the Y*.

Now limm YmA = P¿(limm Ym) = YA, and also the sequence [Lx(YmA)\ is

cauchy—in fact, since the { Ym\ are bounded, limm Lx(YmA) =limm X(YmA)

= limm (XYm)A=RA(\imm XYm) = (XY)A— and because Lx is a closed

operator, we conclude that F^GDomain Lx, X(YA) =limm Lx (Fm^4)

= (XY)A, completing the demonstration.

We are now in a position to prove that the representation X^rLx of

L2(M, X) by left multiplications on itself preserves adjoints. For each X in

72(M, X), we denote by lx the contraction of the operator Lx to the domain

M, viewed as a dense subspace of 72(M, X).

(6.8) For each X in L2(M, X), LX- = (LX)* = (lx)*.

By definition, (lx)*^(Lx)*. To prove equality, we must show that

[LxY, W]=[Y, (lx)*W], for any F in Domain Lx and W in Domain (lx)*.

This follows immediately if we choose (as in (6.7)) a sequence } Ym\ in

M such that both limm Ym=Y and \immXYm = XY in L2(M, X) and observe

that already [LxYm, W] = [Ym, (lx)*W], for all m.

By known properties of C(zAi(M, X)) (e.g. (5.2)), (lx)* and Lx- have

a common dense domain in L2(M, X). Suppose that F belongs to the

common dense domain, and suppose X= XXi «Z,(M). Then [A, Lx'Y]

= XXi (Azi, X*(Yzi)) = (by (6.2)) XXi (X(AZi), Yzí)=[LxA, Y]
= [A, (lx)*Y]. Therefore, Lx-=(lx)* densely. But by (5.1), any two ele-

ments of C(M) (M finite) which are equal densely have the same domain

and coincide everywhere on this domain. Thus, Lx'=(lx)*-

It is now easy to carry out the above program for right multiplications.

(6.9) Propositions (6.2), (6.3), (6.5), and (6.7) obtain for right multiplica-

tions and the corresponding algebra zAr(M, X).

First, Rx is closed, for each X in L2(M, X); if the sequence { Ym \

ÇDomain Rx, if Fm—>F, and if \RxYm\ is cauchy, then FGDomain Rx and

limm RxYm= YX in L2(M, X). In fact, by definition, XGDomain Lyn, and

by (6.6), { F*} ÇDomain Lx-. By (6.1), the sequence {X*Y*} is cauchy and

Y*-^Y*. Therefore, since Lx> is closed, F*GDomain Lx- and X* Y*^X* Y*.

Again by (6.6), XGDomain LY, so FGDomain Rx, and by (6.1), YnX->YX.

If Ra is everywhere defined, then P*GDomain LA; for all T by definition
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and (6.6). So by (6.3), A* (and hence A)EM. On the other hand, (6.2)

shows that Ra is everywhere defined if A EM.

By the same argument given in (6.5), we see that z/ir(M, X) is actually

all of (zAi(M, X))'. <¡Ar(M, X) is then a finite IF*-algebra, being an essentially

finite IF*-algebra whose commutant has a cyclic vector (viz. 7). Finally,

(6.7) follows for right multiplications by a simple application of (6.6) and

(6.7), proving the assertions.

Denote by rx the contraction of Rx to the dense manifold M in L2(M, X).

(6.10) For each X in L2(M, X), Rx>=(Rx)* = (rx).

We show first that (rx)*EC(zAr(M, X)). That is, if FGDomain (rx)*,

then 04F)GDomain (rx)* and (rx)*(A Y) =A((rx)*Y). It being ob-

vious that rxLA = LArx on M, for each A in M, we have [rxB, AY]

= [LÁ-(rxB), Y] = [rx(A*B), Y]=[A*B), (rx)*Y]=[B, A((rx)*Y)], for all

A, Bin M, proving the assertion. By (5.1), therefore, (Rx)* = (rx)*.

Notice that [X, Y] = [Y*, X*], for all X and Y in L2(M, X) [l, Lemma

2.1]. Now, to see that (rx)* = RX; consider a F in the dense manifold

(Domain Px<)n(Domain (rx)*) and compute [A, RX.Y] = [A, LYX*]

= (by(6.8)) [LY.A,X*] = (smce(RA)*=RA>HAeM)[Y*,X*A*]=[AX, Y]
= [(rx)A, Y]= [A, (rx)*Y], for all A in M. Therefore, (rx)* = Rx> densely.

The conclusion follows as in (6.8).

We shall prove that the system at which we have arrived in (6.1)—(6.10)

is really independent of the particular unitarily invariant CA state X, up to a

strong notion of equivalence. The following proposition provides the basis for

this proof.

(6.11) Let <f>i and <f>2 be two cyclic representations of M on hilbert spaces

§i and $£>2. If £;G^>> are cyclic vectors for <j>i(M), assume that each state (of M)

\i(A) = (<j>i(A)^i, £,) is CA, unitarily invariant, and has E\{ = I. Then these

representations </>i and c/>2 are unitarily equivalent (that is, there exists a unitary

mapping U of §i on §2 such that U<pi(A) =4>2(A)U, for all A in M).

First, consider any sequence [An\ in M with the properties that

lim„ \i(A*An) =0and limn,m \2((An — Am)*(An — Am)) =0. We shall show that

lim„ X2(^4*^4„)=0 also. In fact, by Corollary 5.1, we may write Xi

= XXi "».-(M) and X2= XX i <¿ví(M), with the vectors xi, • • • , x„ and

fit " ' ' t y« so chosen that £[jr»<] "■■Efjr'«ji for each i. By hypothesis,

lim„ AnXi = 0 and {-4ny,-} is cauchy, for each i. But y¿ is integrable (M', x,)

for each *, by Theorem 2, and this implies that lim„ ^4„y, = 0. The assertion

follows and, by symmetry, the same condition holds when the roles of the X,-

are reversed.

Next, we define a linear operator P0 from §i to §2 as follows: To(4>i(A)^i)

=c/>2(y4)£2, for each A in M. Plainly, P0 is well defined, linear, with dense range

and domain, and furthermore Tacpi(A) =<p2(A)To on c/>i(M)£i. We shall show

that P0 has a closed nonsingular extension P (a fortiori, with dense range

and domain), with the property that Pc6i(^4)2</>2(^4)P, for all A in M.
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Considering the graph of Po, it is easily seen that Po has a closed exten-

sion if and only if lim„ <pi(An)£i = 0 and {<£2(.4„)£2} cauchy together imply

limn (p2(An)l;2 = 0; and furthermore, that if this condition is realized, then the

operator P whose graph is the closure of the graph of Po will be nonsingular

if and only if lim„ <p2(An)¡-2 = 0 and \<pi(A„)^i} cauchy together imply

lim„ <pi(An)j;i = 0. In terms of the states Xj, these necessary and sufficient

conditions are precisely those conditions verified in the first paragraph.

Therefore, T exists, and from the fact that P is closed and T<pi(A) =<p2(A)T

on </>i(M)£i, it follows easily that <p2(A)TQTd>i(A), for all A in M.

But now, according to the generalized Schur lemma proved by Neumark

in [12, §7], the representations c/>i and c62 are unitarily equivalent; in effect,

if one applies the polar decomposition to P to write T=U(T*T)1'2, the

ascribed properties of P imply that U is a unitary mapping of ¡Qi on !q2 with

the property that U(pi(A) =<p2(A)U, for all A in M. This proves (6.11).

We recall the definition of an 77-system (Ambrose [l, p. 28]). An H-sys-

tem H is a complex hilbert space in which a partial multiplication is defined

and satisfies the following conditions: (i) the collection A of elements in H

which right and left multiply every element of H is a dense manifold and

an algebra under operations in 77; (ii) x^4 = 0 implies x = 0, for any x in 77;

(iii) there is associated with each element x of H an element x* (called the

adjoint of x) satisfying ||x|| = |l**ll and giving rise to the following operator

equalities: Lx- = (Lx)* = (lx)* and Rx* = (Rx)* = (rx)*, where Lx: y^>xy (and

Rx: y—*yx) is defined for all y such that xy (or yx) is defined, and where lx

(or rx) is the contraction of Lx (or Rx) to the manifold A. Two 77-systems Hi

and 772 are called isomorphic if there exists a mapping of Hi on 772 which

preserves sums, scalar multiples, products when defined, adjoints, and norms.

Finally, we call an 77-system finite if the bounded algebra A of 77 contains

a multiplicative identity e.

(6.12) The collection 2 of all left multiplications La by elements of the

bounded algebra A in a finite H-system forms a a-finite finite W*-algebra in the

natural operations. If e denotes the identity in A, then co« is a CA unitarily

invariant state of 2, and H = L2(2, coe), 2=zA¡(2, coe). Finally, the commutant

2' of 2 coincides with the collection 9Î of all right multiplications Ra by elements

of the bounded algebra A.

(6.13) Two finite H-systems Hi and H2 are isomorphic (as H-systems) if and

only if the corresponding W*-algebras 2i and 22 of bounded left multiplications

are unitarily equivalent.

The proof of (6.12) is elementary (see e.g. (6.5)) and is omitted. Regard-

ing (6.13), it is obvious that an 77-system isomorphism of 77 and 772 induces

a unitary equivalence of 2i and 22. Conversely, suppose that U is a unitary

operator from 77i on H2 with the property that U2i = 22U. From the fact that

identity elements must correspond we see easily that, for each La in 2i, we

have  ULa = LuaU. It results that the mapping a—>Ua from the bounded



1952] THE RADON-NIKODYM THEOREM 279

algebra A i oí Hi in the bounded algebra A2 of H2 is a *-isomorphism onto;

for example, LUa.= ULa.U* = (ULaU*)* = (LUa)* = LiUa)., so Ua* = (Ua)*,

and Lu ah = ( ULa U*) ( ULb U*) = LUaLVb, so U(ab) = ( Ua) ( Ub). Now, by means

of the familiar approximation argument (see (6.7)), one proves also that

ULx = LuxU, for all x in Hi, and using this fact, it follows in a straightforward

fashion that x—>[/x is actually an ü-system isomorphism.

Theorem 5. Given a cr-finite finite W*-algebra M, there exists a *-isomor-

phism A-^La between M and the W*-algebra 2 of left multiplications by ele-

ments of the bounded algebra of a finite H-system H(M). This associated finite

II-system H(M) is determined uniquely up to H-system isomorphisms by the

existence of this *-isomorphism A—*La- Furthermore, two cr-finite finite W*-

algebras Mi and M2 are *-isomorphic if and only if the associated finite H-sys-

tems H(Mi) and H(M2) are isomorphic as H-systems, or what is the same, if

and only if the corresponding algebras Si and 22 of bounded left multiplications

are unitarily equivalent.

Proof. To begin, we shall proceed with the assumption that the identity

in M has finite length. The existence of H(M) is assured by the construction

given in (6.1)-(6.10). Corresponding to a fixed unitarily invariant CA state

X of M with E\ = I, the underlying hilbert space of H(M) is L2(M, X), and

the partial multiplication is that obtained by defining the product XY of

two elements X and F in L2(M, X) to be LXY (=RyX), this being defined

if and only if FG Domain Lx.

Let Ho be any other finite ü-system, with the property that M is *-iso-

morphic to the IF*-algebra So of bounded left multiplications in H0, and let

e0 be the identity in H0. Then \0(A)=ueo (LA) is a CA unitarily invariant

state of M, with E\0 = I. According to (6.11), the representation algebras

So and 2 on H0 and H(M) are unitarily equivalent. Therefore, by (6.13),

Ho is isomorphic to H(M). By the same token, two finite IF*-algebras whose

identities have finite length are *-isomorphic if and only if their associated

ü-systems are isomorphic.

Turning to the general case, we shall show first that any <r-finite finite

IF*-algebra M is *-isomorphic to a finite W*-algebra whose identity has

length 1. In fact, using Theorem 3, express M as a central direct sum of

finite IF*-algebras Mn uniformly of length ». Now, by the case treated

above, each Mn is *-isomorphic to a finite W*-algebra M„ whose identity

has length 1. Since a countable direct sum of finite IF*-algebras of length 1

is easily seen to be a finite lF*-algebra of length 1, we conclude that M is

*-isomorphic to M = J^„ M„, a finite IF*-algebra of length 1.

We now define H(M), for an arbitrary cr-finite finite IF*-aIgebra M, to

be the finite /P-system associated with any finite IF*-algebra which is

*-isomorphic to M and whose identity has finite length. By the first case, this

definition is invariant; and the systems H(M) obviously fulfill the require-



280 H. A. DYE

ments of the theorem.

Corollary 5.4 shows that the *-isomorphism A—*LA will be strongly

continuous when M has finite length; on the other hand, if M has infinite

length, then it can be shown easily that this isomorphism cannot be strongly

continuous.

A (stronger) abelian analogue of Theorem 5 is proved by Segal in [18,

Theorem 4.1]. For analogues of (6.5) and (6.12) in the case of 72-systems of

discrete groups, see von Neumann [ll], or for general unimodular LC

groups, Segal [15].
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