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In a previous paper [4](') we have defined a special Jordan ring to be a

a subset of an associative ring which is a subgroup of the additive group

and which is closed under the compositions a—»a2 and (a, ¿>)—>a&a. Such sys-

tems are also closed under the compositions (a, b)—j>ab-\-ba=\a, b\ and

(a, b, c)^abc-\-cba. The simplest instances of special Jordan rings are the

associative rings themselves. In our previous paper we studied the (Jordan)

homomorphisms of these rings. These are the mappings 7 of associative rings

such that

(a + bY = a' + V,        (a2Y = (a-7)2,

(aba)J = aJ¥aJ.

A second important class of special Jordan rings is obtained as follows. Let

21 be an associative ring with an involution a—>a*, that is, a mapping a—+a*

such that

(a + b)* = a* + b*,       (ab)* = b*a*,

a** = a.

Let 3C denote the set of self-adjoint elements h = h*. Then 3C is a special

Jordan ring. In this paper we shall study the homomorphisms of the rings

of this type. It is noteworthy that the Jordan rings of this type include those

of our former paper(2).

In our first paper we developed two methods for determining the Jordan

homomorphisms of the rings 21: a matrix method and a Lie ring method. In

this paper we obtain an analogue of the matrix method for the rings 3C.

Our principal result (Theorem 4) is that if 21 is a matrix ring @n, «^3, with

an involution such that e*t = ea, i=\, • ■ ■ , n, and every element of 3C is of

the form a-\-a*, then any Jordan homomorphism of 3C can be extended to

an associative homomorphism of 21. This result can be extended to locally

matrix rings and in this form it is applicable to involutorial simple rings with

minimal one-sided ideals. We also obtain the Jordan isomorphisms of the

Jordan ring of self-adjoint elements of an involutorial primitive ring with

minimal one-sided ideals onto a second Jordan ring of the same type.

Presented to the Society, September 7, 1951; received by the editors July 20, 1951.

(') Numbers in brackets refer to the bibliography at the end of the paper.

(a) See the remark following Theorem 5 below.
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1. Canonical involutions in matrix rings. We recall that a ring 21 with an

identity 1 is a matrix ring ©„ if 21 contains a set of matrix units {e,y}, i, j

= 1,2, • • • , n, such that

n

(3) eifiki = S¿*e,f,        ¿L ea = 1-
i

The ring © is the subring of 21 of elements commuting with all the «,-y. As is

well known, every element of 21 can be written in one and only one way as

Uta en, £,7e©.
We assume now that 2l = ©„ has an involution x—*x* such that the e„-

are self-adjoint elements. We wish to determine the form of the involution in

terms of the e,y and the coefficient ring @.

Lemma 1. // 21 = ©n and x—*x* is an involution such that e*i = eu,

¿=1,2, • • ■ , n, then there exists an involution a—>« in © and self-adjoint ele-

ments 7¿£© (7i=7,) having inverses such that

\f±) x   = / , y j çijyieji,       x = / , %*j&íí*

Conversely, a mapping x—>x* of the form (4) is an involution such that ej = e,,-.

Proof. We observe first that e% = 7,-yCy,-, 7,-y£©; for e,y = e,-,e,yejy and e*

= e*je*1e*i = ejje*jeii. Let yti =y{, yu = yi, i=l, 2, ■ ■ ■ , n. Since eu = eu*a, en

= e*ie*i = 7¿7¿ di- It follows that eyy = 7»7,? e,-> and summation on j gives 7,7/

= 1. Similarly we can start from e¿¿ = e,iei,- and prove 7/71 = 1. Hence 7/

= 7,_1. Also it is clear that 71 = 1. If ££©, £en =en(£en)en and this shows that

(fen)* = |en. The element \ is uniquely determined; hence £—>| is an involu-

tion in ©. Now £,ye,y = e,i(£,yen)eiy. Hence

(ia^ii)   = ei,-(fi,-eu) g,i = ei,(i¿j«u)e.i

= 7 y */i(f<j*u)7<«ii
-i-

= 7 y cuyují

and (4) holds. Since e,i = ei** = (7iei,)*=7r17»7ie>i=7r17¿e,i, 7.= 7f- Con-

versely we can verify that if a—>5 is an involution in © and the 7,- are self-

adjoint elements of ©, then (4) defines an involution in ©„ such that e% = eu.

An involution of the form (4) in a matrix ring will be called canonical.

Of course, this is no restriction if n = i. In the sequel we shall require «¡5 3.

We consider now some special cases.

A. Let 21 be an involutorial simple ring with minimum condition for right

ideals. Then 2l=An where A is a division ring. We observe that the involu-

tion is canonical. This follows easily from known results except when n = 2m,

A =<ï> is a field, and the involution is symplectic, that is, has the form x—>q~lx'q



312 N. JACOBSON AND C. E. RICKART [March

where x' denotes the transpose of x and

(5) \m, -c: :>
In this case we can regard 21 as ©m where © = í>2 and if we introduce the in-

volution a—>ä=a~Wa in $2, then the given involution in 21 is canonical with

all the 7, = 1.

B. Let ÎÊbea vector space over a division ring A which possesses an in-

volution a—»5. We assume, moreover, that there is defined a scalar product

f= (x, y) relative to a—>5 in 3£. This means that (x, y) is a function from ÏXÏ

to A such that

(6)

(x, yi + yt) = (x, yl) + (x, y2),

(xi + x2, y) = (xi, y) + (x2, y),

(ax, y) = a(x, y),

(x, ay) = (x, y)ä.

Suppose that (x, y) is hermitian in the sense that (y, x) = (x, y) and non-

degenerate in the sense that (x, z) = 0 for all x only if z = 0. Let 8/ be the ring

of all linear transformations t in Ï which have adjoints relative to/; that is,

if ¿£8/, then there exists a t* such that (xt, y) =(x, yt*) holds for all x, y in

Ï. Then t—>t* is an involution in 2f. We shall study such involutions later.

At this point we note that if ï has an orthonormal basis (for finite combina-

tions) {e„}, (e„, ev)=bu.v, and dim $>1, then 2/ is a nontrivial matrix ring

and t—H* is canonical. If dim ï< oo, this has been proved in A. Hence as-

sume dim Ï = oo. In this case, for every integer n we can decompose the

basis {e„} into n disjoint sets {e^}, k = i, 2, • • • , n, where p ranges over the

same set of indices in each case. Let «,-,• be the linear transformation defined by

<*) if)
e¡i  vij     Okie¡i   ,

i,j = l,2, • ■ • , n. Then the «y form a system of matrix units for 2/ and e% = e¡i.

In particular e*¡ = eu so that /—H* is canonical.

A similar discussion applies to the case in which A=<i> a field, ä=a, and

/ is an alternate scalar product in the sense that (x, x) =0 for all x, provided

that 3£ has a symplectic basis. By this we mean a basis {dt, eß} in ï such that

(dp, d,) = 0 = (e„, e,),

(dß, e,) = 0, m 5¿ v,

(dß, ep) = 1 = — (e„, d„).
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If 2/ denotes the ring of linear transformations having adjoints and dim ;E>2,

then 8/ = ©b, «> 1, and f—»/*, the adjoint of t, is a canonical involution.

C. Let 53 be the ring of all bounded operators in a Hilbert space § (not

necessarily separable). Here we have the fundamental scalar product (x, y)

and the involution t—H* in 93. While there exists no orthonormal basis in the

algebraic sense, there do exist complete orthonormal systems {ep} for §.

If we take into account the completeness of §, we can use a complete ortho-

normal system in the same way as the orthonormal basis was used above to

prove that I—H* is canonical.

D. Let 21 be a ring of linear transformations in a Hilbert space § which

is a factor in the sense of Murray and von Neumann [ó]. Again /—H* is an

involution in 21. Factors of type I are already covered in the preceding ex-

ample. On the other hand, if 21 is a factor of type II or III, then it is not diffi-

cult to obtain a decomposition of Hilbert space of the form § = 5Dci-r-3)?2

+ • ■ • +9)c„ where n is any integer and the SO?,-, which "belong to 21" in the

sense of Murray and von Neumann [ó], are pairwise equivalent. Then for

each j = 1, • • • , n there exists a partially isometric operator ei¡ in 21 with

SDîi as its initial set and ÜJJíy as its final set. For i, j = i, ■ ■ ■ , n, define e,y

= e*(ei}. Obviously {ea} is a system of matrix units and e*l = eit. Hence 2Í is

of the form <3„ and t—H* is canonical.

2. The Jordan ring of self-adjoint elements of a matrix ring with a

canonical involution. Let 21 be a matrix ring ©„ with a canonical involution

x—»x* and denote by 3C the Jordan ring of self-adjoint elements relative to

this involution. Then h= ^a,ye»y£:3C if and only if

(7) an = 7¿  äjiy,-

holds for all i, j. In particular, if a is any element of ©, then

(8) <x[ij] = oien + y¡ &?<ty = ae^ + (ae,,)*

is in 3C. With this notation the element h can be written as

(9) h = 2Z «««•■•• + 12 <*ii[ij]
i «J

where 7r1¿Vy4 = a«. We note also that

(10) a[ij] = fj äyi[ji].

We shall not attempt to list all the Jordan relations connecting the elements

a,[ij] but note only two of these which occur most frequently:

(11) {«[ij], ß\jk]} = aß[ik], i,j, **.

(12) [a[ij], ß\ji]}  = aß[ii] + ßa[jj], i t¿ j.

We prove first the following result.
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Lemma 2. If re ̂ 2, then the enveloping associative ring of 3C is ©„ itself.

Proof. Let a be any element of © and let i^j. Since en and a[y]G3C,

aeij = euoi[ij] is in the enveloping ring. Hence so is ae,, = (ae,y)ey¿. This im-

plies the lemma.

If 3C is the set of self-adjoint elements relative to an involution in a ring 21,

then we shall say that 3C is trace-valued [5, p. 8] if every Ä£3C has the form

a+a*, a£21. This will always be the case if 21 admits the operator 1/2, that

is, if 2x = a has a unique solution (l/2)a for every a£21. There are instances

in which 3C is trace-valued even when 21 is of characteristic two. From the

form (9) of AG3C of ©„, it is clear that the set of self-adjoint elements of a

canonical involution of a matrix ring is trace-valued if and only if this holds

for the sets of self-adjoint elements of © relative to the involutions £—^r'fYV

Since 77 is self-adjoint relative to £—*7r!l7i if and only if 7,77 is self-adjoint

relative to £—*■£, it follows that a necessary and sufficient condition that 3C be

trace-valued is that the set of self-adjoint elements of © relative to £—»£

is trace-valued.

We recall that a subset 3 of a special Jordan ring 3C is a (Jordan) ideal

provided (1) 3 is a subgroup of the additive group, (2) 3 contains {a, z\ =az

+za for all a£3C, zG3> (3) 3 contains z2, aza, zaz for a£3C, 3^3- If 3C ad-

mits 1/2, then (3) is superfluous.

Theorem 1. Let 21 = ©„ have a canonical involution and let 3C be the Jordan

ring of self-adjoint elements. Assume that re^3 and that for every self-adjoint

ideal 33 of 21 (33* = 33), 33H3C is trace-valued. Then a subset 3 of 3C is a Jordan

ideal in 3C if and only if 3 =33P\3C where 33 is a self-adjoint ideal of the associa-

tive ring 21.

Proof. Obviously if 33 is an ideal in 21, then 33H3C is a Jordan ideal in 3C.

Therefore let 3 be an arbitrary Jordan ideal in 3C. We can assume 3^(0).

Let A denote the subset of © of elements which appear as coefficients of the

elements of 3- We prove first that A is an ideal in the associative ring © and

hence that 33 =A„ is an ideal in 21.

Let h= 7.nnen be an arbitrary element of 3- Since J?,¿e,, = e¿,Ae¿¿, we have

77¿.A,G3- Furthermore, if iVj, then »j¿»[¿;] = {í?,-,e,¿, w,-y} where Un=\[ij].

Hence i?,,[y]G3- Also if i^j, <|#[*y]"*««Ä%+«//Äe«£3' It follows that A
can be defined as the set of all 77 G © such that 77 [ij] G 3 for some if*j. Since,

by (11), ri[kj] = \ukj, 7][ij]}, i, j, k¿¿, and 7)[ik] = {t¡[íj], ujh\ it follows that

if 77GA then t?[^/]G3 for arbitrary k, I, k^l. An immediate corollary of this

result is that A is a group under addition. Furthermore, if 77GA and «G©,

then for i, j,k¿¿, (va) [ik] = {77 [ij], a[jk]} is in 3- Hence 77aGA and similarly

CÏ77GA so that A is an ideal in ©. If we take into account (10), we see that A

is self-adjoint relative to the involution ¿—>| of ©. It follows that 33 =A„

is a self-adjoint ideal of 21.
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It is obvious that 30Br\3C. Hence let h= XX*A>+ ]£«;\ij[ij]&àC\X.
We have seen that the X,v[y]£3i. Hence it remains to show that Xe<i£3 if

X£A and X=yjX7r1. Now since S303C is trace-valued, we can write X = ?j

+7J_1^71, 17 EA. Hence \eu = r][ii]. Since y[ij]Çz3, it follows from (12) that

y[ii] = eu{r¡[ij], Uji]eu

is in 3. This completes the proof.

Corollary. Let 2Í = ©„ be a simple ring with a canonical involution. Assume

that n^3 and that 3C is trace-valued. Then 3C is a simple Jordan ring.

Besides the matrix rings we shall be concerned in the sequel with general-

izations of these rings defined as follows:

Definition. A ring 21 with an involution will be called locally canonical-

matrix if every finite subset of its elements can be imbedded in a self-adjoint

matrix subring in which the induced involution is canonical. The ring 21 will

be called locally of degree at least n ii the matrix subrings can always be

chosen of degree n or greater.

The preceding results can be extended to locally canonical-matrix rings.

We note explicitly the following two theorems.

Theorem 2. Let 21 be a locally canonical-matrix ring, locally of degree at

least two. Then 21 is the enveloping associative ring of its Jordan ring 3C of

self-adjoint elements.

This follows directly from the lemma.

Theorem 3. Let 21 be a simple ring which is locally canonical-matrixt

Assume that 21 is locally of degree at least three and that 3C is trace-valued. Then

3C is a simple Jordan ring.

Proof. Let 5DÎ be one of the matrix rings referred to in the definition and

let e be the identity of 5Dc and {e,y} a set of matrix units such that e*t = eu.

Now we can replace W by the larger ring e'ñ.e. This is a self-adjoint matrix

subring with {e,y} as matrix units. Since e*¡ = eu, the induced involution is

canonical in e%e. It is well known that e%e is simple. If kÇ.e%ei^X,, then

k=a-\-a*=eae-\-ea*e. Hence e2le/r>\3C is trace-valued. The result now follows

from the corollary.

3. Jordan homomorphisms of X of a matrix ring. In this section we

prove the analogue of the matrix theorem (Theorem 7) of our former paper.

Theorem 4. Let 21 = @„ be a matrix ring with a canonical involution. As-

sume that n^3 and that the Jordan ring 3C is trace-valued. Then any Jordan

homomorphism of 3C can be extended in one and only one way to an associative

homomorphism of 2Í.

Proof. Let h—*hJ be a homomorphism of 3C and let £ denote the envelop-
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ing associative ring of the image SCJ. We recall that J maps orthogonal idem-

potents into orthogonal idempotents. More generally, if e, aG3C, e idem-

potent, and ea = 0 = ae holds in 21, then(3) eJaJ = 0 = aJeJ. lia is any element of

©, eiia[ii]eu = a[ii]. Hence ei,a[ii]Jei = a[ii]J and

«;,(*[«]   = a[ii]   = a[ii] en.

Next let ***/. Then a[ij]= {«[t/], Cyy} so that a[y]J = {a[y]J, efj}. Multi-

plication of this equation on the left by e« gives

J     r . ."!•' "*      r ■ • T**
eua[ij\   = eua[ij\ eyy.

Similarly eia[ij]Jejj = a[ij]Jefj. Hence

(13) ena[ij]   = ena[ij] eyy = a[ij] e,-,-

holds for all *, j.

As before, set Ui¡=\[ij]. If i, j, k are all different, then Uik=Ui¡Ujkekk

■\-ekkUjhUij. Therefore

/ j  j  j        j   j   j
Uik = UijUjkekk + ekkUjkUij

and

j j        j  j  j j
(14) enUik = enUijUjkekk.

If we define g,y = e¿w¿ for iy^j, then (13), (14), and the orthogonality of the

e¿ imply that

(15) gijgti = ojkgn

holds for i^j, k^l, and i 7* I.
We prove next that g<ygy, = e«. We note first that M¿yMyí = e,¿+cyy = My,M,y.

This implies that the element z = w¿w¡£ —w^Wy is in the center(4) of £ and

z2 = 0. Now set (eu+ejjY — wfjU^ = (uijUjiY — UyUß = y. Then (w.-ytty,-)'7— u^Uy

— y-\-z. Hence(s)

y(y + z) = [(uíjUjí)   — UijUji] [(*n*fl)   — UjiUn] = 0.

Therefore y2= — yz and

(16) y3 = - y2z = yz2 = 0.

Now observe that

j j       j        j  j   j        j        j  j j        j
yen = yen -\- en      w,yrejijen = en      w,yWy,e,, = en      gijgji

(3) The proof in [4, p. 482 ] applies here without essential modification.

(4) The proof in [4, pp. 481, 482] applies here without essential modification.

(5) The proof in [4, p. 482] applies here without essential modification.
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and similarly e¿y = e¿ — g¿ygy,-. On the other hand,

2 J    J    J    J    j

\SiiSii)   ~ g'jëiiSijgii = eaUijUjiUifUji
j j j        j  j   j

= ea\UijUjiUij) Uji      eaUijUji      gij&ji

and this implies that eJu — gaga is idempotent. Thus ye(t = y2ëIli = y3eJit = Ç>

by (16). Hence g,ygy¿ = e«. Then if we set g,¿ = e¿, (15) will hold for all

i, j, k, I. The element 1J is the identity in £; hence we write 1,7 = 1. Since 1

= Za<
(17) E gu - 1.

Therefore {g,y} is a set of matrix units for £.

We can represent £ as §„ where 55 is the subring of £ of the elements

which commute with the g,y. Now let a be any element of © and write

a[ij]J = E a[t/]*ig*i, a[»/]*J G S-
*,¡

Then by (13)

(18) a[ij]Jgji = «[»jjíjfíí

holds for all i, j. We next define aT'i=a[ij]a and proceed to show that a-*aTn

is a homomorphism of © into % which is independent of *, j ii %?*]. If we

apply J to (11), we obtain

a[ij]Jß[jkY + ß[jk]'a[ijY = (aß)[ikY

for i,j, k all different. Since a[ij]ekk — 0=ekka[ij], right multiplication of the

last equation by gkk gives

a[ij]Jß[jk]Jgkk = (aß)[ik]Jgkk.

This implies

(19) aUißUk = (aß)7"

if i, j, k are unequal. Now recall that 1 [ij] — Uu so that 1 [ij]1 ga = u1vgu= gu-

Comparison with (18) gives 1 [ij]a = i; hence lri>' = l. If we put ß = l in (19),

we now obtain aTii = aT,\ Similarly ctTii = aT*> and hence

(20) ar» = aT*', i t¿ j, k?¿l.

It follows that a7=a:T*'f is independent of i, j if ij^j and, by (19), a—*aT is a

homomorphism of © into rî-

Now for  iy^j,   \ot[ij],   «/¿} =a[ü]+a[i;].  Hence   {«[y]7,  «}j¡ = a:[íí]/

+ali/]/- Since ci[jj]eii = 0 = ena[jj], this gives

«[y] «*f« + Ujia[ij] gu = a[ii] gu.
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Since a[ij]JuJjiga = a[ij]Jgji=a[ij]Jgjjgji, we obtain from (18) that a[ij]JuJj&n

= aTga- Hence

(21) a gn + u,ia[ij] gn = a[ii] gn.

Since a[ij] = (y^üy ¡)[ji] and uH = (y^li) [ij], <x[ij]Jga = (yf1âyi)Tgji and

uigji = (yr1yj)Tgii- Hence (21) becomes

(22) agn + (y¡ S7<)Tgii = a[ii] gn.

For arbitrary x— ¿-Xi^H m ^l we define xT = X^«£;j- Evidently x—*XT is

a homomorphism of 21 into £. We wish to show that T coincides with / on

3C. Let ir¿j and consider «[y]'7. Since a[ij]Jgkk = 0 for kj^i, j,

a[ij]J = a[ij]Ji = a[ij]Jgjj+ a[ij]Jgn

= aTgij + (7/ ayiYgji

= a[y]r.

Similarly a[ii]J =a[ii]Jgn = a[ii]T by (22). These two results show that

xJ = xT if x = a-\-a*. Since 3C is trace-valued this proves our assertion. Thus

T is an associative extension of J to 2Í. That the extension is unique is a

consequence of the fact that 21 is the enveloping associative ring of 3C.

If we make use of the fact, established in the proof of Theorem 3, that

if 21 is locally canonical-matrix and 3C is trace-valued then we can suppose

that 3CP\5rjc is trace-valued for the required matrix subrings 9K of 21, we ob-

tain the following extension of the matrix theorem.

Theorem 5. Let 21 be a locally canonical-matrix ring. Assume that 21 is

locally of degree at least three and that 3C is trace-valued. Then any Jordan

homomorphism of 3C can be extended in one and only one way to an associative

homomorphism of 21.

Theorem 4 actually implies Theorem 7 of our previous paper [4] when

re^3. This can be seen as follows. Let 21 be an «Xre matrix ring with «2:3

and form S3 = 21®21' with involution (a + b')* = b+a', where 21' is anti-iso-

morphic to 21 under the mapping a-+a'. Let {e,y} be a system of matrix units

in 21 and define ft} = eij-r-e¡i. Then {/,-y} is an re Xre system of matrix units in

S3 such that /* =/,,. Hence the involution in 33 is canonical. The Jordan ring

3C of self-adjoint elements in 21 consists of all elements of the form a-\-a'

and is Jordan isomorphic to 21. Note that 3C is trace-valued since a+a'

= (a + 0) + (a + 0)*. Now, if a—>aJ is a Jordan homomorphism of 21, then

a-\-a'—>aJ is a Jordan homomorphism of 3C which, by Theorem 4, can be

extended to an associative homomorphism T of 33. The desired result now is

immediate from Theorem 4 of [4](6).

(e) Note that Theorems 5 and 6 of [4] apply trivially here to give the hypotheses of

Theorem 4 of [4].
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Theorem 7 of [4] is valid for «^2 while Theorem 4 above is not true for

« = 2. This is shown by an example in [l, pp. 156, 157].

4. Involutorial primitive rings with minimal ideals. In this section we

shall consider the problem of determining the Jordan homomorphisms of the

sets of self-adjoint elements of involutorial primitive rings with minimal one-

sided ideals. We first describe a method for obtaining the rings of this type.

Let ï be a vector space over a division ring A which has an involution a—->5

and let/=(x, y) be nondegenerate hermitian or alternate scalar product in

Ï. Let 2/ denote the ring of linear transformations / in 9£ which possess ad-

joints /*: (xt, y) «■ (x, yt*), and let g/ be the subring of 2j of transformations

of finite rank (Xt finite-dimensional). Then t—*t* is an involution in 2/ and in

%/. It can be shown that any self-adjoint subring 21 of 2/ containing $/ is an

involutorial primitive ring with minimal one-sided ideal and conversely

every ring having this structure can be obtained in this way(7). There is

therefore no loss in generality in dealing with the rings of linear transforma-

tions 21 such that 8/~22Î""2rî/ and 2l* = 2t. Let 3C be the Jordan ring of self-

adjoint elements of 21 and let 3C0 = 3CnC7/.

We consider first the case of involutorial simple rings with minimal one-

sided ideals. This amounts to assuming that *ñ = $f, 3C = 3Co. The basic result

for the Jordan theory of %; is that rî/ is locally canonical-matrix. We proceed

to the proof of this result. Since everything has been proved for finite-dimen-

sional 3£ in our previous discussion, we assume from now on that dim ï= <».

If SD? is a subspace of £, we define the orthogonal complement SD?-1 = [x\ (x, y)

= 0, yS9)c}- The subspace 9JÎ is nonisotropic, isotropic, or totally isotropic

according as aWrW- = (0), SBnüR1 **(<)), or W.ÇW.1. In general X^Tl®mx

even when SDî is nonisotropic. However, if SO1? is a finite-dimensional non-

isotropic subspace, then ï = 5Dic©3)ic"L [7, Lemma 1.1 ]. The next lemma, which

is fundamental for our purposes, is due to Kaplansky [5, Lemma 4]. We

include the proof since the journal in which it appeared is not readily ac-

cessible.

Lemma 3. Let 3JÍ be an arbitrary finite-dimensional subspace of Ï. Then

there exists a finite-dimensional nonisotropic subspace of X which contains 59?.

Proof. Choose a nonzero vector x in ffli^tyl1 and let y be any vector

such that (x, y)^0. Let 9? be the space spanned by 9JÎ and y. Then 9icP\9,t-L

CSDcr^SfJc1- A finite number of such steps completes proof of the lemma.

Theorem 6. Any involutorial simple ring with minimal one-sided ideals is

locally canonical-matrix.

Proof. We take the ring to be 2?/- Let gi, • ■ • , gk be a finite set of elements

in %f and, by the preceding lemma, choose a finite-dimensional nonisotropic

C) This follows from the isomorphism theorem for primitive rings with minimal ideals

[2, p. 318]. A detailed proof will be given in [3, Chapter IX].
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subspace 90? in ï which contains the range of the linear transformations

gi, • • • , gk and of the adjoints g*, • • • , gt- Denote by $ the set of g£r}/

of the form xg— E(x> «!,)&< where a< and &,are in 90?. Since xg*=± ^2(x,b¡)ai,

g*£$ so that $ is self-adjoint. Observe also that $ contains the given g¡.

Now let «i, •••,«„ be a basis for 90?. Since 90? is nonisotropic, the scalar

product (x, y) is nondegenerate in 90?; therefore there exist vu ■ ■ ■ , fl„£90?

such that (ut, By)•"!</, i,j = l, 2, ■ • ■ , n. Define iy by xe,y = (x, Vi)u¡. Then

{e,y} is a set of matrix units for $ and, in fact, Ä=A„ [4, p. 490]. It follows

from A of §1 that the involution is canonical in $.

We remark that since % is infinite-dimensional, we can take n to be any

finite number. The condition dim ï infinite is equivalent to the assumption

that 21 does not satisfy the minimum condition for right (left) ideals. Our

results therefore yield the following theorem.

Theorem 7. Let 21 be an involutorial simple ring possessing minimal one-

sided ideals but not satisfying the minimum condition for these ideals. Assume

that the Jordan ring X of self-adjoint elements is trace-valued. Then X is a simple

Jordan ring and any Jordan homomorphism of X can be extended in one and

only one way to an associative homomorphism of 2Í.

We consider next an arbitrary primitive ring 2Í with minimal one-sided

ideals. Take 21 in the form S/Q2ÍIDf?/, 21* = 21, and set Xo = xr\%f, where X
is the Jordan ring of self-adjoint elements in 21. We then have the following

result.

Lemma 4. // Xo is trace-valued, then it is a minimal Jordan ideal in X

which is contained in every nonzero Jordan ideal of X.

Proof. Let 3 be a nonzero Jordan ideal in X. Since £fC0 is a simple Jordan

ring, we have only to prove that ^C^Xo^(0). Let b denote any nonzero ele-

ment of 3 and choose a vector u such that ub=v^0. We prove that there

exists h(E.Xo such that uh = u. First, if (u, m)^0, define h by xh

= (x, u)(u, u)~lu. Then clearly h(EX0 and uh — u. If (u, u) =0, choose a vector

w such that (u, w)=l and define / by xt = (x, w)u. In this case take h = t-\-t*.

Then again hÇ_X0 and uh = u. Now if vh^O, then hbhÇz^$F\Xo and uhbh

= vh^0 so that hbh^O. Finally, if vh = 0, then [bh] E$r\Xo and u\bh\
= i^0sothat {bh}^0.

The enveloping associative ring of the Jordan ring X need not be equal

to 21. An example of this type can be obtained as follows. Let ï be a vector

space with a denumerable basis over a field <i> and let 2/ be the ring of linear

transformations in 2c whose matrices are row and column finite relative to a

certain basis for Ï, that is, there are only a finite number of nonzero coeffi-

cients in each row and column. The correspondence (a)—>(a)', the transpose

of (or), defines an involution in 2f, and S/ is a primitive ring with minimal

one-sided ideals. The ideal g/ corresponds to the set of matrices that have
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only a finite number of nonzero coefficients. Let (co) be a skew-symmetric

matrix with « rows and columns such that (co)2 = 0. Such matrices exist if

«S:4 and <£ is an algebraically closed field of characteristic 0. Then the

matrix

diag {(co), (co), (co), • • •  }

with (co) down the diagonal belongs to 2/. The ring 21 generated by the cor-

responding linear transformation w and §/ is the set of mappings aw-\-g,

«G3>, gGÖ7- 21 is self-adjoint and the set of self-adjoint elements of 21 is the

set 3Co of self-adjoint elements of %/. Hence the enveloping associative ring

of 3Co is 5/ which is properly contained in 21.

The above example shows that, in order to obtain a relation between

Jordan homomorphisms of 3C and associative homomorphisms of 21, we need

in general the additional condition that 21 be equal to the enveloping associa-

tive ring £ of 3C. On the other hand, since £^o7>£ is a primitive ring with

minimal one-sided ideals which is clearly self-adjoint. Hence the condition

21 = £ is a natural one.

Theorem 8. Let 21 and 83 be involutorial primitive rings possessing minimal

one-sided ideals and assume that 21 and 33 are not simple. Let 3C and Ä^ be the

Jordan rings of self-adjoint elements of 21 and 33 respectively. Assume that 3C

and À^ are trace-valued and that the enveloping associative rings are 21 and 33.

Then any Jordan isomorphism of 3C onto $ can be extended in one and only one

way to an associative isomorphism of 21 onto 33.

Proof. Take 21 in the form S/2213^, 21* = 21, and set 3C0 = 3Cn,5/, the
set of self-adjoint elements in §/. Similarly take 33 in the form £s233|2)ïo>

33* =33, and set A^o =Aj^\0> Let h-^hJ be the Jordan isomorphism of 3C onto

ly. By Lemma 4, J also is a Jordan isomorphism of 3Co onto Â^o- An applica-

tion of Theorem 7 gives a unique extension of J from 3C0 to an associative iso-

morphism of $/ onto %y. Now there exists a unique extension of the iso-

morphism between %¡ and %g to an associative isomorphism T between 2/

and 2g [2, p. 318]. Define J' = JT~1. Then /' is a Jordan isomorphism of 3C

into 2/ which leaves elements of 3C0 fixed. Next we show that /' leaves every

element of 3C fixed. Let &G3C and &0G3Co- Then {hh0} G3Co so that {hh0\

= {hho]J'=\hJ'ho}. Hence

(23) hho + hoh = h   ho + hoh   .

Since h0hh0Çz3Co, we also have

h0hho = hohJ'ho.

Now multiply (23) on the left by h0 to obtain

2 J' i   J' 2   J'
hohho + hoh = hoh   ho + hoh    = hohho + hoh   .
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Therefore

(24) hl(h - hJ') = 0.

Next let u be any nonzero vector and, as in the proof of Lemma 4, choose

ÄoG3€o such that uho = u. Substitution in (24) gives u(h — hJ')=0. In other

words, hJ'=h. It follows that hJ = hT for all &G3C- Since 21 and 33 are the

enveloping associative rings of 3C and Â^ respectively, it is immediate that

T is a unique extension of J to an associative isomorphism of 21 onto 33.

The above proof actually gives us a slightly stronger result which we

state as follows.

Corollary. Let 3C and K^ be arbitrary Jordan rings of self-adjoint elements

in 2¡ and 20 each of which contains all self-adjoint elements of finite rank. Then

any Jordan isomorphism between 3C and K^ has a unique extension to an associa-

tive isomorphism between 2/ and 2a.
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