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1. Introduction. This paper has two purposes. In §4 our objective is to

push forward the theory of modules over Dedekind rings to approximately

the same point as the known theory of modules over principal ideal rings.

In §5 we prove several results concerning modules over valuation rings. In

Theorem 12 we give a complete structure theorem for torsion-free modules of

countable rank over a maximal valuation ring. In Theorem 14 we show that

any finitely generated module over an almost-maximal valuation ring is a

direct sum of cyclic modules; this provides a simpler proof and generalization

of Theorem 11.1 in [ó](1).

2. Basic notions. Let R be an integral domain (commutative ring with

unit and no divisors of 0). In saying that M is an i?-module, we shall always

mean that the unit element of R acts as unit operator on M. If x is any ele-

ment in M, the set of a in R with ax = 0 is called the order ideal of x. If all

elements of M have a nonzero order ideal, we call M a torsion module. If

all nonzero elements of AI have 0 as their order ideal, we say that M is torsion-

free. In general, the elements of M with a nonzero order ideal form a sub-

module T of M called the torsion submodule, and the quotient module M/T

is torsion-free.

In case M is a torsion-free i?-module, we may speak unambiguously of

the maximum number of linearly independent elements in M, and we call

this cardinal number the rank of M. There is another point of view that is

useful. We may extend the coefficient domain of M from R to its quotient

field K; that is, we may form the Kronecker product K~X M of the i?-modules

K and M. Then KX.M may be regarded as a vector space over K, and its

dimension coincides with the rank of M.

We shall not attempt the delicate task of assigning a meaning to "rank"

in the case of torsion modules.

If M is a torsion-free i?-module of rank one, it is easy to see that M is

isomorphic to an (integral or fractional) ideal I in R. (In this connection, no

demand should be made concerning the boundedness of the denominators

occurring in 7; such boundedness is equivalent to the possibility of selecting

i" to be an integral ideal.)

We next introduce Priifer's [lO] concept of "Servanzuntergruppe," but

we prefer to use Braconnier's terminology  [3]. The submodule 5 of the
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2?-module M is said to be pure if aS = Sr}aM for every a in R.

The reader may find the following remarks helpful. They are easily

proved and will be used without further comment, (a) Any direct summand

is pure, (b) A pure submodule of a pure submodule is pure, (c) The torsion

submodule is pure, (d) If M/S is torsion-free, then 5 is pure, (e) If M is

torsion-free, then the intersection of any set of pure submodules of M is

again pure. Hence any subset of M is contained in a unique smallest pure

submodule.

Numerous examples show that a pure submodule need not be a direct

summand. However in various special cases we shall be able to prove that

this converse does hold.

Finally we define an i?-module M to be divisible if aM=M for all non-

zero a in R. We note that if M is divisible, then a submodule of M is divisible

if and only if it is pure; also if M is any i?-module, then any divisible sub-

module of M is pure (by a divisible submodule we mean a submodule which

is divisible as a module in its own right). A torsion-free divisible i?-moduIe is

evidently the same thing as a vector space over the quotient field of R.

3. Some lemmas. Before proceeding to special classes of rings, we shall

prove three lemmas that are valid for an arbitrary integral domain. The first

concerns the question of the uniqueness of the representation of a torsion-

free module as a direct sum of modules of rank one. If / and / are (integral

or fractional) ideals in R, one knows that they are isomorphic i?-modules if

and only if there exists a nonzero a in the quotient field of R, with I = aJ.

Following the usual terminology, we then say that I and J are in the same

class. We now show that for the direct sum of a finite number of ideals,

the class of. the product is an invariant. In general there are other invariants,

but in a particular case (Theorem 2) we shall find it to be the sole invariant.

Lemma 1. Let R be an integral domain, and let Ii, ■ ■ ■ , Im, J\, • • • , Jm

be {integrator fractional) ideals in R such that Ii® ■ ■ ■ ®Imand Ji® ■ ■ ■ ®Jm

are isomorphic R-modules. Then lili ■ ■ ■ Im and J1J2 ■ ■ • Jm are in the same

class.

Proof. It is convenient to assume (as we can without loss of generality)

that each of the ideals contains R. In the isomorphism between the two direct

sums, suppose the element 1 in Ir corresponds to (ari, • • • , arm), where

ccnCzJf We then find

(1) Js = a1.I1 + • ■ ■ + am.Im (s = 1, • • • , m).

Let 7 be the determinant |ars|, and let S be a typical term in the expansion

of this determinant. On multiplying the equations (1), we express Ji • • • Jm

as a sum of ideals, among which we find all hli • • • Im. Hence

Ji • ■ • Jm D lh ■ ■ ■ Im-
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We now invert the procedure. Suppose the element 1 in JT corresponds to

(/3ri, • • • , ßrm), where /3rsG/>. Then the matrix (/3r.) is the inverse of the

matrix (aTS). We thus obtain the inclusion

Ii • ■ ■ Im D 7_17i • ■ • Jm,

and this proves the lemma.

The next lemma could easily be stated and proved in more general con-

texts. (By the term "direct sum" we mean the "weak" direct sum, where

only a finite number of nonzero components are allowed in each element.)

Lemma 2. Let M be any module, S a submodule, M/S a direct sum of

modules £/,-, and Tt the inverse image in M of Ui. Suppose S is a direct summand

of each 7\. Then S is a direct summand of M.

Proof. Let Wi be a complementary summand of 5 in T¡, and W the union

of {IF»}. Then W maps onto all of M/S, whence S-\-W=M. Again suppose

x = X^< ¡s 'n Si\W, where y,-G IF;. Then on passing to M/S we see that each

yi is in S, yi = 0, x = 0. Thus SfW=0 and M=S@W.
Let R be any integral domain with quotient field K, and / an (integral or

fractional) ideal in R. We recall that J-1 is defined as the set of all a in K

with alCZR; I is said to be invertible if II~l =2?. Any invertible ideal is

finitely generated.

Lemma 3. Let R be an integral domain, M an R-module, S a submodule

such that M/S is a direct sum of modules which are isomorphic to invertible

ideals in R. Then S is a direct summand of M.

Proof. Lemma 2 reduces the problem to the case where M/S is itself

isomorphic to an invertible ideal /. We therefore make this assumption, and

we furthermore make the provisional assumption that M is torsion-free.

Since II~l~R, there exist elements or,-, ßi in I and J-1 such that /Ia,-|8.-

= 1. Let y i be the elements in M/S which correspond to a,-, let y be any

nonzero element in /, let x,- be any elements in M mapping on y,, and set

z = 7 2Z/3,-x,-. (Notice that yßiE:R, so that z is a well defined element of M.)

Let T be the pure submodule generated by z; since M is torsion-free, this is a

well defined submodule of rank one. We claim that T is the desired comple-

mentary summand of 5. That SC\T — ̂  is clear; we need only show 5+7"

= M, that is, we must show that T maps on all of M/S. For this it suffices

to prove that yt is in the image of T (note that the elements a,- generate I,

and so the elements y¿ generate M/S). Now caßjCzR. Hence t = a,y~1z

= ai^2ß,Xj is in M, and consequently / is in T. The image of t is at]Cßy3'/-

In the isomorphism of M/S and J, ^ft-y,- corresponds to ^j3jO:y = l. Hence

ai^2ißjyj — yu as desired.
We pass to the general case where M is no longer assumed to be torsion-

free. Select a homomorphism <j> of a free i?-module F onto M. This gives rise
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to a homomorphism from F onto M/S, say with kernel G (G is also the inverse

image of 5 under cj>). By what we have just proved, G is a direct summand

of F: say F = G®H. Let V = <j>(H). Manifestly S+V=M. Again, since the

kernel of 4> is contained in G, 4>(G) and 4>(H) have only 0 in common. Thus

5P\F=0 and M = S® V. This concludes the proof of Lemma 3.

4. Dedekind rings. A Dedekind ring is an integral domain in which

classical ideal theory holds: that is, every ideal is uniquely a product of prime

ideals or alternatively, every ideal is invertible. For our first two theorems

we find it possible to consider the more general class of integral domains in

which it is assumed only that every finitely generated ideal is invertible.

Theorem 1. Let R be an integral domain in which every finitely generated

ideal is invertible, and let M be a finitely generated R-module with torsion sub-

module T. Then T is is a direct summand of M, and M/T is a direct sum of

modules of rank one (necessarily isomorphic to invertible ideals).

Proof. That T is a direct summand of M will follow from Lemma 3, as

soon as we have proved the last statement of the theorem. So let us suppose

that M is actually a torsion-free finitely generated i?-module. Take any

nonzero element in M and form the pure submodule 5 of rank one that it

generates. Then M/S is again torsion-free and finitely generated. Its rank is

one less than the rank of M. By induction on the rank, we may assume that

M/S is a direct sum of modules of rank one. Lemma 3 now applies to show

that M is the direct sum of S and M/S, and this proves the theorem.

We turn now to the uniqueness question associated with Theorem 1. It is

a classical result of Steinitz [13] that, over a Dedekind ring, the rank n and

the class of the product IiI-¡ ■ ■ ■ In are a complete set of invariants for a

torsion-free module Ii®Ii® ■ ■ ■ ®In- In Theorem 2 we are able to gen-

eralize this result, provided we supplement the hypothesis that finitely

generated ideals are invertible with another hypothesis known to be satisfied

in a Dedekind ring(2).

We also take up this uniqueness question in the case of infinite rank. The

result is typical of infinite algebra: the invariant evaporates.

Theorem 2. Let R be an integral domain which satisfies the following two

conditions: every finitely generated ideal in R is invertible, and if I is a nonzero

finitely generated ideal in R, R/I is a ring in which every finitely generated ideal

is principal. Then :

(a) If M is a finitely generated torsion-free R-module, a complete set of in-

variants for M is the rank n together with the class of the product Iil% ■ ■ ■ In

in a representation of M as a direct sum of ideals Ii® • • ■ ®In-

(2) A suitable infinite algebraic extension of a Dedekind ring gives an example of a ring

(other than a Dedekind ring) satisfying the hypotheses of Theorem 2. For an explicit example

we may take the ring of all algebraic integers.
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(b) If N is an R-module which is a direct sum of an infinite number of in-

vertible ideals, then N is free.

Proof, (a) That the class of Ii • • • In is an invariant was shown in Lemma

1. We have to show that this class, together with the integer n, forms a com-

plete set of invariants. To do this, it suffices by an evident induction to treat

the case n — 2, that is to say, we wish to show that M = Ii®I2 is isomorphic

to R®Iil2- Suppose we have shown that M contains a pure submodule 5

isomorphic to R. Then by Lemma 3, M is the direct sum of 5 and M/S, and

M/S will necessarily be isomorphic to I-J.2- So our task is reduced to finding

the submodule 5. We can of course suppose that I2 is an integral ideal. Let

a be any nonzero element in i\. Then al^1^ is a nonzero integral ideal con-

tained in J2. By hypothesis, I2 maps onto a principal ideal in R/ctlï 1I2, that

is, there exists an element ß in I2 such that l2 = (ß)-\-aIi1I2, whence

(2) a/71 + ßlt = R.

Now consider the element x = (a, ß) of M = /i©/2- The pure submodule gen-

erated by x is isomorphic to the ideal K consisting of all y (in the quotient

field of R) with yxÇ_M; that is, all y with 7a G h and yß G h- Thus K = ar1Ii
rs\ß~1I2 and is the inverse of the ideal appearing on the left of (2). Hence

K = R, as desired.

(b) If N is of uncountable rank, we may break it into a direct sum of

pieces of countable rank. Since it suffices to treat each of these pieces sepa-

rately, we may assume that N itself is of countable rank, whence it is count-

ably generated. Let X\, x2, • • ■ be a countable set of generators for N.

We proceed to build a sequence of submodules \K¡\ of N with the

properties :

(1) K1CK2CK3C
(2) each K¡ is free,

(3) Kj+i is the direct sum of K¡ and a free module,

(4) N is the direct sum of K¡ and a module L¡ which is an infinite direct

sum of finitely generated modules of rank one,

(5) the union of all the K's is N.

It is evident that the existence of such a sequence implies that N is free.

We take K\ = Q, and suppose Kr has been selected. Let y denote the first

of the x's which is not in Kr, and 2 the Zr-component of y in the decomposition

N = Kr®Lr. By hypothesis, Lr is a direct sum of modules {P¿} of rank one

where Pt is isomorphic to the invertible ideal It in R. Suppose z is in Pi

® • • • ©Ps, and write I = IiI2 •••/„. By part (a) of the present theorem,

Ps+i©P¡r+2 can be rewritten as G®II where G and H are isomorphic to I~l

and IIs+iIs+2 respectively. Then the module Pi© • • • ®PS®G is free, and

we take Kr+i to be the direct sum of it and Kr, while Lr+i = H®Ps+i

©Ps+4© • • • . With this choice of Kr+1 and Lr+\ we continue to satisfy
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properties (l)-(4) above. Thus the sequence {K,} can be selected, and this

concludes the proof of Theorem 2.

From now on, R will be an actual Dedekind ring, and we shall study

i?-modules. We begin by disposing of torsion modules. Call a torsion i?-module

primary (for the prime ideal p) if each of its elements is annihilated by a

suitable power of p. It can be proved (in virtually the same way as for

principal ideal rings) that every torsion i?-moduIe is uniquely a direct sum

of primary modules.

Next let Rp denote the quotient ring of R relative to p, that is, the set

of all elements a/ß in the quotient field with ß prime to p. Then any ¿>-primary

i?-module can as well be regarded as an i?j,-module. Since Rp is a principal

ideal ring (indeed a discrete valuation ring), this makes the known theory

of modules over principal ideal rings fully available. Consequently we have

virtually nothing to say about torsion modules over a Dedekind ring; our

interest is confined to. the torsion-free and mixed cases.

At the risk of possible ambiguity, we shall call an i?-module decomposable

if it is a direct sum of cyclic modules and finitely generated torsion-free

modules of rank one. It is to be noted that when R is a principal ideal ring,

a decomposable module is precisely a direct sum of cyclic modules. A funda-

mental theorem of Steinitz [13 ] asserts that every finitely generated module

over a Dedekind ring is decomposable(3). In Theorem 1, together with the

remarks above concerning torsion modules, we have in effect given a new

proof of this theorem.

We shall proceed to derive some results concerning decomposable

modules.

Lemma 4. Let R be a Dedekind ring, M an R-module, S a pure submodule,

xq an element of M/S. Then there exists an element x in M, mapping on x0 mod

5, and having the same order ideal as Xo(4).

Proof. The lemma is known if R is a principal ideal ring, and the proof

will consist of a reduction to that case. Let I be the order ideal of x0. If 1 = 0,

any choice of x will do. So we suppose 7^0, let a be a nonzero element of I,

and pick any y in M mapping on x0. Then ay is in S and, by the purity of 5,

there exists s in S with ay =as. If z = y — s, then az = 0, and z (like y) maps on

Xo mod S.

Now let T be the torsion submodule of M. Then SC\T is pure in T. More-

over T/(SC\T) is in a natural way a submodule of M/S, and (in this sense) it

contains x0. The problem of lifting up x0 has thus been reduced to the cor-

(3) A brief proof of this theorem is given by Chevalley in [4, Appendix 2].

(4) It is conversely true for a module M over an arbitrary ring that purity of a submodule 5

is implied by the ability to lift elements of M/S with preservation of the order ideal. This

stronger property should perhaps be used as the definition of purity when working over gen-

eral rings.



1952]       MODULES OVER DEDEKIND RINGS AND VALUATION RINGS        333

responding one for torsion modules, and it then reduces further to the

primary case, since we can work separately in each primary case. This reduces

the problem to the case of a principal ideal ring, and proves the lemma.

The next three theorems were proved for ordinary abelian groups by

Kulikoff in [7, Theorem l], [8, Theorem 2], and [7, Theorem 5]. His proofs

extend without change to any principal ideal ring. We now provide the ex-

tension to Dedekind rings.

Theorem 3. Let Rbe a Dedekind ring, M an R-module, and S a pure sub-

module such that M/S is decomposable. Then S is a direct summand of M.

Proof. In the light of Lemma 2, it suffices to prove this theorem in the

cases where M/S is itself cyclic or torsion-free of rank one. In the latter case

the result follows from Lemma 3, and in the former case it is an immediate

consequence of Lemma 4.

Theorem 4. Let R be a Dedekind ring and M a decomposable R-module.

Then any submodule of M is decomposable.

Proof. Case I. M is a torsion module. We may work separately in each

primary summand, and this reduces the problem to the case of modules over

a principal ideal ring, where the theorem was proved by Kulikoff [8, Theo-

rem 2].

Case II. M is torsion-free. We may regard M as the set of all well-

ordered vectors \a\\, all but a finite number of coordinates zero, with a\

ranging over an ideal I\ in R. Let N be a submodule of M, and N\ the sub-

module of N consisting of all elements whose coordinates all vanish after the

Xth. By mapping the general element of N\ onto its X-coordinate we define

a homomorphism of N onto an ideal J\ contained in 2\. (It may be that

Jx = 0; this makes no difference.) By Lemma 3, the kernel of this homo-

morphism is a direct summand of N\. Let 5\ be a complementary summand.

Then each S\ is of rank one (or 0), and it is easy to see that N is the direct

sum of {S\}. Hence TV is decomposable.

Case III. Mis any decomposable module. Suppose N is any submodule of

M, and let T be the torsion submodule of M. Then N(~\T is the torsion

submodule of N and, by Case I, it is a direct sum of cyclic modules. Again

N/(NC\T) may be regarded as a submodule of M/T and is therefore de-

composable by Case I. By Theorem 3 (or Lemma 3), N(~\T is a direct sum-

mand of N. Hence N is decomposable.

Theorem 5. Let Rbe a Dedekind ring, M an R-module, and S a pure sub-

module of bounded order (that is, yS = 0for some nonzero y in R). Then S is a

direct summand of M.

Proof. We begin by noting that the theorem is essentially known when M

is finitely generated. For then the torsion submodule T of M is a direct sum-
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mand (Theorem 1 or Steinitz's classical theorem). Moreover 5 is a direct

summand of T; for this may be checked separately in each primary com-

ponent, which means we are over a principal ideal ring where the theorem is

known [7, Theorem 5].

Another result we shall need is the classical theorem of Prüfer [lO] which

asserts that a module of bounded order is a direct sum of cyclic modules; this

extends at once from the principal ideal to the Dedekind case, by passing as

usual to the primary components.

We turn to the proof of Theorem 5. We note (by the purity of S) that

Sr\yM = 0. Let P = S+yM, and write M* = M/yM, P*=P/yM. We pro-
pose to prove that P* is pure in M*. For this purpose, suppose that x* —ay*,

where x* is in P*, y* in M*. Choose representatives x, y in M for x*, y*; we

may take x to be in 5. We have an equation

(3) x = ay + 72.

Since 5 is a direct sum of cyclic modules, x may be embedded in a finitely

generated direct summand Q of S; and since S is pure in 714", Q is likewise

pure in M. Let Z be the submodule generated by Q, y, and 2. Then (as

observed above for the finitely generated case) Q is a direct summand of Z.

Let yi, Z\ be the Ç-components of y, z in this decomposition. Then (3) yields

x=ay\-\-yz\. But 721 = 0, since z\ is in S. Hence x=ayx. Passing to M*, we

obtain x* = cey*, where y* is in P*. We have thus proved that P* is pure in M*.

Next, by a second application of Prüfer's theorem, M*/P* is a direct sum

of cyclic modules. By Theorem 3, P* is a direct summand of M*, say M*

= P*+L*. Let L be the inverse image in M of L*. Then Sr\L = Sr\Pr\L

= Sr\yM = 0; and S+L = S+yM+L = P+L = M. Hence M = S®L, as
desired.

There is a corollary of Theorem 5 which is worth stating.

Corollary. Let M be a module over a Dedekind ring. If the torsion sub-

module of M is of bounded order, then it is a direct summand of M.

We next take up the question of divisible modules, as defined in §2.

Theorem 6. Let R be a Dedekind ring, and D a divisible R-module. (a)

If M is an R-module, S a submodule of M, and f a homomorphism of S into D,

then f can be extended to all of M. (b) If D is a divisible submodule of an R-

module E, then D is a direct summand of E(6).

Proof. Let us begin by observing that (b) follows from (a). For let D

be a divisible submodule of E. We let/ be the identity map of D onto itself,

and, on the authority of (a), we extend / to E. If if is the kernel of the

(6) Baer [2] has given a necessary and sufficient condition, applicable to any ring R, for

an i?-module to be a direct summand of every larger module. What we are doing in effect is to

show that, for Dedekind rings, his condition is equivalent to the simpler one which we are using.
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extended map, we have E=D®K.

We proceed to prove (a), and we take up the torsion and torsion-free

cases separately.

Case I. D is torsion-free. By a transfinite induction, it suffices to demon-

strate the possibility of extending / to a single element x. Let I denote the

set of a in R with ax in 5. If 1 = 0, it is evident that/(x) may be chosen arbi-

trarily in D. Otherwise take any 7?¿0 in /, and choose y in D with yy =f(yx).

We define/ on S+Rx by f(s-\-ax) =f(s)+ay. To see that this is a consistent

definition, we have to check that/03x) =ßy holds for all ß in I. This follows

since D is torsion-free and

y[f(ßx) - ßy] = yf(ßx) - ßf(yx) = 0.

(It is to be observed that Case I works when R is any integral domain.)

Case II. D is a torsion module. We define / as above and again assume

19^0. Define further / to be the subset of / consisting of all a with/(ax) =0.

Since D is a torsion module, J^O. Modulo /, I is therefore a principal ideal:

that is, I = J-\- (y). We again choose y in D so as to satisfy yy =f(yx), and ex-

tend / as in Case I. The fact that/(/3x) =ßy for all ß in I now follows since ß

is a multiple of 7 mod /.

Case III. D is any divisible .R-module. The torsion submodule T of D is

again divisible. Now for torsion modules we have proved part (a) of the

theorem in Case II. Moreover, as we observed in the first paragraph of the

proof, part (b) follows from part (a). In other words, we know that T is a

direct summand of D. We may now perform the extension of / separately

in each summand, by citing Cases I and II. This completes the proof of

Theorem 6.

It is now easy to give a complete structure theory for a divisible module

M over a Dedekind ring R. For by Theorem 6, M is a direct sum of a torsion

module and a torsion-free module. The latter is merely a vector space over the

quotient field K of R. The structure of the former is known from the prin-

cipal ideal ring case. In order to state the result, we define a module of type

/>°°: take the torsion i?-module K/R and split it into its primary parts; the

summand for the prime ideal p is called the module of type p°°. The following

theorem summarizes the facts.

Theorem 7. Let R be a Dedekind ring with quotient field K. Then any di-

visible R-module is the direct sum of a vector space over K and modules of

type p°° for various prime ideals p.

The following theorem is also an immediate consequence of Theorem 6.

It shows that in the study of Dedekind modules we can stick to the case

where there are no divisible submodules.

Theorem 8. Any module M over a Dedekind ring possesses a unique largest

divisible submodule D; M = D®E where E has no divisible submodules.
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Finally we take up the question of indecomposable(6) modules over a

Dedekind ring, and we generalize [7, Theorem 7].

Theorem 9. Let R be a Dedekind ring and M an R-module which is not

torsion-free. Then M possesses a direct summand which is either of type pK

or isomorphic to R/p" for some prime ideal p.

Proof. Take a primary summand P of the torsion submodule of T. It is

proved in [7] that P has a direct summand Z which is either of type p°° or

isomorphic to R/pn. In the first case Z is divisible and so is a direct summand

of M by Theorem 6. In the second case Z is pure in M and of bounded order,

and so is a direct summand of M by Theorem 5.

We state explicitly the following consequence of Theorem 9.

Theorem 10. A n indecomposable module over a Dedekind ring R cannot

be mixed, i.e. it is either torsion-free or torsion. In the latter case it is either of type

Px or isomorphic to R/p" for some prime ideal p.

5. Valuation rings. In this paper we are not attempting to handle any-

thing more general than integral domains. So a valuation ring is an integral

domain R such that for any a and ß in R, either a divides ß or ß divides a.

Essential to our purpose is the concept of maximality of a valuation ring.

However we do not need either the original definition in [9], or the character-

ization by pseudo-convergence in [S]. We shall instead use the characteriza-

tion by systems of congruences in [12](7). The property we need may as well

be taken as the definition. We also introduce at this point a weakened form

of maximality that we shall need; it is identical with that used in the hy-

pothesis of [6, Theorem 11.1 ].

Definition. Let R be a valuation ring with quotient field K. We say

that R is maximal if the following is true: whenever ar(E.K and (integral or

fractional) ideals Ir are such that the congruences (8)

x = ar (mod Ir)

can be solved in pairs, then there exists in K a simultaneous solution of all

the congruences. If this condition holds whenever the intersection of the ideals

Ir is nonzero, we shall say that R is almost-maximal.

Remark. It should be noted that when R is a discrete valuation ring,

maximality coincides with completeness, and almost-maximality is vacuous.

It is convenient also to define maximality of modules(').

(6) A module is indecomposable if it cannot be written as a direct sum, except in the trivial

way. This is not the negation of "decomposable" in the sense used above.

(') The fact that the definition about to be given is equivalent to maximality can be seen

by combining remarks 2 and 4 on pages 48 and 50 of [12].

(8) Here, and in (4), the subscript r has range in an arbitrary set.

(*) There should be no confusion between this meaning of "maximal" and the possible

connotation of "largest."
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Definition. Let R be any ring, and M an i?-module. We say that M is

maximal if the following is true: whenever ideals ITC.R and elements st(ElM

are such that

(4) x = sr (mod IrM)

can be solved in pairs in M, then there exists in M a simultaneous solution of

all the congruences.

Lemma 5. If Ris a maximal valuation ring and J an (integral or fractional)

ideal in R, then J is a maximal R-module. If R is an almost-maximal valuation

ring and J a nonzero integral ideal in R, then R/J is a maximal R-module. The

direct sum of a finite number of maximal modules is maximal.

Proof. We shall prove the first statement, leaving the others to the reader.

We have then elements sr in / and ideals IT(ZR such that the congruences

(4), with M replaced by J, can be solved in pairs within /. By hypothesis

there exists in the quotient field of R a simultaneous solution x of these con-

gruences, and the fact that x satisfies a single one of the congruences suffices

to show that x itself is in /.

Our main theorems will be proved by a suitable process of "lifting up"

elements, like that employed in Lemmas 3 and 4. The first such theorem is

the following.

Theorem 11. Let R be a valuation ring, M a torsion-free R-module, and S

a pure maximal submodule of M such that M/S is a direct sum of modules of

rank one. Then S is a direct summand of M.

Proof. As usual, Lemma 2 reduces the problem to the case where M/S

is itself of rank one. Let x0 be any nonzero element in M/S. We must find

an element x in M which maps on Xo and has the following property: when-

ever x0 is a multiple of aÇ£R in M/S (that is, whenever x0=ay0 with y0 in

M/S), then x is likewise a multiple of a in M; for when such an element x

is found, we need only take the pure submodule it generates to get the desired

complementary summand to 5.

We first pick any element x* in M mapping on x. If x0 = artr (arÇ.R,

UŒ.M/S), pick u, in M mapping on tr; then sT = x* — aruTÇzS. We do this for

every possible choice of aT and consider the set of congruences

(5) y = sr (mod a,S)

thus obtained. We note that any two of these congruences have a simul-

taneous solution. In fact, if aj divides a,-, then s,- works for both i and j;

for

Si — Sj = aitii — a¡u¡ = aj(a¡ aiUi — «,),

and the quantity in parentheses lies in 5 since S is pure. Let y denote a
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simultaneous solution in 5 of the congruences (5). Then the element x = x*

— y meets our requirements.

Theorem 12. Let R be a maximal valuation ring and M a torsion-free

R-module of countable rank. Then M is a direct sum of modules of rank one.

Proof. We may exhibit M as the union of an ascending sequence of pure

submodules SiC&C " " ' ■ where 5< has rank i. Suppose by induction that

we know that 5¿ is a direct sum of modules of rank one. Then by Lemma 5,

Si is maximal. Also 5,-+i/5,- has rank one. Hence Theorem 11 is applicable

and shows that 5» is a direct summand of Ss+i. This in turn shows us that

St+i is a direct sum of modules of rank one. Hence M is likewise a direct sum

of modules of rank one.

The following consequence of Theorems 11 and 12 is worth stating.

Theorem 13. Let Rbe a maximal valuation ring, M a torsion-free R-module

of countable rank, S a pure submodule of finite rank. Then S is a direct summand

of M.

Proof. The module M/S is again torsion-free and again has countable

rank; by Theorem 12, it is a direct sum of modules of rank one. Again, by

Theorem 12, 5 is the direct sum of a finite number of modules of rank one,

hence maximal by Lemma 5, hence a direct summand of M by Theorem 11.

Remarks. 1. In the special case where R is a complete discrete valuation

ring, Theorem 12 may be stated as follows: any countably generated torsion-

free i?-module is the direct sum of a divisible module and a free module. This

Theorem is implicit in the work of Prüfer [il].

2. The assumption of countable rank in Theorem 12 cannot be dropped.

A counter-example is given by Baer in [l, Theorem 12.4]. Indeed let R be any

principal ideal ring (not a field) and M the complete direct sum of an infinite

number of copies of R. Then if M (as an i?-module) were the direct sum of

modules of rank one, it would have to be free. But Baer proves that M is not

free.

3. In Theorem 13 we cannot allow 5 to be of infinite rank. For example,

let R be any principal ideal ring (not a field), and M a free Z?-module of in-

finite rank. Then we know that M can be mapped homomorphically onto

the quotient field of R, say with kernel 5. Then although S is pure it cannot

possibly be a direct summand of M.

4. On the other hand, I have been unable to determine whether Theorem

13 still holds if M is of uncountable rank. Indeed it seems to be unknown

whether a module of uncountable rank over a maximal valuation ring (say

the £-adic integers) might even be indecomposable.

5. Theorem 12 may be supplemented by a uniqueness theorem which is

easily proved by the methods used by Baer in proving [l, Corollary 2.9]:

let R be any valuation ring and M an i?-module which is a direct sum of
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modules of rank one; then the expression is unique up to isomorphism.

Our final theorem will deal with torsion modules, and in preparation for

it we prove a lemma.

Lemma 6. Let R be an almost-maximal valuation ring, M an R-module, S

a pure cyclic submodule with a nonzero order ideal, and suppose that M/S is a

direct sum of cyclic modules. Then S is a direct summand of M.

Proof. It suffices (Lemma 2) to handle the case where M/S is cyclic. Let

/o be a generator of M/S, and H the order ideal. Our problem is to find in M

an element / mapping on to and again having order ideal H, for then the cyclic

submodule generated by / will be a complementary summand to 5. First pick

any element y in M mapping on to. For any ar^H we have ary(E.S. Since 5

is pure, ary =arsr with sr in S. Let J be the order ideal of S, and let Kr denote

the ideal in R consisting of all ß with ßarCzJ; note that KrS is precisely the

submodule of 5 annihilated by ar. We consider the system of congruences

thus obtained for all choices of a, in H:

(6) x = sr (mod KrS),

and observe that any two have a simultaneous solution; for if a¡ divides a,-,

then

a,(s,' — Sj) = atSi — (a¡a¡ )a¡Sj

= my — (a.ay )a¡y = 0,

whence

Sj = Si (mod KiS),

that is to say, Sj works for both the tth and jth congruences. Now by Lemma

5, S = R/J is a maximal module. Hence the congruences (6) have a simul-

taneous solution x in S. The element t=y — x then has the desired properties:

it maps on to in M/S, and it has the order ideal H.

Theorem 14. Any finitely generated module over an almost-maximal valua-

tion ring is a direct sum of cyclic modules.

Proof. Let M be the module. We first apply Theorem 1, and learn that

the torsion submodule T of M is a direct summand, and that M/T is free(10).

The problem is consequently reduced to the torsion case, and we accordingly

assume that M is a torsion module.

Let Zi, ■ ■ ■ , zn be a set of generators for M. Suppose that of these n

elements, zi has the smallest order ideal. This implies that the cyclic sub-

module 5 generated by Zi is pure. By induction on n, we may assume that

(10) One should of course observe that in a valuation ring all finitely generated ideals are

principal, and hence invertible; thus the theorem is applicable.
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M/S is a direct sum of cyclic modules. By Lemma 6, 5 is a direct summand of

M. Hence M is a direct sum of cyclic modules.
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