
DIOPHANTINE APPROXIMATION IN FIELDS
OF CHARACTERISTIC p

BY

L. CARLITZ

1. Introduction. Let $=GF{pn, x} denote the field consisting of the

quantities

m

(1.1) a=y£cai (ciEGFip')),
—00

where x is an indeterminate and the coefficients c¿ all belong to a fixed finite

field GF(pn). We shall discuss a number of problems of "diophantine ap-

proximation" related to the numbers of <i>.

We first (§3) prove an analogue of Kronecker's theorem; the theorem

has been proved previously by Mahler [8, p. 514]. We next define uniform

distribution of sequences of numbers in $ (see [9], also [7, chap. 8]) and

prove a number of theorems similar to the theorems of WeyPs well known

paper. The sum 5= /,e(é(A)). extended over polynomials AÇzGF[pn, x]

of degree less than m, where <j>(u) is a polynomial of degree k and e(a) is

defined in (2.3) below, is studied by Weyl's method of approximation. It is

found that if at least one coefficient of <f>{u)—<t>(0) is irrational and 1 ̂ k<p,

then S = o(pnm) as m—>=o. The case k^p is left open; there are polynomials

of degree p for which S = pnm (see (6.8) and (6.9)).

For k = 2, p>2, we make a more detailed study of the sum

Sm(a, j8) =    £    e(a.r- + 2ßA) (a, ß £ $) ;
deg m<A

here we follow [6, II]. The main tool is the following analogue of the Hardy-

Littlewood "approximate functional equation":

(1.2) Sm(a, ß) = vpnal2Sm-a (1/a, a/ß) ( U I = 1),

where deg a= —ö<0, deg /3<0. From (1.2) it follows easily that

(1.3) Sm(a, ß) = o{pnm) (w->co)

for all irrational a; moreover, if the continued fraction for a has partial

quotients of bounded degree, then Sm(a, ß) =0{pnmn). It also follows from

(1.2) that (at least for j3 = 0) (1.3) cannot in general be improved.

We show also that for all a

(1.4) | Sm{a, 0) | ^ p™'\
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188 L. CARLITZ [March

For arbitrary ß we can assert that either Sm(a, ß) = 0 or | Sm(a, ß) \ ¿zpnml2.

2. Notation and preliminaries. Polynomials in GF[pn, x] will be denoted

by italic capitals A, B, ■ • ■ , U, V; however, the letters K, N, R, S will

stand for certain functions to be defined presently. The numbers of 4>

= GF[pn, x} will usually be denoted by lower case Greek letters unless some

other meaning is indicated. If

m

(2.1) «•= £<;,-** (cm?¿ 0)
—00

is a typical number of <J>, we define deg a = m, where m may be positive, zero,

or negative. The sum Eo c&* is called the integral part of a; for the frac-

tional part we shall use the symbol

(2.2) ((«)) = Z <.•**'•
~00

By the statement a=ß (mod 1) is meant a=ß-\-A, where A is a poly-

nomial E:GF[pn, x]; when there is no danger of confusion, we shall usually

omit the phrase "mod 1." Thus, every a is congruent (mod 1) to a unique ß

such that deg ß<0.

Let 6 define the GF{pn). Then for c_i in (2.1) we put

c_! = M»"1 +■■•+«„ (a,- G GF(p))

and define the function

(2.3) e(a) = e2*iai'i>.

It follows at once from (2.3) that

(2.4) e(a + ß) = e(a)e(ß),        e(a) = e(ß) for a = ß (mod 1).

(It is easy to identify the function e(A/H) with the function e(A, H) pre-

viously defined [4, §2]. We remark also that in (2.3) we could replace e2Tilp

by any primitive pth root of unity, and d\ by the trace of c_i.) The following

result will be used frequently.

Theorem 1. The sum

*-^ ii>mn

(2.5) D    e{Aa) =  V
deg A<.m \U

(deg ((a)) < - m),

deg"I<m   ' (0 (deg ((a)) ^ — m).

The proof is similar to that of [3, Lemma l] and will be omitted.

An immediate consequence of Theorem 1 is contained in

(2.6) lim¿-r"    E    e(A«)=  {
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in other words, the limit = 1 if and only if a is integral.

A number of <$ is irrational if it is not contained in GF(p", x), that is,

not a quotient of polynomials A/B. Thus (2.6) implies that for a irrational

and B an arbitrary polynomial (E.GF[p", x], we have

(2.7) lim p~'n   £    e(ABa) = 0.

3. Kronecker's theorem for <£. The numbers ax, • ■ • , ak of <£ are linearly

independent if E«=i -4.«.- = 0 (i.-GG/7^", *]) implies all ^4¿ = 0.

We shall now prove the following theorem.

Theorem 2. Let k^ 1 ; «i, • • • , a*, Xi, • • • , X^ÇS*; 1, Xi, ■ • • , X* linearly

independent. Also let m, m0^l. Then there exists a polynomial AÇ.GF[pn, x],

deg A^mo, such that

(3.1) deg ((AK - ai)) < - m (i = 1, • • • , *).

Proof. (Compare [2].) We construct the function

h

<¡>(t) = p-"m   £      £ «(£(\,-/ - a,)),

deg ¿?<m    t=l

where ¿G^. In view of Theorem 1, it will suffice to show the existence of a

polynomial A, deg .4 ^f»o, such that <f>(A) =k.

We put

K(t) = Km(t) =     2    <Bt) ^ 0,
deg JS<m

A(t) = Am(0 = ä:(Xi/ -«o--- #(x4/ - at).

Then, evidently

(3.2) *(<)A(0 = * + Ä(0,

where 2?(/) is a sum of terms e(ßit—ßi), and, by the linear independence of

1, Xi, • ■ • , X*, none of the ju» = 0. If now we notice that Theorem 1 implies, for

r sufficiently large,

^ fl (am 0),
(3"3) r"r    Z'   6{Aa) =  in ^0

degA=r 10 (a ps 0),

the sum now being restricted to primary A of degree r (that is, polynomials

with highest coefficient = 1), it follows that

(3.4) fr"    £'  R(A) =0 (r è ro).
deg A=r

But by (3.2) and (3.4), for r^r0,

k = p~nr   YJ  <t>{A)^(A) á  max <¡>(A)-p~^   £'  A(¿).
deg ,A=r deg A=r deg A=r
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However, by (3.3) and the definition of A(i), we have

and therefore

P""   X'   k{A) = 1 (r§ r0)
deg A=r

k ^   max 4>(A).
deg A=r

Since max <j>(A) cannot exceed k, it follows that i = max <j>(A), which com-

pletes the proof of the theorem. Actually, since A is primary we have proved

a little more; indeed the proof shows that the highest coefficient of A may be

any preassigned nonzero number of GF(pn).

For a proof of the one-dimensional case of Theorem 2 see [5, §5].

4. Uniform distribution. Given a sequence of numbers ai, 02, «3, ■ • • £<£,

and an arbitrary number ßCz$. Let Nk = Nk(m) =Nk(m, ß) be the number of

<Xi, líSí'^ra, such that

(4.1) deg ((«<- ß)) <- k,

where m and k are preassigned positive integers. We shall say that the se-

quence {«;} is uniformly distributed (mod 1) provided

1
(4.2) lim — N,:(m) = p~nk

m=«¡   in

for any /fe^l and for all /3£<ï>.

We now prove the following criterion.

Theorem 3. For any sequence «i, a2, a3, • ■ • , (4.2) holds if and only if

m

(4.3) £ e(Aad = °(m) /or a« A ^ 0.
¿=i

Proof, (i) We first show that (4.3) implies (4.2). By Theorem 1,

V-     ,a< **       (Pnh (deg ((«.■-0))< - *).
y.    e(A(oii — ß)) = <

egT<* l0 (deg ((«,- - 0) fc - *).deg .4<fr

If we sum over t = l, • • • , m and separate the terms in which A =0, this

becomes

(4.4) m+       X      e(-Aß)Jte(Aai) = pnkNk.
deeA<k,A^B i=i

Now assume (4.3); then (4.4) implies

(4.5) m + o (m) = pnhNk,

which is equivalent to (4.2).
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(ii) We now show that (4.2) implies (4.3), or what is the same thing,

that (4.5) implies (4.3).

By Theorem 1 the sum

m

(4.6) £     2>(4(«i-0)) = PnkNk.
deg A-Ck    i=l

Clearly for ^4=0, the left member of (4.6) =m; hence, using (4.5) we get

m

(4.7) £      e(-Aß)Ye(Aai) = o(m),
degA<k,A^0 i=\

which is valid for all ßG'E- Now in (4.7) take ß= U/xk, where U is a poly-

nomial, multiply both sides by e(x~kUB), where B is another polynomial, and

sum over deg U<k. We get

m

(4.8) £ £      e(x-kU(B-A))YJe(Aai) = o(m).
degU<k    degA<k,A^0 t'=l

Let deg B<k, B^O, then by (2.5) the sum Y>v e(x~kU(B — A)) vanishes

unless A=B. Thus (4.8) becomes £™i e(Bon)=o(m) (B^O). Since deg B

<k and k is arbitrary this evidently proves (4.3).

For most applications a weaker condition than (4.2) seems to suffice;

namely, we restrict the variable m to a subsequence of the integers. We re-

mark that the proof of Theorem 3 shows that if (4.2) holds when m is re-

stricted to a subsequence, then (4.3) also holds for the same subsequence

and conversely. In particular, we shall be interested in the case when m is of

the form pnr. Accordingly, we state the following theorem.

Theorem 4. For any sequence a%, a2, as, ■ ■ ■ the condition

(4.9) lim p-nmNk(pnm) = p~nk

m = «

for all ß is equivalent to

■pitm

(4.10) X e(Aai) = o(p"'") for all A ^ 0.

A sequence satisfying (4.9) may be called weakly uniformly distributed,

but if there is no danger of confusion we shall simply call it uniformly dis-

tributed in this case also.

As an immediate consequence of Theorem 4 and (2.7) we have the fol-

lowing theorem.

Theorem 5. //¿G1^, t;Ç£GF(pn, x), then the sequence {A%}, where A runs

through the polynomials of GF[pn, x], deg A <m, is (weakly) uniformly dis-

tributed.
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Here and elsewhere, in speaking of the sequence {-4£}, it is to be under-

stood that the ^4's are arranged in a sequence according to degree and other-

wise arbitrary.

5. Uniform distribution (general case). Let s^l and fixed. A set of s

ordered numbers («i, • • ',««), «,£$, will be called a point. Two points

(«i, • • • , a,), (jSi, • • • , ßs) are congruent (mod 1) provided <Xi=ßi (mod 1),

i=l, ■ ■ • , s. Thus, any point is congruent to a unique point (ßi, ■ ■ ■ , ßs)

such that deg /3,<0 for * = 1, • • • , s.

Consider the sequence of points

(5.1) {«a)} = («!(»■), • • ■, «.(»■))        a = i, 2, • • • ).

Let ki, ■ • ■ , k„^l and let Nk = Nkl,---,k,(m) be the number of points in the

sequence (5.1) such that laja« and

(5.2) deg ((«,-(») - ßi)) < - ki (j - 1, • • • , i),

where (ft, • ■ -, ß,) is an arbitrary point. We shall say that the sequence

(5.1) is uniformly distributed (mod 1) provided

1
(5.3) lim —Nk(m) = /,-»(*!+•••+*.)

m=«   m

for arbitrary ki, • ■ • , kt^\ and all (j3i, ■ • • , ft). We now prove the follow-

ing criterion which includes Theorem 3 as a special case.

Theorem 6. For any sequence (5.1) and arbitrary ki, • • • , k.^l, the

condition (5.3) is equivalent to

m

(5.4) £ e(Aiai(i) + • • • + AMi)) = o(m)

for all {Au ■ ■ ■ ,A.)^(0, ■ ■ ■ , 0).

Proof, (i) We first show that (5.4) implies (5.3). By Theorem 1,

£     • • •     Z    »(A!(<*,(*) - 00 + • • • + A.(a.(i) - &))
deg4i<*i deg A,<k,

/■J,»(*H-+*.)

" to

according as (5.2) is or is not satisfied. Summing over i=\, ■ • • , m and

separating the terms in which A\, • • • , A, = (fi, • • • , 0), this becomes

m

«+    Ex  «(- ¿A - • ■ ■ - il A)- Z «(¿i«i(*) H-h A3a,(i))
(5.5) degA,<*j «—1

= p^+'-'+^Nkim),

where the accent indicates that the combination (0, • • • , 0) is omitted.
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Now assume (5.4); then (5.5) implies

(5.6) m+ o(m) = £•<**+•■•+*•>#*(«),

which is equivalent to (5.3).

(ii) We now show that (5.6) implies (5.4). As in the proof of Theorem 3,

we have, using (5.6),

m

Ev   e(- Aißi - • ■ • - Aaß,) £ e(Aiai(i) + • • • + A„a,(i)) = o(m)
deg Aj<kj i'=l

for all (ßu • • • , ß„), where the £v has the same meaning as above. Now put

ßj = x~k'Uj, multiply both sides by e(x~k'UiB1-\- • • • + x~k,UsB,), and sum

over deg U¡ < k¡. We get

£     5? e(x-k'U1(B1 - AJ+ ■ ■■ + x-k-Us(Bs - A.))
deg Hj<kj   Aj

m

■ J2 e(Aiai(i) + • • • + Asa,(i)) = o(m).
i=i

Now take deg Bj<k¡, (Bu • • • , Bs)¿¿(0, • • • , 0), then by (2.5) the sum

£tfj = 0 unless (Ah • • ■ , Ae) = (Bh • • • , B,). Hence,

m

£ e(Biai(i) + • • • + B„as(i)) = o(m)
<=i

for all (Bi, • • • , B,)¿¿(0, • • • , 0), deg B¡<k¡. This completes the proof of

(5.4).
As in §4 we find it desirable to define weak uniform distribution. The se-

quence (5.1) is weakly uniformly distributed provided

(5.7) lim p-nmNk(pnm) = p-^(k!+---+k.)

for arbitrary ku ■ ■ • , k, ¿1. We have the following theorem.

Theorem 7. For any sequence (5.1) the condition (5.7) is equivalent to

pirn

(5.8) £ e(Aiai(i) + • • • + AM*)) - «(#"")
í=i

for all (Au ■ ■ • , A,)^(0, • ■ ■ , 0).

As an immediate corollary we have:

Theorem 8. // £i, • • ■ , &£# and 1, £i, ■ • • , £„ are linearly independent,

then the sequence (A£h ■ • ■ , A£s), where A runs through the polynomials in

GF[p", x], is (weakly) uniformly distributed.

Theorem 2 is evidently contained in Theorem 8.
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6. The sum   ?Mé(A)).  In this section we shall prove the following

theorem.

Theorem 9. Let <j>(u)=ctiu+ ■ ■ ■ -\-akuk, «¿£3*, be a polynomial of de-

gree k with at least one irrational coefficient. Assume i^k<p. Then

(6.1) S =   22    e(ct>(A)) = o(p"m) (w-^oo).
deg AKm

The proof of this theorem depends upon the following theorem.

Theorem 10. Let £ be an irrational number of <f>, set. Let N denote the

number of sets of polynomials Au ■ ■ ■ , Ak, deg At<m, such that

(6.2) deg ((¿i • • • ilrf - 0))< -*,

where ß is an arbitrary number of <J>. Then

(6.3) lim p~"mkN = £-»'.

Proof. In view of Theorem 4 it suffices to show that

(6.4) ¡2 e(A!- ■ -Au) = o(p"mk)
Ai,- ■ • ,Ai¡,áe& A j<m

for arbitrary irrationals £. We shall prove (6.4) by induction on k. For k = 1

the result has already been proved. Now the left member of (6.4) may be

written as

(6.5) £       Z e{BA¿) (B = Al ■ ■ ■ Ak^),
A\. ■ ■ -,Ak-i   A/,

and by Theorem 1 the inner sum in (6.5) is 0 unless deg ((££)) <—m. Now

for r 5:1, the number of sets of polynomials At, • • • , Ak-i, deg A¡<m, such

that deg {{Ax ■ ■ ■ Ak-£)) < — r, is asymptotic to £•"»<*-»>-«' by the induc-

tive hypothesis and therefore less than 2pnm^k~l)~nr for sufficiently large

m. Now if deg ((.4i • • • Ak-i^))^ —r, the inner sum in (6.5) vanishes for

m^r. Hence, the sum (6.5) is less than

2vjnm(fc— 1) — nr J.nm   —   OJ^nmk—nr

Since r is arbitrary this proves (6.4).

We now prove Theorem 9 by Weyl's method. To begin with we assume a¡¡

irrational. Then by (6.1)

|S|2= £ e(<p(A + B) - 4(B)) =D e(A<f>(A, B)),
deg A<m, deg B<m A , B

where <f>(u+v)~4>(v) = u4>(u, v), and deg 4>{u, v)=k — \. Hence,

2

|S]«S>—£   T.e(A4>(A,B))   .
A        B
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But

2

= Ze(A<t>(A,B + C) -A<t>(A,C))
B,C

= Ye(AB<t>(A,B,C)),
B.C

where <j>(u, v-\-w)—<i>(u, w) =v<p(u, v, w), so that

I S I4 ̂  P"mY,Y,e(AB<l>(A,B,C)).
A, B    C

Proceeding in this way we get after k — 1 steps

(6.6) \S\K ^ pnm(K~k)    Z    e(Al---A^) (K = 2*"1),
A-i, ■ ■ ■ ,Ak

where £ = &!«*. Let ff^l; then by Theorem 10 the number of sets Ai, • ■ • ,

Ak-U deg Aj<m, deg ((Ax ■ ■ ■ Ak-iÇ)) < —s, is at most 2pnm<-k-»-n3 for suffi-

ciently large m. Since the inner sum in (6.6) vanishes for deg ((A\ • • • Ak^))

2: — s, m^s, it follows that

C1 \K   <   jjnm(K— k) . 9 ¿» m(k— 1) —M« . An m  ==   j.nmK—ns

Since s is arbitrary this evidently implies the truth of (6.1) in the case ak

irrational.

Finally let ak, ■ • ■ , «¡+i be rational, while ccj is irrational, and let G de-

note the least common denominator of ak, ■ ■ ■ , a¡+l, deg G — g. Then replac-

ing A by G A +B, we have

(6.7) D      e(<j>(A)) =    D £    e(0(G4 + B)).
deg^4<m+o deg B< 0      deg.4<m

But for fixed B, <t>(Gu+B) is congruent (mod 1) to a polynomial of degree /

with highest coefficient a¡Gl which is irrational. Hence, the previous case of

the theorem applies to the inner sum in the right member of (6.7) and (6.1)

holds in this case also. This completes the proof of Theorem 9.

The condition k<p in Theorem 9 can apparently not be dropped. For

example, the sum

(6.8) £    e(A"a) = pnm

deg A<m

for a= £r CiX~\ iféí (mod p). Again (for n = i) it is easily verified that

(6.9) £    e((A*> - A)a) = pnm

deg A<m

for a=x~1(c0+ £i° Cißi), /3,= ]Cjt0 x~ip''■ Each ß{ is irrational (indeed alge-

braic). Thus, it is not evident for which polynomials 4>(u), of degree not less

than p, (6.1) holds.

Ze(A<t>(A,B))
B



196 L. CARLITZ [March

7. The sumZ'<K^4). We now consider the sum

(7.1) 5'=    Z'  «(*(«)).
deg A=m

where <£(m) has the same meaning as in Theorem 9, and ¿/ denotes that the

sum is over primary polynomials of degree m only (that is, polynomials with

highest coefficient = 1). The method of proof used in Theorem 9 may be ap-

plied to S'. At the first step we get

I S' |2 = 2? *C*W - *(S)) =   Z        Z'  «0K¿ + £) - *(*))
A , B deg A<m     deg B=m

| 5'|4 ^ ¿>"m   Z

deg A<m

Thus, the next step becomes

Z'e(A4>(A, B))
B

Z'   e(A*(A,B))
deg B=m

=     Z Z'   e(A<t>(A,B + C)-A<t>(A,C)),
deg B<m     deg C«=m

and so on. Proceeding in this way we get

(7.2) | S'l* á >»-<*-»»      Z       TJei.Ai---A£),
A-l<- ■ -tAt-i   Ak

the notation being the same as in (6.6); note that the inner sum is over

primary Akoi degree m, while the outer sum is over all A¡ol degree<w. Now

apply Theorem 10, and we have proved the following theorem.

Theorem 11. For <j>(u) as in Theorem 9, 1 ¿k<p,

(7.3) Z'   4<KA)) = o(#—) («-»«o).
deg A=*m

We note that Theorem 11 can be deduced from Theorem 9 by placing

4>(A) = <f>(xm-\-B) =<f>i(B), where deg B <m ; similarly, Theorem 9 is a corollary

of Theorem 11. The direct proof is perhaps of interest. We also remark that

there are cases for which S' = 0 while S 9^0 and vice versa.

As an immediate corollary of Theorem 11 we mention

n A^ T>   ¿OK-4))        ,   I(7.4) Z        i     ,    = o(m),
deg AS m       \ A \

where |.<4| =^»degx  We have also

T--    e(<t>(A))
(7.5) Z'  -777^ = o(#-»»->) (r < 1).

deg A Ú m        A-
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The convergence of "Yj'e(4>(A))\A |_r for r>\ is trivial. The formulas (7.4),

(7.5) are easily generalized.

That (7.4) and (7.5) cannot in general be improved (at least for k = 2)

will be clear from Theorem 23 below.

8. Some applications. We begin with the following theorem.

Theorem 12. Let

(8.1) <t>(u) = a0 + aYu + • • • + akuk (1 ^ k < p),

and assume that at least one of the coefficients ai, ■ ■ ■ , ak is irrational. Then

the sequence \e(4>(A))\, where A runs through GF[pn, x], is uniformly dis-

tributed (mod 1).

This result is an immediate consequence of Theorems 4 and 9. As a par-

ticular case of Theorem 12 we see that the sequence {-44£} is uniformly dis-

tributed, provided l^k<p, £ irrational.

Theorem 13. Let <j>i(u), • • • , 4>,(u) be s polynomials with coefficients in <f>

such that any relation

(8.2) 5i«i(«) + • • • + B,<t>.(u) m a (mod 1)

with BiE:GF\pn, x] implies Bi = 0. Then the sequence of points (<¡>i(A), • • • ,

<t>,(A)) (AÇzGF[pn, x]) is uniformly distributed (mod 1).

Proof. The left member of (8.2) defines a polynomial (¡>(u) to which

Theorem 9 may be applied.

Theorem 14. Let £ be irrational; si, ■ ■ ■ , st^l; ßi, ■ • ■ , ßk arbitrary

numbers of <ï>. Then the number of polynomials A, deg A <m, such that

deg (04<£ - ßi)) < - a (i = 1, • • • , i)

is asymptotically

Proof. In view of (5.3) this theorem is a special case of Theorem 13.

Another special case of interest is the following:

Theorem 15. Let £i, • • • , £.£$; 1, £i, • • ■ , £s linearly independent. Let

ßi}Cz&,rij=i;i=i, • ■ ■ i fe; .7 = 1, • • • , s. Then the number of polynomials A,

deg A <m, such that

deg ((A% - ßi,)) < - m (i = 1, • • • , fe;i = 1, • • • , s)

is asymptotically

/        k    *
pnim-r) I f =   ]T £ f</, m _> „

\ f_l  ,_1 )•
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9. More general sequences. Let a be a number of $ and Au Ai, A%, • ■ •

a sequence of polynomials. Put

m

(9.1) S(a) = Z e(Aia).

We shall show that

(9.2) S (a) = 0(mll*+')

for "almost all" a. First, we must explain what will be meant by "almost all."

Let r^l be fixed. Two fractions G/H, G'/H' are equivalent provided

[3, §3]

(9.3) deg ((G'H - GH')) < h + h' - r,

where A = deg H, Ä' = deg H'; we write G/H~G'/H'. It will be convenient to

replace (9.3) by the equivalent condition

(9.4) deg ((G/H - G'/H')) < - r.

The fraction G/H is primitive (for r) provided G/H~G'/H' implies deg H'

^deg H; in particular, all G/H are primitive for deg H^r/2. A fundamental

set is a set of rationals cti, • • • , a, such that (i) no two are equivalent, and

(ii) any given rational is equivalent to some a,- of the set. It follows that
s = pnr.

Let a be an arbitrary number of <£. Then in the first place relatively

prime polynomials G', H' can be found such that

(9.5) deg (H'a - G') < - r (deg H ^ r).

If, in (9.5), G'/H' is not primitive, we replace it by an equivalent primitive

fraction G/H. Then (9.5) and (9.4) imply

(9.6) deg (a -G/H) < - r (deg H ^ r).

It is natural to extend the definition of equivalence to arbitrary numbers

of <£. If a, ftcE^, we define a~ß provided

(9.7) deg ((« - ß)) < - r.

Clearly ~ is an equivalence relation. Thus, in view of (9.6) every a is equiv-

lent to a primitive G/H.

We shall now say that almost all a have a certain property provided that

the number N of nonequivalent a not having the property is such that

N/pnr is arbitrarily small (as r—>=»).

Returning to (9.1) consider the sum

m

(9.8) Z*|S(«)!2=   Z   Z*e((At-Af)a),
a i, /=!       a
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where Z* denotes summation over a fundamental set of a's and r>deg Ai,

i=l, • • • , m. Now, for deg A <r we have £*e(^4a)=0 unless ^4=0 (for

proof see [3, (3.13)]). Hence, (9.8) implies

(9.9) Z* I 5(a) |2 = mpnr.
a

Now let N be the number of nonequivalent a such that

(9.10) | 5(a) | à vm112^',

where r?>0, e>0. Then by (9.9)

mpnr ^ Nr¡2m1+2t,

so that

pnr

(9.11) AT  ¿  —-
r;27W2'

This proves the following theorem.

Theorem 16. Let A\, • ■ • , Am be distinct polynomials, r>Ait e>0, 17>0.

// iV is the number of nonequivalent a for which (9.10) is satisfied, then (9.11)

holds.

In other words this shows that for almost all a, (9.2) holds.

In (9.1) it clearly makes no difference if we require deg a<0. This is no

longer true for the more general sum

m

(9.12) S (a) =5x(a) = E«M,
1=1

where the X; are arbitrary numbers of <3?. In the sum (9.12) we therefore re-

strict ourselves to deg a <0. Now for deg ß <0 it follows that deg (aß) < — 1

so that e(aß) =1. Thus, if we put X¿ = v4,-+/3l-, /3¿=((Xt)), deg /3¿<0, we have

e(Xfa) =e(Ai<x). We therefore have the following extension of Theorem 16:

Theorem 16'. Let Xi, • • • , Xm be a set of distinct numbers of $>, r >deg X,-,

e>0, r?>0. If N is the number of nonequivalent a, deg a<0,for which

Z e(\ia) ^ 57W1'24',

then (9.11) holds. In other words,

I S\(a) I < r/mI/2+'

for almost all a, deg a <0.

For a= Zo°  c»x-p' and any sequence   {^4,} = {xei}, e¿<e,-+1, we have
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S(a) = Q(m), except possibly when infinitely many e¿ are of the form p'—l;

all a defined by the above series are irrational. Other examples of this kind

are easily constructed.

Another conclusion can be drawn from  (9.9); namely,  the assertion

S(a)=o(m112) for all a is false. We have therefore the following theorem.

Theorem 17. For any sequence {X¿} there exist irrationals a such that

5x(a) = n(m1'2) (»-*«).

10. The sum Sm(a, ß). In the remainder of the paper we assume p odd.

Let a, jSG* and define

(10.1) Sm(a,ß)~    Z    e(aA2+2ßA).
deg AKm

To begin with let /? = 0 (mod 1) and put

(10.2) Sm(a) = Sm(a, 0) =    Z    e(aA2).
deg A<m

We shall again make use of the properties of equivalence in i> as defined

in §9; we take r = 2m. Let a~G/ii, where G/H is primitive; then clearly

(10.3) Sm(a) =   Z    e(GA2/H) = Sm(G/H).
deg A<Cm

The sum (10.3) has been discussed previously [3, p. 1134] and we have

(S(G/H) (h > m),
(10.4) Sm(G/H) =<

\p"^-h>S(G/H) (h ^ m),

where h — deg H and

(10.5) S(G,H)=     Z    e(GA2/II)
.4 (mod H)

is a Gauss sum. Thus, in particular,

>•* (h > m),

[pn(2m-h) (¿   g  w)_

I I (P
(10.6) \Sm(a)\2 = V

But this does not indicate explicitly that Sm(a) =o(pnm) ; in Theorem 19 below

we show that this is indeed true for all irrational a.

There is no loss in generality in assuming deg a= —a<0. Now consider

the sum 5m_a(l/a). In the first place deg (a — G/H)<—r, where G/H is

primitive, implies

/l       H\
(10.7) deg (---)< -(r-2a);

also HIG is primitive for r — 2a for otherwise G/H is not primitive for r, as is



1952] DIOPHANTINE APPROXIMATION 201

easily verified. Then as in (10.3) and (10.4) we have, for m^a,

/1\ (S(H/G) (g>m-a),
(10.8) Sm-a[ — ) = Sm-a(H/G) =  \ ,    ,s

\a) \p"^-a-^S(H/G) (gúm- a),

where g = deg G. (Note that in the proof of (10.4), H is assumed primary;

since G need not be primary, a little care is needed in using (10.8).)

Since h — g = a it is clear that h > m if and only if g > m — a so that the side

conditions in (10.4) and (10.8) correspond. Comparison of these two formu-

las now leads at once to

(10.9) 5m(«) m vp™i*Sm-a(—) (#* è «),

where r¡ is a complex number of absolute value 1; indeed r¡= +1, ±i. It is

easy to give an explicit formula for 77 but this will not be required in the

applications.

Returning to the general sum (10.1) we first note several easily proved

formulas

Sm(a, 0) = Sm(alt ft) (a m «,, ß m ft (mod 1)),

Sm(a, ß + Ba) = e(- a#2 - 2ßB)Sm(a, ß) (deg B < m).

(10.11) Sm(a, ß + ft)5„(«, ß - ft) = 5m(2a, 2a)5„,(2a, 2ft).

To prove (10.11) we substitute from (10.1) in the left member. This gives

Z e(a(A* + B>) + 2(ß + ß,)A + 2(ß - ft)S);
A.B

now put A =A'+B', B=A'-B', and (10.11) follows immediately.

As in the proof of (10.9), let deg a= -a<0, deg (a-G/H) < -r, where

G/H is primitive. Then in the first place

(10.12) Sm(a,ß)=Sm(G/H,ß).

Next we have

^     /G(A + By GE? \
I Sm(G/H, ft |2 = Z 4 „ + 2ß(A + B)-—--2ßB)

A B \ H tl /

(10.13)
_      (GA* \    _       /   GAB\
Z    el—+2ßA)    Z    e(2 —-).

!«/l<n       \    ¿Í / deg B<m       \ «     /degA<m       \    " /  deg B<m

Now by Theorem 1 the inner sum in (10.13) vanishes unless

(10.14) deg((^G/F)) < - m.

Assume first that fe = deg H^m. Then (10.14) implies AG = 0 (mod H), and
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therefore Il\A. Thus, (10.13) becomes

(10.15) \Sm(G/H, ß)\2 = />»"•     Z      e(2ßHC) (h ¿m).
deg C'<m—k

In the next place let h>m. We put (10.14) in the form

(10.16) AG = HU +V (deg V < h - m).

Since (G, H) = 1 we can find polynomials G\, Hi such that

(10.17) GHi-dH = 1 (ki < k, k + ÄiS r>,

where hL = deg Hi.  (The inequality h-\-hi>r contradicts G/H primitive.)

Now by (10.16) and (10.17) we have

G      U        V G      Gi_     1

H~~A~ HI' H~m~ HH1 '

so that

d       U      1   /V        1 \

Ht ~ A ~ H \A       Hi)

and therefore

1
(10.18) GiA - Hill = — (VHi - A).

H

Now, by (10.16), deg (VHi) <h-\-hi — m^m<h and deg A <m <h; therefore,

(10.18) implies A = VHi. Note also that (10.14) implies deg ((GA2/H)) < -1

so that e(GA2/H) = l. Thus, (10.13) leads to

(10.19) | Sm(G/H, ß) \2 = />'"»      Z      e(2ßHiV) (h > m),
deg V<h~m

which may be compared with (10.15). We now apply Theorem 1 to (10.15)

and (10.19) and get

(10.20) \Sm(G/H,ß)

for h^m,

(10.21) \Sm(G/H,ß)

for h>m.
We can now complete the proof of the following theorem of which (10.9)

is a special case.

■p,^m-h) (deg {(ßH)) < h - m),

.0 (deg ((ßH)) è h-m)

pnh (deg ((ßHi)) <m- h),

0 (deg (OStfi)) è m - h)
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Theorem 18. //dega= — a<0, deg/3<0, m^a, then

(10.22) Sm(a, ß) = vPna,2Sm~a(— >    —Y
\ a        a /

where r¡ is a complex number of absolute value 1.

Proof. It will be convenient to write down the formulas corresponding to

(10.20) and (10.21) for the sum 5M_„(l/a, ß/a). As in the proof (10.9) we

have first

(10.12') Sm-a(l/a, ß/a) = Sm-a(H/G, Hß/G),

while (10.20) and (10.21) become

,pn(2m-2a-g)     /deg ((ßH)) < g - m + a),

(10.20')      \Sm-a(H/G, Hß/G) 2 =  {
l0 (deg ((ßH)) ^g-m + a)

for g^m — a,

. lpna (deg ((dHß/G)) <m - a - g),
(10.21')      \Sm-.(H/G, Hß/G) I2 =  V 8U

' '        lo (deg ((G1Hß/G)) èm-a-i)

for g>m — a.

Now we recall that the condition h^m is equivalent to g^m — a. Thus,

comparison of (10.20') with (10.20) shows that the theorem is correct in the

case h^m. For h>m we must examine the side condition deg ((GiHß/G))

<m — a — g = m — h. It follows from (10.17) that

deg ((Htf)) - deg ((GiHß/G)) = deg (ß/G) < - g < m - h,

so that the side conditions in (10.21) and (10.21') are indeed equivalent. This

evidently completes the proof of the theorem.

Theorem 18 may be compared with Theorem 2.128 of [6].

11. Bounds for Sm(a, ß). As in [6, p. 211] let the irrational a be exhibited

as a simple continued fraction [l, p. 190]

(11.1)

also put

(11.2) At+at A2 + a2

ft = ((ß/a)), ft = ((ft/at)),

so that deg a, = — a, < 0, deg ft < 0.

Then by (10.20)

1        1
a ~ A1 + A~2 +

1 1
ai =-> ■ • • (degyli ^ 1),
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Sm(a, ß) = np^l'S^aí—,    — ) = np»ai2Sm-a(ai, ßi),
\ a        a /

where r¡ denotes a complex number of absolute value 1, which may change

from equation to equation. Transforming Sm-a(au ßi) in the same way, we get

S—,(«i, ßi) = VpnaiI2Sm-a-ai(ai, ßt),

so that

Sm(a, ß) = vpnía+al)l2Sm-a-ai(a2, ßt).

Continuing in this way we have

(11.3) Sm(a, ß) = #«"25m_((a„ j8.),

provided m — t^O, where t = a+ai+ • • • +öe_i.

We now fix s by means of the inequalities

(11.4) a + öi + • • • + as_i g m < a + ai + • ■ ■ + a„.

Clearly t—* °o as 5—* °o ; hence, it follows from (11.3) that

Sm(a, ß) = 0(pn"2p'^m-t)) = o(pnm)

uniformly in ß.

We have therefore the following theorem.

Theorem 19. If a is irrational, then

Sm(a,ß) = o(p»m) (m-> oo)

uniformly for all ß. In particular, Sm(a) =o(pnm).

Theorem 20. If the partial quotients At in the infinite continued fraction

(11.1) are of bounded degree, then

(11.5) Sm(a, ß) = 0(p"""2) (w^oo)

uniformly for all ß.

This is an immediate consequence of (11.3) for

Sm-t(as, ß.) = 0(¿»<—«>) = 0(p»<") = 0(1).

Theorem 21. If a is irrational and am=o(m), then

(11.6) Sm(a, ß) = 0(p»Wl2+'>)

for all e > 0.

Indeed, we have

t/2 + (m- t) < t/2 + a, g m/2 + am ^ m(i + e)/2,

which proves the theorem.
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Theorem 22. If a is irrational and am<dm for m sufficiently large, 5>0,

then

(11.7) Sm(a, ft = 0(/>""><1+5'+<>/2)

for all e>0.

Proof. We shall require the following formula:

(»' - —)\ 1 + V

(11.8) \Sm(a,ß)\ g   ir
IP"

na>% (m < a < 2m),

pnm (2m < a)

for deg a= —a, a>m.

The second half of (11.8) is obvious from the definition of Sm(a, ß). To

prove the first half of the formula we start with

\'Sm(a, ft|2=    Z    e(aA*+2ßA)   Z    e(2AB).
deg A<m deg B< m

The inner sum vanishes unless deg ((aA)) <—m. Since deg a<— m, this

implies deg A <a — m and the formula follows.

In the next place we remark that 5 may be considered the minimal ô for

which the hypothesis of the theorem holds; otherwise, Theorem 21 applies.

Hence, there is an infinite sequence of integers S\, s^, S3, • ■ • , such that

«<è « + «1+ "• +ä»ii se + aSi > Si(í + ôi)

for all positive ôi<ô. Then by (11.3), (11.4), and (11.8), we have for m — t

<as<2(m-t)

t       a,      m      ôs      m
—+ —á —+— < —

2        2        2        2        2 K>
while for a,>2(m — t), we have

-\- (m - t) <
t        a,      m / 5 \

Thus (11.7) certainly holds for the sequence {«¡J; but for other values of m

the proof indicates that the formula will hold with a smaller value for Ô'.

Thus, the theorem is true in general.

12. i2-theorems. For 0 = 0, (11.3) becomes

(12.1) Sn(a) = r,p"'l*Sm-t(a,).

We shall now prove the following theorem.
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Theorem 23. If<j>(m) >0, <j>(m)—> « as m—» w, then there exist irrationals a

such that

(12.2) Sm{a) - U(¿»*/*<**)) («-»»).

This result shows that the equation 5ro(a) =o(pnm) is the best result that

can be stated for ö// irrationals.

To prove Theorem 23 we first remark that

(12.3) Sm(a) = pnm (deg a ^ - 2m),

which is evident from (10.2). Thus,

(12.4) Sm-t(as) = £»<*-« (a, ^ 2(m - t)).

Substituting from (12.4) in (12.2) we get

(12.5) Sm(a) = p(T*m.

Hence, to prove (12.2) it will suffice to exhibit an irrational a and a sequence

nti, m2, ms, • • —>oo such that

pn(m-tl2)   ^   pnm/<$>(m),

or what is the same thing, pn'l2^<f>(m), and also as^2(m — t). We take

ms = a + «i + • • • + ««-i + as/2 ;

then the corresponding value of t is

t, = a + ax + ■ ■ ■ + «,_!

(so that at = 2(w — /)). Thus, the only condition remaining to be satisfied is

(12.6) ^(W-.+vO/! ^ ¿(a + si + • . • + «„_! + as/2).

Take a = l; if Oi, • • -, a,_i have already been found, then clearly a, can be

determined so that (12.6) holds. Thus, a sequence a, can be found which

satisfies the several requirements. Finally, given the {a,} we can find poly-

nomials A, and therefore a by means of (11.1); in particular, we may take

Ai = xa,~1. That all such a's are irrational is clear from the fact that the con-

tinued fraction (11.1) is not terminating.

To extend (12.2) to general Sm(a, ß) we note first that in place of (12.3)

we have Sm(a, ß) = 0 or pnm for deg a ^ — 2m. The remainder of the proof goes

through so that we may state the following theorem.

Theorem 23'. There exist irrationals a such that either Sm(ct, ß)=0 or

Sm(a, ß) = Ü(pnm/<t>(m)) («-»<»).

A condition for the vanishing of Sm(a, ß) is contained in (10.20) and

(10.21), but it is not very simple.
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In the next place it is easy to get a lower bound for Sm(a) which is valid

for all a, rational as well as irrational. Indeed, by (10.6) we have | Sm(a) \2

^pnm. As for Sm(a, ft), we again use (10.20) and (10.21). We may state the

following:

Theorem 24. For all a we have

Sm(a) = p™l\

For all a, ft either Sm(a, ft =0 or

| Sm(a, ft |  = p»»>l\

This result shows that (11.5) cannot be improved.

Finally, we prove:

Theorem 25. There exist irrationals a such that am < 5m for m sufficiently

large, ô > 0, and

I Sm(a) | = ¿»»(H-«')/* (V  = -Y
\ 1 + 5/

Comparing with the proof of Theorem 22, we select a sequence of integers

si, Si, S3, • ■ ■ and take a = 1, a, = l for st^Sí, aSi = smallest integer not less than

55,. We also require the inequality

(12.7) | Sm(a) | è p™'2 (a = dega>m),

which follows from (10.6). Then, by (12.1) and (12.7),

| Sm(a) |   =   p"tl2p«a.l\

It will therefore suffice to show that

t, + a, ^ m.(l + 5'),

which surely holds provided

(12.8) ist è (1 + a')(«. - O + 5%.

Since the sequence {s,-} is at our disposal, it is clear that we can select it in

such a way that (12.8) is satisfied. This completes the proof of the theorem.
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