ON THE PRIMARY SUBGROUPS OF A GROUP(})

BY
CHRISTINE WILLIAMS AYOUB

1. Introduction. In this paper we consider a group theoretic configuration
consisting of an operator group G and a lattice of admissible subgroups. If
M is the operator system and ¢ the lattice of subgroups, we call G an M-¢ ~
group and the subgroups in ¢ we call ¢ subgroups. We define M-¢ iso-
morphism, normal ¢ chains, ¢ cyclic ¢ subgroups, etc., in the obvious manner.

We call an M-¢p group P primary if all its ¢ composition factors are
M-¢ isomorphic to the same M-¢p group F; F is the characteristic of P.
Thus if ¢ consists of all subgroups of a finite group G (and if M is void), G
is primary with abelian characteristic if, and only if, G is a p-group. The main
part of the paper is devoted to the following problem: When is an M-¢
group the direct sum of primary ¢ subgroups? In §4 we find a necessary and
sufficient condition that this be true under very general hypotheses. In study-
ing this question we make use of what we have called ¢ links and unitoral
M-¢ groups. ¢ links are ¢ subgroups which belong to some normal ¢ chain.
In §3 we prove various properties for ¢ links. The two main theorems are
generalizations of theorems proved by Wielandt in [2]. Wielandt has also
defined a unitoral (einképfig) group as one which has a unique maximal
normal subgroup, and we call an M-¢ group unitoral if it has a unique
maximal normal ¢ subgroup. The result about unitoral M-¢ groups which we
need is a generalization of a result proved by Wielandt.

We next consider the analogue of the following theorem for finite groups:
A group is the direct product of its Sylow subgroups if, and only if, it is nil-
potent. It can be seen readily that the generalization of this theorem to
M-¢ groups is not true without further hypotheses on the nature of ¢.
However, with suitable restrictions on the M-¢ group G considered we are
able to show that G is the direct sum of primary ¢ subgroups with abelian
characteristic if, and only if, G is ¢ nilpotent (cf. Theorem 7.5). It is clear that
the methods used to prove the theorem for finite groups are not applicable in
our case. The following result is obtained and is used in the proof: Every
nonzero normal ¢ subgroup of a ¢ nilpotent M-¢ group G has nonzero
intersection with the ¢ center of G. By the use of a rather complicated induc-
tion we are able to reduce the problem to the study of a curious type of group
—namely, a group which is the sum of two abelian subgroups one of which is
normal and whose intersection is zero (cf. §6).
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2. Definitions and basic theorems. Let G be an additive group (not
necessarily abelian) which admits the system of operators M ; and let ¢ be a
system of M admissible subgroups of G which forms a complete lattice with
respect to intersections and composita (by the compositum of a set of sub-
groups of a group we mean the subgroup generated by the subgroups of the
set). We call the operator group G an M-¢ group if a complete lattice ¢
has been specified. 4 ¢ subgroup S of G can be considered as an M-¢ group
if we define the lattice ¢ for S in the following way: the ¢ subgroups of S
are the ¢ subgroups of G which are contained in S. If NV is a normal ¢ sub-
group of G, G/N admits the operator system M and a lattice ¢ of M ad-
missible subgroups of G/N may be defined in this way: the ¢ subgroups of
G/N are the subgroups U/N, where U is a ¢ subgroup of G which contains
N. Thus G/N is an M-¢ group. If a is an element of G, the intersection of all
¢ subgroups which contain a is a ¢ subgroup; we call this ¢ subgroup the ¢
cyclic ¢ subgroup generated by a. An M-¢ group which has no normal ¢
subgroups we call ¢ simple.

Let G and G’ be M-¢ groups, i.e., G and G’ both admit the operator sys-
tem M and a lattice of M admissible subgroups has been defined for both
G and G'—this lattice being denoted by ¢ in either case. Then G and G’
are M-¢ isomorphic if there exists an operator isomorphism of G onto G’
which induces a lattice isomorphism of the ¢ subgroups of G onto the ¢ sub-
groups of G’. We write G= 4y G'. M-¢ homomorphism and M- auto-
morphism are defined in a similar fashion. It can be easily verified that the
analogues of the Homomorphism Theorem and the Isomorphism Theorems
hold. We define normal ¢ chain and ¢ composition series in the obvious way
and it is clear that the analogue of the Jordan-Hélder Theorem holds. (For
a complete statement of most of these definitions and theorems cf. [1].)

The ¢ subgroup S of G is M-¢ characteristic if every M-$ auto-
morphism of G leaves .S invariant. It is important to notice that the inner
automorphisms of a group are not necessarily M-¢ automorphisms and
hence a ¢ subgroup may be M-¢ characteristic without being normal. In
some of our arguments it is necessary to assume that inner automorphisms
are M-¢ automorphisms (cf., e.g., Theorem 3.5 and Example 3.1). In other
places it is sufficient to assume that ¢ contains conjugates, i.e., if Sis in ¢
and g is an element of G, then —g+4S4g is in ¢.

Finally we list a few notations which will be used: If, for7=1, - - -, n, 4;
are subgroups of a group G, Ci.; 4; denotes the compositum of the A4;;

#» A; denotes the direct sum. For the direct sum of two subgroups 4 and
B we use A®B.

3. ¢ links.

DerFINITION 3.1. If S is a ¢ subgroup of the M-¢ group G, S is said to be
a ¢ link for G if there exists a normal ¢ chain connecting .S and G.

The following result is easily established:
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THEOREM 3.1. If Sand T are ¢ subgroups of the M-¢ group G and if S is
a ¢ link for G, then SIN\T is a ¢ link for T. If T 1s also a ¢ link for G, SNT
is a ¢ link for G.

From the first part of the theorem it follows that if S is a ¢ link for G,
S is a ¢ link for any ¢ subgroup which contains it, and thus we may say that
S is a ¢ link without fear of ambiguity.

THEOREM 3.2. Assume that the ¢ links for the M-¢ group G satisfy the
maximum condition and that ¢ contains conjugates. If A and B are ¢ links for
G, {4, B} is a ¢ link for G.

Proof. We shall say that the theorem is false for a ¢ link A4 if there exists
a ¢ link B such that {A, B} is not a ¢ link. We assume that the theorem is
false, and let A be a maximal ¢ link for which the theorem is false.

We define the class of A4 relative to the ¢ link B as follows: Cp(4) =Fk if
there exists a ¢ link C such that {A, B} CC, and a normal ¢ chain of length
k connecting 4 and C; and if there is no normal ¢ chain of length less than
k from A4 to any ¢ link C’ containing {A, B} (Cs(A4) is finite since 4 can be
connected to G by a normal ¢ chain). We use induction on 7 to prove the
following statement: (r) If Cz(4) =7, then {4, B} is a ¢ link. If =0, (r) is
true since then A =C2 {4, B} D4 and hence 4 = {4, B}. Assume that (r)
is true if r <k, and Cp(4)=k. We distinguish two cases:

(i) 4 is normal in {4, B}.

Let A=A4,C - - - CA:iCAi1C - - - CAr=C be a normal ¢ chain con-
necting A and C. Since A, is a ¢ link for G and 4,04, {A;, B}. is a ¢ link.
Since B is a ¢ link contained in {A;, B}, there exists a normal ¢ chain:
B=U,C - CU,CUinC - -+ CU,={A;, B}. Then {4, B}C ...
Q{A, U;}Q {A, U,-+1}§ S Q{A, U,} = {Al, B} is a normal ¢ chain; for
Uiy is contained in {A4;, B}, and hence transforms 4 into itself so that
{4, U.} is normal in {4, U;}. Thus {4, B} is a ¢ link for {4;, B} and
{4., B} is a ¢ link for G. But this implies that {4, B} is a ¢ link for G.

(i) A4 is not normal in {4, B}.

There exists an element b of B such that 4 (b) = —b+ A +b is not contained
in 4; and by hypothesis 4 (b) is a ¢ subgroup. Let A=A4,C - - - CA,CA4in1
C +++ CAr1CAr=C be a ¢ chain; the chain A(B)C - - - CA:(d)CA411(d)
C - CAra(d)=Ar, where A;,(b)=—b+A+b, is a normal ¢ chain con-
necting A(b) and Az_y. Thus Ca(A4)=k—1, and hence by the induction
assumption, 4’={A(b), A} is a ¢ link. Furthermore, since 4 CA4’, {4’, B}
is a ¢ link. But {4’, B} ={4, A(b), B} ={4, B}. Hence {4, B} isa ¢ link
and (k) is proved.

Thus (r) is true for all » and this contradicts the assumption that the
theorem is false for 4.

THEOREM 3.3. Let B and C be ¢ subgroups of the M-¢ group G, and assume
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that B is a ¢ link for { B, C}. B and C permute if and only if, for every ¢ link
A for {B, C} such that BCA, {B, ANC} =A.

Proof. It is always true that {B, ANC } C A and hence the equality holds
if and only if {B, ANC}DA.

Necessity. Assume that {B, C} =B+C, and let A be any ¢ subgroup of
G such that BQAQ{B, C}. If a is an element of 4, then a=b-4c¢c, where b
and ¢ are elements of B and C, respectively. Hence —b+4a=¢, and ¢ is an
element of ANC. Therefore ACB+(ANC)S{B, ANC} and thus A=B
+(ANC)={B, ANC}.

Sufficiency. Let B=BoC - - - CB;CBinC -+ CB.,={B, C} be a
normal ¢ chain connecting B and { B, C } By hypothesis, Biy1= { B, Bin/NC},
for =0, - - -, n—1. Hence:

(1) Bi1 = {Bi, ByuuNC} = Bi+ (Biya N C),  since B; in normal in By,

We use induction on j to show that {B, C} =B,_j+C. For j=1, {B, C}
={B,_1, C} =B,_1+C, since B, is normal in {B, C}. Assume that {B, C|
=B,_;j+C. From (1) it follows that B,_;=B,_; 1+ (B._,\C). Hence { B, C}
=B,._i+C=B._j 1+ (BsiNC)+C=B,_;j1+C, and the induction is com-
plete. In particular, {B, C} =B,+C=B+C.

COROLLARY 3.1. Let G be an M-¢ group. A necessary and sufficient condi-
tion that any two ¢ links for G permute is that the ¢ links for G form a modular
lattice.

We take up next a generalization of the First Isomorphism Theorem for ¢
links.

THEOREM 3.4. Let A and B be ¢ subgroups of the M-¢ group G which are
¢ links for {A, B } ; assume that the double chain condition holds for ¢ links for
{A, B} and that ¢ contains conjugates. Let A=A,C - -+ CA;CAinC -+
CA,={A, B} be a ¢ composition chain connecting A and {A, B}. Then if
ANB#A4;.NB,

(2) AiyinN\ B/A; B =2 A;4/A..
(M-9)

REMARK. It can readily be shown that G has a ¢ composition series if and
only if the ¢ links for G satisfy the double chain condition (cf. [2, p. 219]).

Proof. If A;N\B#A;1N\B, then 4,,;\BEA4;. Hence A;C {4, AinNB}
CAipr. Thus A= {A4;, A;yNB}, since A;isa ¢ link for {4, 4,,;NB} and
{A,-, A,-+1f\B} is a ¢ link for A;y1, and 4;,1/4; is ¢ simple. Therefore, by the
First Isomorphism Theorem, (2) holds.

COROLLARY 3.2. Under the hypotheses of Theorem 3.4, the ¢ composition
factors from ANB to B are a part of the ¢ composition factors from A to { A, B}.
In particular, if A and B permute, the ¢ composition factors of any ¢ composition
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chain connecting AIN\B and B are the same as those of any ¢ composition chain
connecting A and {A, B}, and the multiplicity of the factors is the same in both
chains.

If there exists a ¢ composition chain connecting P and (, we denote its
length by j(P, Q). From Corollary 3.2 it follows that if 4 and B permute,
j4, {A, B }) =j(ANB, B). The converse is also true, namely:

LemMA 3.1. Under the hypotheses of Theorem 3.4, if j(4, {A, B})
=j(ANB, B), then A and B permute.

Proof. Let S be a ¢ link for G such that ACSC {4, B}. There
exists a ¢ composition chain: 4 =S5,C - - - CS;CS=S;.C - - - CS.= {4,
B}. For each 4, SiN\B#S;NB, and hence S:C{S: SiiNB}CSip.
Therefore, Sia={S:;, Su1NB}=Si+(SinNB), for i=0,---, n—1.
S=Sin=3S;+(SinNB) =S;1+ (S;NB) + (S;1NB) = Sj1+ (SjNB) = - - -
=S¢+ (S;+1MNB) =4+ (SN B). Hence by Theorem 3.3, 4 and B permute.

THEOREM 3.5. Assume the hypotheses of Theorem 3.4 and assume that inner
automorphisms are M-¢ automorphisms; the ¢ composition factors from AMB
to B and those from A to {A, B} are the same (except for multiplicity).

Proof. We prove by induction the following statement:

(n) If C and D are ¢ links for {A, B} and if §(D, {C, D})<n, then the
factors for any ¢ composition chain connecting C/N\D and D are the same as
those for any ¢ composition chain connecting C and {C, D}.

(1) is obviously true.

If j(D, {C,D})=1, Disnormal in {C, D} and {C, D}/D=(3-4/C/CND.
Thus by the Jordan-Hélder Theorem the factors of any ¢ composition chain
from CND to D and those of any ¢ composition chain from C to {C, D}
are the same (actually, they are M-¢ isomorphic); therefore, (2) is true.

We now assume (n) (where n2=2) and prove (n+1).

Let C and D be ¢ links for {A, B} and let j(D, {C, D}) =n. (A) We as-
sume that CND is normal in D, and that D/CND is ¢ simple. Since
D, {C, D})=n=2, CND#C, and hence C=CN{C, D}#CND. Let D’
" be a minimal ¢ link for {C, D} such that DCD’, and CN\D’=CND. It is
easily seen that the length of a composition chain from CN\D to CND’ is one
so that in particular, CN\D is normal in CN\D’. We have: DC { CND', D
CD’, and CN\D’'=CN{CND’, D}; hence since D’ is minimal, { CN\D’, D
=D’. We distinguish two cases:

(i) D is normal in D’.

Then D and CND’ permute; hence CN\D’ is normal in D’, and D’/(CND’)
=~u.D/(CND). {C, D'} ={C, D}, and j(D', {C, D}) <n. Therefore, since
(n) holds, the factors of a ¢ composition chain from C to {C, D} are the
same as those of a ¢ composition chain from CN\D’ to D’, and hence are all
M-¢ isomorphic to D/(CN\D).
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(i1) D is not normal in D’.

Let S be a maximal ¢ link for D’ which contains D as a normal subgroup,
and suppose that S is normal in the ¢ subgroup T of D’. Then there exists
at in T such that —¢t+D+T=D(t)#D. Since S is normal in T, —t+S+!
=S5(t) =S. Therefore, DC { D, D(t) } CS. Thus D is normal in D= { D, D(t)}.
CND is normal in D' = {CN\D’, D} since CN\D is normal in CN\D’ and in D;
hence CN\D is normal in T. Therefore, CNDCTD(E)N\DCD, and CND
=D(@{#)ND. Consequently, Di/D=.4,D(t)/(CND)=(p-.4yD/(CND), since
inner automorphisms are M-¢ automorphisms. {C, D;}={C, D}, and
CN\D,=CND, since D;CD’, and D’ is minimal by definition. j(Dy, {C, D1})
=n—1; hence by (n) the factors of a ¢ composition chain from C to {C, D}
are the same as those of a ¢ composition chain from CND to D; and are
therefore all M-¢ isomorphic to D/(CND). This completes the proof of
the theorem under assumption (A).

(B) We no longer assume that CND is normal in D. Without loss in
generality we may take 4 =C and B=D. Let 4y=4 and for =0, 1, - - -
let 4,41 be a minimal ¢ link for {4, B} such that 4,C 441, and AiN\B=A4 i
NB.

(A::NB)C{A4i, A;sNB}CAipy and hence 4,,:NB={4; A:nNB}
NB.But 4;C {4, AixNB } C 4,1 and 4,4, by definition is minimal. There-
fore, Aipi={A4: AinNB}. j(4:uNB, B)<j(Ai1, {4, B}), and conse-
quently, by the Jordan-Hélder Theorem, j(4:1\B, A1) <j(B, {4, B})
=n. (A:.1NB)/(A.NB) is ¢ simple so that the factors of a ¢ composition
chain from A4; to A;; are all M-¢ isomorphic to (4:.1/MNB)/(4:\B) by
(A). Hence (n+1) is verified and the proof of the theorem is complete.

CoroLLARY 3.3. Under the hypotheses of Theorem 3.5, there exists a ¢
composition chain from A to {A, B},

A=A4,C-  CAiCAinnC--- Cda= {4, B},

with the following two properties:
(i) 1/:f A B #A ,-+1f\B, then (A ,+1f\B)/(A .ﬂB) g(M.¢)A ,’+1/A i
(ii) if AiNB=A,;1.NB, then Aij1/A:=2m-9yAiva/A i1

If 4 and B are permutable, then for each 7 we have A;N\B#A4,.,MN\B
by Corollary 3.5; but if 4 and B are not permutable, then for some 7, 4,MN\B
=A4,;.1/N\B by Lemma 3.1.

COROLLARY 3.4. Under the hypotheses of Theorem 3.5 the ¢ composition
factors for {A, B} are the same as those for A and for B together.

An example shows that Theorem 3.5 is not in general true if we omit the
hypothesis that inner automorphisms are M-¢ automorphisms.

ExXAMPLE 3.1. Let G be the subgroup of the symmetric group on six letters
which is generated by a, b, ¢, and d, where
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a=(12), b=@3B4), ¢=(14(@23), and d=(56),

and let e be the identity element. Let M be void and let ¢ consist of the
following subgroups: {e}, A= {e, a}, B= {e, ¢, d, cd}, {e, ab}, {e, a, b, ab},
{e, ¢, d, cd, ab, abc, abd, abcd}, and G= {A, B}. It is easily verified that ¢
is closed under intersections and composita.

ANBCB is a ¢ composition chain from ANB to B;and 4 C {e, a, b, ab}
C {A, B} is a ¢ composition chain from 4 to {A, B } However, {e, a,b, ab}/A
is not M-¢ isomorphic to {e, ¢, d, cd}.

Since c"14¢c= {e, 3 4)} is not a ¢ subgroup of G, the inner automorphism
induced by ¢ is not an M-¢ automorphism.

DEerFINITION 3.2. If the M-¢ group H possesses a normal ¢ subgroup NV
such that N> H and such that every ¢ link different from H is contained in
N, H is unitoral. H/N is then the tor of H.

LeEMMA 3.2. Let G be an M-¢ group. Assume that ¢ contains conjugates
and that the ¢ links for G satisfy the double chain condition.

(i) Let S and T be ¢ links for G with SCT; if S is normal in T, and T/S
is ¢ simple, then there exists a unitoral ¢ link H for T such that HLS. H has
tor M-¢ isomorphic to T/S, and T={S, H}.

(ii) G 1s the compositum of a finite number of unitoral ¢ links.

Proof. (1) Let H be a minimal ¢ link for T which is not contained in S.
H is unitoral and has the maximal normal ¢ subgroup SNH; for if Ris a ¢
link for H, R is contained in S, since H is minimal, and thus RCSNH.
SC{H, S} CT and hence, since {H, S} is a ¢ link for T, {H, S} =T. H has
tor H/(HNS) - {S, H}/S=T/S.

(ii) Let 0=Go,C - - - CG:CGiuC -+ - C G.=G be a ¢ composition
series for G. Then by (i) there exists a unitoral ¢ link H; such that G
= {G;, H,-} for =0, - - -, n—1, and therefore G= {Ho, <., H,,_l}.

4. Primary M-¢ groups.

DerFINITION 4.1. An M-¢ group P is primary if it possesses a ¢ composi-
tion series all of whose factors are M-¢ isomorphic. If all the factors are
M-¢ isomorphic to F, then F is the characteristic of P, and P is an F group.
We write: char (P)=F.

DEerINITION 4.2. The F subgroup P of the M-¢ group G is a primary
component of G if P is not properly contained in any F subgroup of G.

THEOREM 4.1. Let G be an M-¢ group and assume that inner auto-
morphisms of G are M-¢p automorphisms and that the ¢ links for G satisfy the
double chain condition. Then

(i) If the ¢ links A and B are F subgroups of G, {4, B} is an F subgroup of
G.

(i) If the ¢ links A and B are primary ¢ subgroups with different char-
acteristics, {A, B} =A®B.
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Proof. (i) follows from Corollary 3.4.

(ii) Let Fy=char (4); Fe=char (B), where Fi5 (y-4)F2. If b is an element
of B, then A(b)=—b+A+b is an F, group; for if 0=4,C - - - C4A:C4in
C -+ CAr=A is a ¢ composition series for 4, and if 4,(6) = —b+A4;+0, for
1=1,---,k, then 0=A4,0)C - -+ C4A4:i(d)CAia(d)C - - - CAr(b)=A4(b)
is a ¢ composition series for 4 (), and 4;411(0)/A4:(0) X ar-¢)A i11/ A =2 ar-0) F1,
since inner automorphisms are by hypothesis M-¢ automorphisms. Also,
A(D) is a ¢ link for G, since 4 is a ¢ link for G. Let A*=CyegpA (b) =the
compositum of all 4 (), for b in B. Since the ¢ links for G satisfy the ascending
chain condition, 4*=C}_, 4(b;) for some integer k and for certain elements
b;in B. By (i), A* is an F; group; and A* is normal in {A, B}.

Similarly, we may construct B*=C,c4 B(a), where B(e¢) = —a+B+a,
for @ in 4. B* is an F; group and is normal in {4, .B}. A*NB*=0, since
A*NB* is a normal ¢ subgroup of A* and of B* and F; (s-4)F.. Hence
{4, B} ={4* B*}=A*®B*. But {4, B} =4*+B. Since BCB* B*
=(A*NB*)+B=B. Similarly, 4* =4 and, therefore, {4, B} =4®B.

LemMA 4.1. If the group G= ) ™ U;, where U, is a normal subgroup of G,
for i=1, -, m, and if Vi=D pruw Ui for j=1,-- -, n, then NE,V;
=0 Uy if 1Sk<n, and=0, if k=n.

DerFiniTION 4.3. If P and Q are primary M-¢ groups, and if char (P)
# (m-¢) char (Q), we say that P and Q are relatively prime.

THEOREM 4.2. Let G be an M-¢ group. Assume that ¢ contains conjugates
and that G= Y_i*, P; where the P; are primary ¢ subgroups of G which are rela-
twely prime in pairs. Then if S is a unitoral ¢ link for G, SC Py for some k.

Proof. Let NV be the maximal normal ¢ subgroup of S; and let Q;
= > % 1« P;. By Lemma 4.1, N7_,0;=0, and therefore there exists a Qi
such that SEQ«. By Corollary 3.4, the ¢ composition factors from SNQ; to
S are a part of those from Q; to {S, Qk} and are hence all M-¢ isomorphic
to Fr=char (Px). SNQ; is a ¢ link for S so that SNQ,C N and S/N=ar-4) Fr.
If STQ, for Ik, S/N= -4 F:, where F, is the characteristic of P;; but
this is impossible, since Fi -)Fi. Thus SCNL,, .+ Qi which is equal to
P, by Lemma 4.1.

CoROLLARY 4.1. Under the hypotheses of Theorem 4.2, if P is any primary
¢ link for G, then P is contained in some Py. Hence there exists only one decom-
position of G as the direct sum of primary ¢ subgroups which are relatively prime
in pairs.

Proof. Since P is a ¢ link, its ¢ composition factors are a part of those
for G and hence char (P)=F; for some k. P= {Hl, e, H.}, where, for
1=1, - - ., s, H; isa unitoral ¢ link for G, and char (H;) = Fi. Therefore, by
Theorem 4.2, H;Z P; and hence PCP,.
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COROLLARY 4.2. Under the hypotheses of Theorem 4.2, P, is M-¢ char-
acteristic, for k=1, - - -, n.

Proof. Let ¢ be an M-¢ automorphism of G, and let 0=S,C - - - CS;
CS:;uC - - - CSi=P; be a ¢ composition series for Pi. Then S;11/S; is
M-¢ isomorphic to Fj; ¢ induces an M-¢ isomorphism of Si;1/S: onto
S:110/Si0 and therefore S;;10/Si0 is M-isomorphic to Fix. Hence Pio is an
F;, group; furthermore, Po is normal in Go=G. Therefore, by Corollary 4.1,
PW = .Pk.

It is not possible to prove in general that the primary ¢ subgroups in the
decomposition are primary components, as is shown by a simple example.
However, if the primary ¢ subgroups all have abelian characteristic, then they
are primary components.

ExaMPLE 4.1. Let F be a finite, simple, nonabelian group; and let p be a
prime which divides the order of F. Let P be a cyclic group of order p. Define
G=F@®P. Let M be void, and let ¢ consist of all subgroups of G.

Then G=F®P is a decomposition of G into primary ¢ subgroups and F
and P are relatively prime. However F contains a cyclic subgroup P’ of
order p and P’® P is a primary ¢ subgroup of G which contains P.

THEOREM 4.3. If the M-¢ group G has a ¢ composition series of length n
with abelian factors, then any proper ¢ subgroup H of G has a ¢ composition
series of length less than n. Furthermore, if F is a ¢ composition factor for H
of multiplicity k, F is a ¢ composition factor for G of multiplicity m and m=k.

Proof. Let

1) 0=GoC - - - CGiCGi1C + - - CG.=G be a ¢ composition series
for G and define H;=HNG;, for 1=0, - - -, n. Then the chain

2 0=H/ CH,C ---CH;C ---CH,=H is a normal ¢ chain for

H. Furthermore, if H;#H 1, H;1/H; is ¢ simple; for H;/H;=HNG;1/H
f\G;E(M.¢){Gi, G,-+1f\H}/G,~§G,-+1/G,~, a ¢ simple, abelian group, so that
Hiy/H:22(1-4yGi31/Gi. Thus the ¢ chain (2) is a ¢ composition series for H
(with some terms repeated possibly), and its length is less than # if there exists
an integer j such that H;=H;,; (05j<n—1).

Choose j so that G;C H and G; 1T H; this is always possible since GoC H,
G,.Q(,_H Then G,-ng\Gj+1CG,-+1 so that Hj+1=Gj=Hj.

THEOREM 4.4. Assume that the M-¢ group G= Y i P, where P; is a
primary ¢ subgroup of G with abelian characteristic F;, for i=1, - - -, n, and
where P; and P; are relatively prime for i5j. Then if P is a primary ¢ subgroup
of G, P is contained in some P;. Hence each P; is a primary component of G.

Proof. Let P be an F subgroup of G; by Theorem 4.3, F=2(y-4)F; for some
1. If P;=K,C - - - CK;CK;uC -+ CGisa¢ composition chain connect-
ing P; and G, PN\P;,=PNK,C - - - CTPNK,CPNK;1,& - - - SPNG=P
is a ¢ composition chain connecting PMP; and P (with some terms repeated
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possibly). If PNK;#PN\K;u, PNK;/PNK;~-yK;11/K; (this is
shown in the proof of Theorem 4.3), and K;.1/K;# (M- Fi. But PNP;is a
normal ¢ subgroup of P and P is an F; group. Hence, for each j, PNK;
=PNK;y; and, therefore, PN\P;=P or PCP,.

THEOREM 4.5. Let G be an M-¢ group and assume that inner auto-
morphisms are M-¢ automorphisms and that the ¢ links for G satisfy the
double chain condition. G is the direct sum of primary ¢ subgroups if, and
only if, unitoral ¢ links are primary.

Necessity. Suppose that G= Y ", P;, where P; is primary and char (P;)
=F;, for 1=1, ..., n Without loss in generality we may assume that
Fi5% -4y F; for 1#j. For if F,22 -4 F; for some ¢ and j (¢#j), P;®P; is
primary with characteristic F;. If S is a unitoral ¢ link, SC Py for some &,
by Theorem 4.2, and hence is primary.

Sufficiency. Let Fy, - - -, F, be the different ¢ composition factors for G.
Let P; be the compositum of all unitoral ¢ links with characteristic F;, for
i=1, - - -, s; it follows from the ascending chain condition that P; is the

compositum of a finite number of unitoral ¢ links. Since by hypothesis
unitoral ¢ links are primary, by Theorem 4.1 (i), P; is primary with char-
acteristic F;. By Theorem 4.1 (ii), S=Ci_; P;= D> ¢!, P;and S is a ¢ link
for G. If S#G, there exists a ¢ composition chain connecting S and G:
S=85,CSC - CS:C - CG. However, by Lemma 3.2, there exists
then a unitoral ¢ link H such that HE.S, HCS;. But this is impossible as all
unitoral ¢ links are contained in S. Hence G=S= Zf;' 1 P

COROLLARY 4.3. Under the hypotheses of Theorem 4.5, if S is a ¢ link for G,
and if G= D % P, where the P; are ¢ subgroups of G which are relatively
prime in pairs, then S= Y 1™ (SNP;).

Proof. Any unitoral ¢ link for S is also a ¢ link for G and is therefore
primary. Hence S is the direct sum of primary ¢ subgroups. Let

4

S = Z*K{,

i=1

where K; is primary, for =1, - - -, I. Without loss in generality we may as-
sume that

char (K,) = char (P,) =F;,

fori=1, - . -, l. K;is a primary ¢ link for G with characteristic F;. By Corol-
lary 4.1, K;CP;. But K;CS, and we have K; S P;N\S. Hence

1l l
S=>*K, S > (SNP)CS,

t=1 i=1
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]
S =Y *¥SN P).
i=1
CoROLLARY 4.4. Under the hypothesis of Theorem 4.5, if G s the direct sum
of primary ¢ subgroups, and if N is a normal ¢ subgroup of G, then G/ N 1s the
direct sum of primary ¢ subgroups.

Proof. By Theorem 4.5 it suffices to show that any unitoral ¢ link for
G/N is primary. Let T/N be a unitoral ¢ link for G/N with maximal normal
¢ subgroup K/N. Let R be a minimal ¢ link for T which is not contained in
K. 1t follows from the proof of Lemma 3.2 (i) that R is a unitoral; hence R is
primary. Furthermore, {R, N}/N is a ¢ link for T/N and RE K ; therefore,
{R, N}/N= T/N. Now by the Second Isomorphism Theorem:

{R, N}/N = R/RNN.
(M-¢)

R/RNN is primary, since R is primary. Therefore, T/N is primary.

5. ¢ nilpotency. In this section we define ¢ nilpotency for an M-¢ group
and establish a number of results which we shall need later.

DEeFINITION 5.1. The ¢ center of the M-¢ group G is the compositum of
all ¢ subgroups which are contained in the center of G, and is denoted by
Z4(G).

Clearly Z4(G) is the greatest ¢ subgroup of G which is contained in the
center of G. It is a normal, M-¢ characteristic ¢ subgroup of G.

DEFINITION 5.2. If Gisan M-¢ group, let Zy(G) =0, and let Z,.1(G)/Z(G)
=Z4(G/Z:G)), for1=0,1, - - -.

The chain

¢)) 0=2G)CZ:G) =Z,6) S ---CZi(G) S - -

is an ascending chain of normal, M-¢ characteristic ¢ subgroups of G. It is
called the upper central ¢ chain for G.

DEFINITION 5.3. The M-¢ group G is ¢ nilpotent if the upper central
¢ chain joins 0 and G—i.e., if Z,(G) =G for some integer .

THEOREM 5.1. If the M-¢ group G possesses a normal ¢ chain
(2) 0=NE&E:---CN;CENpyC---C N =G,

where, for 1=0, - - -, k—1, N; is normal in G and where N;1/N.CZ4,(G/N),
then G is ¢ nilpotent.

Proof. This theorem may be proved by induction (see [1, §4]). The chain
(2) is called a central ¢ chain for G.

THEOREM 5.2. If the M-¢ group G is ¢ nilpotent, then any ¢ subgroup of G
is a ¢ link.
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Proof. Let S be a ¢ subgroup of G and let (2) be a central ¢ chain for G.
Consider the chain

(B) S={Ny,S} C--- C{N;,S} S {Niy, S} -+ C {Ni, S} =G;

this is a normal ¢ chain joining S and G if { N, S} is a normal subgroup of
{Nis1, S}. In order to show this, it is sufficient to show that for x in Niy; and
sin S, —x+s+xisin { N, S}. But since Nip1/N;CZ4(G/N:), —x+s+x—s
=y is an element of N; and, therefore, —x+s+x=y+s is an element of
{N,-, S}. Thus (3) is a normal ¢ chain joining S and G and S is a ¢ link.

THEOREM 5.3. If G is a ¢ nilpotent M-¢ group, and N (£0) a normal ¢
subgroup of G, then NMZ4(G)#=0.

Proof. Let Z;=Z:(G). Since G is ¢ nilpotent, G=Z, for some integer #.
NNZy=0 and NN\Z,=N30, so that there exists an integer ¢ such that
NNZ;=0 and NNZ;;15%0. Let J=NNZ;;1; and let x and g be elements of
J and G, respectively. The element —g—x+g+x=(—g—x+4g)+x is in N,
since JC N and N is normal in G; it is also in Z;, since JCZ;y; and Z,,/Z;
=274(G/Z;). Thus —g—x+g-+x is an element of N'MZ;=0, and, therefore,
g+x=x+4g. Hence JCZ4(G) and Z4(G)NN=J=0.

6. A preliminary result.

LeMMA 6.1. Let Q be an abelian group in which every nonzero element has
prime order p. Any automorphism of Q of order p leaves some nonzero element
fixed.

Proof. Let a,0 be an element of Q, and let ¢ be an automorphism of Q of
order p. Since ¢?=1, a,(6?—1) =0. But a, has order p so that a;(¢ —1)?=0.
Choose the integer 7 (0 =7 <p) so that a;(c —1)"#0, but a;(¢ —1)*+1=0. Thus
if a=a,(c —1)", a is a nonzero element and a(c—1) =0 or as =a.

THEOREM 6.1. Let G be an M-¢ group in which every element has finite
order, and assume that ¢ contains conjugates. If G=A+ B, where:

(1) A is a normal abelian ¢ subgroup of G.

(ii) B 1s abelian and ¢ simple, and is isomorphic to a ¢ subgroup of A.

(iii) ANB=0.
Then Z4(G)#0.

Proof. Let A’ consist of all @’ in 4 such that a’+b=0+a’ for every b in
B. A’ is a subgroup of A4 (but not necessarily a ¢ subgroup). We prove the
following result:

If Z4(G) =0, and if p is a prime such that A/A’ contains an element of
order p, then B contains no element of order p.

We break the proof up into a number of steps.

I. If a, and ay are in A, —a;+B+ai=—a:+B+a; if and only if a;
=a, (mod 4’).
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—a1+B+a,=—a,+B+a; if, and only if, as—a,+B+a;—as=B. There-
fore, it is sufficient to show that —a+B+4a=B if,and only if, a is in 4’. If
aisin A’, —a+b+a=> for b in B, and hence —a+B+a=B. Conversely,
if —a+B+a=B, then for each b in B there is a ¥’ in B with —a+b+a="".
Thus —b+4+b'=—-b—a+b+a=(—b—a+b)+e and this is in 4, since 4 is
normal in G. Hence —b+b' is an element of AMNB=0, and thus d="%" and
—a-+b+a=> for all b in B. Therefore, a is an element of A4’.

II. If Bi= —a;+B+a,, where a, is in A; and if Bi= —b+B,+b, where
b is an element of B, then b+b,=>b,+b for all b, in B;.

We show first that if x, y are elements of 4 such that x=y (mod A4'),
—x+b+x=—y+b+yforalldin B.Sincex—yisin 4’, (x—y)+b=0+(x—1y)
for all § in B. Hence —y+b+y=—x+b-+x. Since B;= —a;+B+a;, and
By=—b+B;+b, we have —a;+B+a;=—b—a,+b+B—b+a;+b. There-
fore, by I, 1= —b+a:+5b (mod A’) or b+a;=a,+b (mod 4’). Hence we have:
—(b+a1)+b+(b+a) = —(a1+b)+b+(a:+0b), for b in B. Thus —a14+54-a,
=—b+(—a1+b+a1)+b, or by= —b+5,+b, for b, in By; but this implies that
b+61=61+b, for 61 in Bl.

II1. If a4+b=b+ta, for some b0 in B and a in A, then a s in A'.

b=—a+b+a=0. Thus if B(a)=—a+B+a, BNB(a)>0. But B and
B(a) are both ¢ simple abelian groups which have BNB(a)#0 as a ¢ sub-
group; hence B=BMNB(a)=B(a). From I we deduce that a is in 4’.

IV. If b0 is an element of B, and a is an element of A such that —b+a-+b
=a (mod A’), then a=0 (mod 4").

Let —b4+a+b—a=a’, an element of 4’; then a+b—a=a'+b. If t=0a
+b—a, t*0 and t= —u+t+u for each # in B. Hence if T=a+B—a, ¢t is an
element of TN\ (—u+T+wu) for each # in B; but this implies that T= —u+T
+u for each # in B. By I, u+¢'=t+u for each ¢ in T. Thus C=B+4T is an
abelian ¢ subgroup of G. Since CNA4 is contained in C, every element of CNA4
commutes with every element of B (and commutes with every element of 4,
since A is abelian); hence CMA4 is contained in Z4(G). But by hypothesis
Z4(G)=0; hence CNA4A=0. But C=(CNA4)+B so that B4+T=C=B; thus
T =B. In particular, t=a+b—a=a’+bisin B. Thusa’=0and a+b—a="bor
a+b=b+a. By Ill,aisin 4’.

Now let p be a prime such that 4/4’ contains an element of order p. Let
Q/A4’ be the subgroup of A/A’ which consists of all elements of order p
(and 0). If B contains an element b of order p, —b+A4’'+b=A4", and —b+Q
+0b, since Q/A’ is a characteristic subgroup of 4/4’. Let 8 be the automor-
phism of Q/A4’ defined by xf= —b+x+b (mod 4’) for x in Q. If xB=x (mod 4")
for some x in Q, then —b+x+b=x (mod 4’) and, by IV, x is in A’. Thus 8
has order p, and x¥8=x (mod A4’) if, and only if, x=0 (mod A’). But by
Lemma 6.1, there exists an x in Q with x#0 (mod 4’) and x8=x (mod 4’).
Hence we have a contradiction and B contains no element of order p. Thus
we have proved the statement enunciated at the beginning of the proof.
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We now prove the theorem by assuming that Z4(G) =0 and showing
that this assumption leads to a contradiction. Let K be a ¢ subgroup of 4
isomorphic to B. On the one hand, if KCA4’, KCZ4(G) which is impossible,
since we are assuming that Z4(G)=0. On the other hand, if KE4’, K con-
tains an element x such that x+ A4’ has prime order p (in 4/4’). Since every
element of 4 has finite order, x has finite order k. Furthermore, p divides k;
for otherwise there exist integers r and ¢ such that 1=rk+¢p and x=rkx
+tpx =t(px), which implies that x is in 4’, an impossibility. Hence %k =pk’
and %’x is an element of K of order p. Since B is isomorphic to K, B contains
an element of order p. Thus if KL A’, B and 4/A4’ both contain an element
of order p, which is impossible if Z4(G) =0 (as was shown above). Therefore,
Z4(G)#0 and the theorem is proved.

7. ¢ nilpotency and decomposition into primary components. In this sec-
tion we shall prove that an M-¢ group G—which satisfies certain conditions
—is the direct sum of primary ¢ subgroups with abelian characteristic if,
and only if, G is ¢ nilpotent.

THEOREM 7.1. Let G bean M-¢ group which possesses a ¢ composition series
with abelian factors, and assume:

(i) Every proper ¢ subgroup of G is ¢ nilpotent.

(ii) Imner automorphisms of G are M-¢p automorphisms.

(iii) ¢ cyclic ¢ subgroups of G are abelian.

(IV) Z¢(G) =0.
Then G=A+B, ANB=0, A is a mintmal normal ¢ subgroup of G and is the
direct sum of M-¢ isomorphic, ¢ simple, abelian ¢ subgroups, and B is abelian
and ¢ simple.

Proof. Let N be a maximal normal ¢ subgroup of G, and let T be a mini-
mal normal ¢ subgroup. Then G/N is abelian, since G has abelian ¢ composi-
tion factors. If TMN =0, G=T® N and hence TCTZ4(G). But Z,(G)=0 so
that TNN 0. TN is a normal ¢ subgroup of G contained in the minimal
normal ¢ subgroup T and therefore TCN. By hypothesis IV is ¢ nilpotent
and hence, by Theorem 5.3, TNZ4(N) 0. But Z4(N) is M-¢ characteristic
in NV and inner automorphisms of G are M-¢ automorphisms; hence Z(V)
is normal in G and TCZ4(N).

Now let s be an element of G which is not in N, and let S be the cyclic
¢ subgroup of G generated by s. By hypothesis, S is abelian; and since N is
maximal and G/N is abelian, G=N+S. If G=T+S, T+S is ¢ nilpotent.
In this case C=Z,(T+S)#0 and hence by Theorem 5.3, TN\ C=0. Thus
Ty=TNC is a ¢ subgroup of G which commutes element-wise with SCT+S.
But TZCTCZ4(N) so that T, commutes element-wise with N4+.5=G, i.e.,
Z4(G)2T15#0. But this is impossible, since by assumption Z4(G) =0. There-
fore, G=T+3S. ‘

If S is not ¢ simple, it contains a ¢ simple ¢ subgroup B. If BC N, then
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T+ B is abelian since TCZ4(N) and B is abelian. Therefore, BCZ,(G) since
B commutes element-wise with T" and with S and G=T+S. This proves that
BIN. Hence G=N+B and the argument used above (replacing S by B)
shows that G=T+B.

Let A be the sum of all minimal normal ¢ subgroups of T" which are
M-¢ isomorphic to a particular minimal normal ¢ subgroup F of 7. Then
it is easily verified that A=F® - . - @ F;, where, for i=1, 2, , k,
Fi=(y-4)F; and that 4 is M-¢ characterlstlc in T (see [1, §3]) Hence A
is normal in G and T'=A4. Thus G=4 4B and the theorem is proved.

We give an example which shows that a group of the type described in
the theorem exists. In the example B is M-¢ isomorphic to F.

ExAMPLE 7.1. Let the elements of G be all pairs of real numbers (7, s)
and define: (r, s)=(r', s’) if, and only if, r=¢" and s=s"; (r, s)+ (', s')
=(r+4r'e*, s+s’). Then if 4 is the subgroup which consists of all pairs
(r, 0), and if B is the subgroup which consists of all pairs (0, s), we have
G=A+B. 4 and B are isomorphic and, furthermore, 4 is normal in G.

Let M be void, and let ¢ consist of the subgroups 0, G, 4, B and all conju-
gates of B. We verify that ¢ is a lattice.

ANB’ =0 for any conjugate of B, B'= —a’4+B+a’ with a’ in A. For leta
be an element of ANB’; then b=a'4+a—a’ is in ANB=0 so that a=0.
Now consider BN\B’, where again B'= —a’+B+a’ and @’ is in 4 (a’#0).
If b= —a’4b+a’, where b and b are in B, then a’4+b=050+a’—b+5 so that
a’'=b+a’'—b and b=5. Let a’=(r", 0) and b=(0, s5); then (+/, 0)=(0, s)
+(’, 0)—(0, s) =(r"e, 0) and thus ' =r'¢~*. Hence s=0 and this implies
that 5=0; thus BN\B’=0. Similarly, if B” = —a"’+B+a’’, where a¢"' #a’ is
in 4, BN\B"” =0. Therefore, ¢ is closed under intersections.

We now consider the composita of the subgroups in ¢. We consider first
A+B’. Since —a’+G+a’'=G and G=4A+B, G=—a'+A+a'+B'=A4+B'.
We consider next {B, B'}. Since BC{B, B’} and G=4+B, {B, B’}
=(AN{B, B'})+B.Since AN {B, B’} #0, there exists a0 in AN{B, B'};
let @=(7, 0). Let a=(r, 0) be any element of 4 such that 77 is positive; then
r =7e~* for some real number s. If =(0, 5), a=(r, 0) =(0, s)+(F, 0) — (0, s)
=b+d—b, so that a is in {B, B’}. Hence {B, B’}=G. Similarly,
G={B’, B"}. Hence ¢ is a lattice.

We verify next that G satisfies conditions (i)—(iv) of Theorem 7.1. Since
every proper ¢ subgroup of G is abelian, (i) is clearly satisfied; it is also clear
that (ii) is satisfied. To show that ¢ cyclic ¢ subgroups are abelian, let a+b&
be an element of G with a in 4 and 5(#0) in B; we show that the ¢ cyclic ¢
subgroup generated by a+b is abelian. If a=(r, 0) and 5=(0, s), then a+b
=(r, s)=—(x, 0)+(0, s)+(x, 0), where x=7r/(e*—1). Letting a’ = (x, 0), we
see that a+b is in B'= —a’+B+a’, an abelian ¢ subgroup of G. Z4(G) is a
normal ¢ subgroup of G, and Z4(G) =4 ; hence Z4,(G) =

We note that the group is a primary M-¢ group with abelian character-
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istic. Hence conditions (i)—(iii) are not sufficient to ensure that a primary
M-¢ group with abelian characteristic be ¢ nilpotent.

THEOREM 7.2. Let P be a primary M-¢ group with abelian characteristic
F and assume:

(i) Inner automorphisms of P are M-¢ automorphisms.

(ii) Every element in P has finite order.

(iii) ¢ cyclic ¢ subgroups of P are abelian.
Then P 1is ¢ nilpotent.

Proof. We use induction on the length of a ¢ composition series for P,
j(P). If j(P)=1, P is isomorphic to the abelian group F and hence is ¢ nil-
potent. Let j(P) =~k and assume that the theorem is true for all primary
M-¢ groups Q such that j(Q) <k. Since any ¢ subgroup H of P has j(H) <k
(by Theorem 4.3) and is primary, any ¢ subgroup of P is ¢ nilpotent. By
Theorem 7.1, if Z4(P)=0, P=A+B, where A is normal in P and is the
direct sum of ¢ subgroups which are M-¢ isomorphic to F and B is M-¢ iso-
morphic to F; and ANB=0. But by Theorem 6.1 this is impossible. Hence
Z4(P)#0.

Let Q=P/Z4(P); then j(Q)<k and by the induction hypothesis, Q is
¢ nilpotent. Hence P is ¢ nilpotent.

COROLLARY 7.1. Let P be the direct sum of primary M-¢ groups with
abelian characteristic and assume conditions (i)—(iii) of Theorem 7.2. Then P 1is
¢ nilpotent.

REMARK. In Theorem 7.2, condition (ii) may be replaced by:

(ii’) Any ¢ subgroup has a finite number of conjugates.

In order to prove this it is sufficient to show that Theorem 6.1 still holds
if we assume that B has a finite number of conjugates instead of assuming
that every element of G has finite order. In Theorem 6.1 for each element a
of A we obtain a conjugate of B, B(a) = —a+B+a, and two elements which
are incongruent modulo 4’ give different conjugates. Thus if B has a finite
number of conjugates, 4/A4’ is a finite group. If Z4(G) =0, it follows from IV
of the proof of Theorem 6.1 that the elements of B induce distinct auto-
morphisms of 4/A’; hence B is a finite group. Thus, in particular, every
element of 4/A’ and of B is of finite order and the proof of Theorem 6.1
may be applied.

COROLLARY 7.2. If P is a primary M-¢ group with abelian characteristic,
and if P has a ¢ composition series of length 2, then P is abelian, provided con-
ditions (i1)—(iii) of Theorem 7.2 hold.

Proof. Let F be the characteristic of P, and let 4 be a normal ¢ subgroup
of P which is M-¢ isomorphic to F. Since P is ¢ nilpotent and 4 is a minimal
normal ¢ subgroup, it follows from Theorem 5.3 that 4 is contained in Z,(P).
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Let s be an element of P not in 4; and let S be the ¢ cyclic ¢ subgroup of
P generated by s. Then S is abelian and P=4+S; since 4 CTZ4(P), P is
abelian.

Our results enable us to prove the following converse of Theorem 5.2:

THEOREM 7.3. Let G be an M-¢ group which possesses a ¢ composition
sertes. Assume further that:

(1) Inner automorphisms of G are M-¢ automorphisms.

(ii) ¢ cyclic ¢ subgroups of G are abelian.
Then if every ¢ subgroup of G is a ¢ link, G is ¢ nilpotent.

Proof. It is easy to see that (ii) implies that G has abelian ¢ composition
factors.

We now use induction on j(G). If j(G)=1, G is abelian. Assume the
theorem proved for all H with j(H)<j(G). By Theorem 7.1, if Z4,(G)=0,
G=A+B, where A and B are abelian ¢ subgroups of G, 4 is normal in G
and ANB=0. Since B is a ¢ link for G, there exists a ¢ subgroup C of G such
that B##C and B is normal in C. Then C=(4ANC)+B, and the sum is a
direct sum since (ANC)NB=0 and ANC, B are normal in C. Therefore,
ANCCZ4(G) so that Z4(G)#0. Hence by the induction assumption, G is
¢ nilpotent.

THEOREM 7.4. Let G be an M-¢ group which possesses a ¢ composition
series. Assume that inner automorphisms are M-¢ automorphisms and that
unitorial ¢ cyclic ¢ subgroups of G are primary. Then if G is ¢ nilpotent, G is
the direct sum of its primary components.

Proof. By Theorem 4.5, it is sufficient to show that any unitoral ¢ sub-
group of G is primary. Let U be a unitoral ¢ subgroup;then U hasanormal¢
subgroup N such that every proper ¢ subgroup of U is contained in N. Choose
u in U but not in N; then the ¢ cyclic ¢ subgroup generated by # is not con-
tained in IV and hence is equal to U. Thus U is primary.

THEOREM 7.5. Let P be an M-¢ group which possesses a ¢ composition
series and assume hypotheses (i), (i), (iii) of Theorem 7.2 and

(iv) Umnitoral ¢ cyclic ¢ subgroups of P are primary.
Then P is ¢ nilpotent if, and only if, P is the direct sum of primary ¢ subgroups
with abelian characteristic.
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