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1. Introduction. In this paper we consider a group theoretic configuration

consisting of an operator group G and a lattice of admissible subgroups. If

M is the operator system and </> the lattice of subgroups, we call G an M-4>

group and the subgroups in </> we call </> subgroups. We define M-<p iso-

morphism, normal <p chains, <¡> cyclic 0 subgroups, etc., in the obvious manner.

We call an M-<p group P primary if all its <p composition factors are

M-cp isomorphic to the same M-4> group F; F is the characteristic of P.

Thus if <p consists of all subgroups of a finite group G (and if M is void), G

is primary with abelian characteristic if, and only if, G is a ^-group. The main

part of the paper is devoted to the following problem: When is an M-cp

group the direct sum of primary 4> subgroups? In §4 we find a necessary and

sufficient condition that this be true under very general hypotheses. In study-

ing this question we make use of what we have called <p links and unitoral

M-<p groups. <p links are <p subgroups which belong to some normal <p chain.

In §3 we prove various properties for <p links. The two main theorems are

generalizations of theorems proved by Wielandt in [2]. Wielandt has also

defined a unitoral (einköpfig) group as one which has a unique maximal

normal subgroup, and we call an M-<¡¡ group unitoral if it has a unique

maximal normal <p subgroup. The fesult about unitoral M-<p groups which we

need is a generalization of a result proved by Wielandt.

We next consider the analogue of the following theorem for finite groups:

A group is the direct product of its Sylow subgroups if, and only if, it is nil-

potent. It can be seen readily that the generalization of this theorem to

M-4> groups is not true without further hypotheses on the nature of </>.

However, with suitable restrictions on the M-4> group G considered we are

able to show that G is the direct sum of primary <p subgroups with abelian

characteristic if, and only if, G is <p nilpotent (cf. Theorem 7.5). It is clear that

the methods used to prove the theorem for finite groups are not applicable in

our case. The following result is obtained and is used in the proof: Every

nonzero normal <p subgroup of a </> nilpotent M-4> group G has nonzero

intersection with the <p center of G. By the use of a rather complicated induc-

tion we are able to reduce the problem to the study of a curious type of group

—namely, a group which is the sum of two abelian subgroups one of which is

normal and whose intersection is zero (cf. §6).
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2. Definitions and basic theorems. Let G be an additive group (not

necessarily abelian) which admits the system of operators M; and let <j> he a

system of M admissible subgroups of G which forms a complete lattice with

respect to intersections and composita (by the compositum of a set of sub-

groups of a group we mean the subgroup generated by the subgroups of the

set). We call the operator group G an M-<b group if a complete lattice <b

has been specified. A <p subgroup 5 of G can be considered as an M-<p group

if we define the lattice <p for 5 in the following way: the <p subgroups of S

are the <j> subgroups of G which are contained in S. If A^ is a normal 0 sub-

group of G, G/N admits the operator system M and a lattice </> of M ad-

missible subgroups of G/N may be defined in this way: the <b subgroups of

G/N are the subgroups U/N, where U is a c/> subgroup of G which contains

N. Thus G/N is an M-cb group. If a is an element of G, the intersection of all

<f> subgroups which contain a is a c/> subgroup; we call this <p subgroup the <p

cyclic <p subgroup generated by a. An M-<f> group which has no normal <p

subgroups we call <b simple.

Let G and G' be M-<p groups, i.e., G and G' both admit the operator sys-

tem M and a lattice of M admissible subgroups has been defined for both

G and G'—this lattice being denoted by <f> in either case. Then G and G'

are M-<b isomorphic if there exists an operator isomorphism of G onto G'

which induces a lattice isomorphism of the cb subgroups of G onto the <p sub-

groups of G'. We write C7=(m *> G'. M-<p homomorphism and M-q> auto-

morphism are defined in a similar fashion. It can be easily verified that the

analogues of the Homomorphism Theorem and the Isomorphism Theorems

hold. We define normal <p chain and <p composition series in the obvious way

and it is clear that the analogue of the Jordan-Holder Theorem holds. (For

a complete statement of most of these definitions and theorems cf.  [l].)

The <b subgroup S of G is M-<j> characteristic if every M-<p auto-

morphism of G leaves 5 invariant. It is important to notice that the inner

automorphisms of a group are not necessarily M-<f> automorphisms and

hence a <p subgroup may be M-cb characteristic without being normal. In

some of our arguments it is necessary to assume that inner automorphisms

are M-<f> automorphisms (cf., e.g., Theorem 3.5 and Example 3.1). In other

places it is sufficient to assume that <p contains conjugates, i.e., if S is in <p

and g is an element of G, then — g + S+g is in <p.

Finally we list a few notations which will be used: If, for i=X, ■ ■ ■ , n, Aj

are subgroups of a group G, C"=i At denotes the compositum of the A.¡;

]F*-1 Ai denotes the direct sum. For the direct sum of two subgroups A and

B we use A@B.

3. <p links.

Definition 3.1. If 5 is a 0 subgroup of the M-<p group G, S is said to be

a <p hnk f°r G if there exists a normal <p chain connecting S and G.

The following result is easily established:
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Theorem 3.1. If S and T are <f> subgroups of the M-<j> group G and if S is

a 4> link for G, then SC\T is a <j> link for T. If T is also a <f> link for G, Sf~\T
is a<p link for G.

From the first part of the theorem it follows that if 5 is a <p link for G,

S is a 4> link for any <p subgroup which contains it, and thus we may say that

5 is a <p link without fear of ambiguity.

Theorem 3.2. Assume that the <p links for the M-<p group G satisfy the

maximum condition and that <p contains conjugates. If A and B are <p links for

G, {A, B} is a<p link for G.

Proof. We shall say that the theorem is false for a <f> link A if there exists

a <p link B such that {.4,7?} is not a <p link. We assume that the theorem is

false, and let A be a maximal <p link for which the theorem is false.

We define the class of A relative to the <p link B as follows: Cb(A) =k if

there exists a <p link C such that {A, B} ÇC, and a normal <f> chain of length

k connecting A and C; and if there is no normal </> chain of length less than

k from A to any <p link C containing {A, B} (Cb(A) is finite since A can be

connected to G by a normal cj> chain). We use induction on r to prove the

following statement: (r) If Cb(A) =r, then {A, 73} is a <p link. If r = 0, (r) is

true since then A=C^{A, B}^,A and hence A = {A, B}. Assume that (r)

is true if r <k, and Cb(A) =k. We distinguish two cases:

(i) A is normal in {A,B}.

Let A =AoE • ■ ■ C^4¿G-<4;+iC • • • EAk = C be a normal <p chain con-

necting A and C. Since ^4i is a <p link for G and AiZ)A, {Ai, B} is a <p link.

Since B is a <b link contained in {^4i, B\, there exists a normal <p chain:

B=UoC- ■ ■ EUiCUi+iE ■ ■ ■ CUs={Ai, B]. Then {A, B}çz ■ ■ ■
Q{A, Uí}cl{A, Uí+i}Q ■ ■ ■ Ç {A, Us} = {Ai, B} is a normal <p chain; for

Z7.-+1 is contained in {Ai, B}, and hence transforms A into itself so that

{.4, Ui} is normal in {A, Ui+i}- Thus {A, B} is a <p link for {Ai, B} and

{Ai, B} is a <p link for G. But this implies that {A, B} is a <p link for G.

(ii) A is not normal in  {A, B}.

There exists an elementé of B such that A(b) = — b-\-A-\-b is not contained

in A ; and by hypothesis A(b) is a (p subgroup. Let A=AoE • ■ ■ EAiEAi+i

C • ■ • EAk^iEAk = Cbe a<p chain; the chain^4(è)C ■ • • CAi(b)CAi+i(b)
£ ■ ■ • EAk~i(b) =Ah~i, where A¡(b) = — b-\-A-\-b, is a normal <p chain con-

necting A(b) and ^4*^1. Thus CA(b)(A) ̂ k — 1, and hence by the induction

assumption, A' = {A(b), A } is a <p link. Furthermore, since AEA', {A', B}

is a <p link. But {A', B} = {A, A(b), B} = {A, B}. Hence {A, B} is a <p link

and (k) is proved.

Thus (r) is true for all r and this contradicts the assumption that the

theorem is false for A.

Theorem 3.3. Let B and C be <p subgroups of the M-<p group G, and assume
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that B is a <j> link for {B, C}. B and C permute if and only if, for every t/> link

A for {B, C] such that BÇA, {B,AC\C) =A.

Proof. It is always true that {B, Ai~\C} ÇA and hence the equality holds

if and only if {B, AC\C) ~Ç\A.
Necessity. Assume that {B, C) =BA-C, and let A be any <j> subgroup of

G such that BÇAç{B, C}. Ha is an element of A, then a = b-\-c, where b

and c are elements of B and C, respectively. Hence —b-\-a = c, and c is an

element of AC\C. Therefore AÇB + (AC\C)Ç {B, Ai\C] and thus A=B
+ (AC\C) = {B, AC\C).

Sufficiency. Let B=BaC • ■ • £2Jt£25i+1£ • ■ • <ZBn= {B, C] be a
normal</> chain connecting B and {B, C\. By hypothesis, 2J¿+i = {B, Bi+ir\C\,

for i = 0, ■ • ■ , n — X. Hence:

(1) 2?i+i =  {Bi, Bi+iHiC} = Bi + (Bi+i F\ C),     since Bi in normal in Bi+i.

We use induction onj to show that {B, C] = 2?»_,-+C. For j = 1, {B, C\

= {Bn-i, C] =Bn-i + C, since Bn-i is normal in {B, C}. Assume that {B, C\

= Bn-j+C. From (1) it follows that 2J„_y = 2îB_y_i+(2}„_3-r\C). Hence {B, C\

= Bn-j-\-C = Bn~j-i-\-(Bn-jr\C)-\-C = Bn-j^i-T-C, and the induction is com-

plete. In particular, {B, C] =Bo+C = B-\-C.

Corollary 3.1. Let G be an M-<p group. A necessary and sufficient condi-

tion that any two <b links for G permute is that the <p links for G form a modular

lattice.

We take up next a generalization of the First Isomorphism Theorem for t/>

links.

Theorem 3.4. Let A and B be <b subgroups of the M-<p group G which are

(b links for {A, B } ; assume that the double chain condition holds for <b links for

{A, B) and that <f> contains conjugates. Let ^4=^4o£ ■ ■ ■ C^4tC^4»+iG ■ • •

£/ln= {A, B\ be a <j> composition chain connecting A and {A, B}. Then if

AiC\ByiAi+ir^B,

(2) Ai+ir\B/Air\B   S   Ai+i/Ai.
(Af-0)

Remark. It can readily be shown that G has a <p composition series if and

only if the qb links for G satisfy the double chain condition (cf.  [2, p. 219]).

Proof. If AiC\ByiAi+iC\B, then Ai+ir\BÇA¿. Hence AiC{Ai}Ai+inB}
ÇA i+i. Thus A i+i = {A i, A i+il~\B}, since A ¿ is a <b link for {A ;, A i+iC\B} and
{Ai, Ai+iP\B} is a <f> link for Ai+i, and A i+i/A,- is <f> simple. Therefore, by the

First Isomorphism Theorem, (2) holds.

Corollary 3.2. Under the hypotheses of Theorem 3.4, the <p composition

factors from AC\B to B are a part of the <b composition factors from A to {^4,2?}.

In particular, if A and B permute, the <p composition factors of any <b composition
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chain connecting A i\B and B are the same as those of any <p composition chain

connecting A and {A, B}, and the multiplicity of the factors is the same in both

chains.

If there exists a <j> composition chain connecting P and Q, we denote its

length by j(P, Q). From Corollary 3.2 it follows that if A and B permute,

j(A, {A, B}) =j(Aí\B, B). The converse is also true, namely:

Lemma 3.1. Under the hypotheses of Theorem 3.4, if j(A, {A, B})

=j(Ai~\B, B), then A and B permute.

Proof. Let 5 be a <p link for G such that AQSç{A, B}. There

exists a 4> composition chain: A =SoE • • ■ ESjES = Sj+iE • • ■ £*S'»= {A,

B}. For each i, Sir\B9áSi+i!~\B, and hence SiE{S{, Si+if~\B} Ç5i+1.
Therefore, Sï+i = {S;, 5,-+iP\73} =Si~\-(Si+ir\B), for i = 0, ■ ■ ■ , n—1.
S = Sj+i = Sj+(S3+ir^B)=S^i+(Sj^B) + (Sj+inB)=Si-i+(S]+inB)= ■ ■ ■

= So + (Sj+ii~}B)=A-\-(Sr\B). Hence by Theorem 3.3, A and B permute.

Theorem 3.5. Assume the hypotheses of Theorem 3.4 and assume that inner

automorphisms are M-<b automorphisms; the <p composition factors from A(~\B

to B and those from A to {A, B} are the same (except for multiplicity).

Proof. We prove by induction the following statement:

(n) If C and 75 are 0 links for {A, B} and if j(D, { C, 75}) <n, then the

factors for any <p composition chain connecting C(~\D and D are the same as

those for any <p composition chain connecting C and { C, D}.

(1) is obviously true.

Uj(D, {C,7>})=1,7> is normal in {C, D} and { C, D}/D^u-^C/CC\D.
Thus by the Jordan-Holder Theorem the factors of any <f> composition chain

from CC\D to 75 and those of any <p composition chain from C to {C, D}

are the same (actually, they are M-<p isomorphic) ; therefore, (2) is true.

We now assume (n) (where re3;2) and prove (w+1).

Let C and 75 be 0 links for {A, B} and let j(D, {C, D})=n. (A) We as-

sume that CC\D is normal in 75, and that D/CC\D is <j> simple. Since

j(D, [C, D})=n^2, Cr\D9¿C, and hence C=CC\{C, D}9¿CC\D. Let D'
be a minimal <p link for {C, T5} such that T5£T5', and CC\D'9¿Cr\D. It is

easily seen that the length of a composition chain from CC\D to C(~\D' is one

so that in particular, CC\D is normal in CC\D'. We have: T5£{CP\7)', 75}

ÇZT5', and C(~\D' = CC\ { CC\D', D} ; hence since D' is minimal, j CH75', 75 j
= 75'. We distinguish two cases:

(i) T5 is normal in 75'.

Then T5 and CC\D' permute; hence Cr\D' is normal in 75', and D'/(CC\D')

£á(M-i,)D/(Cr\D). { C, D'} = { C, D}, and j(D', { C, D} ) <n. Therefore, since

(n) holds, the factors of a <p composition chain from C to {C, 75} are the

same as those of a <p composition chain from CC\D' to 75', and hence are all

M-<p isomorphic to T5/(CHT5).
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(ii) D is not normal in D'.

Let 5 be a maximal <j> link for D' which contains D as a normal subgroup,

and suppose that 5 is normal in the <p subgroup T of D'. Then there exists

a t in F such that — t+D-r-T — D^y^D. Since 5 is normal in T, —í+5+í

= S(t)=S. Therefore, F»C {D, D(t)} ÇS. Thus D is normal in 2?x= {D, D(t)}.

Cr\D is normal in D' = { CC\D', D} since CC\D is normal in CC\D' and in D;

hence CC\D is normal in F. Therefore, Cr\DÇD(t)i\DCD, and CHD

= D(t)r\D. Consequently, Di/D^(M-<t,)D(t)/(Cr\D)^(M-^D/(Cr\D), since

inner automorphisms are M-<b automorphisms. { C, Di} = { C, D}, and

CC\Di = CC\D, since 2?i£Z>', and D' is minimal by definition. j(Di, { C, Di ) )

= «— 1 ; hence by (n) the factors of a <b composition chain from C to {C, D)

are the same as those of a <b composition chain from CC\D to Di and are

therefore all M-<b isomorphic to D/(Ci~\D). This completes the proof of

the theorem under assumption (A).

(B) We no longer assume that CC\D is normal in D. Without loss in

generality we may take A = C and B=D. Let Ao = A and for i = 0, 1, • • •

let.4¿+i be a minimale/) link for {^4,2?} such that A iCZAi+i, and AiC^By^Ai+i

r\B.
(Ai+ir\B)C{Ai, Ai+ir\B}çAi+i and hence Ai+iC\B = {A,-, ,4,-+1FvB}

C\B. But y4,-£ {.4,, Ai+ir\B} ÇAi+i and ^4<+i by definition is minimal. There-

fore, Ai+i= {Ai, Ai+ir\B}. j(Ai+if\B, B)^j(Ai+i, {A, B]), and conse-

quently, by the Jordan-Holder Theorem, j(Ai+iC\B, Ai+i)Sj(B, {A, B\)

= «. (Ai+iC\B)/(AiC\B) is c/> simple so that the factors of a (b composition

chain from A i to ^4i+i are all M-cb isomorphic to (Ai+ir\B)/(Ai(~\B) by

(A). Hence (n + 1) is verified and the proof of the theorem is complete.

Corollary 3.3. Under the hypotheses of Theorem 3.5, there exists a <j>

composition chain from A to {A, B },

A = A0C ■ ■ ■ CAiCAi+iC ■• ■ CAn= {A,B),

with the following two properties:

(i) if AiC\By±Ai+ir\B,then (Ai+ir\B)/(Air\B)^(M-4,)Ai+i/Ai.
(ii) if Air\B=Ai+iC\B, then Aí+i/Aí^(m-4,)Aí+2/Aí+i.

If A and B are permutable, then for each «we have A if~\B y\ A i+ii~\B

by Corollary 3.5; but if A and B are not permutable, then for some i, AiC\B

= Ai+iC\B by Lemma 3.1.

Corollary 3.4. Under the hypotheses of Theorem 3.5 the <b composition

factors for {A, B\ are the same as those for A and for B together.

An example shows that Theorem 3.5 is not in general true if we omit the

hypothesis that inner automorphisms are M-<b automorphisms.

Example 3.1. Let G be the subgroup of the symmetric group on six letters

which is generated by a, b, c, and d, where
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a = (1 2),    b = (3 4),    c = (1 4)(2 3),    and    ¿ = (5 6),

and let e be the identity element. Let M be void and let <p consist of the

following subgroups : {e}, A = {e, a}, B = {e, c, d, cd}, {e, ab}, {e, a, b, ab},

{e, c, d, cd, ab, abc, abd, abed}, and G = {A, B}. It is easily verified that </>

is closed under intersections and composita.

AC\BEB is a </> composition chain from A(~\B to B; and A £ {e, a, b, ab}

£ {A, B} is a <p composition chain from A to {A, B}. However, {e, a,b,ab}/A

is not M-(j> isomorphic to {e, c, d, cd}.

Since c~1Ac= {e, (3 4)} is not a <f> subgroup of G, the inner automorphism

induced by c is not an M-cj> automorphism.

Definition 3.2. If the M-<p group 77 possesses a normal <p subgroup TV

such that N9éH and such that every <p link different from 77 is contained in

TV, 77 is unitoral. T7/7V is then the tor of 77.

Lemma 3.2. Let G be an M-<j> group. Assume that <b contains conjugates

and that the <j> links for G satisfy the double chain condition.

(i) Let S and T be <p links for G with SET; if S is normal in T, and T/S

is 4> simple, then there exists a unitoral <f> link H for T suck that H(£.S. 77 has

tor M-(b isomorphic to T/S, and T= {S, 77}.

(ii) G is the compositum of a finite number of unitoral <p links.

Proof. (1) Let 77 be a minimal <p link for T which is not contained in 5.

77 is unitoral and has the maximal normal <p subgroup Sr\II; for if R is a <j>

link for T7, T? is contained in 5, since T7 is minimal, and thus RÇ^SCMI.

SE {H, S} ÇT'and hence, since {77, S} is a <p link for T, {H, S} =T. 77 has

tor H/(Hr\S)^(M-^{S, 77}/S = T/S.
(ii) Let 0 = G0£ • • • EGiEGi+iE ■ ■ • E Gn = G be a <p composition

series for G. Then by (i) there exists a unitoral <¡> link T7¿ such that G,+i

= {d, Hi} for i = 0, ■ • • , n — 1, and therefore G = {T70, • • • , 77„_i}.

4. Primary M-<p groups.

Definition 4.1. An M-<p group P is primary if it possesses a <p composi-

tion series all of whose factors are M-<p isomorphic. If all the factors are

M-<p isomorphic to F, then F is the characteristic of P, and P is an F group.

We write: char (P)=F.

Definition 4.2. The F subgroup P of the M-<p group G is a primary

component of G if P is not properly contained in any F subgroup of G.

Theorem 4.1. 7e¿ G be an M-<f> group and assume that inner auto-

morphisms of G are M-<p automorphisms and that the <j> links for G satisfy the

double chain condition. Then

(i) If the <p links A and B are F subgroups of G, {A, B} is an F subgroup of

G.
(ii) If the <p links A and B are primary <p subgroups with different char-

acteristics, {A, b} =A®B.
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Proof, (i) follows from Corollary 3.4.

(ii) Let Fi = char (A); Fi = char (B), where Fiy^m-^Fi. If b is an element

of B, then A(b) = — b+A+b is an Fi group; for if 0=40£ ■ ■ • £^4>04.+i
£ • • • (ZAk=A isa0 composition series for A, and if Ai(b) = — b+Ai-\-b, for

i = X, ■ ■ ■ ,k, then 0=A0(b)C ■ • • 04¿(&)04i+1(Z>)£ • • • £4*(è)=4(F)

is a0 composition series for 4(e), and Ai+ï(b)/Ai(b)=w4,)An-i/Aí=(m-<¡,)Fi,

since inner automorphisms are by hypothesis M-<p automorphisms. Also,

A(b) is a 0 link for G, since A is a (p link for G. Let A* = Cb^sA(b) =the

compositum of all 4 (6), for b in 2?. Since the 0 links for G satisfy the ascending

chain condition, A* = Ch=x A(b/) for some integer k and for certain elements

bi in B. By (i), ^4* is an Fx group; and A* is normal in {4,2?}.

Similarly, we may construct B* = Ca^A B(a), where B(a) = —a+B-jra,

for a in A. B* is an F2 group and is normal in {A, B}. A*i~\B* = 0, since

A*C\B* is a normal 0 subgroup of A* and of B* and Fi^iM-^F2. Hence

{A, B} = {A*, B*\=A*®B*. But {A, B)=A*+B. Since BÇB*, B*
= (A*nB*)+B=B. Similarly, A*=A and, therefore, {A, B\ =A®B.

Lemma 4.1. If the group G= T^*2i Ui, where Ui is a normal subgroup of G,

for i=X, ■ ■ ■ , n, and if  F3= XX m »y   Ui, for j = X, ■ ■ • , n, then D*=1Fy
= 2X*+i Ui, if X^k<n, and = 0, if k = n.

Definition 4.3. If P and Q are primary M-tp groups, and if char (P)

7a (jf-0) char (Q), we say that P and Q are relatively prime.

Theorem 4.2. Let G be an M-<b group. Assume that <b contains conjugates

and that G = ^2*"i Pi ,where the Pf are primary <b subgroups of G which are rela-

tively prime in pairs. Then if S is a unitoral <p link for G, SÇPkfor some k.

Proof. Let N be the maximal normal </> subgroup of S; and let Qi

= tT-i^.m P3. By Lemma 4.1, n™=1O/i = 0, and therefore there exists a Qk

such that SC¡¡Qk- By Corollary 3.4, the <j> composition factors from SC\Qk to

S are a part of those from Qk to {S, Qk} and are hence all M-<b isomorphic

to Fk = char (Pk). SC\Qk is a 0 link for 5 so that Sr\QkÇN and S/N^(U-*)Fk.
If SÇQi for ly^k, S/N=(m-4)F¡, where F¡ is the characteristic of Pi; but

this is impossible, since Fk^iM-^Fi. Thus SçiX=ul9ik Qi, which is equal to

Pk by Lemma 4.1.

Corollary 4.1. Under the hypotheses of Theorem 4.2, if P is any primary

4> link for G, then P is contained in some Pk. Hence there exists only one decom-

position of G as the direct sum of primary </> subgroups which are relatively prime

in pairs.

Proof. Since P is a <p link, its 0 composition factors are a part of those

for G and hence char (P) = Fk for some k. P= {Hi, ■ • ■ , Hz\, where, for

i = X, ■ ■ ■ , s, Hi isa unitoral 0 link for G, and char (HÎ) = Fk. Therefore, by

Theorem 4.2, HjÇPk and hence PÇPk.
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Corollary 4.2. Under the hypotheses of Theorem 4.2, Ph is M-<p char-

acteristic, for k = l, ■ ■ -, re.

Proof. Let a be an M-<p automorphism of G, and let 0 = 5o£ • • • ESi

ESi+iE • ■ ■ ES¡ = Pk be a 0 composition series for Pu- Then Si+i/Si is

M-<p isomorphic to Fk; <x induces an M-<p isomorphism of Si+i/Si onto

Si+itr/SiG and therefore Si+iO-/SiO- is Af-isomorphic to Fk. Hence Pka is an

Fk group; furthermore, Pkß is normal in Ga = G. Therefore, by Corollary 4.1,

7V = P*.
It is not possible to prove in general that the primary <p subgroups in the

decomposition are primary components, as is shown by a simple example.

However, if the primary cp subgroups all have abelian characteristic, then they

are primary components.

Example 4.1. Let F be a finite, simple, nonabelian group; and let£ be a

prime which divides the order of F. Let P be a cyclic group of order p. Define

G = F@P. Let M be void, and let <f> consist of all subgroups of G.

Then G = F@P is a decomposition of G into primary <p subgroups and F

and P are relatively prime. However F contains a cyclic subgroup P' of

order p and P'®P is a primary <p subgroup of G which contains P.

Theorem 4.3. If the M-cp group G has a <p composition series of length re

with abelian factors, then any proper <f> subgroup II of G has a <p composition

series of length less than n. Furthermore, if F is a <p composition factor for 77

of multiplicity k, F is a <p composition factor for G of multiplicity m and m^k.

Proof. Let

(1) 0 = Go£ • • • £Gt£Gi+i£ • • • EGn = G be a <p composition series

for G and define T7¿ = T7P\G,-, for i = 0, ■ ■ -, re. Then the chain

(2) 0 = 770Ç77iÇ: ■ • • QHiQ ■ ■ ■ ÇZ77„=77 is a normal <p chain for

7T. Furthermore, if T7¿?¿77<+i, 77t+i/77,- is <p simple; for 77¿+i/77¿ = Hr\Gi+i/H
nG,-=(if.t) {Gi, Gi+iCMl}/GiQGi+i/Gi, a cp simple, abelian group, so that

Hi+i/Hi^(M-4,)Gi+i/Gi. Thus the <p chain (2) is a <p composition series for 77

(with some terms repeated possibly), and its length is less than re if there exists

an integer j such that 77y = 77y+i (O^i^w —1).

Choose j so that GyÇTTand Gy+iÇT-77; this is always possible since GoQH,

Gn%H. Then GyCT7rN\Gy+i£Gy+i so that T7y+i = Gy = 77y.

Theorem 4.4. Assume that the M-<p group G= E*-i Pi, where Pi is a

primary <p subgroup of G with abelian characteristic F,-, for t = l, • • • , re, and

where Pi and P¡ are relatively prime for Í9¿j. Then if P is a primary <p subgroup

of G, P is contained in some Pi. Hence each Pi is a primary component of G.

Proof. Let P be an F subgroup of G; by Theorem 4.3, 7'=(m-<,)T7¿ for some

i. If Pi = KoE ■ ■ ■ EKjEKj+iE • ■ ■ EG isa<p composition chain connect-

ing Pi and G, Pr\Pi = Pr\K0Q ■ ■ ■ çzPr\KjQPr\Kj+iÇ ■ ■ ■ çzpC\G=P
is a <p composition chain connecting PC\Pi and P (with some terms repeated
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possibly). If Pr\Kjy¿Pr\Kj+i, Pr\Kj+i/Pr\Kj^m-^Kj+i/Kj (this is
shown in the proof of Theorem 4.3), and Kj+i/'Kjy¿<Af-$3F,-. But PC\Pi is a

normal 0 subgroup of P and P is an F¿ group. Hence, for each j, PC\K¡

= P(~\Kj+i and, therefore, Pr\P{ = P or PÇPi.

Theorem 4.5. Let G be an M-<p group and assume that inner auto-

morphisms are M-<¡> automorphisms and that the 0 links for G satisfy the

double chain condition. G is the direct sum of primary 0 subgroups if, and

only if, unitoral 0 links are primary.

Necessity. Suppose that G = ^jt-i Pi, where P, is primary and char (P.)

= Fi, for i=X, ■ • • , «. Without loss in generality we may assume that

F.^iiif-^Fy for iy^j. For if F'í=(m-<¡,)F'¡ for some i and j (iy^j), PiffiPy is

primary with characteristic F,-. If 5 is a unitoral 0 link, SÇPk for some k,

by Theorem 4.2, and hence is primary.

Sufficiency. Let Fi, • • • , F, be the different 0 composition factors for G.

Let Pi be the compositum of all unitoral 0 links with characteristic Ft, for

i=X, ■ • ■ , s; it follows from the ascending chain condition that Pi is the

compositum of a finite number of unitoral 0 links. Since by hypothesis

unitoral 0 links are primary, by Theorem 4.1 (i), P, is primary with char-

acteristic Fi. By Theorem 4.1 (ii), S = q=1 P,= ££, P,- and S is a 0 link

for G. If Sy^G, there exists a 0 composition chain connecting 5 and G:

■5 = >S'o£^i£ • • • dSiQ ■ ■ ■ CG. However, by Lemma 3.2, there exists

then a unitoral 0 link H such that HÇS, HÇSi. But this is impossible as all

unitoral 0 links are contained in 5. Hence G = S= ¿^,*ii Pi.

Corollary 4.3. Under the hypotheses of Theorem 4.5, if S is a<p link for G,

and if G— 2**i Pi, where the Pi are 0 subgroups of G which are relatively

prime in pairs, then S= XX* i (SC^Pi).

Proof. Any unitoral 0 link for 5 is also a 0 link for G and is therefore

primary. Hence S is the direct sum of primary 0 subgroups. Let

S = £*Kj,
¿=i

where K( is primary, for i = 1, • • • , /. Without loss in generality we may as-

sume that

char (Ki) = char (P,-) = F,-,

for i = X, ■ • ■ , I. Ki is a primary 0 link for G with characteristic F,-. By Corol-

lary 4.1, KiÇPi. But KiÇS, and we have KiÇPiC\S. Hence

5 = ¿*Ä-,- c¿(5H P.) ç S,
1-1 1=1
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¡

s = E*(s n Pi).
¿=i

Corollary 4.4. Under the hypothesis of Theorem 4.5, if G is the direct sum

of primary cp subgroups, and if N is a normal cp subgroup of G, then G/N is the

direct sum of primary cp subgroups.

Proof. By Theorem 4.5 it suffices to show that any unitoral cf> link for

G/N is primary. Let T/N be a unitoral cp link for G/N with maximal normal

<f> subgroup K/N. Let T? be a minimal cj> link for T which is not contained in

K. It follows from the proof of Lemma 3.2 (i) that T? is a unitoral; hence T? is

primary. Furthermore, {T?, N}/N is a cp link for T/N and RÇ^K; therefore,

{T?, N}/N=T/N. Now by the Second Isomorphism Theorem:

{R, N}/N  S   R/Rr\ N.
(M-<t>)

R/RC\N is primary, since T? is primary. Therefore, T/N is primary.

5. 4> nilpotency. In this section we define <j> nilpotency for an M-cf> group

and establish a number of results which we shall need later.

Definition 5.1. The cp center of the M-cp group G is the compositum of

all <j> subgroups which are contained in the center of G, and is denoted by

Z,(G).
Clearly Z^(G) is the greatest cj> subgroup of G which is contained in the

center of G. It is a normal, M-cp characteristic cp subgroup of G.

Definition 5.2. If G is an M-cp group, let Z0(G) =0, and let Z,+i(G)/Z,(G)

= Z0(G/Z,(G)), for ¿ = 0, 1, • • • .
The chain

(1) 0 = Zo(G) S Zi(G) = Z^G) £ • • • £ Zi(G) £ • • •

is an ascending chain of normal, M-<j> characteristic cp subgroups of G. It is

called the upper central cp chain for G.

Definition 5.3. The M-cp group G is cp nilpotent if the upper central

cp chain joins 0 and G—i.e., if Zn(G) =G for some integer re.

Theorem 5.1. If the M-cp group G possesses a normal cp chain

(2) 0 = iVoÇ---c^ç Ni+i £ • • - £ Nk - G,

where, for i = 0, • • ■ , k — 1, N{ is normal in G and where TVi+i/TV!ÇZi,(G/TVi),

then G is cb nilpotent.

Proof. This theorem may be proved by induction (see [l, §4]). The chain

(2) is called a central cp chain for G.

Theorem 5.2. If the M-cp group G is cp nilpotent, then any cp subgroup of G

is a cp link.
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Proof. Let S be a 0 subgroup of G and let (2) be a central 0 chain for G.

Consider the chain

(3)   5 = {No, S} ç ■ ■ ■ ç {N„S} ç {Ni+uS} C ••• Ç {Nk,S\ = G;

this is a normal 0 chain joining S and G if {A7,-, S) is a normal subgroup of

{A^i+i, S}. In order to show this, it is sufficient to show that for x in A^+i and

s in S, — x+s+x is in {Nit S}. But since Ni+i/NiÇZyG/Ni), —x+s+x — s

= y is an element of Ni and, therefore, — x+s+x = ;y+s is an element of

{Ni, S}. Thus (3) is a normal 0 chain joining 5 and G and 5 is a 0 link.

Theorem 5.3. If G is a 0 nilpotent M-4> group, and N (y^-O) a normal 0

subgroup of G, then NC\ZyG)yi0.

Proof. Let Zi = Z{(G). Since G is 0 nilpotent, G=Zn for some integer w.

Nr\Z0 = 0 and NC\Zn = Nyi0, so that there exists an integer i such that

N(~\Zi = Q and NHZi+i^O. Let J = Ni\Zi+i; and let x and g be elements of

/ and G, respectively. The element — g — x+g+x= ( — g— x+g)+x is in N,

since JÇN and A7 is normal in G ; it is also in Z„ since JÇZi+i and Z,-+i/Z,-

= Zj,(G/Zi). Thus — g — x+g+x is an element of NC\Zi = 0, and, therefore,

g+x = x+g. Hence JÇZ*(G) and Z^G)C\N = J^0.

6. A preliminary result.

Lemma 6.1. Lei Ç ¿>e a« abelian group in which every nonzero element has

prime order p. Any automorphism of Q of order p leaves some nonzero element

fixed.

Proof. Let ai^O be an element of Q, and let a be an automorphism of Q of

order p. Since o-" = l, ai(ap— X) =0. But ai has order p so that ai(a — l)p = 0.

Choose the integer r (0^r<p) so that ai(a— X)'y±Q, but ai(<r- l)r+1 =0. Thus

if a=ai(o~ — X)T, a is a nonzero element and a(a— X) =0 or aa = a.

Theorem 6.1. Let G be an M-<b group in which every element has finite

order, and assume that <p contains conjugates. If G = A +P, where:

(i) A is a normal abelian <j> subgroup of G.

(ii) B is abelian and 0 simple, and is isomorphic to a<p subgroup of A.

(iii) AC\B = Q.
Then ZyG)y±0.

Proof. Let A' consist of all a' in A such that a'-\-b = b-\-a' for every b in

B. A' is a subgroup of A (but not necessarily a 0 subgroup). We prove the

following result:

If Zt(G)=0, and if p is a prime such that A/A' contains an element of

order p, then B contains no element of order p.

We break the proof up into a number of steps.

I. If ai and a2 are in A, — ai+P+a!= — a2-\-B-\-a2 if and only if a\

= a2 (mod A').
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— ai+5+öi= — a2-\-B-\-a2 if, and only if, a2 — at+B+ai — a2=B. There-

fore, it is sufficient to show that — a+B+a=B if, and only if, a is in A'. If

a is in A', —a+6+a=6 for b in B, and hence — a+73+a=73. Conversely,

if — a+B+a = B, then for each b in B there is a b' in B with — a+b+a = b'.

Thus — 6+6'= — b — a+6+a=(— b — a+6)+a and this is in A, since A is

normal in G. Hence —6 + 6' is an element of AH\B = 0, and thus 6 = 6' and

—a+6+a=6 for all 6 in B. Therefore, a is an element of A'.

II. 7/ 73i= —ai+73+di, wÄere ai is in A; and if Bi= — 6+T?i + 6, where

b is an element of B, then 6 + 6\ = 5i+6 for all hi in Bi.

We show first that if x, y are elements of A such that x=y (mod A'),

— x-\-l-\-x= — y + 5+y for all h in B. Since x— y is in .4', (x — y)+6 = 5+(x — y)

for all 6 in B. Hence —y+5+y = —x+5+x. Since T3i= —ai+73+ai, and

73i= —6+73i+6, we have — ai+7J+ai = — 6— ai + b+B— 6+ai+6. There-

fore, by I,ai=- —6+Oi+6 (mod A') or 6+<ii=ai+6 (mod ^4'). Hence we have:

-(6+ai)+5 + (6+ai) = -(ai+6)+5+(ai+6), for 6 in B. Thus -öi + 6+öi

= — 6 + ( — ai + 6+di)+6, or 6\ = — 6 + 6\ + 6, for 6\ in 7?i; but this implies that

6 + 5i = 5i+6, for hi in Bx.

III. 7/ a+b = b+a, for some 6?¿0 î'w 5 are¿ a tn .4, then a is in A'.

6=-a+6+a?¿0. Thus if B(a) =-a+B+a,    Br\B(a)^0. But B and

73(a) are both cp simple abelian groups which have BC\B(a)9£0 as a <f> sub-

group; hence B=BC\B(a) =B(a). From I we deduce that a is in yl'.

IV. If b 9e0 ¿s are element of B, and a is an element of A such that — 6+a+6

= a (mod A'), then a = 0 (mod A').

Let —6+a+6 —a = a', an element of A'; then a+6 — a = a'+6. If ¿ = a

+6 —a, ¿5^0 and ¿= — u-\-t-\-u for each u in B. Hence if T = a-\-B — a, t is an

element of Tf\( — u-\-T-{-u) for each u in 73; but this implies that 7"= — u-\-T

+u for each « in B. By II, m+¿'=¿' + m for each ¿' in 7\ Thus C = B + T is an

abelian </> subgroup of G. Since Ci^^l is contained in C, every element of Cr5^4

commutes with every element of B (and commutes with every element of A,

since A is abelian); hence CC\A is contained in Z$(G). But by hypothesis

Z¿(G)=0; hence Cr\A=0. But C=(Cr\A)+B so that B + T=C = B; thus
T = B. In particular, ¿ = a + 6 — a = a'+6 is in B. Thus a'= 0 and a+6 — a = 6or

a + 6=6+a. By III, a is in A'.

Now let p be a prime such that A/A' contains an element of order p. Let

Q/A' be the subgroup of A/A' which consists of all elements of order p

(and 0). If B contains an element 6 of order p, — b+A'+b=A', and — 6 + (5

+ 6, since Q/A' is a characteristic subgroup of A/A'. Let /3 be the automor-

phism of Q/A' defined by xß = —b+x+b (mod A') for x in (5. If xß=x (mod A')

for some x in Q, then —6+x + 6=x (mod A') and, by IV, x is in 4'. Thus ß

has order p, and xß = x (mod .4') if, and only if, x = Q (mod ¿4'). But by

Lemma 6.1, there exists an x in Q with x^O (mod ^4') and x/3 = x (mod A').

Hence we have a contradiction and B contains no element of order p. Thus

we have proved the statement enunciated at the beginning of the proof.
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We now prove the theorem by assuming that Z^(G)=0 and showing

that this assumption leads to a contradiction. Let K be a 0 subgroup of A

isomorphic to B. On the one hand, if K ÇA', KÇZyG) which is impossible,

since we are assuming that Z$(G) =0. On the other hand, if KÇA', K con-

tains an element x such that x+4' has prime order p (in A/A'). Since every

element of A has finite order, x has finite order k. Furthermore, p divides k;

for otherwise there exist integers r and / such that X=rk-\-tp and x = rkx

-\-tpx = t(px), which implies that x is in A', an impossibility. Hence k — pk'

and k'x is an element of K of order p. Since B is isomorphic to K, B contains

an element of order p. Thus if KÇA', B and A/A' both contain an element

of order p, which is impossible if Z$(G) =0 (as was shown above). Therefore,

ZyG) 9¿0 and the theorem is proved.

7. 0 nilpotency and decomposition into primary components. In this sec-

tion we shall prove that an M-<j> group G—which satisfies certain conditions

—is the direct sum of primary 0 subgroups with abelian characteristic if,

and only if, G is 0 nilpotent.

Theorem 7.1. Let G bean M-cp group which possesses a <p composition series

with abelian factors, and assume :

(i) Every proper 0 subgroup of G is <p nilpotent.

(ii) Inner automorphisms of G are M-<b automorphisms.

(iii) 0 cyclic 0 subgroups of G are abelian.

(iv) zyo=o.
Then G=A+B, Ar\B=0, A is a minimal normal <p subgroup of G and is the

direct sum of M-<j> isomorphic, <p simple, abelian 0 subgroups, and B is abelian

and 0 simple.

Proof. Let A be a maximal normal 0 subgroup of G, and let F be a mini-

mal normal 0 subgroup. Then G/N is abelian, since G has abelian 0 composi-

tion factors. If FfW = 0, G=T®N and hence TÇZ^G). But Z¿(G)=0 so

that TC\NyíQ. TC\N is a normal 0 subgroup of G contained in the minimal

normal 0 subgroup F and therefore TÇN. By hypothesis A is 0 nilpotent

and hence, by Theorem 5.3, Tr\ZyN)y^Q. But Z<¡,(N) is M-<p characteristic

in N and inner automorphisms of G are M-<b automorphisms; hence ZyN)

is normal in G and TÇZ$(N).

Now let s be an element of G which is not in N, and let 5 be the cyclic

0 subgroup of G generated by s. By hypothesis, S is abelian; and since N is

maximal and G/N is abelian, G = N+S. If Gy^T+S, T+S is 0 nilpotent.

In this case C = Z4,(T-\-S)yi0 and hence by Theorem 5.3, FPiCf^O. Thus

Fi = TC\C is a 0 subgroup of G which commutes element-wise with SC.T-\-S.

But TiÇTÇZyN) so that Fi commutes element-wise with N-\-S = G, i.e.,

Z4,(G)r=?Fi5¿0. But this is impossible, since by assumption Z$(G) =0. There-

fore, G = T-\-S.
If 5 is not 0 simple, it contains a 0 simple 0 subgroup B. If BÇN, then
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T-\-B is abelian since TQZ$(N) and B is abelian. Therefore, BQZ^,(G) since

B commutes element-wise with T and with 5 and G = T-\-S. This proves that

T3Ç£TV. Hence G = TV+T3 and the argument used above (replacing 5 by 73)

shows that G = T-\-B.

Let A be the sum of all minimal normal cp subgroups of T which are

M-cp isomorphic to a particular minimal normal cp subgroup F of T. Then

it is easily verified that A=Fi® • • ■ ®Fk, where, for i = l, 2, ■ ■ ■ , k,

Fi=(M-$)F; and that A is M-cp characteristic in T (see [l, §3]). Hence A

is normal in G and T = A. Thus G = A+B and the theorem is proved.

We give an example which shows that a group of the type described in

the theorem exists. In the example T3 is M-cp isomorphic to F.

Example 7.1. Let the elements of G be all pairs of real numbers (r, s)

and define: (r, s) = (r', s') if, and only if, r = r' and s = s'; (r, s) + (r', s')

= (r+r'e~", s+s'). Then if A is the subgroup which consists of all pairs

(r, 0), and if T3 is the subgroup which consists of all pairs (0, s), we have

G=A+B. A and T3 are isomorphic and, furthermore, A is normal in G.

Let M be void, and let cp consist of the subgroups 0, G, A, B and all conju-

gates of B. We verify that 0 is a lattice.

AC\B' = 0 for any conjugate of T3, B'' = —a'+B+a' with a' in A. For let a

be an element of A(~\B'; then 6 = a'+a — a' is in AC\B=0 so that a=0.

Now consider B(~\B', where again B''= —a'+B+a' and a' is in A (a'9*0).

If 6= — a' + 5+a', where 6 and h are in T3, then a'+6 = 5+a' —5 + 5 so that

a' = 5+a'-5 and 6 = 5. Let a' = (r', 0) and 6 = (0, s); then (r', 0) = (0, s)

+ (r', 0) —(0, s) = (r'e~", 0) and thus r' = r'e_s. Hence s = 0 and this implies

that 6 = 0; thus 73P\73' = 0. Similarly, if 73"= -a"+73+a", where a'Va' is

in A, BT\B" = 0. Therefore, cp is closed under intersections.

We now consider the composita of the subgroups in fa We consider first

.4+73'. Since -a'+G+a'^G and G = A+B, G= -a'+A+a'+B'=A+B'.
We consider next {73, 73'}. Since 73ç{73, 73'} and G = .4+73, {73, 73'}
= (A(~\{B, 73'}) +73.SinceAf\{73,73'} 9*0, there exists â^0 in AC\{B, 73'} ;
let d = (f, 0). Let a = (r, 0) be any element of A such that rf is positive; then

r = fgr> for SOme real number s. If 6 = (0, s), a = (r, 0) = (0, s) + (f, 0) —(0, s)

= b + d — 6, so that a is in {73, 73'}. Hence {73, 73'} =G. Similarly,

G = {73', 73"}. Hence 0 is a lattice.

We verify next that G satisfies conditions (i)-(iv) of Theorem 7.1. Since

every proper cp subgroup of G is abelian, (i) is clearly satisfied; it is also clear

that (ii) is satisfied. To show that cp cyclic cp subgroups are abelian, let a+6

be an element of G with a in A and 6(?¿0) in 73; we show that the cp cyclic cp

subgroup generated by a+6 is abelian. If a = (r, 0) and 6 = (0, s), then a+6

= (r, s) = — (x, 0) + (0, s) + (x, 0), where x = r/(e~s — 1). Letting a' = (x, 0), we

see that a+6 is in 73'= —a'+73+a', an abelian c¡> subgroup of G. Z$(G) is a

normal cp subgroup of G, and Z^G) 9* A ; hence Z$(G) =0.

We note that the group is a primary M-cp group with abelian character-
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istic. Hence conditions (i)-(iii) are not sufficient to ensure that a primary

M-tb group with abelian characteristic be 0 nilpotent.

Theorem 7.2. Let P be a primary M-<p group with abelian characteristic

F and assume:

(i) Inner automorphisms of P are M-<p automorphisms.

(ii) Every element in P has finite order.

(iii) 0 cyclic 0 subgroups of P are abelian.

Then P is <f> nilpotent.

Proof. We use induction on the length of a 0 composition series for P,

j(P). If j(P) =1, P is isomorphic to the abelian group F and hence is 0 nil-

potent. Let j(P) = k and assume that the theorem is true for all primary

M-<pgroups Q such that j(Q)<k. Since any 0 subgroup H of P has j(H) <k

(by Theorem 4.3) and is primary, any 0 subgroup of P is 0 nilpotent. By

Theorem 7.1, if ZyP)=Q, P=^4+P, where A is normal in P and is the

direct sum of 0 subgroups which are M-<p isomorphic to F and B is Af-0 iso-

morphic to F; and AC\B = Q. But by Theorem 6.1 this is impossible. Hence

zyp)y±o.
Let Q = P/ZyP); then j(Q)<k and by the induction hypothesis, Q is

0 nilpotent. Hence P is 0 nilpotent.

Corollary 7.1. Let P be the direct sum of primary M-<b groups with

abelian characteristic and assume conditions (i)~(iii) of Theorem 7.2. Then P is

0 nilpotent.

Remark. In Theorem 7.2, condition (ii) may be replaced by:

(ii') Any 0 subgroup has a finite number of conjugates.

In order to prove this it is sufficient to show that Theorem 6.1 still holds

if we assume that B has a finite number of conjugates instead of assuming

that every element of G has finite order. In Theorem 6.1 for each element a

of A we obtain a conjugate of B, B(a) = —a-r-B+a, and two elements which

are incongruent modulo A' give different conjugates. Thus if B has a finite

number of conjugates, A/A' is a finite group. If Z¿(G) =0, it follows from IV

of the proof of Theorem 6.1 that the elements of B induce distinct auto-

morphisms of A/A'; hence B is a finite group. Thus, in particular, every

element of A/A' and of B is of finite order and the proof of Theorem 6.1

may be applied.

Corollary 7.2. If P is a primary M-<f> group with abelian characteristic,

and if P has a 0 composition series of length 2, then P is abelian, provided con-

ditions (i)-(iii) of Theorem 7.2 hold.

Proof. Let F be the characteristic of P, and let A be a normal 0 subgroup

of P which is M-<p isomorphic to F. Since P is0 nilpotent and A is a minimal

normal 0 subgroup, it follows from Theorem 5.3 that A is contained in ZyP).
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Let s be an element of P not in A ; and let 5 be the cp cyclic cp subgroup of

P generated by s. Then S is abelian and P = A+S; since AQZ^P), P is

abelian.

Our results enable us to prove the following converse of Theorem 5.2:

Theorem 7.3. 7,e¿ G 6e an M-cp group which possesses a cp composition

series. Assume further that:

(i) Inner automorphisms of G are M-cp automorphisms.

(ii) 4> cyclic c¡> subgroups of G are abelian.

Then if every cp subgroup of G is acb link, G is <p nilpotent.

Proof. It is easy to see that (ii) implies that G has abelian cj> composition

factors.

We now use induction on j(G). If j(G) — l, G is abelian. Assume the

theorem proved for all 77 with j(H)<j(G). By Theorem 7.1, if Z^(G)=0,

G = A+B, where A and T3 are abelian cp subgroups of G, A is normal in G

and AC\B =0. Since B is a cp link for G, there exists a cp subgroup C of G such

that B9*C and 73 is normal in C. Then C=(AC\C)+B, and the sum is a

direct sum since (Ai\C)C\B=0 and AC^C, B are normal in C. Therefore,

Ar\CQZt,(G) so that Z^(G)9*0. Hence by the induction assumption, G is

cj> nilpotent.

Theorem 7.4. Let G be an M-cp group which possesses a cp composition

series. Assume that inner automorphisms are M-cj> automorphisms and that

unitorial cp cyclic <p subgroups of G are primary. Then if G is cp nilpotent, G is

the direct sum of its primary components.

Proof. By Theorem 4.5, it is sufficient to show that any unitoral cp sub-

group of G is primary. Let U be a unitoral cp subgroup; then [/has a normal <£

subgroup TV such that every proper 4> subgroup of U is contained in TV. Choose

u in U but not in TV; then the cp cyclic cp subgroup generated by u is not con-

tained in TV and hence is equal to U. Thus U is primary.

Theorem 7.5. 7,e¿ P be an M-cp group which possesses a cp composition

series and assume hypotheses (i), (ii), (iii) of Theorem 7.2 and

(iv)   Unitoral cp cyclic cp subgroups of P are primary.

Then P is <p nilpotent if, and only if, P is the direct sum of primary c¡> subgroups

with abelian characteristic.
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