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1. Introduction. Let 4>{x) be a measurable function for which — 1/2

<0(x) = l when x^O, 0(0) = 1, limx^0 <j>(x) = l, and lim»..» <j>(x) =0. We as-

sume that there is a positive number, which we shall always denote by qa,

such that <t>(qo) = 1/2, <£(x)>l/2 when 0<x<q0, and </>(x)<l/2 when q0<x

< oo. We suppose finally that

■Ml—  <¡>{x)
(1.1) -~á* < oo

'o Xí

and

(1.2) f
J an

»(*)! ,   .
-ax < oo.

It is of course true that our conditions are satisfied by each continuous de-

creasing function <f>(x) which approaches 1 sufficiently rapidly as x—>0 and

which approaches 0 sufficiently rapidly as x—>-oo, but we do not need the

heavier restrictions on </>(x). For example, our results have vivid, but perhaps

in most cases unimportant, meanings when applied to such functions as

that for which 0(x) = l when 0 = x<l, 0(1) =1/2, 0(x) = l/4 when Kx = 2,

and </>(x) =0 when x>2. We do not assume that <f>(x) is monotone, and we do

not assume that 4>(x) §0, because we want our results to apply to such funo

tions as the Riemann functions

sin x
(1.3) 4>{x) =

and

(sin x\r
—)

where r is a suitable positive parameter which is usually an integer in (1.31).

Let u(x) be a complex valued function defined for x = 0 and Lebesgue

integrable over each finite interval 0=x = 7\ Let

(1.4) S(T) =  \    u(x)dx, T>0,
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and let

(1.5) F(t) =  J    <t>(xt)u(x)dx, t > 0,
J o

whenever the integral on the right exists as a Cauchy integral

limA<00 Jo <¡>(xt)u(x)dx. In the theory of linear integral transformations,

lim^o F(t), when it exists, provides a generalized value of limr-.,» S(T)\ but

we do not need enough restrictions on <f>(x) to imply that all of the transforma-

tions are regular in the sense that F(t) exists for each ¿>0 and lim,,0 F{t)

= limr*oo S(T) whenever u(x) is a measurable function for which limr-«, S(T)

exists.

Some of the familiar transformations satisfying our conditions are that of

Laplace for which <¡>(x)=e~x; those of Riesz for which <f>(x) = (I — x)T when

O^x^l and <f>(x)=0 when x>l with positive order r; those of Stieltjes for

which 0(x) = (l+x)_r with positive order r; and that of Lambert for which

4>(x) = x/(e*-l) with 0(0) = 1.

In addition to the classic Abelian and Tauberian theorems which give

information about one of limt_o F(t) and limr-«, S(T) when the other exists,

it is possible to find elegant estimates of | F(t)—S(T)| when neither lim F(t)

nor lim S(T) is assumed to exist but u(x) is assumed to satisfy the Tauberian

condition lim supI<00 | xu(x) | < oo. Such estimates were obtained by Raja-

gopal [l950] for the case T = qa/t. Study of problems of this nature originated

with Hadwiger [1944]. For a general treatment and references to some of the

work on the subject, see Delange [l950].

It is the object of this paper to obtain estimates of | F(t) —S(T) \ for more

general relations between t and T and especially to prove facts relating to the

best constants in the estimates.

2. The function A(q). For each g>0, let

/•« 1 — ct>(x) ("°   I <t>(x) I
(2.1) A(q) =  I    ■-^-dx+  I       ' '   dx.

J(, X Jq X

Both integrands are nonnegative. Our hypotheses on <f>(x) imply that

lim5^o A(q)= <x>, lim,,«, A(q)= », A(q) is decreasing when 0<q<q0, and

A (q) is increasing when q0 <q < to. It follows that A (q) has a unique absolute

minimum when q = qt>. The minimum, which we shall always denote by Aa, is

rm 1 - Mx) rx   I 4>(x) I
(2.2) A0 = A(q0)=j      -—dx+  I--dx.

J o X J q0 X

This minimum A o is positive except in the special case in which </>(x) = 1

almost everywhere in 0<x<qo and <j)(x) =0 almost everywhere in x>q0; in

this special case F(t) = S(q0/t). We can write A (q) in the form
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\)<     i-    T r i j       rx <t>(x) j       r* | </>(*) I + *(*)
A (q) = hm      I    — dx —   I      -dx +   I      -ax

A->0 L •/ a    x «/a        x Ja x
(2.3) . .

/•- 1 4>{x) | + 0(x)
= r + log ? + I    -ax

Jo #

where

r     i       /•» </>(x)    i
(2.31) r = lim    log-I      - dx\.

A-.0 L h J h x J

In the case of the Laplace transformation for which 4>(x)=e~x, we have

qo = log 2 and

/» log 2    ^   _   g— x                     /» oo       g— a:

-dx+   I -¿X.
0                       X                          J log 2      #

The constant Y in (2.3) and (2.31) is Euler's constant 7 = .5772157 and

/( CO           g— X

-dx =  .9680448.
log 2      X

These constants involved in the Laplace transforms of functions are, as

should be expected, the same as the constants involved in Abel power series

transforms of series; see Agnew [1945] and [1949].

In the case of the Riesz transformation of order r >0 for which, where the

superscripts indicate the order r and not derivatives, <£(r)(x) = (1— x)r when

0 = x :£ 1 and <¡>w (x) = 0 when x > 1, we have g0r) = 1 — 2_1/r and

M        (r)     r 1-2_1/r 1 - (1 - xy       r1     (i - *)'
(2.5)       ¿Í ' = ¿(ior>) =   I--dx+ --

Jo X J 1-2-1''- X

When r is a positive integer, evaluation of the integrals in (2.5) gives

. , r       1   _   ?-*/r =0 O-klr

(2.51) ^r - s    ,   + s

¿x.

& i=r+l £

, , 1 r     21_i/r —  1

(2.52) A      =log-£-

Some approximate numerical values are

oo1' = 1/2, A? = log 2 = .69315;
(2) C2)

ço    = .292893,       A0    - .81373;

qT = .20630, áT - .86106.

For appraisal of ^40r) for positive values of r, integer or not, we make a change
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r. log 2   i _ e-!/       yr ~ oc     g-,       y/r

(2.53)      4 0=1-dy+---dy.
J0 y        e»"- 1   *      Jw,    y    S"- 1   '

of variable in (2.5), setting x<*>l—tr*lr. Thus we obtain, for each r>0,

■   lüg   2       !     _     g-V yjr Ç  00 g-« yjf

'o y       ««"'- 1  ""     Ji0g2   y   e»

From obvious properties of the function

u 1
(2.54) -— =-

e" - 1      1 + m/2! + «V3!+ ■ • •

it follows that Aq1 steadily increases as r increases, that A0r)<Ao for each

r>0, and that lim,...«, Aor) = A0 where A0 is the constant in (2.4) and (2.41)

which belongs to the Laplace transformation.

In the case of the Stieltjes transformation of order r>0 for which </>(r)(x)

= (l+x)_r, we have q0r) = 2l'r-l and

A? = A(q™) =| -—-   dx
.     , Jo Lx       x{\ + x)rJ
(2.6)

Jji/'-l    x(l +
+ —-dx.

Kl + xy

When r is a positive integer, evaluation of the integrals in (2.6) gives

2 r_1 21-J;/r — 1

(2.61) AV =—log 2-log (2"'- 1) - £-:-
r m ä

Some approximate numerical values are

Co" = 1, ¿o" = 2 log 2 = 1.38629;

qi    = .414214,       A0    = 1.16031;

ql3) = .259921,       A™ = 1.09202.

For appraisal of A0r) for positive values of r, integer or not we make a change

of variable in (2.6), setting x = evlr — 1. Thus we obtain, for each r>0,

log 2    I   _   e-y yjf ç oo        g-V yjr

(2.62) A0    =   I-:-dy+-dy.
^ J0y        1-«-»"   y      J,og2    y    I-«"«"'   '

Good estimates of the order of magnitude of Agr) can be obtained by using

u u
(2.63) H-<-— < 1 + u, 0 < u ^ 2,

2       1 — e "

M

(2.64) m <- < 1 + M, «ä2.
1 - e-"

We find that, when 0<rg2~1 log 2,
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/'3r 1 - e~"            1 + 2 log 2 - 2r - e~ir
-— dy + ---

o           y                                      2r

and, when r = 2_1 log 2,

' log 2    J   _  g-y /» 2r      g—y

-dy+ —
y J log 2   y

and, on the other hand, when r>0,

/. log 2    1   _ g-y » 2r      g-!/ I

(2.66)    i4o    >  I -<*?+  I        -dy + — (log 2 + e-2')
Jo -y J log 2    y 2r

(2.67) i»0   <^o + (lA)log2,

the constant -40 being precisely that in (2.4) and (2.41). It follows from (2.65)

that -407)—*oo as r—»0, and that A^—*A0 as r—»oo. That the latter fact can

be obtained from (2.62) without computations may be seen as follows. The

integrands in (2.62) are positive and when r increases to become infinite they

decrease steadily to the integrands in (2.4). It follows that A^ steadily de-

creases as r increases, that A^>A0 for each r>0, and that limr<00 A^=A0

where A0 is the constant in (2.4) and (2.41) which belongs to the Laplace

transformation.

In the case of the Lambert transformation for which 0(x) = x/(ex — 1),

we can put A (q) in the form

/"/l e~x    \ f°      e-x
(2.7) A(q)=\    (-----)dx+\-dx

J o  \ x       1 - e~xJ J q     1 - er"

and elementary integration gives

(2.71) A(q) = losjrh^-

In this case the constant V of (2.3) and (2.31) is 0. The value of q0 of q for

which <f>(q) =1/2 and A(q) is a minimum is that for which e3 = l+2g. Thus

20 = 1.256431, e*o = 3.512862, and A0 = A(q0) =.898291.

Before entering seriously into a discussion of relations between F(t) and

S(T) we remark that preliminary ideas, some of which may be misleading,

can be obtained very quickly from consideration of the special function u{x)

for which m(x)=0 when 0=x_1 and w(x)=x_1 when x>l. When T>\,

S{T) =log T. For each i>0

/•- 4>{xt)           r~ <t>(x)          /"*(*)           /•- 0(x)
F(t) =   I      -dx =   I      -dx =   I    -dx +  I      -■ dx

J 1 X J t X J t        X J i X
(2.8)

z*1 1 -*(*) f"° <t>{x)
= —   I    -dx +   I      —— dx — log t

J t X J i X

and hence, where e(/) —>0 as /—»0,
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/'i 1 — é(x) C°°  <t>(x)-— dx + I     -^ dx-log tT.
0              X                          J i X

This gives the preliminary idea that we can make F(t) and 5(7") nearly equal

by giving the product tT an appropriate constant value depending only on

<f>. While the matter is of little importance, we note specifically that, for the

special function, we shall have

(2.82) lim [F(0 - S(T)] = 0
ûî—»oo

whenever t(a) and T(a) are positive functions of a parameter a such that

t{a)—*0 and T^a)—>°o asa—>°o and

(2.83) tT = exp <-   \    -—dx+\      —- dx} .
{     J o x J i       x        )

It happens that, for the Lambert transformation, the quantity in braces is 0

and the condition in (2.83) becomes t = T~1.

3. Comparison of F(t) and S{T). For the case tT = q0 the following

theorem reduces to a theorem of Rajagopal [1950], except that the hy-

potheses of Rajagopal are considerably more restrictive than ours.

Theorem 3.1. If t = t(a) and T=T{a) are positive functions of a positive

parameter a such that, as a—>c°, lim t(a) =0 and lim T{a) = °°, and if

(3.11) 0 < qx = liminf tT ^ lim sup tT = q2 < oo,
ot—»oo oc—>°o

then, when lim sup | xu(x) | < <x>,

(3.12) lim sup | F(t) - S(T)\ £A (q) Km sup | xu{x) |

where q = q2 if A(qi)^A(q2) and q = q\ otherwise. Moreover A(q) is the best

(that is, least) constant in the following sense. There is a real bounded measurable

function u(x) for which 0<lim sup |xw(x)| < oo and equality holds in (3.12).

Supposing as always that u(x) is integrable over each finite interval, let

lim sup |xtt(x)| =L and let

(3.2) v(x) = xu(x), x > 0.

The function <f>(xt)u(x) is integrable over each finite interval 0^x^x0 be-

cause 4>{xt) is bounded and measurable and u(x) is integrable. For large x0

we have |m(x)| <(L + l)/x; hence \(j>(xt)u(x)\ ^(L + l)<j>(xt)/x for x>x0 and

therefore (1.2) implies that |0(x¿)w(x)| is integrable over x0<x<«>. Thus

F(t) exists for each a>0. Since — l/2^<j>(x, t)^l and <¡>(xt)—>l as a—>oo it

follows from a criterion of Lebesgue that e(a)—*0 as a—>oo when
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(3.21) e(a) « -   I     [l - <l>(xt)]u(x)dx.
Jo

Assuming a large enough to make T>1, we obtain

F{t) - S{T) = e(a) -   f    [l - <K*0H*)¿* +   J    <}>{xt)u{x)dx

(3.3)
/•'   1 -*(*/) /•" 0(x¿)

= 6(a) —   I      -v{x)dx +   I      -v
J i x J T        x

(x)dx.

Letting

(3.31) G(«) - F(t) - S(T) - «(a),

we put (3.3) in the form

f* CO

(3.32) G(a) =   I    K(a, x)v{x)dx

where

**(«, x) = - [1 - *(*i)J/* (1 = x ^ D

= <t>(xt)/x (x > r).

¿X

We find that

I    a (a, x)ax = —  I      -ax +  I      -
J1 J i x J T        x

(3.4)
f " <l>{y)

= - log r +  I      -dy,
J t      y

and observe that as a—* oo this has a limit only for special pairs of functions

t(a) and T(a). Thus the theory of regular kernel transformations, as given for

example by Hardy [1949, Chapter 3], does not apply to the transformation

(3.32). However

(3.51) | K(a, x) | = 1, a > 0, x = 1,

(3.52) lim a*(x, a) = 0, x ^ 1.

Moreover

<T   1 - 0(x/) fw  |0(xi)J'00.            .          /•*   i - <t>{xt) r
| Ä'(a, x) I dx =   I       -dx +   I

i                                  Ji             x Jt

. (•"-*<■>»+ fJ « x J (

¿X

(3.6) .
-« l-0(x)   ,    ,    f-   |*(*)|

-ax
tr        x
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and it follows from §2 and the hypotheses of Theorem 3.1 that

/► CO

| K(a, x) | dx = A(q).
x

The conclusions of Theorem 3.1 now become an immediate consequence of

Lemma 4.1 since, by a criterion of Lebesgue, (3.51) and (3.52) imply (4.12) below.

4. A lemma on kernel transformations. The following lemma is a modifi-

cation of a lemma proved by Agnew [1949] for transformations of sequences.

Lemma 4.1. Let K(a, x) be a real or complex valued function, defined for

a>0 and x>\, such that K(x, a) is a bounded measurable function of x for

each a,

/CO

| K(a, x) | dx < oo, a > 0,

(4.12) lim    f   K{a, x)v{x)dx = 0
a—»»   U a

whenever 1 ̂ a<b< oo and v(x) is integrable over a^x^b, and

/> CO

I K(a, x) | dx = M.
i

Then each real or complex valued function v(x) which is integrable over each finite

interval l^xgio and for which lim sup | v(x) \ < oo has a transform

/CO

K(a, x)v(x)dx

such that

(4.15) lim sup | G(a) |  ^ M lim sup | v(x) \.

Moreover M is the best constant in the following sense. There is a bounded meas-

urable function v(x), which is real if K(a, x) is real, such that 0 <lim sup [ v(x)\

< oo and equality holds in (4.15).

Proof of the first part of the lemma is quite trivial. Let lim sup \v(x)\

= L<oo, let €>0, and choose x0>l such that |i>(x)| <L+e when x^x0.

Then

I    f zo /» oo

(4.2) | G(a) | g    I     K(a, x)v(x)dx\+  I     | K(a, x)\(L+ e)dx
\Jl \ J x0

so lim sup |G(a)| ^M(L+e) and (4.15) follows. To prove the second part,

choose «i and then Xi such that
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/I 00 /»COI K(au x)\dx> M - 2~\ j     | K(au x)dx \ < 2~\
1 J XI

When ap_i and Xp_i have been chosen, choose ap such that ap>ap-i,

/Xp-¡ n oo

| K(ap, x) | dx < 2~", I      | K{ap, x)\dx> M - 2~",

and then choose xp such that xp>xp_i and

/oo
| A*(«p, x) | dx < 2-T.

For each p = i, 2, 3, • • -, let

(4.6) i>(x) = sgn Ä"(aj„ x), xp_i g x < Xp,

where, as usual, sgn 2 = 0 when z = 0 and sgn z — \z\/z when s^O so that in

every case z sgn z = |z|. Then \v(x)\ gl and lim sup \v(x)\ =1. The trans-

form G(a) of this function v(x) is such that

Iy» 00
K(ap, x)v(x)dx

J o

(4.7)
>

/• Xp-i /» Xp

—   I I Ä"(ap, x) | dx +  J        | K{ap, x) | dx
Jo J Xp-l

/00

| Ä"(ap, x) | dx

= _ 2-1" + (Af - 3-2-") - 2-" = M - Sir*.

It follows that

(4.8) lim sup | G(a) \ ^ M — lim sup | »(x) |.
a—» oo x—> °o

Since the first part of the lemma implies (4.15) ,we must have equality in

(4.15). This completes the proof of Lemma 4.1 and hence also Theorem 3.1.

5. Further comparison of Fit) and 5(T). The following theorem supple-

ments Theorem 3.1.

Theorem 5.1. If / = ¿(a) and T = Tia) are positive functions of a positive

parameter a such that, as a—> oo, Um /(a) = 0 and 7\a) —» oo, and if one or both of

(5.11) liminf¿r = 0,
CK-+0O

(5.12) lim sup tT = co
ce—»oo

holds,  then  there  is  a  real  bounded  measurable function  w(x) for  which

lim sup | xu(x)| = 0 and lim sup0.„ | F(t) —S(T)\ = oo.
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Supposing first that (5.11) holds, we proceed precisely as in the proof of

Theorem 3.1 until (3.6) has been obtained and then conclude that for large

values of a

(5.2) f    | K(a, x)\dx>   f
J \ J a

-dx.

Therefore (5.32) below holds. A similar argument shows that if (5.12) holds,

then (5.32) holds. Therefore Theorem 5.1 is an immediate consequence of

the following lemma of Agnew [1939, p. 711 ] which, like Lemma 4.1, is more

general than we need for the purposes of this paper.

Lemma 5.3. Let K(a, x) be a real or complex valued function, defined for

a>0 and x>l, such that K(x, a) is a measurable function of x for each a,

(5.31) I      | K(a, x) | dx < oo, a > 0,

and

| K(a, x) I dx = oo.
i

Then there is a real bounded measurable function v(x) such that

(5.33) lim v(x) = 0
3—»oo

and

i  /* °°
(5.34) lim sup   i    K(a, x)v(x)di

a—»oo        | J i

6. Tauberian constants. We now prove the following theorem in which,

as always, qo is the value of x for which <£(x) = 1/2 and A0=A(qo) is the mini-

mum value of A(q).

Theorem 6.1. The constant

•«• 1 — <t>(x) r"  | 4>{x) '/■»I- <t>ix) r-—dx +
o               X                      J „

dx
o

is the least constant A with the following property. If u(x) is integrable over each

finite interval and if lim sup |xw(x)| < oo, then it is possible to choose positive

functions t(ci) and T(a), independent of the function u(x), such that lima^M t(a)

= 0, T(a) = oo , and

(6.12) lim sup | Fit) - S(T) \ ^ A lim sup | xu(x) \.
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This follows from Theorems 3.1 and 5.1. If /(a) and Tia) are chosen such

that lima^00ir, = 3o1 then, in the notation of Theorem 3.1, gi = 32 = 30 and (3.12)

becomes (6.12) with the constant in (6.11). If however tia) and Tia) are

chosen such that lim infa,M tT<q0 or lim sup„^M tT>qo or both, then Theo-

rems 3.1 and 5.1 imply existence of functions w(x) in the required class for

which

(6.13) lim sup I Fit) - S(T) \ > A„lun sup | xw(x) |
a—» 00 x—* °o

when Ao is the constant in (6.11).

Theorem 6.1 and a little further argument provide proofs of the following

two theorems.

Theorem 6.2. The constant A0 in (6.11) is the least constant B\ with the

following property. If w(x) is integrable over each finite interval and if

lim sup j xm(x) j < 00, then it is possible to choose a positive function tiT) inde-

pendent of w(x) such that limf^ tiT) =0 and

(6.21) lim sup \FitiT)) - 5(r) | ^ #i lim sup | xu(x)\.
r-»« x-"c

Theorem 6.3. The constant A0 in (6.11) is the least constant B<¿ with the

following property. If w(x) is integrable over each finite interval and if

lim sup I xw(x) j < 00, then it is possible to choose a positive function Tit) inde-

pendent of w(x) such that lim<_o Tit) = 00 and

(6.31) lim sup I Fit) - 5(7/(0) | ^ #2 lim sup | xu(x) |.

We have stated Theorems 6.2 and 6.3, which cannot be improved by

methods heretofore used in this paper, in the above forms in order to

direct attention to the questions whether we can reduce the constants

Bi and B2 if we remove the restrictions that the functions Tit) and tiT) be

independent of w(x). These questions appear to be difficult. The author

knows of no case in which the problem relating to _B2 has been solved, either

for kernel transformations of functions or for matrix or function transforma-

tions of series and sequences. The problem relating to Bx was solved for the

Abel power series transformation of series by Agnew [1945] ; see also Agnew

[1949].
In the following sections we shall assume that $(x) satisfies all of the con-

ditions we have imposed upon it and the additional condition </>(x)2:0, and

shall show that B\ cannot be reduced even when w(x) is further restricted to

the class of bounded real continuous functions for which 5(2") is bounded.

Thus, for example, we shall solve the problem involving B\ for the trans-

formations of Laplace, Riesz, Stieltjes, and Lambert; but the Riemann

transformations for which </>(x) = [(sin x)/x]r with r an odd positive integer

escape our treatment. All problems relating to B2 remain unsolved.
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7. The transform of a simple special function. Let 0(x) satisfy, in addition

to the conditions imposed in §1, the condition

(7.01) <l>(x) è 0, x > 0.

As a prelude to the construction of an example from which conclusions can be

drawn, we derive the principal property, expressed in (7.4), of the transform

of a special function w„(x). The example is analogous to the example of Agnew

[1945, p. 31] which involves Abel power series transforms of series. In spite

of its more special character, the example of Agnew [1945] is more abstruse

than the present one, partly because series are in this case more awkward than

functions and partly because formulas and methods analogous to those used

earlier in this paper did not exist in 1945 and best values had to be discovered

in the process of construction of the example.

Let A and xn be positive numbers subject to determination later, and let

u„(x) be the function defined by

XUnix)   =   0, X  <   Xn,

(7.1)
= — 1, Xx„ S x < XXx„,

= 0, XXxn s» x.

The function S„it) defined by

■/:
(7.2) Sn(T) =        unix)dx

J 0

is 0 when T<xn, is log T — log xn when xHfLT <\xn, is 2 log X + log x„ — log T

when Xxn^7,<XXx„, and is 0 when Wxn^T. Thus Sn(t) is nonnegative and

has the maximum value log X. The transform F„it) of this function u„(x) is

rx                         rKXn <¡>(xt) r

Fn(t) —   I     4>ixt)un(x)dx =   f        -dx —
Jo J xn X

/,Xl»'    (j)(x) /*XXl
-dx —   I

x„ I             X                    J \x„t

4>(xt) fxx*»  4>ixt)
-dx

(7.3) -^dx-  I ^-d*
X

/,Xx"¡     1   —  <f)(x)                    p\lznt 0(x)
-d x —  I -dx.

x„l                  X                          J\xnt          X

Let €i be a fixed positive number. The next and most tedious step in our

argument is to show that we can choose a large positive number X such that

(7.4) Fn(t)< €, +log \-Ao, t>0,

where Ao is the constant in (6.11). To obtain (7.4) from (7.3) we need, for

each t>0, the inequality
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.\xnt     I   _   4,(3.) ~\\x„t  0(x)J1*1»'      1   —   4>(X) /.AAx„t   ̂ x
-dx+  J

xn t                  X                         J X xn t x

dx

(7.5)
r«l- 0(x)            /•• <*>(*) J

> — «i +  I     -dx +  I      -■ ax.
v 0 ^ J qo X

To simplify writing, we denote the sum of the two integrals on the left by L

(left integrals) and denote the sum of the two integrals on the right by R

(right integrals). Choose hi and h2 such that 0<hi<q0<h2< 00 and

rhi 1 — 4>ix) ei /•« tf>(x)
(7.61) --^dx< —, I      -^¿a:>.R,

Jo x 2 J hi      x

/'">   (¡>ix)                €1                   f*2  1 - c/>(x)-^ dx < —, I     -— dx > R.
A2 X ¿ " qt¡ X

Choose X such that \>h2/hi, log X>2Ä\ With this value of X, we prove (7.5).

In case XKxnt<h2, we have \xnt<h2fk<hi. In this case the first integral

in L is small and we use the inequality

/.XXi„f  ¿(x)

(7.71) L è   j — rf*.
J \x„t x

If XXx„/^g0, then we use (7.71) to obtain

*/' «/ A,

""> 4>ix)
(7.72) i ^  I     —— dx > R.

Ai ^

If XXx„<<go> then <£(x) >l/2 over XxJ^x^XXx„¿ and we use (7.71) to obtain

(7.73) L = —\ — dx = — log X > R.
2 J\xnt     x 2

In case xnt>hi, we have \xnt>\hi>h2. In this case the second integral in

L is small and we use the inequality

/>**»'   1 — 4>ix)-— ¿*.

xnt                  X

If xj^qo, then we use (7.81) to obtain

•kl 1 - <t>ix)
(7.82) L =  f dx > i?.

50 X

If q0<xnt, then 0(x)<l/2 over x„/<x<Xx„2 and we use (7.81) to obtain

J        n\xnt       J 1

(7.83) ¿^— I — dx = — logX > R.
2 J x 1      x 2
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In the remaining case in which xnt<hi<qo<h2^XKxnt we start with

J'X*«!     1   —   A(X)                      /»XXsni  Q(x\
-—-dx +  I -dx

xnl                 X                       J\x„t          X

and observe that, since 0(x) >l/2 when x<g0 and 0(x) <l/2 when x>q0,

J190 1 — <b(x)            /«xx»»í ̂ix\
-—dx+  I -dx.

xnt                X                                 J q„                    X

With the aid of (7.61) and (7.62), we now obtain

rq" 1 - <t>ix) rh* 4>(x)
(7.93) ¿è   |      -—dx+ -^dx>-€1 + R.

This completes the proof of (7.5) and hence also (7.4).

8. The transform of a special function. We now prove the following

theorem.

Theorem 8.1. Let <j>(x) satisfy, in addition to our original hypotheses, the

condition <j>(x) j^O. Let e>0 and let A0be the constant in (6.11). Then there is a

positive constant X>1 and a function u(x), real and continuous over x^O, such

that

(8.11) - 1 g xuix) ¡g 1, x ^ 0,

(8.12) ° = f  «(*)<** ß lo8 x> rio,
J 0

(8.13) lim sup   I    uix)dx = log X,
T-.00 J o

owd

/» 00

(8.14) 0 <  I    <t>(xt)uix)dx < « + log X - ¿o, <> 0.

With e>0 given in Theorem 8.1, let €i = e/4 and X be fixed as in §7. We

use the notation and functions of §7. Let Xi>l so that Ui(x), SiiT), and Fi(t)

are determined. Since Fi(t)-+0 as t—>0, we can choose ¿i>0 such that

(8.2) ¡Fiit) | <€i, 0 < t <h.

Then choose x2 such that x2>XXxi and

/""  <t>(xt)^—-dx<eh ffcfc;
x% X

in order to obtain (8.3), it is sufficient to choose x2 so great that
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J'00 <t>(x)
-^-dx <ei

tix2     X

and this choice of x2 is possible because of (1.2). We now choose f2 such that

the formulas 0</„_i</„_2 and

n-l

(8.4) Sk*(0|<«i. 0 << = /„_!,
t=i

hold when n = 3. Choose x3 such that the formulas xn+i>XXx„ and

4>(xt)

J'06 <,
- dx < ei, t ^ 2„

hold when m = 2. Continue to choose, in the order given, numbers t%, x\,

U, x6, • • • such that ¿n—»0, 0</„+i<£„, x„—>oo, xn+i>XXxn, and the formulas

(8.4) and (8.5) hold.
Let Z7(x) be the function defined by

00

(8.6) Uix) = £«*(*). x> 0.
a=i

Since the functions Ukix) differ from zero only over distinct intervals x»

gx =XXx&, properties of the functions m*(x) imply that £/(x) has the properties

required of w(x) in (8.11), (8.12), and (8.13). The transform Fit) of U(x) is,

like the functions F^t), positive. We find that

/» CO

4>ixt)U(x)d*
0

n—1     t% XXxfc

(8.61) = X I        <j>ixt)Uix)dx
i=l J II»J

► XX zn
/> \AXn /» oo

0(xi) Uix)dx +   I       (j>ixt)Uix)dz
*n J «»-M

When tn^tStn-i,

(8.62) F(0 < £/?*(<) +F„(0 +  I        -^— dx
*-l J *n+l *

so that (8.4) and (8.5) give

(8.63) Fit) < 2fl + Fnit)

and (7.4) then gives

(8.64) Fit) < 3€! + logX - A0.
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Thus, since 3ei<4e!»=e, the function í/(x) has all of the properties of m(x)

required by Theorem 8.1 except that U(x) is not continuous.

It is a simple matter to define a continuous function m(x) such that

(8.7) f
J 0

w(x) — i/(x) I dx < €i

and m(x) has all of the essential properties of £/(x) that we have used. For

example, we could make m(x) linear over short intervals x„ — pn^xn^xn and

Xx„ — gn=x^Xx„ in such away that u(xn— p„) = w(Xx„) =0, w(x) = Z7(x) when

x„gxgXx„ — qn, and

/Xxn /» Xir«

w(x)dx =   I U(x)dx.

Applying the same process with small intervals Xxn^x^Xxn + rn and XXx„

^x^XXxn+in in such a way that

/>XXzn+«n g
| w(x) - U(x) | dx < —

x„ — v~ ¿

we obtain a function m(x) of the type desired. The transform of w(x), which

will be positive, is such that

/I 00 /» 004>(xt)uix)dx <  I    <t>ixt)U(x)dx
o «^ o

(8.8) /*M . .
+   1     0(x/) | m(x) - Uix) | dx

■J 0

< 3ei + log X — Ao + «i = 6 + log X — .40.

In estimating the integrals, we use (8.64), (8.7), and the fact that 0 ¿</>(x) gl.

This completes the proof of Theorem 8.1.

9. The constant in Theorem 6.2. For comparison with Theorem 6.2, and

to invite further study of Theorem 6.3, we state the following theorem.

Theorem 9.1. Let <£(x) satisfy, in addition to our original hypotheses, the

condition $(x) ^0. Then the constant A0 in (6.11) is the least constant Bi with

the following property. If u(x) is a real continuous function for which

lim sup | xw(x) | < oo and S(T) is bounded, then it is possible to choose a positive

function tiT), which may depend upon u(x), such that

(9.11) lim sup \F(t(T)) -S(T)\ á 5i lim sup | x«(x)|.

That the constant A o will serve for each function m(x) in the more re-

stricted class of Theorem 9.1 follows from the fact that it serves for the larger

class in Theorem 6.2. That no constant Bi less than ^40 can serve is implied
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by Theorem 8.1. In fact the three relations (8.11), (8.13), and (8.14) imply

that, for the special function w(x) of Theorem 8.1, we have

(9.2) lim sup [SiT) - FitiT))] = [A0 - e] lim sup | xu(x) |
7*—» oo x~* oo

for every function tiT).

10. Conclusion. As was indicated in §1, the significance of Theorems 3.1,

5.1, 6.1, 6.2, 6.3, and 9.1 lies in the fact that they give information about

| F(i) — 5(2")| when neither lim^o F(t) nor limy<00 Fit) is assumed to exist.

We nevertheless examine implications of the theorems in cases where one of

the latter limits exists.

In case m(x) is integrable over each finite interval, lim sup |xm(x)| < oo,

and limr-oo 5(2") =5, Theorem 6.3 implies that

(10.1) lim sup | Fit) — S | = Aa lim sup | xw(x) |
i->0 2-» <o

where ^4o is the constant in (2.2) and (6.11). If the transformation (1.5) is

known to be regular, in which case existence of 5 = lim 5(2") implies lim Fit)

= 5even without the Tauberian condition lim sup |xw(x)| < oo, then (10.1)

is completely without interest. If however the transformation (1.5) is not

regular (as is true for the classic Riemann transformation 2?i for which

^(x)=x_1 sin x), then (10.1) is significant. In particular, (10.1) implies that

the transformation is regular over the class of functions w(x) which are

integrable over each finite interval and satisfy the condition lim xw(x) = 0.

One could presume that it has previously been discovered that the Riemann

transformation Rx has this property, but the author cannot give a reference.

In case w(x) is integrable over each finite interval, lim sup | xw(x) | < °°,

and lim¡..o Fit) = F, Theorem 6.2 implies that

(10.2) lim sup \F - SiT) \ =^0limsup | xw(x) |
T~* oo X—» oo

where A0 is the constant in (2.2) and (6.11). If the transformation (1.5) is one

for which we know an "O Tauberian theorem" to the effect that existence of

77 = lim Fit) and the Tauberian condition lim sup | xw(x) | < =o imply lim 5(2")

= F, then (10.2) is completely without interest. If no such "O Tauberian

theorem" is available, then it is of interest to note that (10.2) implies an

"o Tauberian theorem" to the effect that existence of F = lim Fit) and the

Tauberian condition lim |xm(x)| =0 imply that lim 5(2") = F.

Added April 28, 1952. Garten [1951 ] has recently determined the best

function A*iq) such that

lim sup I Cp   — sn [ á Ar (a) lim sup | mum \
m—>w

whenever ^m„ is a series with partial sums sn and Cesàro transform cpr) of
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positive integer order r, and the indices in the left member become infinite

with p= [n/q] or«= [qp]- As could be expected, the Garten results involving

Cesàro transforms of series are, insofar as they are comparable, very similar

to the results we have obtained for Riesz transforms of functions. For Cesàro

orders 1, 2, and 3, numerical constants are given by Garten [1951, p. 323]

to 5 or 6 decimal places; these agree with the values given between (2.52)

and (2.53) above.

References

R. P. Agnew, [1939] Properties of generalized definitions of limit, Bull. Amer. Math. Soc.

vol. 45, pp. 689-730.

-, [1945] Abel transforms of Tauberian series, Duke Math. J. vol. 12, pp. 27-36.

-, [1949] Abel transforms and partial sums of Tauberian series, Ann. of Math. (2)

vol. 50, pp. 110-117.
Hubert Delange, [1950] Sur les théorèmes inverses des procédés de sommation. I, Ann. École

Norm. (3) vol. 67, pp. 99-160.

Viktor Garten, [1951] Über Taubersche Konstanten bei Cesàroschen Mittelbildungen, Com-

ment. Math. Helv. vol 25, pp. 311-335.

Hugo Hadwiger, [1944] Über ein Distanztheorem bei der A-Limitierung, Comment. Math.

Helv. vol. 16, pp. 209-214.
G. H. Hardy, [1949] Divergent series, Oxford, 396 pp.

C. T. Rajagopal, [1950] On a generalization of Tauber's theorem, Comment. Math. Helv.

vol. 24, pp. 219-231.

Cornell University,

Ithaca, N. Y.


