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In the following we shall let U= [u] and 33 = [v] denote arbitrary Banach

spaces, and £= [t] denote a Hausdorff space. ï and g) are to denote the spaces

of all continuous functions mapping X into U and into 33 respectively. We

shall let ß denote the space of all linear continuous mappings of U into 33.

A function K on Ï to fi which is bounded on X and continuous in the strong

topology of ß induces a linear continuous operator k on 3£ to g) by the

formula(2)

k(x\ t) = K(t)x(l).

The main result of this paper, contained in §3, gives sufficient conditions

that k map H onto the whole space g). Applications to nonlinear equations,

integral equations, and to underdetermined systems of differential equations,

including certain types of partial differential equations, are given in §§4, 5,

and 7. In §6 we consider the case when X is a compact interval of the real axis,

and let 7L' and §)' denote the subspaces of H and g) consisting of those functions

which are of class C. Sufficient conditions are given that k map ï' onto g)',

and this result is applied to the case of nonlinear equations.

In the case when, for each /, K(t) gives a one-to-one correspondence be-

tween the spaces U and 33, the results of this paper have been long known and

are easily derived. The methods used here enable us to prove the existence

of solutions with certain useful properties in cases when the solution is not

unique.

1. Topological preliminaries. J. A. Dieudonné has discussed [3] a gen-

eralization of the notion of compactness of a topological space which will be of

considerable use in §3. We therefore summarize a few definitions and results

in the form that we shall need. In the following all coverings of topological

spaces are supposed to consist of open sets.

Definitions. A covering 33 is said to be a refinement of the covering 3Í

if every set in 33 is contained in some set in 2(. A covering is said to be neigh-

borhood-finite if every point has a neighborhood which intersects only a finite
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(2) The following remarks on notation may be useful. If A is an element of ii, the func-

tional value of A for a given u will be denoted by A(u) or by Au as convenient. When A =K{t),

u — x(t), it is convenient to write K(t)x(t). For fixed x, k(x) is a function of t, whose value at

Í, n{x){t), is more conveniently written k(jc|í)-
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number of sets in the covering. A Hausdorff topological space is said to be

paracompact if every covering 21 has a refinement covering 33 which is neigh-

borhood-finite.

Dieudonné showed that every paracompact space is a normal ( 7Y) topo-

logical space, and that every closed subset of a paracompact space is itself

paracompact in its relative topology, but this is not generally true for arbi-

trary subsets. On the other hand, A. H. Stone showed [7] that every metric

space is paracompact. This theorem is very important for our purposes. It

implies, in particular, that any subset of a metric space is paracompact. It

is not known whether there are any spaces other than metrizable spaces in

which arbitrary subsets are paracompact.

We shall need the following special case of Theorem 6 in Dieudonné's

paper. (Cf. also Lefschetz [8, p. 26].)

Lemma. Let Xbea normal space and [A,} a covering of X which is neighbor-

hood-finite. Then there exists a covering {Br} of X with the same index class and

for which B„(ZAvfor all v.

Under the conditions of this lemma, it follows that for each v there

exists a real-valued continuous function \p, which is non-negative everywhere

and such that \¡/,(t) =1 for t(EJ5v and $,(£) =0 for t^Av. By the assumption

of neighborhood-finiteness we know that every point is contained in only a

finite number of the sets {A,}, hence ip,(t) = 0 except for a finite number of

indices. Moreover each point is contained in some B„ so not all of the func-

tions can vanish at any given point. Hence the sum £,, i^„(/) is well-defined

at each point and is neither zero nor infinite. Since, in the neighborhood of

each point, only a finite number of terms are nonzero, this sum is a continu-

ous function on all of X. Let </>,(t) =ipv(t)/ ^y ^»(¿)- It is clear that <f>„(t) =0

for t(£A„ and ^„ <¡>,{t) =1 for all ¿GÏ. Such a collection of continuous

functions {<¡>,\ is called a continuous partition of unity subordinate to the cover-

ing {A,}  [2, p. 66].

The following lemma follows immediately from the above discussion:

Lemma. Let Xbe a paracompact space and { C„} a covering of X. Then there

is a neighborhood-finite refinement covering {A,} and a continuous partition

of unity {<j>,\ subordinate to {A,).

We note that {<j>,} is also subordinate to {C„} in the sense that for every

v there exists some C^ outside of which <j>, is identically zero.

2. Induced linear transformations. In the space X of all continuous

functions on X to U, we define the "norm" of an element x by the formula

11*11 =sup {||x(¿)|| |¿E£}. The subspace of 36 on which this norm is finite we

denote by HB ; it is a Banach space. When X is sequentially compact 3£s = 3E.

The corresponding notations 2), ||y||, g)B are used in connection with the space

of continuous functions on X to 33.
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In the space ß of linear continuous transformations L of U into 33, the

"uniform" topology is that determined by the norm in ß, while the

"strong" topology is that corresponding to a system of neighborhoods

7(0; e, Mi, • • • , un) of the origin. Here V(0; e, Mi, • • • , un) consists of all

transformations L satisfying ||Z,w¿|| <e, t = l, • • • , n, where e>0 and

U\, • • ■ , m„ are arbitrary elements of U. We denote by ßo the subset of ß

consisting of all the transformations mapping U onto all of 33.

In this section we investigate certain relations between functions K

mapping X into ß, and linear continuous transformations k of 36 into §).

When K is given, let kk be defined by

(1) KK{x\t) = K(t)x(t).

When k is given, let KK be defined by

Kt(t)u = k(xu I t)

where xu(t) =u for all /. Let

(2) m0(k) = suP {||x(o|| | tex}.

As a consequence of the Uniform Boundedness Theorem of Hildebrandt (see

also [6, p. 26]) we have the following condition for the finiteness of Mo(K)(s).

Lemma. If K(t)u is a bounded function of t for each fixed m£U, then M0(K)

<».

We can now state the following relations between K and kk, and between

k and KK.

Theorem 1. (a) If K: X—>tl is continuous with the strong topology in ß,

and Mo(K) < oo, then kk is a linear continuous transformation of 36 into g),

and ||kx|| = Ma(K). Moreover, if\ = KK, then K\ = K.

(b) If k is a linear continuous transformation of 3E into §), then KK maps

X into ß, is continuous with the strong topology in ß, and M0{KK) ^||k||. More-

over if L=K„ then kl = k if and only if, for each /££, Xi(t)=x2(t) implies

k(xi|í) =k(xí\í). When this last condition holds, and k maps Ï onto ?J, then KK

maps X into ß0.

The verification of these statements is straightforward, and will be

omitted. A simple example in which k maps 36 onto §), but KK does not map

X into ß0, is obtained by taking X= [O, l], U = 33=reals, ic(x\t)=x(t)

-tf10x(s)ds. Here K~\y\t) =y(t)+2tP0y(s)ds, X«(1)=0.

It is natural to ask about conditions for the mapping K to be continuous

with the uniform topology in ß. The following answer is readily verified.

(3) We note that in the lemma the completeness of the space S? is not needed, and in

Theorem 1 neither U nor 35 needs to be complete.
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Theorem 2. Let 36i denote the set of constant functions in 36 with norm equal

to 1. Let nbe a linear continuous transformation of 36 into §). Then the associated

mapping KK is continuous with the uniform topology in ß if and only if the set

of functions /c(36i) is equicontinuous on X.

Since the concepts of equicontinuity and compactness are sometimes re-

lated, the next theorem seems rather natural.

Theorem 3. If k is a completely continuous linear transformation on 36 to

§), then the associated mapping Kt is continuous with the uniform topology in ß,

and each KK{t) is a completely continuous linear transformation on U to 33.

Proof. In view of Theorem 2, to prove the first assertion in the theorem it

is sufficient to prove that k(36i) is an equicontinuous family of functions in 9j.

Since 36i is a bounded family of functions in 36, the hypotheses imply that

k(36i) is totally bounded in §). Hence, given any e>0, there exists a finite set of

functions {z¡\ in £) so that for each x„£36i there is at least one j for which

||k(Xu)— Zj\\y<e/3. For fixed t0 and for each j, there exists a neighborhood

Uj(t0) so that tÇzUj(t0) implies that \\zj(t) — z3(to)\\v<e/3. Since there are

only a finite number of z¡, we can take U(to) ={)jUj(to). Then ¿£?7(£o) im-

plies that for any x„G36i we have

\\k(xu\  t)   —  k(xu j  ¿o)||

Ú   \\k(Xu\  t)   -  2,-(/)||   +   \\zj{t)   -   Zi(/0)||   +   ||z,-(/o)   -   K{XU\  ¿o)||   <  «

for some one of the z¡. So k(36i) is equicontinuous and K, is continuous witn

the uniform topology in ß. The final statement of the theorem is immediate.

The converse of Theorem 3 is not true. That is, if K(f) is completely

continuous for each t and K is continuous with the uniform topology in ß,

then it does not follow that the induced mapping kk is completely continu-

ous. For example, if U and 33 are chosen to be the real line, X is the closed

unit interval, and K(t) is the identity map for all /, then each K(t) is com-

pletely continuous. However, k is the identity transformation on C[0, l]

and is not completely continuous.

Evidently it is easier to carry the properties from k to KK. In the next

section we shall go the other way and prove a converse to the final state

ment in Theorem 1 (b).

3. Induced transformations mapping 36 onto g). If L£ßo, that is, L is a

linear continuous transformation mapping U onto 33, then from a result of

Banach [l, p. 38] it follows that

I(L) =  sup   < inf   ||m|| >
IMI-l    [.Lu-,. )

is finite. In the special case where L is one-to-one, /(Z) =||Z,-1||. It is easily

seen that I(L) is upper semicontinuous on ß0 in the uniform topology. [See 5,
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Theorem 1.] For a mapping K of the space X into ßo, we shall be concerned

with the number M0 defined by (2), and with the number

JVo = sup {l(K(t))\teX}.

When K is continuous in the uniform topology of ß, and X is sequentially

compact, then M0 and N0 are automatically finite.

Theorem 4. Suppose that the space X is paracompact, that K is a mapping

of X into ßo which is continuous in the uniform topology, and that M0 and N<¡

are finite. Then the induced transformation k defined by (1) maps 36 onto all of g).

Moreover, if N>N0, ;yG£), ande>0, then there exists an xG36/or which k(x) =y

and \\x{t)\\ £N\\y(t)\\+efor all tGX.

Proof. Suppose that the theorem is proved for all yGD such that \\y\\

2»1. Then for an arbitrary yG§) we take y*(t) =y(t) when ||y(i)||=l and

y*(t) =3'(¿)/||3'W|| when ||y(0|| =L By our supposition there exists an #*G?6

so that K(x*)=y* and ||x*(/)|| ^iV||y*(/)l +« for all t(=X. We now put

x(t)=x*(t) when ||y(i)||gl and x(/) =\\y(t)\ x*(t) when ||y(/)||^l. It is easily

verified that x(/) satisfies the conclusions of the theorem with N replaced

by N+e. Since N and e are subject only to the restrictions N>N0 and

e>0, we see that it suffices to prove the theorem under the hypothesis that

Ibllái.
Suppose, then, that we are given such an element yG2) as well as the two

numbers iVand e. Take g>2(7V+€+l)2. For each i0GÏ and for any positive

integer r, the continuity of y and K as functions of / implies that there exists

an open neighborhood Vr(t<>) of t0 such that if ¿'G Vr(to), then

(3,) \\y{t') ~ y(t0)\\ <e/2q',

(4r) \\K(f) - K(t0)\\ <e/2q\

We cover X by the open sets { Fi(¿)|/GÍf- By the paracompactness of X

there exists an open covering tyi= {Pi,,} such that each Pi,,C.Vi(liiV) for

some point ¿i,„ and so that the covering $1 is neighborhood-finite. Let {01,,.}

be a continuous partition of unity subordinate to ^TJi, so that 0i,, vanishes out-

side of Vi(ti,P) (since by construction it vanishes outside of Pi,,.).

Define yi(t) = 2Z, faAOyih.v)- By construction of the </>'s we have that

0i,, vanishes unless t is such that ||y(/i,,) — y(t)\\ <e/2q. Hence we have that

||yi(0-y(*)||=|| Z<t>Ut){y(ti,)-y(t)}\\^ H4iÁt)\\y(.ti..)-y(.t)\\<e/2q for
all tÇ:X. So we have for all t:

(50 ||yi(0 - y(<)|| <«/2?.

Since K{t) maps onto 33 for each /, then for each v there exists a Mi,, so

that K(h.t)ui.,=*y{t\,¿) and

(öi) IkJI < ï\\y(ti>)\\
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We define Xi(t) = X)0».»(OMi.»- Then

ll*i(0|| - ||Z>i.»(0«iJ = L0i.»(Oll«i.»ll <^E*i.»(0b(<i.r)||.
But from (3i) and the triangle inequality, we have for ¿G Vi(h,r) that

| \\y(h,,)\\ - \\y(t)\\\ g \\y(hs) - y(t)\\ <</2q.

So we get that ||y(ii,,)|| <||y(*)|| +e/2q. Inserting this in the preceding and

using the definition of q to show that N/q<l, we have for all t:

(7i) \\Xl(t)\\ < N\\y(t)\\ + e/2.

Also ||yi(0--K(0*i(0lhl| Ç 4>iAt)y(ti.>)-K(t)lY, 4*At)ui.,]\\ =11 Z 0i.»(O
■{ü:(/i.,)Mi.,-ü:(/)«i,,}||á T,<l>iAt)\\K(t1,,)ui,,-K(t)u1,,\\. Since 0i,,(/)=O
except possibly for those t for which (4i) holds, we see with the help of (61)

and (5i) that the last expression is less than

2>U')IK*ll«/2s < (AV2?)X>i,,W||y(¿i,,)||
< (Ne/2q) £ 0liF(O{ ||y(t) || + t/2q}

S (Ne/2q)(l + t/2q) = (e/2q)(N + Ne/2q).

Combining this with (5X) and the definition of q, we have

||y(<) - X(0*i«)|| < W2q)(N + Ne/2q + 1)< (e/2?)(iV + € + 1)

< e/4(N + t + 1) < «/42V.

Hence we have shown that, for all /:

(81) \\y(t) - K(t)Xl(t)\\ < e/2>N.

Suppose that for each positive integer r^m we have chosen a pair of

bounded continuous functions yr and xr so that for each /GÏ the following

inequalities are satisfied :

(5,) IIyr(0-y« II <*/2q',
(7,) ||«r(0|| <^||yW||+e/2+---+*/2%

(8r) ||y(0-X(/)xr(0|| <e/2'+W,

(9,) ||«r(<)   -   *r-l(0||   <  «/2r.

We shall show that we can construct ym+i and xm+i so that these same in-

equalities are true with r replaced by m-\-\.

For any to, since K(t0) maps onto 33, we can choose a point m0GU so that

K(t0)uo=y(to) and

|| Mo -  *m(*o)||   ^  ÍV||i£(ío)[«0 -   *m(/o)]||

+ = N\\y(to) - *(*,)*„(<.) || < e/2m+1,
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the last inequality being true by virtue of (8m). Consider the set of points

{t\ ||mo — xm(¿)|| <e/2m+1}. From the preceding remark this set is nonvoid;

since xm is continuous, it is open. Hence there exists an open neighborhood

Wm+i(t0) of t0 which is contained in the set Vm+i(t0)r\{t\ ||M0-xm(/)|| <e/2m+1}.

For each point iEïwe choose a point u and an open set Wm+i(t) as pre-

scribed in the preceding paragraph. The family of open sets { Wm+\(t)\ t(E.X}

form an open covering of X; by paracompactness there is an open covering

^ßm+i= {-Pm+i,,} which is neighborhood-finite and each of whose sets is con-

tained in Wm+\{t) for some I (which we shall henceforth label as tm+i,,). As

before we construct a continuous partition of unity {0m+i,,} subordinate to

the covering tym+i. We then define

ym+l(t)   =   Z^> 0m+l,»Wy('m+l,,), Xm+l(t)   =   2^ 0m+l.,(Owm+l,,i

where the point mot+i,, is the point chosen to correspond to the point tm+i,,

by the process outlined above. Since 0m+i,, vanishes outside Pm+i,„ we see

from (3OT+i) that

(5«+0 ||y„+i(0 -yW|| <i/2?'"+1

for all t. Since 0m+i,, vanishes except possibly for those t for which (6ro+i)

holds, we have

||a;m+l(0   —  Xm(t)\\   =   || X 0m+l,»WMm+l,, —   xm(t)\\

=   W11 4>m+lAt) {Um+l,v —   Xm(t) ) ||

á   Z<í>™+l.,(0||«m+l,, -   *«(/)||   <  t/2m+\

Hence for all /, we have

(9m+l) ||*m+l(0   -   *m(0||   <  i/2m+1.

Combining this with (7m) we get

(7m+1) ||*-+i(0|| < N\\y(t)\\ +e/2+ ■■■ + e/2- + e/2"*>

for all iGÏ. Also

||ym+l(0   —   K(t)xm+l(t)\\    =   ||^0m+l,,(/){y(<m+l.,)   —  ^(/)Mm+l,r}||

=   || ¿^ 0m+l,,(/) \K{tm+l,y)um+l,v  —   K{t)Um+\,,\\\.

Now by (6m+i) and (7m), ||«m+i,,|| <N\\y(tm+1,,)\\+e^N+e, and since 0m+i,,

vanishes outside of the set where (4m+i) holds, ||ym+i(¿)— K(t)xm+1(t)\\

< (iV+e)€/2gm+1. By combining this inequality with (5m+i) we obtain

(8m+i) ||y(i) - K{t)xm+l{t)\\ < e/2™+*N,

since e(N+e + l)/2qm+l<e/2m+2N.

Thus we obtain by the inductive process described above two infinite

sequences  {yr} and  {xr}. From (9), it follows that  {xr}  is a Cauchy se-
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quence in 36, and so there exists a function xG36 which is the limit of this

sequence. In terms of the induced transformation k, (8r) states that

||y — K(xr)|| <e/2r+1N. Hence /c(xr)—>y in the space §). But since k is a continu-

ous function on 36, we have /c(xr)—>k(x) in the space g). Consequently y = /c(x);

that is, k maps 36 onto §).

Passing to the limit in (7,) we see that ||¡e(¿)|| <-¿V||y(<)||+€ for all ¿G£.

This completes the proof of the theorem.

The next corollary allows one to drop the e in the estimate on the magni-

tude of x(t) given in the final inequality of the theorem.

Corollary. With the hypotheses of the theorem, given any N>N0 and any

yG§) for which the open subset of X where y(t)^0 is paracompact, then the

final inequality of the theorem may be strengthened to read ||x(£)|| á-¿V"||y(í)||

for all ¿GÏ- In particular this is true for arbitrary yÇzty when X is a metric

space.

Proof. If y(t) 7¿Q on X, we can define the function y*{t) = y(/)/||y(í)|| for

all values of t, and ||y*(/)|| =1. Pick e>0 so small that N0<N-e, and let

N* — N—e. Applying the theorem to N*, y*, and e we get an x*^X such that

*(x*)=y* and ||x*(/)|| <iV*||y*(/)||+e = iV-e+e = iV. From this, by defining

x(t) = \\y(t)\\x*(t), we get k(x) =y and ||x(/)|| ^2V||y(/)||.

If the set Xo= {t\y(t) ^0} is paracompact, we can consider the function

y restricted to Xo, in which case the preceding remarks are valid and we get

an x obeying the stronger inequality on Xo- Extending the domain of defini-

tion of this x to all of X by setting it equal to zero outside of Xo gives a

continuous function on X which satisfies the two conditions.

In passing, we note that the preceding result generalizes Theorem 4 of

[l, p. 40], in two directions.

4. Nonlinear transformations. The next theorem is a corollary of Theorem

1 of [5], except for the pointwise inequality on the solution. The proof is

along the same lines, and is omitted. We recall that 36b and §)b denote the

Banach spaces composed of the bounded functions in 36 and g) respectively.

Theorem 5. Let \be a linear continuous mapping of 36b onto £)b, for which

there exists a constant N with the property that for each yGDs the equation

y = X(x) has a solution xG36b with ||x(/)|| ^iV||y(/)|| on X. Let T(x) be defined

and in tyßfor ||x|| <5, and satisfy T(0) =0, and

\\v{xx\ f) - T(x2| /) - X(*i - «i]/)(| á e||xi(¿) - x2(t)\\

for tEX, \\xi\\ <5, where NQ<1.
Then for each y(E$)B with \\y\\ <S(l—NQ)/N the equation y = T(x) has a

solution xG36b with

\\x(t)\\ = ||y(0||iV/(l-iVQ).

In case S = 00   Theorem 5 yields the result that T maps 36b onto all of
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§)b- If also r is positively homogeneous of degree one, and the value T(x|i)

of the function T(x) at the place / depends only on x{t), then Y maps 36 onto

§). This may be shown by the device used in the proof of Theorem 4, namely,

by replacing y(t) by y(<)/||y(0|| at values of / where ||y(/)|| >1.

'In Theorem 4 the mapping K was required to be continuous in the uni-

form topology of ß. The next corollary extends part of the results of Theorem

4 to some mappings which are only continuous in the strong topology of ß.

Corollary. Let K be a mapping satisfying the conditions of Theorem 4,

and let k be the induced linear transformation of 36 onto §). Let A be another

mapping of X into ß, continuous in the strong topology of ß, and let a be the

corresponding induced linear transformation of 36 into *§. Suppose in addition

that

\\A{t)\\ úMo< Í/Na,        No = sup I{K{t)),

and that X is a metric space. Then k — ol maps 36 onto all of g), and if 0</VoM0

<NM0<1, KX — ax=y has a solution x with

\\x(t)\\ = ||yW||iV/(l-iViWo).

From Theorem 5 we can deduce the existence of a continuous solution

M=x(/) of an equation G(u, t) =0 even when the solution is not uniquely de-

termined. This result is embodied in Theorem 6, and a special case in the

following corollary.

Theorem 6. Let L be a linear continuous transformation of XI onto the whole

of 33, and let 0<NQ<1, where N>I(L). Let X be a metric space, and let

G(u, t) be continuous for ||m|| <ô, t£zX, with values in 3?. Suppose also that

||G(mi, 0 - G(u2, t) - ¿(Mi - m2)|| ̂  Qll«! - «,||       for \\ui\\ < 5, t € X,

||G(0, 0|| < (1 - NQ)5/N on X,

G(0, to) = 0.

Then there is a continuous function x(t) defined on X such that

G(x(t), t) = 0,        x(to) = 0,        ||x(0|| á ||G(0, 011^/(1 - NQ).

Proof. Let \(x\t)=L(x(t)), T(x\t)=G(x(t), t)-G(0, t), y(t) = -G(0, t).
Then it follows from Theorem 4 that Theorem 5 is applicable.

Corollary. Let X be a metric space, and suppose G(u, t) and its partial

differential duG(u, t; du) are continuous for \\u\\ <5, ¿GÏ, uniformly for \\du\\

= 1. Suppose also that G(0, to) =0, and that duG(0, to; du) maps XX onto the whole

space 33. Then there exists a number e>0 and a continuous function x(t) defined

for dist (/, io) <c such that G(x(t), t) =0, x(t0) =0.

5. Equations of Volterra type. The next theorem includes results on the
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existence of solutions for integral equations and for ordinary differential

equations in cases when the solution is not unique.

Theorem 7. Suppose that X is a linear interval [0, T], and let X satisfy the

conditions of Theorem 5. Let a(x) be defined and in ty for ||x|| <ô, and satisfy

a(0) =0, and

J 0
(10) ||«(*i| t) - «(*,| OH á Q |     ||*i(s) - x2(s)\\ds

for t£X, ||x,|| <5, where Q>0.

Then for each yG§) with \\y\\ <ôe~NQT/N the equation

\(x) — a(x) = y

has a solution xG36 satisfying the two inequalities

(11) ||*(0|| = iV||y(0|| + ^||y||{«w<" - 1} á tf||y||«'r<,r,

fl|y(*
J 0

(12) ||*(0|| á 2V||y(0|| + N2QeW I     ||y(i)||<fo.
•'a

Proof. Since X is compact, we have 36b =36, §)b=§). From the assumptions

on X and a it is clear that there exist solutions x0> *i, x2, • ■ • of the equations

Xxo = y,       Xx„ = y + a*»_i,

satisfying the inequalities

||*o(0|| aiV||y(0||,

||*,(0 - *»-i(0|| ^ N\\y\\(NQt)»/nl,

WQ f   ||y(s)\\ds(NQt)-'/(»- 1)!,
J n

x„(0 - *„_i(0   g

for 0 = / = T. Thus the approximations x„ lie in the domain of a, and converge

uniformly to a solution satisfying the stated inequalities.

We note that the inequality (12) of the theorem implies that

f   \\x(s)\\ds ̂ (N + Ne"®') f   \\y(s)\\ds,

for all f.
6. Solutions of class C. In this section we shall suppose that X is a linear

interval [0, T], and shall let 36' and §)' denote the subspaces of 36 and §)

composed of those functions which are of class C on X. With the new norms

(HI' - sup ||*'(0|| + NO)||,        ||,||' - sup U/iOll + ||jr(0)l|,
these are Banach spaces.
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Theorem 8. Let K(t) be of class C' on X with values in ßo- Then the induced

transformation k maps 36' onto all of g)' and the equation nx=y has a solution x

with

(13) ||x||' = N(l + NQ)eN(iT\\y\\',

where N>N0 = sup I(K(t)), Q = sup \\K'(t)\\.

Proof. The equation

K(t)x(t) = y(t)

is equivalent to

(14) *(0)*(0) = y(0),

(15) K{t)x'{t) + K'(t) T*(0) + j   x'(s)ds'\ = y'(t).

(See [4, Theorem 4].) By hypothesis, equation (14) has a solution x(0) with

(16) ||*(0)|| = tf||y(0)||.

To equation (15) we apply Theorem 7, with x(0 replaced by x'(0,

X(*'| 0 = K(t)x'(t),        a(x'\ t) = - K'(t)  f   x'(s)ds,
Jo

and with y(0 replaced by y'(t)—K'(t)x(0). From the inequality (11) of

Theorem 7, we find that a solution exists satisfying

||*'(0|| ^ NeWsup ||y'(0 - JC'(0*(0)|| = ^«^«""{sup |ly'(0|| + ^o||y(0)||},

and by combining this with (16) and the definition of ||x||' and ||y||', we obtain

(13).

Theorem 9. Let G(u, t) be of class C" for \\u — u0\\ <S, ¿GÏ, and suppose

that duG(u0, t; du) maps XX onto 33 for each ¿G£- Let y0(0 =G(mo, 0- Then for

each y G?)' with \\y— y o||' sufficiently small, there exists x G 36' such that \\x(t) — m0||

<5 and

G(x(t), t) = y(0.

Proof. Let T(x) be defined by

r(*|o =G(x(t),t)

for *G36' with ||x(0 —m0|| <5. If we denote this domain of the function V by

36o', it is straightforward to verify that V is of class C on 36o', with values in

§)', and that its differential dT(x; dx) is given by

dT(x; dx\t) = duG(x(t), t; dx{t)).
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If we set x0(0=Mo, we see by Theorem 8 that dT(x0; dx) maps 36' onto §)'.

Then by Theorem 2 of [4], the desired result follows. It is easily seen that

we may require that ||x — x0||' be arbitrarily small by taking \\y— yo||' suffi-

ciently small.

7. Generalization of equations of Volterra type. Theorem 7 is here gen-

eralized in two ways—by removing most of the restrictions on the space X,

and by modifying the Lipschitz condition (10) on the function a(x). We sup-

pose that X is the Cartesian product of two Hausdorff spaces 9Î and ©. Cor-

responding to a real-valued nonnegative function p(r) defined on 9Î, and a

function xG36b, we set

P = sup p(r),

t(x, 8, s) = sup ||x(r, s)\\ (for p(r) _ 6)

= 0 (if p(r) > 6 for all r).

We note that for each xG36b, it is a finite nondecreasing function of d, and so

is integrable on [O, P] îf P is finite.

Theorem 10. Let X be a linear transformation satisfying the conditions of

Theorem 5. Let a(x) be defined and in §)b for \\x\\ <S, and satisfy a(0) =0 and

x(*i — *2, 0, s)dd
0

for \\xi\\ <5, where Q>0. Suppose P = sup p(r) is finite.

Then for each yÇz^B with \\y\\ <he~NPQ/N, the equation

X(x) — a(x) = y

has a solution xG36b such that

\\x(r, s)\\ = NeNP(¡sup ||y(r,s)||.
r

The proof is like that for Theorem 7, and is omitted.

The following simple examples may serve to indicate possible applications

of the last theorem. Let 9î = 9îiX9î2, where 9ti = 3t2=[0, l], and let

A(ji, r2, pi, p2, s) be a continuous function on 9ÎX9ÎX©.

L p(n, r¿) = ru

a(x | ri, ft, s) =   I       I    A(ru r2, pi, p2, s)*(pi, P2, s)dp2dpi.
Jo    Jo

2. piju r2)=sup {rx, r2],

a(x | fi, rs, s) =   I       I    A(ru r2, pi, p2, i)*(pi, p2, s)dp2dpi.
J o   •' o «
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We note that if a is itself a linear operator, then Theorem 10 states that

the operator X —a has properties like those of X, in the following sense. We

suppose that the spaces 5R and © are compact, so that 36b = 36, etc. Then if

36a denotes the space of continuous functions on $R to U, 36 may be regarded

as the space of continuous functions on © to 36«, and

X(x) — a(x) = y

has a solution x which, as a function of s, satisfies a pointwise bound. Thus if ß

is another operator with /3(0) = 0, p'(s) is a nonnegative function defined on ©,

tt'(x, 9') = sup ||*(r, s)|| for p'(s) giVG 9Ï,

and

\\ß(Xi | S)  - ß(x2 I í) ||   á Q'   f «"'(Xi -   Xi, d'W,
J 0

then Theorem 10 may be applied again to show the existence of a solution of

X(x) — a(x) —ß(x) =y.

A very special application of the last remark may be made to underde-

termined systems of linear hyperbolic differential equations in two inde-

pendent variables in which only the mixed second derivatives appear. To be

explicit, consider the system

dhj dz, dZj
lij dij Oij CijZj ~ ai,

drds ds dr

with prescribed values for z,-(r, 0), 2y(0, s), where i=i, • • • , m; j=l, ■ ■ ■ ,

n>m, and the terms are summed on the repeated index j. The coefficients

hi, o-ij, bu, Cij, di are understood to be continuous functions of (r, s) on a rec-

tangular interval containing the origin. If we set

x, = ->
drds

X,(x| r, s) - kj(r, s)xj(r, s),

on(x | r, s) = a{j(r, s)  I     *,(p, s)dp,
J a

/* 8 j% r      /» 8
Xj(r, <r)d<7 + Cij(r, s)  I *,(p, <r)d<rdp,

o J o    J 0

and group the remaining terms to form a function y¡(r, s), we see that the

conditions of the preceding discussion are satisfied, provided the matrix

(/,-,■) has rank m at every point With the help of Theorem 2 of [4], an embed-

ding theorem lor nonlinear equations may then be secured.
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