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1. Introduction. A relation p(xi, ■ ■ ■ , x„) among natural numbers is said

to be arithmetically definable if there is a formula containing the free vari-

ables Xi, • • ■ , xn, any number of bound variables, and symbols for particular

natural numbers, involving only the mathematical symbols + and ■, and

the logical symbols: A (for every), V (there exists), A (and), V (or), ~ (not),

and = (equals), which holds if and only if the relation p(xi, • • • , x„) is satis-

fied.
A relation p(xi, • • • , x„) is said to be existentially definable if there is a

formula of the type described above which does not contain either of the

logical symbols A or ~. We shall consider the existential definability of cer-

tain relations, e.g. x = yz, x—y\, and "x is a prime," which are known to be

arithmetically definable by a general theorem of Gödel (see §6)(1).

It can easily be seen that a relation p(xi, • • • , xn) is existentially definable

if and only if there is a polynomial P(xi, • • • , xn, U\, • ■ ■ , uk) with (positive

or negative) integer coefficients such that

p(Xl,   ■••,*»)*-* V P(Xl,   •   ■   ■   ,   Xn,  Ul,  ■   •   •   ,  Uk)   =   0.

■li ■■-.«*

Thus, a set of natural numbers is existentially definable if and only if it is

the set of values of a parameter for which a certain diophantine equation is

solvable in natural numbers.

Solving the diophantine equation P(x)=0 in integers is equivalent to

solving P(x)P(—x)=0 in natural numbers. Also solving P(x)=0 in natural

numbers is equivalent to solving P(u2+v2 + w2+z2) =0 in integers. Hence we

see that sets of natural numbers which are existentially definable are also

existentially definable if we allow the variables to range over the integers.

A simple example of an existentially definable set is the set of perfect

squares. The complementary set is also existentially definable, since

~ V x = y2 <->    V   [(u2 + v + 1 = x A  (w + l)2 = x + w + 1)].
y u,v,w

The tenth problem in Hubert's famous list is to find an effective method

for deciding if a given diophantine equation is solvable. Since there are many

classical diophantine equations with one parameter for which no effective
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method is known to determine the solvability for an arbitrary value of the

parameter, it is very unlikely that a decision procedure can be found. For

example, no way is known to determine the values of a for which the dio-

phantine system,

x2 + ay2 = s2,        x2 — ay2 = t2,

is solvable. (This problem was first studied by the Arabs in the Middle Ages.)

If there is some non-recursive set which is existentially definable, then we

could conclude that there is no effective method for determining the solv-

ability of an arbitrary diophantine equation.

A relation p(xi, • • ■ , x„) is said to be existentially definable in terms of

the relations fa • • • , fa if there is a defining formula of the type described

in the definition of existential definability except that it may also contain the

relations fa ■ • ■ , fa Clearly, if p is existentially definable in terms of certain

existentially definable relations, then p itself is existentially definable.

The main result of this paper is that the relation x=y" is existentially

definable in terms of any relation of roughly exponential growth. Let the

"wth super power of x," x *«, be defined recursively by

x*0 = 1,    x*(re + 1) = x{x*n\

We shall prove that the relation x=y* is existententially definable in terms

of any relation <b(u, v) such that

(1.1) VA  [<¡>(u, v) —> v < u*n],
n     u,v

and

(1.2) ~V   A  [(¡>(u, v) -> v < «»].

It is not known whether any <b satisfying these conditions is existentially

definable. At present, very little is known about the size of solutions of dio-

phantine equations with a finite number of solutions. However, it seems to

me very likely that some such relation <b is existentially definable. If this is

the case, then we could conclude that x=yz is existentially definable. In par-

ticular, this would mean that there is a polynomial P(x, y, z, n, ux, ■ ■ ■ , uk)

with integer coefficients such that

Xn -}-   y*.  =   zn   <_> Y pfx¡  y^ z¡  n¡ Ul>   .   .   .   t  Uk)   =   0.

"I. •••."*

In other words, we could reduce Fermat's equation (or any exponential equa-

tion) to a polynomial equation in more variables. On the other hand, if it

should be shown that x = y* is not existentially definable, then we could con-

clude that no relation satisfying (1.1) and (1.2) is existentially definable.

Various properties of solutions of the Pell equation x2 — (a2 — l)y2= 1 are
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listed in §2. These are needed in §§3 and 4. §3 contains the main result of

the paper. In §4, we show that x=y* is existentially definable in terms of the

relation x Pow y (x is a power of y). It is not known whether Pow is existen-

tially definable or not. However we show that the relation ~ x Pow y is

existentially definable. In §5, we investigate existential definability in terms

of exponentiation. The relations x=y! and "x is a prime" are shown to be

existentially definable in terms of exponentiation. In §6, there is a discussion

of the relation of recursive enumerability and existential definability.

2. Pell's equation. In this section, we give various lemmas concerning

solutions of the equation x2— (a2 — l)y2 = l in natural numbers. The first

lemma is a special case of the well known theorem on Pell's equation, x2— ay2

= 1. [See Landau, Vorlesungen über Zahlentheorie, vol. 1, pp. 57-64.] The

remaining lemmas can be proved easily. In all of the lemmas, a is any natural

number greater than 1 and the other free variables are any natural numbers.

Lemma 1.

x2-(o2-l)y2 = l hVï+ y(a2 - l)1'2 = (a + (a2 - l)1'2)".

n

Lemma 2. If an and an' are defined by the equation

an + a'n(a2 - l)1'2 = (a + (a2 - l)1'2)»,

then

a0 = 1,

d = a,

an+z — 2a-anjri — an,

Lemma 3. an+i = a-an+añ (a2 — 1).

Lemma 4. anSan^(2a)n. The equality holds on the right only for « = 0.

Lemma 5. an—añ(a—y)=yn (mod 2ay—y2 —1).

This follows easily by induction from Lemma 2.

Lemma 6.

«n =       ¿     (n)a"-k(a2- l)*'s

ir=0, k even \ * /

and

«» -       Ê      (n\a»-k(a2- 1)(*-d/2.
*-l, i odd \k /

a0 = 0,

01 =   1,

an+z — ¿a ■ ßn-yi — a„.

Lemma 7.
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a„ ■ rea"-1 (mod a2 — 1),

hence

an = n (mod a — 1).

This follows immediately from Lemma 6.

Lemma 8. Let i^(a, u) be the relation defined by the following equivalence,

4>(a, u) <^ V [x2 - (a2 - \)(a - l)2y2 =lA*>lAa>lA« = ax].
x,y

Then

\p(a, u) —» u ^ a"

and

a > 1 -» V (f(fl, u) A u < a2a).
u

Proof. By Lemma 7, u = ax ^ a • as-i- Hence we obtain the first conclusion

by Lemma 4. On the other hand, w=aa„_i satisfies \f/(a, u) and by Lemma 4,

a-aa^i^a-(2a)a-1<a2a.

Lemma 9. If x > 1 and a>xn, then

anx" S (ax)„ < an(xn + 1).

Proof. By Lemma 6,

anxn =        ¿      ( n J (ax)»-k(a2x2 - x2)k'2

k=0, k even \ Ü /

and

(ax)n =        ¿      (      )(«i)"-'(»V- l)*'2.
i=0, k even \ « /

Hence a„xn^ (ax)„. Also,

(o*),/(o»x») g {(a2x2 - l)/(a2x2 - x2)} "'2 g (1 - l/a2)"",

and

(1 - 1/a2)" > 1 - n/a2 > 1 - 1/Vfc 1 - l/(x" + 1).

Therefore,

anxn g (ax)„ < a„(xn + 1).

Lemma 10. If x>l and a>x", iÄere

<z„ g (ax)m ^ a-a„ <-> m = re.
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Proof. From Lemma 9 and a>xn, we have

an Ú (ax)n ^ a-an.

Since (ax)m is an increasing function of m, it is sufficient to show that

(ax)n-i < an

and

(ax)n+i > a-an.

Applying Lemma 9 with n replaced by re —1, we obtain

(ax)n-i < a-ûn-i ^ an.

Also,

(ax)„+i > ax-(ax)n > a-an.

3. Exponentiation. In this section, we shall show that the relation x = y'

is existentially definable in terms of any relation of roughly exponential

growth.

Lemma. There is an existential definition of a relation p(x, y) satisfying

(3.1) p(x, y) ^> y < x*

and

(3.2) ~ V   A (p(x, y) -> y < x"),
n     x,y

in terms of any relation <b(u, v) satisfying (1.1) and (1.2).

Proof. Case 1. There isa k such that</>(re, v) -+v<uhu. Clearly, if we letp be

defined by the equivalence:

p(x, y) <-> V (<t>(x, v) A yk á v),
V

then p(x, y) satisfies (3.1) and (3.2).

Case 2. fau, v) —>v<u *n and there is no k such that fau, v) —> v<uhu.

In this case, we shall show that we can define existentially in terms of <b, a

relation <£i(re, v) such that

(3.3) fau, v) -»• v < u* (n - 1)

and

(3.4) ~ V (fau, v) -> v < un).
m

Then, either <£i satisfies the condition of Case 1 or, by Case 2, we can define

(bz satisfying
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fau, v) —* v < u* (n — 2)

and

~ V (fau, v) —* V < um).
m

By continuing this process, we must eventually obtain a relation <br satisfying

the condition of Case 1. Hence a relation p satisfying (3.1) and (3.2) can be

existentially defined in terms of a relation <p satisfying (1.1) and (1.2).

It remains to prove that given <j> satisfying the conditions of Case 2, we

can define existentially in terms of <b a relation <pi satisfying (3.3) and (3.4).

Let 0i be defined by the equivalence

fau, v) <-> V [\p(a, u) A <t>(a, »)],
a

where \p is the relation of Lemma 8. Clearly, <pi(u, v) -^v<u * (re — 1), since

\p(a, u) —> u^a" and <b(a, v) —* v<a *n<(aa) * (n — 1) ^u * (re — 1). Also,

there is no m with <j>i(u, v) —* v<um, since for each m, there exist a, u, and v

such that

<t>(a, v)  A v ^ a2ma

and

ip(a, u)  A  « < a2a,

so that v^i (a2a)m>um. This completes the proof of the lemma.

We now turn to the proof of our main result. We wish to show that the

relation x = yz can be defined existentially in terms of any relation <p satisfying

(1.1) and (1.2). In view of the lemma, it is sufficient to show that x = yz can

be defined existentially in terms of any relation p satisfying (3.1) and (3.2).

By Lemma 9, we have

(3.5)      (y > 1  A  a > y') ->   [x = y" <-+ azx ^ (ay), < az(x + 1)].

Furthermore, by Lemma 10,

(3 6)   {y > 1 A a > r)

—»  [u = (fly), <-> V (u2 — (a2y2 — l)v2 =1  A «! â « â fl-a,)].
V

Hence,

(Kl<iAj>lA«>)r)

_+  [x = y* <_> V Í«2 - (a2y2 - IK = 1 A fl,x ^ re < fl,(a; + 1)} ].
U.ÎÏ

We can replace the requirement a>yz in the hypothesis of (3.7) by the

stronger condition



1952] EXISTENTIAL DEFINABILITY IN ARITHMETIC 443

V[6>yAo>zAfl>cA H°, c)],

where \{/ is the existentially definable relation of Lemma 8. Hence from (3.7)

we can obtain an existential definition of x=yz in terms of the relation r = a„

namely,

x = y> *->  [(z = o A x = 1) V (z>0Ay<2A x = y)

V(y>ÍAx>ÍAz>OA       V    {x<aAb>yAb>z
yó . o) a, b,c,u,v

A a > c A 4>(b, c) Au2- (a2y2 - l)v2 = 1 A azx ^ u < az(x + 1)}) ].

Consequently, it would be sufficient to give an existential definition of the

relation r=az in order to obtain an existential definition of x = yz. But at

present I am unable to do exactly this. However, by Lemma 7,

(1 < r < aa A 0 < z < a)
0 9)

-*  [r = a, <-> V r2 - (a2 - l)(z + s(a - l))2 = l].
s

Here we see how we can make use of p. In order that (3.9) can be used to

define r = fl„ we must limit the size of r. This can be done by means of p (for

some values of a). Namely,

[r g d A p(a, d)] -> r < aa < aa.

On the other hand, there are infinitely many values of a for which there is a d

satisfying p(a, d) A d>az. Fortunately, in (3.8), we need only define a, for

a sufficiently large value of a. Hence we obtain

(x>lAy>lAz>0)^

[x = yz <-> V {x<aAo>yA6>zA i(b, c)
a,btc,d,u,v,r,s

Ar>lAa>cArg,dA p(a, d) A u2 - (a2y2 - i)v2 = 1

A rx g  u < r(x + 1)  A r2 - (fl2 - l)(z + s(a - l))2 = 1} ].

Therefore, x = yz is existentially definable in terms of any relation p satisfying

(3.1) and (3.2). Consequently, it is existentially definable in terms of any rela-

tion 4> satisfying (1.1) and (1.2).

4. Powers and non-powers. We shall show first that exponentiation can

be defined in terms of the relation x Pow y. Let R(a, b, c, d) be the relation

which holds if and only if b>\, d>\, and there is an re, such that a = bn and

c = dn. We shall show that R is existentially definable in terms of Pow and,

then, that x=yz is existentially definable in terms of R. The following

equivalence gives an existential definition of R in terms of Pow:
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R(a, b, c, d) <->   {b > 1  A d > 1  A «Pow b A c Pow d

(4.1) A V [e Pow (bd + 1)  A ae Pow b(bd + 1)
e

A ce Pow d(bd+ 1)]}.

If 6>1, d>l, a = bn, and c = d", then e = (ôd+l)" satisfies the right side of the

equivalence. If the right side holds, then there are k, l, m, s, and / so that

a = bk, c = dl, e = (bd+l)">, ae= {b(bd + l)}°, and ce= {d(bd + l)} '. Hence

ae = bk(bd+ 1)"* = b°(bd + 1);

ce = dl(bd+ l)m = d'(bd+ 1)'.

Therefore, all the exponents are equal and R(a, b, c, d) holds.

Now, notice that if u = 2% then

(4.2) u + z ^ u(u + \)z/uz ^ u + z + (2Z - \)/2z < u + z + 1.

This inequality provides a way to determine the exponent corresponding to a

given power of y. Thus,

*=;yz*-*{(z==()Ax=i)V(:y = 0Az>0Ax = 0)

V (y = 1 A x = 1) V (y > 1 A V [R(u, 2, x, y)

A R(v, u, x, y) A R(w, u + 1, x, y)

A v(u + z) g uw < v(u + z+ 1)]}.

Clearly, if x = yz, the right side is satisfied by (4.2). Suppose that the right

side holds, then x Pow y, say x=y*. It remains to show that t = z. But by

(4.2), v(u+t)^uw<v(u+t + l). By hypothesis,

v(u + z) ¿ Míe» < d(w + z + 1),

hence i = z. Since R is existentially definable in terms of Pow, we have shown

that x = yz is existentially definable in terms of Pow.

I have been unable to find an existential definition of the set of powers of 2.

However some sets of logarithmic density can be defined existentially. For

example, let T be the set of values of x for which the equation x2 —3y2 = l is

solvable. Then, by Lemma 1, elements of T are roughly powers of (2 + 31/2).

There is a simple existential definition of the set of natural numbers which

are not power of 2, namely,

~ x Pow 2 <-> V x = (2u + 3)v.

It is not so easy to give an existential definition of the non-powers of 6.

However, we shall now give an existential definition of the relation ~ x Pow y.
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Let x Pow y (mod z) be the relation which holds if and only if there exists

an re such that x^y" (mod z). We first check the following formula,

(x > 1 A y > l A y \ x)

(4.4)        —>  {<■»> x Pow y «-» V (u Pow y (mod x — 1)  A o Pow y (mod x — 1)

A 0 < u <v < yu A »<*)}.

Here y\ x (y divides x) is existentially definable, since

y I x <-> V x = yu.
u

Suppose x>l A y>l A y\x A ~x Powy. Choose n so that yn <x <yn+1.

Then there are v and ¿so thaty"+I=z>+¿(x — 1) with 0^v<x— 1 and 0<k^y.

By using divisibility arguments, we see that actually l<v<x—i, 0<k<y,

y\v. Hence v is not a power of y, so there is an / with y'<v<yl+1. Let u=yl.

Then for this u and v, the right side of the equivalence in (4.4) is satisfied.

Suppose x>2 Ay>l Ay|xAx Powy. If z<x, then z Powy (mod x—1)

if and only if z Pow y. Hence the right side of the equivalence in (4.4) does

not hold. The case x = 2 and y = 2 can be treated separately. Thus (4.4) is

verified.

We shall now show that the relation u Pow v (mod m) is existentially

definable provided v and m are relatively prime. From Lemma 5, we have

for a > 1,

u Pow v (mod 2av — v2 — 1) «-»

V   [x2 - (a2 - l)y2 =1  A u = x - y(a - v) ± r(2av - v2 - 1)].
x,y,r

Now if (m, v) = l, i.e. m and v are relatively prime, then there is an a>l

such that m\ (2av — v2—l). Hence

(u Pow v (mod m)  A (m, v) = 1) «-»

V    [a > 1 A  w Pow v (mod 2av — v2 — 1)
a,w,k

A *n I (2ai> — î)2 — 1)  A u = w + km].

Finally, we give an existential definition of the relation ~x Pow y,

~ x Pow y <-> [(x = 0 A y > 0) V (x > 1 A y |x)
(4.5)

V (x > 1 A y = 1)

V (x>l A y > 1 A y|xA~x Pow y) ].

The relation x\y is existentially definable since

x|y<-^V(y = MX+» A 0 < v < x).
u,v
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Hence we see that each of the alternatives in (4.5) is existentially definable,

so the relation ~ x Pow y is existentially definable.

5. Existential definability in terms of exponentiation. We shall show that

the relations r = (l), y=x!, and "p is a prime" are all existentially definable

in terms of exponentiation.

In order to see that r = (£) is existentially definable in terms of exponentia-

tion, we first establish the following identity:

(5.1) (     J = t2"^1 + 2"")"] ~ 2"[2"<*-1>(l + 2-")"] for«, k > 0.

If 0<k^n, then

2»»(i _j_ 2-»)" = 2"*¿ ( H ) 2-"" < ¿ ( H ) 2"<*-'> + (2" - l)/2".
,=o\v / „_o \ v /

Hence

[2n*(l + 2"")»] = ¿ (] 2"<*-'>.
,_0 \ V J

Similarly,

*-i / n \
2n[2n(*-D(l  -j-  2~n)n]   =   231 )2"(*-"A

»_0 \ V /

Thus, we see that (5.1) holds provided that 0<k^n. It can be readily veri-

fied in the remaining cases.

From (5.1), we obtain the following existential definition of the binomial

coefficient in terms of exponentiation (and less than) :

T = (     / *"*  ^w = 0/\  ¿>0Ar = 0)  V  (* = 0 A r = 1)

(5.2) V (ra > 0 A ¿ > 0 A V (r = m - 2»z>

A 2"« S 2n*(l + 2")" < 2»2(1 + u)

A 2"% ^ 2n<-k~»(\ + 2")» < 2n\)}.

Next we show that the relation y = x! is existentially definable in terms of

exponentiation and the binomial coefficient. In fact,

-[-/(:)]
(5.3) x! = \rx/1      )\ for any r > (2x)*+K

The following chain of inequalities will establish (5.3) for x>0. In deriving

them, we use the elementary inequalities,
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1/(1 - d) <1 + 26 for 0 < 0 < 1/2,

(1 + 6)x    < 1 + 2X0 for 0 < 0 < 1.

-/C)-/«'-7J0-7)"-0~^

< x!(l + 2x-2x/r) < xl + 1 for r > (2x)*+1.

The existential definition of the relation y = x! in terms of exponentiation

can be written down easily from (5.2) and (5.3).

Finally, to see that the set of primes is existentially definable in terms of

exponentiation, we use the fact that p is a prime if and only if p>i and p is

relatively prime to (p — 1)!. Hence

~ V [p = (x + 2)(y +2)Ví = 0Ví=l]

(5 4)
<-► V [pu+(p- i)lv = 1 A p > 1].

6. Recursively enumerable relations. In this section, we shall discuss

some results concerning recursively enumerable relations. (It is assumed that

the reader is familiar with this concept. For a good account of the theory

together with references to earlier papers, see Kleene [3].)

Gödel [2, p. 191 ] proved that every primitive recursive relation is

arithmetically definable. Hence all recursively enumerable relations are

arithmetically definable. All of the relations which we have considered are

primitive recursive relations and, so, arithmetically definable.

Clearly, every existentially definable relation is recursively enumerable.

It is not known whether the converse is true. Davis [l ] has shown that every

recursively enumerable relation <j>(xi, ■ ■ ■ , x„) can be put in the form

(6.1) V    A  p(xi, • • • , xn, u, v)

where p is an existentially definable relation. (Here the inequality under the

quantifier restricts the variable, thus

A ^«A[i)á»->4 V * h V [j s « A <*>]•)

We shall show that p can also be taken to be primitive recursive. Let <b be

written in the form (6.1),

(¡>(xi, •••,*»)«-*• V    A V       F(xi, • • • , xn, u, v, yi, • ■ •_, yk) = 0.
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Then

<t>(xi, ■ ■ ■ , xn) <-> V    A V        F = 0.
u,s    vèu   yi, • • - ,ykës

The relation

V       P = 0
1/1. • • ■ .Vk^s

is primitive recursive as well as existentially definable, since Godel [2, p. 180]

proved that if, in an arithmetical definition of a given relation, all of the

bound variables are bounded by primitive recursive functions, then the rela-

tion is primitive recursive. Also,

VA V       P = 0 ^ V    A   {   V V        [z = (u + s)2+u

A (F = 0 V »>«)]}.

Here we use the fact that the function (m + s)2-|-w is univalent. The expres-

sion in braces is both primitive recursive and existentially definable. Hence

every recursively enumerable relation can be expressed in the form (6.1)

where p is an existentially definable primitive recursive relation.

The complement of an existentially definable relation is not necessarily

existentially definable, for otherwise every arithmetically definable relation

would also be existentially definable and hence recursively enumerable,

which is not the case(2). However if the complement of every existentially

definable primitive recursive relation is existentially definable, then every

recursively enumerable relation is existentially definable. To see this, let cj>

be put in the form (6.1) with p a primitive recursive existentially definable

relation. Then,

<p(Xi,  ■  ■  •   ,  Xn)   *-*  V  ~    V    ~   p(xi,  •  •  •   ,  Xn, U, V).
u v= u

By hypothesis ~p is existentially definable and primitive recursive. Hence

V  <~ p
vSu

is existentially definable and primitive recursive. Consequently,

vSu

is existentially definable. Therefore <b is existentially definable.

Several years ago, Tarski proved that the complement of every set of the

form
V P(x, u) = 0

(J) I am indebted to Martin Davis for pointing this out to me.
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is existentially definable. (Here P is a polynomial with integer coefficients.

In this theorem, it will be more convenient to let the variables range over

the integers instead of the natural numbers.) Since this result has not been

published, we shall sketch the proof.

Theorem (Tarski). Let P(x)=a„xn+ ■ ■ ■ +a0 be a polynomial and let

4>(ao, ■ ■ ■ , an) be the relation which holds if and only if P(x) =0 has an integral

root, i.e.

0(öO, •  •  •   , An)   <-»  V anXn +   ■  • •   + flo  =  0.
X

Then the relation ~(/> is also existentially definable.

Proof. From Tarski's generalization of Sturm's theorem (see [4, p. 5l]),

it is possible to give a system S (flo, ■ ■ ■ , an, b, c) of inequalities and equa-

tions with integer coefficients such that there is no real root of P = 0 in the

closed interval (b, c), if and only if S (a0, • ■ • , a„, b, c). We see that for

integral ao, • • • , an, b, and c,S (flo, • • • , a», b, c) is an existentially definable

relation among integers. If o = — oo or c = + oo , then the corresponding S is

still existentially definable. The following equivalence gives an existential

definition of the relation ~<£,

~ <p(a0, •••,<!»)«-♦      V      [S (flo, ••-,«„,— « , n)
ri. •••.!■„

A S («o, • • • , fln, ri + 1, r2)  A ■ • •

A S (flo,   •   ■   •   ,  flr^n-l +   1, rn)

A S («o, • • • , «», r„ + 1, + oo ) ].

To see that this is a valid equivalence, notice that:

(1) Every integer is included in one of the closed intervals in which there

are no real solutions.

(2) Since there are not more than n real roots, these can be isolated in the

re open intervals, (/,-, r,+i) with i — i, ■ ■ ■ , re.
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