AUTOMORPHISMS OF THE PROJECTIVE UNIMODULAR GROUP

L. K. HUA AND I. REINER

Notation. Let \mathfrak{M}_n denote the group of $n \times n$ integral matrices of determinant ± 1 (the unimodular group). By \mathfrak{M}_n^+ we denote that subset of \mathfrak{M}_n where the determinant is +1; \mathfrak{M}_n^- is correspondingly defined. Let \mathfrak{P}_{2n} be obtained from \mathfrak{M}_{2n} by identifying +X and -X, $X \in \mathfrak{M}_{2n}$. (This is the same as considering the factor group of \mathfrak{M}_{2n} by its centrum.) We correspondingly obtain \mathfrak{P}_{2n}^+ and \mathfrak{P}_{2n}^- from \mathfrak{M}_{2n}^+ and \mathfrak{M}_{2n}^- . Let $I^{(n)}$ (or briefly I) be the identity matrix in \mathfrak{M}_n , and let X' denote the transpose of X. The direct sum of A and B is represented by $A \dotplus B$, while

$$A \stackrel{\circ}{=} B$$

means that A is similar to B.

In this paper we shall find explicitly the generators of the group \mathfrak{B}_{2n} of all automorphisms of \mathfrak{P}_{2n} , thereby obtaining a complete description of these automorphisms. This generalizes the result due to Schreier(1) for the case n=1.

We shall frequently refer to results of an earlier paper: Automorphisms of the unimodular group, L. K. Hua and I. Reiner, Trans. Amer. Math. Soc. vol. 71 (1951) pp. 331-348. We designate this paper by AUT.

1. The commutator subgroup of \mathfrak{P}_{2n} . The following useful result is an immediate consequence of the corresponding theorem for \mathfrak{M}_{2n} (AUT, Theorem 1).

THEOREM 1. Let \mathfrak{S}_{2n} be the commutator subgroup of \mathfrak{P}_{2n} . Then clearly $\mathfrak{S}_{2n} \subset \mathfrak{P}_{2n}^+$. For n=1, \mathfrak{S}_{2n} is of index 2 in \mathfrak{P}_{2n}^+ , while for n>1, $\mathfrak{S}_{2n}=\mathfrak{P}_{2n}^+$.

THEOREM 2. In any automorphism of \mathfrak{P}_{2n} , always \mathfrak{P}_{2n}^+ goes into itself.

Proof. This is a corollary to Theorem 1 when n>1, since the commutator subgroup goes into itself under any automorphism. For n=1, suppose that $\pm S \rightarrow \pm S_1$ and $\pm T \rightarrow \pm T_1$, where

(1)
$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Since S and T generate \mathfrak{M}_{2}^{+} , it follows that $\pm S$ and $\pm T$ generate \mathfrak{P}_{2}^{+} ,

Received by the editors May 18, 1951.

⁽¹⁾ Abh. Math. Sem. Hamburgischen Univ. vol. 3 (1924) p. 167.

and hence so must $\pm S_1$ and $\pm T_1$. It is therefore sufficient to prove that det $S_1 = \det T_1 = +1$. From $(ST)^3 = I$ we deduce $S_1T_1 = \pm T_1^{-1}S_1^{-1}T_1^{-1}S_1^{-1}$, so that det $S_1T_1 = 1$. Hence either S_1 and T_1 are both in \mathfrak{P}_2^+ or both in \mathfrak{P}_2^- ; we shall show that the latter alternative is impossible.

Suppose that det $S_1 = \det T_1 = -1$. From $S^2 = I$ we deduce $S_1^2 = \pm I$; if $S_1^2 = -I$, then $S_1^2 + I = 0$ and the characteristic equation of S_1 is $\lambda^2 + 1 = 0$, from which it follows that det $S_1 = 1$; this contradicts our assumption that det $S_1 = -1$, so of necessity $S_1^2 = I$. But if this is the case, then it is easy to show that there exists a matrix $A \in \mathfrak{M}_2$ such that $A S_1 A^{-1}$ takes one of the two canonical forms

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$.

By considering instead of the original automorphism τ , a new automorphism τ' defined by: $X^{\tau'} = AX^{\tau}A^{-1}$, we may hereafter assume that

$$S_1 = \pm \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 or $\pm \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$.

Let

$$T_1 = \pm \begin{pmatrix} a & b \\ c & d \end{pmatrix};$$

then ad - bc = -1.

Now we observe that $J=(1)\dotplus(-1)$ is distinct from $\pm I$ and $\pm S$, that it commutes with S, and that JT is an involution. Hence there exists a matrix $M \in \mathfrak{P}_2$ distinct from $\pm I$ and $\pm S_1$, such that M commutes with S_1 , and MT_1 is an involution.

Case 1.

$$S_1 = \pm \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Since $(S_1T_1)^3 = \pm I$, we find that $a-d=\pm 1$. The only matrices commuting with S_1 which are distinct from $\pm I$ and $\pm S_1$ are

$$\pm \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $\pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

If M is either of the first two matrices, then the condition that MT_1 be an involution yields b+c=0. Thus $a=d\pm 1$, b=-c, and ad-bc=-1. Combining these, we obtain $d(d\pm 1)+c^2=-1$, which is impossible. The other two choices for M imply b=c, and therefore $d(d\pm 1)-c^2=-1$. Hence $1-4(1-c^2)$ is a perfect square; but $4c^2-3=f^2$ implies (2c+f)(2c-f)=1, whence $c=\pm 1$.

But then ad = 0; from $a - d = \pm 1$ we deduce that $a^2 - d^2 = \pm 1$, whence $(S_1 T_1^2)^3 = \pm I$, which is impossible.

Case 2.

$$S_1 = \pm \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}.$$

From $(S_1T_1)^3 = \pm I$ we obtain $a-d+b=\pm 1$. For M there are the four possibilities

$$\pm \begin{pmatrix} 1 & -2 \\ 0 & -1 \end{pmatrix}$$
 and $\pm \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix}$.

Since MT_1 is an involution, in the first two cases we have a-2c-d=0, whence

$$ad - bc = \{(a + d)^2 + (a - d \pm 1)^2 - 1\}/4 \neq -1.$$

In the second two cases we find that a-2c+b-d=0, so that $2c=a+b-d=\pm 1$, which is again a contradiction. This completes the proof of Theorem 2.

2. Automorphisms of \mathfrak{P}_2^+ . Let us now determine all automorphisms of \mathfrak{P}_2 . Since every such automorphism takes \mathfrak{P}_2^+ into itself, we begin by considering all automorphisms of \mathfrak{P}_2^+ .

THEOREM 3. Every automorphism of \mathfrak{P}_2^+ is of the form $X \in \mathfrak{P}_2^+ \to AXA^{-1}$ for some $A \in \mathfrak{M}_2$; that is, all automorphisms of \mathfrak{P}_2^+ are "inner" (with $A \in \mathfrak{M}_2$ rather than $A \in \mathfrak{P}_2^+$.)

Proof. Let τ be any automorphism of \mathfrak{P}_2^+ , and define S and T as before; let $S_0 \in \mathfrak{M}_2$ be a fixed representative of $\pm S^7$. By Theorem 2, $S_0 \in \mathfrak{M}_2^+$, and therefore $S_0^2 = -I$. Let T_0 be that representative of $\pm T^*$ for which $(S_0T_0)^3 = I$ is valid. Then $S \to S_0$, $T \to T_0$ induces a mapping from \mathfrak{M}_2^+ onto itself. The mapping is one-to-one, for although an element of \mathfrak{M}_2^+ can be expressed in many different ways as a product of powers of S and T, these expressions can be gotten from one another by use of $S^2 = -I$, $(ST)^3 = I$; since S_0 and T_0 satisfy these same relations, the mapping is one-to-one. It is an automorphism because τ is one. Therefore (AUT, Theorem 2) there exists an $A \in \mathfrak{M}_2$ such that $S_0 = \pm ASA^{-1}$, $T_0 = \pm ATA^{-1}$. This proves the result.

COROLLARY. Every automorphism of \mathfrak{P}_2 is of the form $X \in \mathfrak{P}_2 \to AXA^{-1}$ for some $A \in \mathfrak{M}_2$.

(This corollary is a simple consequence of Theorem 3, as is shown in AUT by the remarks following the statement of Theorem 4.)

3. The generators of \mathfrak{B}_{2n} . Our main result may be stated as follows:

Theorem 4. The generators of \mathfrak{B}_{2n} are

(i) The set of all inner automorphisms:

$$\pm X \in \mathfrak{P}_{2n} \to \pm AXA^{-1} \qquad (A \in \mathfrak{M}_{2n}),$$

and

(ii) The automorphism $\pm X \in \mathfrak{P}_{2n} \to \pm X'^{-1}$.

REMARK. For n=1, the automorphism (ii) is a special case of (i).

In the proof of Theorem 4 by induction on n, the following lemma (which has already been established for n=1) will be basic:

LEMMA 1. Let $J_1 = (-1) \dotplus I^{(2n-1)}$. In any automorphism τ of \mathfrak{P}_{2n} , $J_1^{\tau} = \pm A J_1 A^{-1}$ for some $A \in \mathfrak{M}_{2n}$.

Proof. The result is already known for n=1. Hereafter let $n \ge 2$. Certainly $(J_1^r)^2 = \pm I$ and det $J_1^r = -1$. If $(J_1^r)^2 = -I$, then the minimum function of J_1^r is $\lambda^2 + 1$, and its characteristic function must be some power of $\lambda^2 + 1$, whence det $J_1^r = 1$. Therefore $(J_1^r)^2 = I$ is valid in \mathfrak{M}_{2n} . After a suitable inner automorphism, we may assume that

$$J_1^{\tau} = W(x, y, z) = L \dotplus \cdots \dotplus L \dotplus (-I)^{(y)} \dotplus I^{(z)},$$

where

$$L = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$$

occurs x times, 2x+y+z=2n, and x+y is odd. (This follows from AUT, Lemma 1.)

Let \mathfrak{G}_1 be the group consisting of all elements of \mathfrak{F}_{2n} which commute with J_1 , and \mathfrak{G}_2 the corresponding group for J_1 . The lemma will be proved if we can show that \mathfrak{G}_1 is not isomorphic to \mathfrak{G}_2 unless $J_1 = \pm J_1$. The group \mathfrak{G}_1 consists of the matrices $\pm (1 \dotplus X_1) \in \mathfrak{F}_{2n}$, so that $\mathfrak{G}_1 \cong \mathfrak{M}_{2n-1}$. The number of nonsimilar involutions in \mathfrak{G}_1 is therefore n(n+1) (see AUT, §4). We shall prove that \mathfrak{G}_2 contains more than n(n+1) involutions which are nonsimilar in \mathfrak{G}_2 , except when x=0, y=1, z=2n-1 or x=0, y=2n-1, z=1.

Those elements $\pm C \in \mathfrak{P}_{2n}$ which commute with W must satisfy one of the two equations: CW = WC or CW = -WC. The solutions of the first of these equations form a subgroup of \mathfrak{G}_2 , and this subgroup is known (see AUT, proof of Lemma 2) to be isomorphic to $\mathfrak{G}_0 = \mathfrak{G}_0(x, y, z)$ consisting of all matrices in \mathfrak{P}_{2n} of the form

$$\begin{pmatrix} S_1 & 2R_1 \\ Q_1 & T_1 \end{pmatrix} \dotplus \begin{pmatrix} S_2 & Q_2 \\ 2R_2 & T_2 \end{pmatrix},$$

where S_1 , S_2 , T_1 , and T_2 are square matrices of dimensions x, x, z, and y respectively, and where $S_1 \equiv S_2 \pmod{2}$, 2x+y+z=2n, and x+y and x+z are both odd.

Next we prove that $\overline{C}W = -W\overline{C}$ is solvable only when y = z. The space

 $\mathfrak U$ of vectors $\mathfrak u$ such that $W\mathfrak u=\mathfrak u$ is of dimension x+z, while the space $\mathfrak V$ of vectors $\mathfrak v$ for which $W\mathfrak v=-\mathfrak v$ has dimension x+y. But if $\overline CW=-W\overline C$, then $W\overline C\mathfrak u=-\overline C\mathfrak u$ and $W\overline C^{-1}\mathfrak v=\overline C^{-1}\mathfrak v$, so the dimensions of $\mathfrak U$ and $\mathfrak V$ must be the same, whence y=z. Hence if $y\neq z$, there are no solutions of $\overline CW=-W\overline C$, $\overline C\in \mathfrak M_{2n}$.

We may now proceed to find a lower bound for the number of nonsimilar matrices in $\mathfrak{G}_0(x, y, z)$. We briefly denote the elements of \mathfrak{G}_0 by $A \dotplus B$, where

$$A = \begin{pmatrix} S_1 & 2R_1 \\ O_1 & T_1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} S_2 & Q_2 \\ 2R_2 & T_2 \end{pmatrix}.$$

If $A_1 \dotplus B_1$ and $A_2 \dotplus B_2$ are two distinct involutions in \mathfrak{G}_0 , where either

$$A_1 \neq A_2$$
 in M_{x+z} or $B_1 \neq B_2$ in M_{x+y}

then certainly

$$A_1 \dotplus B_1 \not\stackrel{S}{\neq} A_2 \dotplus B_2$$
 in \mathfrak{G}_0 .

Now let

$$A = I^{(a_1)} \dotplus (-I)^{(b_1)} \dotplus L \dotplus \cdots \dotplus L,$$

$$B = I^{(a_2)} \dotplus (-I)^{(b_2)} \dotplus L \dotplus \cdots \dotplus L,$$

where L occurs c_1 times in A and c_2 times in B; the various elements A + B gotten by taking different sets of values of $(a_1, b_1, c_1, a_2, b_2, c_2)$, if they lie in \mathfrak{G}_0 , are certainly nonsimilar in \mathfrak{G}_0 , except that A + B and (-A) + (-B) are the same element of \mathfrak{G}_0 . Hence the number N of nonsimilar involutions of \mathfrak{G}_0 is at least half of the number N_1 of solutions of

$$a_1 + b_1 + 2c_1 = x + z,$$

 $a_2 + b_2 + 2c_2 = x + y,$

where if $x \neq 0$ we impose the restrictions that $c_1 \leq (z+1)/2$, $c_2 \leq (y+1)/2$, and that in B instead of L we use L'. (These conditions insure that $A + B \in \mathfrak{G}_0$.) As in the previous paper, one readily shows that N > n(n+1) unless $J_1 = \pm J_1$. We omit the details.

This leaves only the case where y=z. If $\overline{C}W=-W\overline{C}$, then $\overline{C}^kW=(-1)^kW\overline{C}^k$; therefore no odd power of \overline{C} can be $\pm I$. Let p be a prime such that n . Since <math>x+y=n, certainly n is odd, and $p \ge n+2$. Now \mathfrak{G}_1 (being isomorphic to \mathfrak{M}_{2n-1}) contains infinitely many elements of order p. However, \mathfrak{G}_2 contains only two such elements, since $\overline{C}^p \ne \pm I$ by the above argument, while if $C \in \mathfrak{G}_0$ and $C^p = \pm I$, then setting $C = A^{(n)} + B^{(n)}$ shows that $A^p = \pm I$ and $B^p = \pm I$. However, $A \in \mathfrak{M}_n$, and if $A^p = \pm I$, then the minimum function of A must divide $\lambda^p \mp 1$. But the degree of the minimum function is at most n, and therefore is less than p-1, whereas $\lambda^p \mp 1$ is the

product of a linear factor $\lambda \mp 1$ and an irreducible factor of degree p-1; thence the minimum function of A is $\lambda \mp 1$, so $A=\pm I$. In the same way $B=\pm I$. Hence the only solutions are $C=I^{(n)}\dotplus I^{(n)}$ and $C=-I^{(n)}\dotplus I^{(n)}$. This completes the proof of the lemma. We remark that the use of the existence of the prime p could have been avoided, but the proof is much quicker this way.

4. **Proof of the main theorem.** We are now ready to prove Theorem 4 by induction on n. Hereafter, let $n \ge 2$ and assume that Theorem 4 holds for n-1. Let τ be any automorphism of \mathfrak{P}_{2n} ; then by Lemma 1, $J_1^{\tau} = \pm A J_1 A^{-1}$ for some $A \in \mathfrak{M}_{2n}$. If we change τ by a suitable inner automorphism, we may assume that $J_1^{\tau} = \pm J_1$.

Therefore, every $M \in \mathfrak{P}_{2n}$ which commutes with J_1 goes into another such element, that is,

$$\pm \begin{bmatrix} 1 & \mathfrak{n}' \\ \mathfrak{n} & X \end{bmatrix}^{\mathsf{r}} = \pm \begin{bmatrix} 1 & \mathfrak{n}' \\ \mathfrak{n} & Y \end{bmatrix},$$

where n denotes a column vector all of whose components are zero, and $X \in \mathfrak{M}_{2n-1}$. Thus, τ induces an automorphism on \mathfrak{M}_{2n-1} . Consequently (AUT, Theorem 4) there exists a matrix $A \in \mathfrak{M}_{2n-1}$ such that $Y = AX^*A^{-1}$ for all $X \in \mathfrak{M}_{2n-1}$, where either $X^* = X$ for all $X \in \mathfrak{M}_{2n-1}$ or $X^* = X'^{-1}$ for all $X \in \mathfrak{M}_{2n-1}$. After a further inner automorphism by a factor of $(1) \dotplus A^{-1}$, we may assume that $J_1^r = \pm J_1$ and also that $X^\tau = Y = X^*$ for all $X \in \mathfrak{M}_{2n-1}$.

Let J_{ν} be obtained from $I^{(2n)}$ by replacing the ν th diagonal element by -1. Then

$$(J_{1}J_{2n})^{r} = \pm \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}^{r} = \pm \begin{bmatrix} 1 & n' \\ -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -1 & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix}^{*} \\ = \pm J_{1}J_{2n},$$

so that $\pm J_{2n}$ is invariant. Similarly, all of the matrices $\pm J_{\nu}$ ($\nu = 1, \dots, 2n$) are invariant. Therefore for any $X \in \mathfrak{M}_{2n-1}$ we have

$$\pm \begin{pmatrix} 1 & \mathfrak{n}' \\ \mathfrak{n} & X \end{pmatrix}^{\mathsf{r}} = \pm \begin{pmatrix} 1 & \mathfrak{n}' \\ \mathfrak{n} & A_1 X^* A_1^{-1} \end{pmatrix}, \cdots, \pm \begin{pmatrix} X & \mathfrak{n} \\ \mathfrak{n}' & 1 \end{pmatrix}^{\mathsf{r}} = \pm \begin{pmatrix} A_{2n} X^* A_{2n}^{-1} & \mathfrak{n} \\ \mathfrak{n}' & 1 \end{pmatrix},$$

with $A_{\nu} \in \mathfrak{M}_{2n-1}$, and in fact $A_1 = I$.

Now suppose that $Z \in \mathfrak{M}_{2n-2}$, and consider $\pm (Z \dotplus I^{(2)})$; since it commutes with J_{2n-1} and J_{2n} , so does its image. But therefore

$$A_{2n}\begin{pmatrix} Z & \mathfrak{n} \\ \mathfrak{n}' & 1 \end{pmatrix} A_{2n}^{-1} = \begin{pmatrix} \overline{Z} & \mathfrak{n} \\ \mathfrak{n}' & 1 \end{pmatrix} ,$$

where \overline{Z} denotes some matrix in \mathfrak{M}_{2n-2} . From this one easily deduces that A_{2n} must be of the form $B\dotplus(1)$, with $B\in\mathfrak{M}_{2n-2}$. By considering the matrices commuting with J_{ν} and J_{2n} for $\nu=1,\cdots,2n-2$ we see that A_{2n} must be diagonal. Furthermore, it is clear that all of the A_{ν} ($\nu=1,\cdots,2n$) must be diagonal, and all are sections of one diagonal matrix $D^{(2n)}$. Using the further inner automorphism factor D^{-1} , we find that $\pm X^{\tau}=\pm X^{*}$ for every decomposable matrix $\pm X \in \mathfrak{P}_{2n}$. Since \mathfrak{P}_{2n} is generated by the set of its decomposable matrices, the theorem is proved.

TSING HUA UNIVERSITY,
PEKING, CHINA.
UNIVERSITY OF ILLINOIS,
URBANA, ILL.