SOME ASYMPTOTIC FORMULAE FOR THE MOCK
THETA SERIES OF RAMANUJAN()

BY
LEILA A. DRAGONETTE

1. Introduction. In his last letter to Hardy [1; 3](?), Ramanujan de-
scribed a set of functions defined by Eulerian series inside the unit circle,
possessing asymptotic representations at their essential singularities of the
same order of precision as those known for the theta functions. As an example
of the latter, consider the generating function of the partition numbers p(n),

P@ = S0 = TLa = gt = [ =i (/)]

n=0

where ¢=e¢"i" and %1(v/7) =4(v, ¢). This function, which may also be written
in Eulerian form,
q g

2 + 2 2\ 2

1-9* (1-91-4g)
q9
+ ...
C—ot—i—gr

possesses an asymptotic representation in closed exponential form in the

neighborhood of rational points of the unit circle, derived from the theory of
linear transformations: if g=e2*#¥/*—27t/k and real t—0,

P(e2rih/h——21t/k) = wh,kﬂ/ze"’”")“"_’) + 0(1)

P(g) =1+

where w;,; is a certain root of unity.

On the other hand, not every function in Eulerian form behaves in a closed
form at the essential singularities on its natural boundary. For example, if
g=e ** and t—0+4, it can be shown that

q ¢ ¢
1+ + + +
1-9* Q-9 -¢) 1-91—g)1—g)*

RN 1 ,
= (2(5”2)) exp w(g;-l- at + ax*+ - - - + O(a;t’)).

This counter-example has been discussed by Watson [3].
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If a function f(g) in Eulerian form has an infinity of essential singularities,
at which the asymptotic representation closes as neatly as for P(g), and if
f(g) is not the sum of an ordinary theta function and a (trivial) function
which is O(1) at all the singular points, then f(g) is called a mock theta
function.

As examples Ramanujan presents three sets of mock theta functions (of
third, fifth, and seventh order) with specific identities relating the functions
of each set (except the seventh order) to each other and to ordinary theta
series. The complete list of functions of third order follows:

=3 ¢
0= L ir g o (o
=3 g
#a) = Eo I+ +gy--- A+ ¢
_ o 9”2 ’
‘b(q) ngl (1 - q)(l - qs) N (1 —_ q2n—1)
0 qnf
1.1 = ’
a0~ Zt:» A-—g+HA—¢+gH)---1—g"+ ¢
5 i g2n(ntD
= S-gl =g (1 - ey
( i qn(n+l)
0= DA+ U+e) - A+ ey
qzn(n+l)

o(g) = g', A+ g+ AU+ ¢+ - (L4 g+ g

The functions w, », and p are supplied by Watson [3], who published an ac-
count of Ramanujan’s letter together with proofs and amplifications of some

of the chief properties of the functions asserted by Ramanujan. In particular,
Watson proves the fundamental relations (1.2) connecting the functions (1.1).

(@) 20(—q) — (@) = 1(@) + 4(—a) = 90, @ LL (1 + &),

r=1

) 4x(g) — fg) = 3920, @ T (1 = @),

r=1

1 2 o
© 20(0) + ol@) = 3[7 31834(0, qm)] I — ¢,

r=1

(1.2)

1 ©
@ »(£g) % gu(g®) = ry V490, ) T (1 + ¢*).
r=1
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The classification of third order applied to this set of mock theta func-
tions probably refers to the form of the ordinary theta functions appearing
in the right members of these identities. We note that

(a) 94(0, q)ﬁ a+ qr)—l = ig1/8 _045-9_/_7:):;7_’
(3/3)
2
(b) 301(07 Il @ — gt = 3ig1ss M_,

r=l1 T 3T
(3/5)

2 2

3

02(0 —T)

3 2
—_—

3 0

@ o e I =g = it — s
. . L1 aa(0/)

@ 5 0 oIl A+ ¢ = i e

each denominator being of the form #:(a/3a). Analogous remarks hold for
the fifth order functions (but apparently not for those of seventh order for
which no relations of the type (1.2) are known).

With regard to the characteristic mock theta property, Ramanujan as-
serts: when ¢=—e "t and t—0+4,

1
(1.3) flg) + pr e(x120(111—t) _y 4

This asymptotic representation is analogous to that quoted above for P(gq)
and is derived in the same way from the linear transformation theory for f(g)
developed by Watson (see (3.1) below). The transformation equation needed
here may be written in the form

f(_e—ft) = t_l_/i_e(fIZAi)(l/t—t)f(_ —1It)
(1.4)
® , cosh Smtx/2 + cosh wtx/2
+ 2(6t)1/2e—rt/24f e—(arl/Z)x dx’

0 cosh 3wix

Here let t—0. It is easy to show that the dominant part of the integrand
is 2¢~@*97 and thence to derive the result (1.3).

Now by an extension of Watson's linear transformation formulae for the
functions we shall prove similar asymptotic representations in closed ex-
ponential form for f(q) as ¢ approaches any singular rational point of the unit
circle. This result is contained in the statement of the following theorem:
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THEOREM I. Let (h, k) =1, and hh'= —1 (mod k). For all complex z such
that R(2) >0, | 3(2)| <1/(k+1),

€h,k _11/; e‘”/‘~’4k+n“/24hf( ien’(h’+iz“)/k)
z
+ O(k log k), (h odd)

Ti(htiz =
(1.5) f(emivini¥) = pors

_ —ars—) ; . —1
Nh.k zuz e xz/24k—4x2 ISkw(e2r1.(h’+u )/k)

{ + O(k log k), (h even),

where

ey = (—1)H-D8 exp [M. @R + )A( )/ ( 1)]

12k
(1.6) ) 2ht 2
. Ti((h+B) [ k)
YT E e # (h odd),

and hh'' = —1 (mod 2k), and [m.,kl = | e;.,kl =1, and w(q) 7s another mock theta
function defined by (1.1).

It will be shown that the rational points e*i*/* are essential singularities
of f(¢) when & is odd, and we observe that in this case €, is given explicitly
by (1.6). The exponential sum appearing in its definition may be evaluated
as a well known Gaussian sum:

1+ —k/2
. e i((h+k—l)l2)’( p +/k) (k even),
Z emi((HR) [B)p =
1/2
2k p=0 i((k—l)/2)2((h+—kk)/2) (k Odd)y

where we employ the Jacobi symbol of quadratic character. The ambiguous
sign of argument (L eriW+i™)k) in (1.5) is dependent on % and % and can be
determined by a certain algorithm, as indicated in the proof of Lemma 4,
below. For either choice of sign, as g—e*i*/* radially (real 2), f( & e*i(¥+iz)/k)
—f(0) =1, so that, replacing O(k log k) by O(1) (since we regard % as fixed
for the moment), as 2—0+,

ri(h+iz) |k €A,k —r2/24k+xz" )24k
f(e ) ——¢ = 0(1),

gl/2

the announced analogue of (1.3).
On the other hand, when % is even, f(g) is bounded on radial approach to
evih/k, In this case the factor 7, which depends in a complicated (but de-
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terminate) fashion on & and k&, need not be evaluated beyond the fact that
] Nhk| = 1.

Now with the help of Theorem I we can establish this hitherto unproved
assertion of Ramanujan: if f(¢) = > _n-o 4(n)q*, then

o™ ((n—1/24) [6)}/? e (712 ((n—1/24) [8)*]?2
i+ )
2(n — 1/24)12 (n — 1/24)112

This result arises chiefly from (1.3) by the Hardy-Ramanujan method [2],
which utilizes the fact that the function is sharply characterized by the be-
havior in the neighborhood of its singularities. We expect that f(¢) has its
“worst” singularity at ¢= —1 where the mth term of the defining sum (1.1)
has a pole of order 2[(m+1)/2]. Accordingly the equation (1.4) representing
the functional behavior near ¢= —1 gives the principal term for 4 (») in (1.7).

Moreover, since Theorem I gives expressions analogous to (1.4) for every
rational point, we can compute the respective contribution to 4(n) of each
of these singularities to obtain a refinement of the large error term of ex-
ponential order (1.7). The main result of this paper is embodied in Theorem
IT, which gives the improved asymptotic formula for A4 (n).

(1.7)  A(m) = (=)=

THEOREM 11. The coefficient of q* in the series f(q) = ZA (n)q™ 1s
(1.8) A(n) = X Nk)eriw 1208 L (5112 Jog u),

0<kSnl/2

where
A1) = (—1)~1/2,

1
ME) = 7{ e"("/")"e;.,k} (k=123,---, [»]).

(h,2k)=1,—k<h<k

By taking the optimum number [#!/2] of terms of the series (1.8) we have
been able to obtain an estimate of error quite smal]l in comparison with the
exponential size of the terms themselves.

Theorems of the same form as I and II hold for all the functions of third
order defined by (1.1).

Whether or not a complete theory of linear transformations exists for the
functions of fifth and seventh order is problematical. While the behavior of
the fifth order functions on radial approach to the rational points of the
natural boundary is known [4], transformation formulae of the type (1.5)
are not so easily available owing to the lack of certain identities necessary to
our argument (see (3.1) below). The set of functions of seventh order is even
more difficult to handle, since there are no known relations of the type (1.2)
among these functions.

To Professor H. A. Rademacher I wish to express my gratitude for sug-
gesting this problem to me. His constant encouragement and many helpful
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suggestions have been a source of inspiration throughout the course of this
work.

2. Two lemmas. For the proof of Theorem I, we prepare two lemmas.

The mock theta property of f(g) is highlighted by the relation (1.2a)
which we may rewrite
(2.1) (@) =G — W(—9 = — G(9) + 2¢(—9)
if

G(g) =340, 9 IT (1 = ¢*).
r=1

It will be seen that for radial approach to a given rational point e***/* of
the unit circle

f(@ — G(g) = 0(1) (k odd, & even),
(2.2) f(@ +G(g =0(1)  (kodd, kodd), (k, k) =1,
(@ =0(1)  (heven),

so that it will be natural to obtain the dominant terms in the asymptotic
representation of f(g) near these points from the theta series G(¢). To show
(2.2) it suffices to prove

LeEMMA 1. Let g=pe*it®, real p>0, and let p—1—. Then for fixed h and k
such that (h, k) =1,

(2.3) flg) =0Q) (k even, k odd),
(2.4) o(g) = 0(1) (k even, k odd),
(2.5) ¥(g) = 0(1) (% odd, k even).
The proof is virtually the same for each. For % even,
o qm’ pmze‘n’(hlk)mz ‘
f@) =3 — -y (putm = uk + »)
m=0 H 1+ ¢)? m=0 II (1 4 prexithimrr)2
r=1 r=1
k-1 w p(uk+v)2e1n'(h/k)(yk+v)’ k=1 w

=22

- S say.

=0 k=0 II (1 + premicumry r=0 w=0
r=1
Then for »=0,1, - - -, k—1,and p>0, Z,. @, is uniformly convergent:
Gypi1 pWETrHR) = Guktn)?
(2.6) =
a’ " MHV‘I—IG
’ H | 1+ preri(h/k)r|2

r=pk+v+1
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We estimate the denominator, making use of the inequality |1-+Re®|?
=R|1+e¥|2

nk+v+k k
H | 1+ pre‘ri(h/k)rl2 = HI 1 4 pruktrgri(hik) (rtv) Iz
r=pk+4v+1 r=1

k
II prtwrtr| 1 4 emithirern |2

r=1

(2.7

v

k
prktntkttnrz TT| 1 4 grithimr e |2,

r=1

Now as r runs modulo %, so does ' =h(r+v)/2. Note that % is even, k is
odd.

k

k
(2.8) HI 1+ emithiB 9 2 = HI 14 e2ritri®) |2 = 4,

r=1 r’=1

Combining (2.6), (2.7), and (2.8), we have

Ay pt1 p("k+V)k+k(k-1)/2 1
= <=,
d,,p 4 4
so that
=1 « 1 4 k=1 p"2
@IS E T ol = =% —
v=0 p=0 v=0 Hl 1 + preﬁ(h/k),l
r=1
4 k—1 1

=<2

K Rt | 14 eti(h-l)/klb

The proof of (2.4) and (2.5) is the same, except that when & is even we
use, in place of (2.8),

= 0(1) for fixed k as p— 1.

ﬁl 14 eri(zr—l)/kl = 2.

r=1

Now it is easy to combine the results of Lemma 1 with (2.1) to yield (2.2).
For the treatment of G(q) we prepare

LEMMA 2. For h odd and (h, k) =1, and complex z, R(2) >0,
o 1 - >
(29) G(e'n(h+u)/k) = (_ 1) kfh,k .T/; e—‘rz/24k+‘rz 124k {1 + E Ch,k(m)e_(’rl kz)m ,
Z m=1
where Y chx(m)x™ is convergent for Ix] <1 and e s given by (1.6).

Proof. Since G(q) =340, ¢) | ];~, (1 —¢*>~1) we use the well known trans-
formation for the modular form 5(r) to write
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©0
H (1 — erittinikr)

0

II (1 — emicotinimer—n) = 1
0
r=1 II (1 — emitamtinimz)
r=1
(2.10) o
wp, 3l 27/ 12k 72/12h H a- e i [ 2r)—1
r=1
- L
wp, iz 27/ Mke—ra 24k [T (1 — emiC@ +is™hmr)—1
r=1

Wh, k

o0
e(r/24k)(l/z—z)H (1 — eti((h”+iz")/k)(2r—l))
Wh,2k r=1

where k'’ = —1 (mod 2k), and:

rim (DY ep[-rif - -

1 1
— B —— )2k + 2K — W' .
+ 12( k)( + )}:I
If we use the fact that

EED () -

2 H(Rr— 1)/2-(2kR2 + 1) — R(E® — 1
= (—1)*D/8 exp [m ( )2 12k‘) ( ):I.

Wh,k

(2.11)

Wh,2k

We find the transformation for #4(0, ¢) as usual:

0
E (—1) mgriCChtia k) m?

94(0, g) =
et o . ,
= g (—1)7exithiby» G AEOO £2Xi (V] B (x/ k)N
1 k=1
(2.12) = I { g exi((hHR) [ )t

0 k—1
+ E e—(r/lu))\’( Z eI RV cog 2”)"')}
k

A=1 ve=0

1 k—1 0
= E eri((h+iz)/h)v’{l + > Cl(x)e—(rlkz))\z} ,

(k2)'? 2o A=l
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making the obvious definition for Ci(A). Combining (2.10), (2.11), and (2.12),
we write

G(emith+ia k)
"p2 — (2B ) — 2 _
= (_1)(h2—1)/8 exp [m' W D/2-QF + 1) h(k 1)] e (7124k) (1/2—2)
12k
© k—1 0
J1a- e HiT ) [B) 2r=D)) N pmiC(htk) 1K)V {1 + > cl()\)e—(r/kz))\z} .
r=1 v=0 A=1

For simplicity we consider the infinite product as identical with a cer-
tain power series

H (1 _ [em.»,/k—nkz]zr—l) =1 _|_ Z Cz(r)e—(f/lcz)r’

r=1 r=1

where this series must converge for |e=*/k
Then using the definition of e (1.6),

e(rl24k) (1/z—2) {

zll2

<1

G(eri(h+iz)/k) = (_ 1) keh,k

1+ 2 cz(r)e“("/’”)'}

r=1
: {1 + 2 cl(x)e-w'"”} :
A=0

On multiplying the power series we have the desired lemma.

3. Transformation formulae. We turn now to the linear transformation
formulae for the function f(g). Basic equations of modular type have been
proved by Watson [3] expressing each of the ten functions f, ¢, ¥, », w( + ")
in terms of mock theta functions of (+e~*¥r). In particular we quote here
the three formulae:

) . 202 ) ) 4(312%)4 i
e—rzr/24f(erlr) [ — 8—411/370)(8—211/1) _l_ J2 —1,

(—in)2 T

T
3 1 —wiT[24f( — p¥iT) — ___._—1__. /281 f( _ p—wilT 2(6”2)1: J 7I'_‘L
(3.1) e f(—er) e ) + 0 ,
(—ir)u? T T
4xir/3 ( 21:'1) — 1 1 xi/247 —7i/T 31/21: J 11'_1:
e w(e = (it e f(e ) ; \7)

where w(g) is another mock theta function (see (1.1)) and
J(a) = f e3='I2H (ax)dx »=0,1,2).
0

The H,.(dx) are defined in Lemma 3 below. The terms involving J,(«) are
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in the nature of error terms which we shall show to be bounded for all
R(a) >0.

LemMaA 3. If
J(a) = fwe“’“z/zH,(ax)dx
where '
Hyaz) = cosh axf(l)s;ll- ;:Zh Sax/2 ,
Hy(az) = sinh ax ) Hy(ax) = cosh ax ’
sinh 3ax/2 cosh 3ax

then there exists K >0 such that |aJ,(a)| <K for all R(a)>0, i.e., at,(a) is
uniformly bounded in this half-plane.

Proof. If z=x+1y (x>0), then |H,(z)| <e~*8 for large x. Now suppose
a=Ce4 where IAI <w/2, and C>0. Make the substitution z=ax:

1
J(a) = :f e BIDAIDLH (5)dz
8

where z runs on the ray .S from 0 through a (Arg z=4). But we can shift the
path of integration from S to the positive real axis, since

i

1 Re

—f e BDAINCH (53 dz —0 as R—
aJg

(integral taken along a circular arc of radius R, 3=Re®, 0< [ 0[ <A<w/2).
Then, since the integrand is pole-free on R(z) >0,

1 ©
J(a) = :f e G0 H (x)dx (x real).
0

But since R(a) >0, we have |e-¢/2Wa2| <1;

L)

| alu(a) | < f | B,(x) | dx < Ky f e+ldx = K.
0 0

This completes the proof of the lemma.
We rewrite the equations (3.1) by defining:

Fi(r) = 2-lemiri24f(gxir),
(3.2) Fa(r) = 27l irl2af(— i),

Q(T) —_ 21/2e4fif/8w(e2ri‘r).
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Consider the effect on these functions of a modular transformation of the
argument. Let St=7+4+1 and Tr=—1/r. We have directly from their defi-
nition:

Fi(1) = e*i12Fy(S1) = e™¥12%F(S?%7),

(3.3)
Qr) = e-4rildQ(Sr)

and from (3.1), with the help of Lemma 3,

1
Fy(r) = i Q(T7) + 0(1),
1
(3.4 ¥r) = ————F:(Tr) + 0(D),
(—ir)i2
-1
Fy(r) = *(':Ej)l—n‘Fz(TT) + o).

As the next step in the proof of Theorem I, we prove Lemma 4, which
follows naturally from the quasi-modular equations (3.3), (3.4).

LEMMA 4. Let 7= (h+13)/k and /= (h'+127')/k with hh'=—1 (mod k),
|n'| <k, (h, k) =1, and suppose | S()| <1/(k+1). Then Fi(r) has either one
or another of the representations:

g_ Fl(’T,)
(3.5) Fl(‘l') = m Fz(‘l') +0(k lOg k),
Q")
where |¢| =1.
Proof. First,
Kt — (hb 4+ 1)/k
kr— h

=

Since this is a modular substitution, it can be analyzed by a continued fraction
decomposition into a product of the elementary substitutions St=7+41 and
Tr=-—1/7.

B —(hk
( ( + 1)/k) — (a b) — S"“TS"‘T e Sdp,
k —'h cd

the substitutions to be applied successively beginning with S% and ending
with S%. The intermediate stages are:
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¢ d
( ) = SaTSeT ... TS,

ay bl
1 bl

= SaT TS,
ag bz

(B.6) e ,
(ap—Z bp—2>
= S TS,

@p1 by

(a”‘ 1 0o 1) = Sdr,

0 b,

where the a,, b,, and d, are integers determined from a, b, ¢, d, by the well
known division algorithm

ar + b = do(er + d) — (a1 + by),
’ cT + b= dl(ayr + bl) - (azT + bz),

Qp—oT + b,,_z = d,,_l(a,,_rr + bp_.l) - bp.
Certain properties are pertinent:

ay—1 by

=1, SO (aypbv)=1 (V=11"')P),

a b,
by=6p1 =+ 1.

The a, form a decreasing sequence, | ¢| >|ai| >|as| > - - - >|a,1] =1. This

implies |¢| =|a,| +» (=1, - - -, p—1), in particular for v=p—1, |c| Zp.

However we can improve the latter inequality estimating the number of

stages p: from the division scheme we see that

a = doG - ay,
¢ = d1a1 — @y,

@y = day — ag,

........

........

We may perform the division in such a way that
sign (—a,4+1) = sign (d,a,) = sign (a,_1).

Then
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(2) | awa]| = ||| o] + | ara| 2| 0] +] ara ]

If we compare the decreasing sequence of integers
k=lcl, lai], |aal, oo, [apa]| =1
with the first p Fibonacci numbers

F@), ¥ -0, ¥ —2),---, F1)

for which

700 = 76 = 0+ 36 = 2 = [ (* +25"2)'— (- ”25”2)'],

equation (a) makes it clear that Ia,l 2%(p—v») and in particular

lelz 34 2 gf—n(%z)ﬂ |

so that immediately,
p =0(log | ¢|) = O(log k).
In our case, dy=0 since lh’| <k.

Now we build up 7’ = (a7 +b)/(cr+d) stepwise, using (3.3) and (3.4). For
the first stage,

o fFa(Ser) if d, is odd,
Fi(r) = exii® p{Fl(Sdnr) if d, is even (by 3.3))
+(xilt0ds (Fy(TSdr)
= (_,iSde)l/2{ Q(TSdrr) } + o) (by (3.4))
ap_1T + by
+ g(xil20)dp Fy (T _L_—’:L)
+ 0(1).

T (Fiapar + by Q<T apir + b,H)
v 4

We observe that the ambiguity of Lemma 4 arises from equation (3.3) and

that the correct choice depends on the parity of the powers dy, ds, - - -, dj.
We proceed inductively. Assume we have found
F,
w= (av‘r + br)ll2 92 Ay 1T + by+1 P s

w=1---,p—1;|¢|=1);
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we can deduce the case forv—1.

e(Fil20d (F‘) (S"'T _ﬁ__i>
e F, a1 + by

(avT + bv)l/2 a,t + b' )
@17 + boya

+0((p — k) (by (3.3))

¢ 1
R (-i(sor 222))”
—z (4 D ——————

a1t + o

F](T) =
e—(4ri/3)dvQ) (Sd,T

Q
a, 7+ b,
|7, (rsa»r ——) + o) |40 —nk
F Qyy1T + b,+1
1

by (3.4). Using the relations (3.6) this becomes

Q
Fi(r) = ¢ 1 F, (T @yt + br—l)
(a7 + b,)12 . Gorm + by \V? ar + b,
<—t ar + b, ) '
+ 0(| avr + b,[212) + O((p — »)B).
We examine the error term
l o b,,]”? _la, h+ iz + b,l 1/2 _ ah + b,kk—— ,3(2) 4 a,E)Z(z) 1/2

1/2

> a,h+ bk — a,3(3)
- k

Now |3‘(z)] <1/(k+1) by hypothesis, and |a,| k—». Moreover |a,kh+b,k|
=1; for a,h+b,k=0 would imply a,/b,= —k/k, but (a,, b,)=1 and (k, — k)
=1 and k2 |a,| +» leads to a contradiction. Hence
L= (k= 0/t D ,

k k
O(| ayr + b,|7112) 4+ O((p — v)k) = O(k) + O((p — »)k) = O((p — » + VE).

constant
|ar + b, |12 2

[ Q
3'" F (T a7 + by

PO = e ¥ o 0((p — v + DB).
1(7) (@17 + by_p)V/? e + b, ) +0((p — v+ 1)k)

_{F,
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The induction may be continued down to » =1, giving finally

¢ ar + b .
Fy(1) = m F (cr T d) + O(k log k) since p = O(log k).

1

This is equivalent to (3.5) and the lemma is proved.

By applying the definitions (3.2) to the result of this lemma, we find that
either one or the other of the following forms prevails for given &, k:
$hok

— e(F1MB) (—2+aT ) f( 4 grith+ia DIk 4 O(k log k)
2

flexithriniby = = Un,(z) + O(k log k),

"_:/'_: 28/28—rz/24k—41rz"l/akw(e2n'(h'+iz_l)/k) + O(k log k)
3

= Vui(z) + O(k log k)

say, where |{as| =|maa| =1.
It is significant that for real z—04,

1
lim | Up(z) | = i reMbbRI2ks | f( 4 grith R gmxlks) |
-0 20 21/

erl24kz

m N
=0 212

since f(q) is continuous and f(0) =1. On the other hand,

lim l Vi(2) | = lim e—arzluk—--ir/akz, w(CZri(h’+iz—‘)/k) | = 0.
20 -0 g2

On consulting (2.2) and Lemma 2, we find that for z real, | f( £ erith+io/k)|
— o when % is odd (the dominant part being G(¢)), but remains bounded
when % is even. We conclude

U;.,k(z) + O(k IOg k), h Odd,
Vii(z) + O(k log k), h even.
In case % is odd, as z—0+ (& fixed),

f(e‘n‘(h+iz) / k) = {

1 o o
0 = (=0%6(@) = o emmmremmon ey (14 5 lmg)

m=1

- eh.k(l T3 nnlmpetetso m)} + 0(1)
Mm==1
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1
= —— gl AR (g, L — e 1) 4+ o(1) + O(1)

g1/
= 0(1)

according to (2.2), whence {x,x =€, as defined by (1.6).

This completes the proof of Theorem I. Our method does not give a gen-
eral expression for 9;,:; but the present statement of the theorem gives exactly
the infromation about f(g) needed to prove Theorem II.

4. Proof of Theorem II. The Farey arcs. We follow the Hardy-Ramanujan
method [2]. If f(¢) = D_A4(n)g", by Cauchy’s theorem,

Ay = 1 [ 194,

2rid ¢ 2t

where C is a circle in the x-plane about the origin, of radius e~*/». If we put

=e—r/n+n'¢”
—x [ nt+wip’/
A()=__f S(e )d¢.

(e—r/n+1rt¢ ) n

It will be convenient to distinguish between the upper (¢’=0) and lower
(¢’ =0) semi-circles of C.

The Farey arcs of order N are defined as follows: For every fraction &/k
in the Farey series of order N (0=k<Ek=N, (h, k) =1) there corresponds an
arc (h/k—04, h/k+03%) with
h + hl 3 + h2

k4 S =
Pt n MR Oee=

(4.1) Bk — O =

where h,/ky and hy/k. are the fractions adjacent to #/k in the Farey series of
order N, and the end points of the arc given by (4.1) are the “mediants”
lying between k/k and the adjacent fraction. Using the fact that (hk,—kh)
= (hok —koh) =1, we find
4.2) np = ;’ Shr = _‘—1—“

k(k + k1) E(k + k)

and since the mediants are in a Farey series of order > N, we know

1 1 1
4.3) max , =< .
{k(k + k) k(k A k) k(N + 1)

The integration along the upper semi-circle C (0<¢'=<1) may be ex-
pressed as the sum of integrals along these Farey arcs (—d;;<¢ =<t}
where ¢=¢' —h/k for 0<h<k<N and (k, k)=1.

The lower semi-circle (—1=¢’=<0) containing the fractions ¢'=h/k
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with 0= l —h] <k <N may be broken up in an exactly symmetrical manner.
We suppose that the point ¢’=0/1 is covered by the arc —1/(N+1) <¢’
=1/(N+1) and (exceptionally) ¢'=1/1 by N/(N+1) =¢' = (N+2)/(N+1),
ie, —1/(N+1)S¢=1/(N+1).

L4 f(e—r/n+rih/k+ri¢)

1
4.4) OEEDY i

hok Y —n (e—‘r/n+1rih/k+ri¢)n

where the summation runs over all %, k2 such that 0 | h[ <k=N, (h, k)=1
but £+k#0. The choice of N is at our disposal.
In (4.4) we put
LW .
f(ert(h/k)-—u'zlk)e(rz/k)nd¢‘
—hk

1
A(n) = — Z eFithlk)n
2 ne

Then, by (4.3), |3(2)] S1(N+1) <1/(k+1), satisfying the hypothesis of
Theorem I. Accordingly we use the representations (1.4) for f(q).

1
A(n) = 7 Zle—ri(h/k)neh'k

35k 1 - R *)
. erznlk — p—%z[24k+T2 /24kf(+e1n(h’+u )/k) + 01 d¢

S g1/2

1
(4.5) + ? Zze—ri(h/k)n(za/z)nh'k

¥hx 1 o ik )
. erznlk — p—7%z[24k—4T2 /3kw(e21n(h +iz" )/ ) _I_ 02 d¢

—¥hk gt/
1
= 7{ da+ Zz},

say, where |0§‘)| <Cik log k (i=1, 2); and >_; implies summation over %,
with # odd, 0<|k| SESN, (h, k) =1, h+k0; and 2, implies summation
over corresponding %, k with & even.

The rational points appearing in )_, are of the type for which f(g) is
bounded on radial approach, hence the associated contributions to 4 (n) are
smaller than those appearing in ;. For the estimation of Y it is advan-
tageous to choose N = [n!/2], so that R(z) =k/n;

k/n k/n k

> >
E/n? + E¢? ~ kY/nt+ 1/N2T 2

Referring to the definition (1.1) we observe that if w(q) = Xm0 B(m) g™ for
Iq] <1, then B(m) =0 for all m, and

(4.6) R(z1) =
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4.7 I w(e21i(h’+iz")/k) | < Z B(m)e—(2r/k)m(z-l)m < w(e ™).
m=0

Then

[ 20| < 2oa(2812)

T e (F128B)R ()= (4x /3R (z71)
. f 3("./1:)9:(:){ — w(e™™) + C1k log k} dé.
— (k/m)!!

The path length 8;%+38:,<2/k(N+1) <2/kn'?, by (4.3). Using (4.6)
and (4.7),

(4.8) [ 3] <C > 1{

1
Bk kn1/2 (k/n)l/Z
With this result, (4.5) becomes

+ klog k} < Cnl'? log n.

f',”h'k e(rzl k) (n—1/24)+7271 24k

1
A(n) = 7 Zle‘”("/"’”eh,k do

, 1/2
—'hk z

1
+ ? Zle—rt(hlk)neh'k

2

h,k

+ O(n''? log n)

"Il
f ok [e(qrz/k)(u-—1124)+1z‘l/24k{f(j:eri(h'+iz‘1)/la) - 1} + e(rzl®)ng, (B |dg
¢

1
= 7 {S1+ 82} + On'2 log n), say.
Again (4.6) affords an estimation of .S,, for

0
I €7 Bk (f( £ gritWHisTHIR) 1)' =X I A(m) l e~ (T BRETY (m—1/24)

m=1

< Z l A(m) | e (xI2) (m=1/20) < C,.
m=1
Also |6] <Ci k log E, so (as in (4.8))

1 C
|S:] <€, —[——3— + C:k log k] < Cn''? log n.

wr  kntl2 (k/n)12
1 ',”h.k e(le k) (”—1/24)""2_1/24].
A(n) = — D oiemmithbng, 1o OO g
2 —¥nk gl/2

4.9) )
=7 21 i g 1Ty o + O(n/2 log m).
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5. Evaluation of an integral. Before evaluating the integrals appear-
ing in (4.9) we extend the path of integration so as to symmetrize. Since

1/k(k+Ek;) <1/EN
""hk 1/ k(k+kg) 1/kN —1/k(k+ky) 1/kN 1/ kN
I RS IR IS R B c. S o
—1/k(k+ky) —1/kN 1/kN 1/k(k+kg) —1/kN
The errors E; introduced by including these symmetrizing pieces are neg-
ligible:

I ' 1/kN e(‘rz/k)(n—-l/24)+‘rz_‘/24k
wl-=|f "
1/k (ke kg) gt/

1 1 e(r/k)m(z) (n—1/24)+(x/24k)R(z"1)
(e { 3
kN k(k + k,) z 21/2

Here R(z) =k/n and

R = — "< ik <k
T et e W+ 1k + ko)
. c c .
(5.1) | Ei| < ﬁ (k%/n* + 1/(k + k)24 < (i=1,2).

Complete the substitution z=Fk/n—kip, and, making use of (5.1), write

1 k/n+i/N
(5.2) Ih.k = — — e(r:/k)(11—1/24)+1rz_1/24kdz + O(k—ln—ll4)
k/n—i/N z1/2

Close the path of integration by including the smaller arc of the circle T'
through z=%k/n +1/N and tangent to the imaginary axis at the origin of the
z-plane. We shall show this introduces a negligible error. If z=wu+1v, the
circle T is given by

u? + 92 = au, 2> ar=k/n+ n/(N2k) > 1/k.

On the whole circle,

u
RiEH = =— <k
u:+ 12 ay

And on the smaller arc, R(z) Sk/n. Hence on the upper half of the smaller

arc (let s=arc length on I'):
1 kinti/N 1 C, z=k/nt+i/N

_f —— e(xIB)z(n—1/20)+x2" 24k gy | < __f I z|‘”2ds
kil‘ 0 zl/2 k 2=0

(5.3)
< Chp1s,

The lower half of the smaller arc of T is treated in the same way. Combining
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(5.2) and (5.3) we have

Inx = i i e(mal W) (124047 2Ry | O(BY),
' kiJr z!/?
the linear path of the integration used in (5.2) being replaced by the larger
arc of the circle I. To integrate, putt=mz"1/(24k). Then R(¢) = (7v/24k)R(s?)
=1r/(24ka;,) = Ck.

27l' T 1/2 1 cp+ic0 o k )
Ine=—(— —f t-32gt+altdy 4 O(k1),
MET (24k) 218 J i + O

where a =72%/(24k?) (n—1/24).
Using the Hankel integral formula:

1 cg+io 3 (al/z)zm
— r3ettaligy = 3 = sinh 2a1/2,
211 d gmi o mil(m 4 3/2) (ra)1/?
Then
2w/ w\VZ 1 e2ellt _ g—2alls
Ine = —(— O(k
TR (24k> (ra)!/? 2 + 0™
(5.4
e (7l k) ((1/6) (n—1/24))1/2
= O(k™).
(k(n — 1/24))12 + 00
With this, (4.9) becomes
. Z e(7/ k) ((1/6) (n—1/24))1/2
A(n) = e Tith BIng,
(5.5 (h,2k)=1,0<|A|S S N, (h+K)5%0 o 2(k(n — 1/24))1/2
+ O(n'/? log n).
(On summation over k, k the error terms O(k!) in (5.4) give an error of
O(N) =0(n''?).)
For k>1, put
1
(5.6) M == X g,

(R, 2k)=1,—k<h<lk

in agreement with the statement of Theorem II. For k=1,
A1) L ! (=
= — g~ 7in = —(—1)r1,
2 ot 2

Then from (5.5),

7 E A(E)e(x/#)(1/8) (n—1/20))112
> Al = O(nt/2 log ).
(5.7 (n) o<k (B(n — 1/24))112 + O(n og n)
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This completes the proof of Theorem II. It should be noted that we can
actually take fewer terms of the finite sum than indicated by the upper
limit [#1/2] in (5.7) without increasing the order of the error term, since in fact
the last term is O\([n1/2])/n?/#) = O(n—14). It can be shown that the number
of terms taken may be reduced to [nV%/log n].

6. Precision of the formula. While the order of magnitude of the error
term in (5.7) is small compared with that of the principal term, we were sur-
prised to find even better agreement than expected between exact values of
A(n) and estimates computed from the asymptotic formula. For =100 we
take [n'/2] =10 terms:

—18 532.888
16.476
—4.085

.970

—.402

411

—.390

.323

—.240
—.381

—18 520.206
The true value is

A(100) = — 18 520.

It is noted that after the first four terms, the error remains less than 0.5.
For n=200, we take [n!/2]=14 terms:

—2 660_175.054
¥ 165.981 .
5.895
—2.587
-¥.822
—1.079
0.000

— .227
.281

— .458
.000

.039

.184

.000

—2 660 007.847
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The exact value is
A(200) = — 2 660 008.
(Six terms are sufficient to give 4(200) to the nearest integer.)

TABLE I: A(n)

0 1 34 —154 68 —2361
1 1 35 171 69 2525
2 -2 36 —-179 70 —2736
3 3 37 197 7 2937
4 -3 38 —-221 72 —3121
5 3 39 245 73 3333
6 =5 40 —262 74 —3592
7 7 41 279 75 3856
8 —6 42 —314 76 —4097
9 6 43 349 i 4367
10 —10 44 —369 78 —4696
11 12 45 398 79 5034
12 —11 46 —446 80 —5340
13 13 47 486 81 5683
14 -17 48 —515 82 —6105
15 20 49 557 83 6521
16 -21 50 —614 84 —6916
17 21 51 671 85 7365
18 =21 52 —1715 86 —7882
19 34 53 767 87 8409
20 -33 54 —845 88 —8919
21 36 55 920 89 9473
22 —46 56 -977 90 —10123
23 51 57 1046 91 10795
24 —-353 58 —1148 92 —11429
25 58 59 1244 93 12133
26 —68 60 —1321 94 —12952
27 78 61 1421 95 13775
28 —82 62 —1544 96 —14580
29 89 63 1667 97 15466
30 —104 64 —1778 98 —16468
31 118 65 1898 99 17503
32 —123 66 —2060 100 —18520
33 131 67 2225

Table I gives the true values of 4(n) for <100. These were computed
by a recursion formula arising from the identity

© © _1 mom(3m+1) /2
6y f@-Tla-pfi+s2 (_)T%T“} .

From the pentagonal number theorem
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E (_l)rqr(3r+l)/2E A(v)q'
»=0

r=—00

Il

14 42 (—1)mgm@min)/2 Z (—1)2gm™
m=1

A=0

2 v(n)gn,

n=0

say, whence

1 1
Am) = v(n) — 2 (—l)'{A (n — —2—7(31' - 1)) + 4 (n — —2—1'(3r+ 1))}.
r21
The coefficients y(#) are small and can be computed readily.
If desired, 4 (») may be computed directly from tabulated partition num-
bers p(n) [2]. By (6.1),

> 46 = 3 o > v(m)g™,

r=0 m=0

whence

A(n) = 3 p)v(n — 1.

r=0

This equation was used to check Table I and to compute the isolated case
A(200).

For the application of the asymptotic formula for 4(n), Table II gives
values of A(k) for k=1, 2, - - -, 14, computed from (1.6) and (5.6).

7. Analogues to main theorems. With virtually no changes in the argu-
ment, analogues to Theorems I and II can be proved for the other mock theta
functions of third order. This is indicated by restating the auxiliary lemmas
and main theorems for the other cases(®). We make full use of the identities
(1.2) and the transformation formulas (3.2), (3.3).

LEMMA 5. Let g=pe*i™* and let p—1~. Then for fixed h and k with (k, k) =1,

#(g9) = 0(1) (k 0dd),
(7.1) ¥(9) = 0(1) (h 0dd),
¥(g) = O(1) (h+ k odd),
w(g) = 0(1) (h odd).

(%) Once f and w are known, x and p are accessible from relations (1.2b, c). They are of
slightly different type from the five other functions, inasmuch as their asymptotic representa-
tion in exponential form at the “worst” singular points exp (wih/k) does not have the same
form for all k, as is the case for ¢, ¥, », @ in Theorem III.
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TABLE II: \ (%)

1
M) = (=D =

AM2) = cos (—Zn— + i) r

A3) = cos (g_%

A = — cos (F+ L) rscos(2a 1)

AS) = cos( S S)T cos(—)

MO = cos (%=1 )w+eos (Tt Z

)\(7)——cos(7 14)1r+c05(7 14)r+cos 57n 134

) = cos(8 32),r+ (38,; ;; re (Sn_ﬂ . 78” ;;
A9) = cos(9 7) cossg 227 x*— cos79” 227
)\(10)——cos(10 40)"' cos :153-'-213)' cos(lo 8)r+cos?: i;

S5 3
A1) = n_ 1
() °°S(11 22)’+°°s M 22) Feo (11 2 '+°°s(11 22)

+ cos (11 22)

A(12) = cos )r cos Sn 19 7+ cos 7——-"—-21)1%- (

n lln 35

12 14 2 12 14 12 14
7n 2
A13) = — n
(13) = — cos (13 13)’+°°5(13 13)’ °°s(13) BB
ttn 2
+ cos (13 13)’r s\t
3n 1 Sn 15
1 P
M14) c"5(14 56)" s\11 56)"4"”s 1tse) °°s(14 56
lln 15 cos 13n_3)
11 s6)" 14 356

Consequently, by (1.2), under the hypotheses of Lemma 5,
#(9 — f(—9 = 0(1) (k odd, k even),
(7.2) ¥(g) + f(—9)/2 = 0(1) (k even, k odd),
¥(g) — Gx(g) = 0(1) (k odd, & odd),
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7.2) g'%w(g) + G2(g"?)/2 = 0(1) (#/2 odd, k odd),
' g'%(q) — Ga(g*/%)/2 = O(1) (h/2 even, k odd),
where G»(q) is defined below as a product of ordinary theta functions.

LEMMA 6. If Ga(q) =¢V*9:(0, ¢) 11,21 (1 +¢*) and if wh x 1s given by (2.10),

(7.3) Gz(eri(h+it)/k) f— 6h'kerz/3k+rz—l/24k {1 + E Ch'k(m)e—(rlkz) m}

m=1

(22)12
where 8y 1 =wpz/w3: and Ech,g(m)x"‘ 1S @ certain convergent series ]x[ <1.
The linear transformation formulae for the functions are given by

TuEoRrREM 11I. Let (h, k) =1, and hh’= —1 (mod k). For all complex z such
that | 3(2)| S1/(k+1),

¢)

€
ek — w2/ 2kt a2k (4 grih iz E)

zl/2

+ O(klog k) (& even),
12 (¢)
2 Nk

(7.4) ¢p(emithtinlky = i

e el 2k—r T 3k (4 erit+izTH k)

4+ O(klog k)t  (k odd);
20"."’:3—::/24 bbre 2k grith+isTh k)

\ + O(k log k)

(For given h and k, the process outlined in Lemma 4 will determine explicitly
which form prevails, the value of the roots of wunity eﬁf{, 175,"2 or oﬁ‘f{, and re-
solve the ambiguity of sign in the argument of the mock theta functions in the
right member. In particular (7.8) gives this information in case e**/* is a boundary

point for which any particular function is unbounded on radial approach.)

;z":i ) e a2kt 24k (4 prith+izTh) [ E)
+ O(klog k)  (h even),
(7.5) Y(erithiors) = (2’2?’3 eI sky (o grih s 1)
L S
212 e eIkt TaT 24k prih+izT) [E)
+ O(k log k)
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[€2)
(26;'1"/2 ersl3ktrsT Mk G( 4 grilhtis™) k)
2
+ O(klog k) (h+ k even),
»
(7.6) w(exithinlk) = %23 ere/3krsT 3ky(f grithtisTh k) |
iz
+ O(k log k)
12 () (bt kodd);
2 onk -1 i(Ariz!
= e¥zI3k+ns ““‘lﬁ(ie"(h +iz )/k)
2
+ O(k log k)
(w)
;’*;"/ - grrelsktasT 12k f(2rith+is T k)
- ,

(1.7 w(etHion) = | + O(k log k) (k even)

Nh,k

€27 e/3k—2x: T 3ky( 4 grith'+isTh k)
5172

+ O(klog k) (h odd);

where ]e;.,kl = | m.,k] = I(Th,kl =1 1n each case, and in particular,

ef.d.'l: = etk (% even), 6;(.'; = Ohk (b + & even),
(7.8) W (@ h2
€hk = — €h—k,k (h even), €h,k = (—1) 5)./2,1, (h even).

(See definitions (1.6) and (7.3) for exr and o x.)

The coefficients of the power series representations of the functions are
given by:
TueOREM IV. Let M(q) be one of the funciions ¢, ¥, v, w. Then if M(q)
= T A @),
£(x %) ((1/6) (n—1/24))1/2

APn) = MO (R O(n'"? log 1),
@ = P G = 1y O e

1 .
A® () = — > P LI
—k<h<k,(h,2k)=1

£ (%1 %) ((1/8) (n—1/24))1/2

AW (p) = A (B O(nt/? 1 ,
(n) 0<k§”lg,:(k'2)_l (k) 2k — 1/20))172 + O(n'/? log n)

1
NUC TN SR PSRN
—k<h<k,(h,k)=1,2]h
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e(*/ k) ((1/8) (n+1/3))1/2

AW = AD(E O(nt/? ] ,
(n) 0<k§n‘§,:(k.2)—1 (%) 2kn + 173 + O(n'/? log n)

1
AO(k) = — > eTitiRIng,
—k<h<k,(h,2k)=1
e(x1 1) (A13) (n2/3)112

A@(n) = N ( O(n1"? log n),
(n) o<k§n"’z.(k,2)=-l (k) (kn + 273 + O(n'/? log n)

1
A (k) = — > i IRIn(— 1)bI25, o
2 _k<h<k, (hk)=1,2]h

The proof of Theorem IV is virtually the same as that of Theorem II.
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