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Let o be the ring of integers of an algebraic number-field k of degree d;

let m be an ideal in o; a complex-valued function/(a), defined and 5^0 for

all ideals a prime to m in o, is a "Grössencharakter" according to Hecke's

definition if f(ab) =/(a)/(b) whenever a, b are prime to m and if there are ra-

tional integers e\ and complex numbers C\ (1 ^X:£<J) with the following prop-

erty: if a is in o and is ^ 1 (mod m), and if ai=a, a2, ■ ■ -, oid are the conju-

gates of a, then/((a)) = IJxax*| a| »N The ideal m is called a defining ideal for

/. Two such characters are called equivalent if they coincide whenever they

are both defined; among the defining ideals of all the characters which are

equivalent to a given one, there is one which divides all the others; it is

called the conductor of that class of equivalent characters. It is easily seen

that classes of equivalent characters are in a one-to-one correspondence with

the representations of the group of idèle-classes of k into the multiplicative

group of complex numbers; Hecke has shown that one can use them in order

to build up F-series which have all the usual properties of the ordinary

L-series. Those classes of characters which are of finite order in the group of

all such classes are those which occur in the classical classfield theory and in

the ordinary F-series; they correspond to the characters of the group of idèle-

classes which take the value 1 on the connected component of the neutral

element in that group; Artin's law of reciprocity states that they are the same

as the characters defined by the cyclic extensions of k. No such arithmetic

interpretation is known for the more general characters of Hecke, and to dis-

cover one may well be considered as one of the major tasks of modern

number-theory.

Here I shall deal with a very special case of this problem by showing that

the Jacobi sums are characters (in the sense of Hecke) of cyclotomic fields;

Jacobi sums are certain sums of roots of unity, closely related to Gaussian

sums('). This will at the same time be a contribution to the old problem of

the determination of the argument for Jacobi sums and Gaussian sums; it

will be shown that it also contains the proof for a special case of an interest-

ing conjecture of Hasse on "zeta-functions of algebraic curves over algebraic

number-fields".

1. Jacobi sums. Let m be any integer > 1 and f a primitive m-th root of
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unity over the field 0 of rational numbers (e.g. f = e2"lm). If t is any integer

prime to m, f—»f ' determines an automorphism tr¡ of 0(f) over Q; the Galois

group of 0(f) over 0 consists of all at and therefore is isomorphic with the

multiplicative group of integers prime to m modulo m.

Let p be any prime ideal prime to m in 0(f), and put q = Np;

then q = l (mod m). The ra-th roots of unity fa, for 0^a<w, are all incon-

gruent to each other mod p and therefore are all the roots of the congruence

Xm = l (mod p) in 0(f). For every integer x prime to p in 0(f), xlq~l)lm is a

root of that congruence, and so there is one and only one m-th root of unity

Xf(x) satisfying the condition

Xfix) = x^-1)lm (mod p).

For x=0 (mod p) we put xÁx) =0- Then %t> is a multiplicative character of

order m of the field of q elements consisting of the congruence classes in

0(f) mod p.
Let r be any integer ^1; the really significant case is r = 2, since the

quantities we shall construct are trivial for r = i, and those corresponding to

r>2 can all be expressed in terms of those belonging to r = 2 and r = l. Let

a = (cip)i^p<r be a set of r integers ap modulo m, i.e. an element of the direct

product Gr of r groups all identical with the additive group of integers modulo

m\ the characters on the group Gr are the functions on Gr of the form fs"p"p,

where u = («„) is also an element of Gr. Now write

(I) Ja($)   =   (-1)-" £ jfcí»"1  -  -   -   X¿Xryr

»!+••• + *,■-!»)

xi, • ■ ■ ,xr mod p

where the x„ run over complete sets of representatives of the congruence

classes modulo p in 0(f) subject to the condition 23p=i xp— ~~ I (mod p).

For a given p, this is a function of oGGr. If, for any u = (up), we denote by

N(u) the number of distinct sets of congruence classes (x„) modulo p satisfy-

ing  ^p=i Xp= — 1 (mod p) and Xî(xp) =ÇUp for Impair, then we have

(i) a(p) = (-i)r+1Z^(«)f2<,""p
u

which gives the expression of Ja(p) as a function on Gr in terms of the char-

acters on Gr. By induction on r it is easily seen that we have

(2) /o(p) = r'ti - (i - s)'].

When some but not all of the ap are 0, e.g. if a8+1= • • • =ar = 0 and none of

the a-i, • • • , a, is 0, then it is easy to see that J„(p) reduces to the sum Ja>(\))

similarly built up from a' = (a-i, • ■ ■ , a¡) ; in particular, if all the ap except

ai are 0 and a^O, then J0(p) =Xp( — l)"1- If we Put ap = ap/m for

lúpúr, Ja(p), except for the sign, is no other than the Jacobi sum

j(cti, • • ' , Or, — ]Cp-i ap) as defined in NF.
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For each a£Gr, we extend the definition of /„(p) to all ideals prime to

m in 0(f) by the condition

(II) /.(ab) = J„(a)Jb(b)

which is to hold whenever a, b are two such ideals. Our main purpose is to

prove the.following theorem :

Theorem. For each a^(0), the function /„(a) defined by (I) and (II) is a

character on 0(f) in the sense of Hecke; and m2 is a defining ideal for it.

In order to prove this, we first observe that for each a there is a function

A(u) with rational integral values on the group Gr such that

(3) /„(tt)   =   XM(M)fZap«p
u

tor all a£Gr; in fact (1) shows that this is so if a is prime; and if Ja(a), /„(b)

can be so expressed by means of integral-valued functions A(u), B(u), it

follows immediately that /O(ob) has a similar expression by means of the

"convolution" of A(u) and B(u).

Furthermore we have, for all a:

(4) Jo(a)Na = 1 (modm'),

where Na is the norm of a. In fact, since m divides q— 1, (2) shows that this

is so when a is prime; the general case follows from this at once.

If all the ap except one are 0, and e.g. ai^O, then, as we have seen,

Ja(a) =/i(a)Sl where /i(a) is defined by (II) and by /i(p) =x»( —!)• If m is

odd, we have /i(a) = 1 for all a; if m is even, it is well known that /i(a) is a

character of conductor 4 on 0(f) belonging to the quadratic extension

0(f1/2) °f 0(f)- This implies that in all cases /i((a)) = l whenever a is an

integer in 0(f) such that a = l (mod m2).

Now we need the prime ideal decomposition of Ja(a) ; for a prime a this

has been obtained by Stickelberger [7] and is as follows. Let \f/(x) be any

nontrivial character of the additive group of congruence classes modulo p in

0(f) ; consider the Gaussian sum

g(a) =  E   *»(*)**(*)
x mod p

for any integer a modulo nt; then g(a)m is an integer in 0(f) whose prime ideal

decomposition is given by (g(a)m) =pm9<a> and by

(5) 6(a) =     E   ( - ) 'Zl

t mod m

Here (X) denotes the "fractional part" of the real number X, defined by
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putting (X)=X— [X] where [X] is the "integral part" of X, i.e. the greatest

integer i=X; the summation is over all integers / prime to m modulo nt. Thus

m6(a) is an element of the group-ring (with integral coefficients) of the Galois

group of ©(f) over 0; symbolic powers of elements and of ideals of 0(f) are

to be understood as usual by putting e.g. a" = JJí (tt")"' if v is the element

v= X* nt<Jt of the group-ring. It is clear that we have

(6) e(a)<rt = dita),        0(a)(o-o + a-i) = 0(a) + 6(- a) = £ a,
t

where / is again prime to nt.

We now borrow from NF (p. 501) the classical and easily proved relation

a,)g(- X) «J,(7) Jaip) = Nr'gM ---ii

which holds whenever the ap are not all 0 and shows incidentally that /„(a)

depends symmetrically upon the r+1 integers 0\, • • • , ar, — Xap (a fact

which we do not need here). This gives at once, at first for a prime ideal p

and then for an arbitrary a, the prime ideal decomposition of Ja(<x) :

(8) (/.(a)) = a»<°> (a * (0))

where u(a) is the element of the group-ring defined by

"(a) - ¿ SM + S ( - Z «p ) - Z «t
p=l \ p=l        / i

(9) =Í,0(a,)-e(£,e)
p=i \ p-i    /

- £ r¿<^ >>--;.
(i,m)=i L p=i     m     J
t mod m

The last expression, where [ ] denotes the integral part, shows that the co-

efficients of the o"í in us(a) are integers ^0 and ¡Sr —1.

At the same time we have g(0) = — 1 and, for a^O, \g(a)\2 = q; this last

relation (cf. NF p. 501) may be considered as the special case r = i of (7) if

one takes into account the value /0(p) =Xt>( — l)a of /a(p) for r = \ and the

obvious relation g(a) =Xo( — l)ag( — a)- This gives, again at first for a prime

ideal and then in general:

(10) | Ja(a) |2 = Na*"2

if exactly 5 of the r + 1 integers ap, Ep apare ^0 (mod nt) and s ^ 1 ; moreover,

when that is so, all the conjugates of /„(a) have that same absolute value since

they are given by
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(H) /„(tt)"   =  Jta(a)

which is an obvious consequence of (3).

All this applies to the case where a is a principal ideal (a). In that case we

put, whenever the ap are not all 0:

(12) e(a) = /„((«))«-<«>.

Then, by (8), e(a) is a unit in 0(f). The conjugate imaginary to any ele-

ment ß of 0(f) is ß*'1, and more generally the conjugate imaginary to ß"

is ß"->, so that \ß"'\ 2=ß<ri+<r-t; using (6) and (9), one finds at once that all

conjugates of a"{a) have the absolute value N(a)(s~2)l2, where 5 is as above.

As the field 0(f) is purely imaginary, there is no distinction to be made be-

tween the norms of the number a and of the principal ideal (a). Therefore,

by (10), e(a) and all its conjugates have the absolute value 1. By a classical

theorem of Kronecker, this implies that e(a) is a root of unity and hence of the

form ±fA; but we shall not need this. If all but one of the ap are 0, and e.g.

ai7¿0, then, by (9), a (a) =0 and e(a) =/01((a)).

Now take a = l (mod mr). By (4) and (12) this implies that

Ja((«))=€(a) (mod mr)

if we put e(0) = 1. For any M£Gr, put

E(u) = mrrY^ e(a)f-2ap"p.
a

If we use (6), (9), (11), and (12), we see at once that t(a)'"=e(ta) for any t

prime to m; this implies that the E(u) are invariant by all automorphisms

(Tt and are therefore in 0. At the same time, using (3), we get

E(u) = A(u) + mr'Yj («(<*) - /<.((«)))f-2"""",
a

which, by the above congruences, shows that the E(u) are integers and

therefore rational integers. Finally we have

X| E(u)\2 = nrr^\e(a)\2
u a

(the "Parseval relation" for the group Gr). As all e(a) have the absolute

value 1, the right-hand side is 1 ; as the E(u) are integers, they are all 0

except one of them which is ±1; if that one is E(v), we have therefore

e(a) =E(v)Ç'SaPvP for all a. Taking a = (0), we get E(v) = 1. Taking one a„ equal

to 1 and all others equal to 0, we get fr* = /i((a)) for all p. But we have seen

that a = l (mod nt2) implies Ji((a)) =1; so we have proved that if r=ï2 and

a = i (mod mr) the units e(a) are all equal to 1, or in other words

Ja((a)) = a"(a)

whenever the a„ are not all 0. This shows that /„(a) is a "Grössencharakter"
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with the defining ideal mT.

But, as we have mentioned, the characters /0(u) for r>2 can be expressed

in terms of those for r = \ and 2; in fact, using (7), once easily gets the

relations

/«!...,«,(«) = Ja2(a)JaS,-.-,ar(a)Na

if ai-{-ai=0 (mod nt), and

J a¡, ■ ■ -,ar(0)   =  J a¡+a2{(í)J ai,a2\^)-' ai+02,as, ■ ■ ■ ,ar{0.)

if a1+a2 t^O (mod ?w). As w2 is a defining ideal for r = 1 and for r = 2 it follows

by induction on r that it is also a defining ideal for all r.

It seems doubtful whether nt2 is ever the true conductor of the characters

/O(o). For m=i, one finds that the conductor is 4; when m is an odd prime

one finds that the conductor is either (1— f) or (1 — f)2; actually it is the

latter in the numerical examples which I have examined. A general investiga-

tion of this question might lead to results of some interest.

2. Hasse's conjecture. Consider the plane algebraic curve

(III) Ve = yX* + 5

where e, f are integers such that 2 ^e ^/ and y, 5 are nonzero elements of a

field k of characteristic prime to ef. Let m be the L.C.M. of e and /, and let

f be a primitive w-th root of unity in the algebraic closure of k. Then the

Galois group of &(f) over k consists of the automorphisms f —>f' where t runs

over a subgroup II of the multiplicative group of integers prime to m modulo

nt. If (x, y) is a generic point of the curve (III) over k, the normal field gen-

erated by k(x, y) and its conjugates over K0 = k(xf, y") is K = k(Ç, x, y), and

its Galois group Y consists of the automorphisms

(f, *, y) -» í¿*. r*. fy)

with t(E.H, u = 0 (mod m/f), v = 0 (mod m/e), u and v as well as / being taken

modulo nt; these automorphisms will be denoted respectively by (t, u, v).

The subfield k(x, y) of K corresponds to the subgroup G of Y consisting of

the automorphisms (1, u, v) in Y; this is isomorphic to a subgroup of the

group denoted by G2 in §1. It is an elementary exercise to determine all the

irreducible representations of the group Y and in particular to determine the

decomposition into irreducible representations of the permutation group

Y/G (i.e. of the group Y acting on the cosets of G in Y). One finds that the

latter is the sum of irreducible representations Da,b, each taken with coeffi-

cient 1 ; here a is an integer modulo /, b an integer modulo e, and one must

take one representative for each set of pairs (ta, tb)t^H- Furthermore one finds

that the monomial representation of Y induced by the character eS«(««+w/»•

of G contains the representation Da,b with the coefficient 1 and does not

contain any representation -D0<,¡,< not equivalent to Da,b-
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Assume first that k is a finite field with q elements ; for that case the zeta-

function of the curve (III) has been determined in NF; it can be written as

Z(U) = Y[La,h(U)
a,b

where the pair (a, b) runs over a complete set of representatives for the sets

of pairs (ta, tb)t^H, a being an integer modulo/ and b an integer modulo e,

and where the La,b(U) are as follows. If one and only one of the numbers

a/-1, be~1, and a/_1+èe_1 is =0 (mod 1), we have La,b(U) =1; for a=b—0, we

have

1
Lo,o(U) =-

(l-U)(l-qU)

Finally, when a/-1, be-1, and af~1Jrbe~l are all ^0 (mod 1), let nto be the

smallest integer such that ao = m0af~1 and b0 = ntobe~~1 are integers; nto is a

divisor of nt. Let d be the degree over k of the field k' = k(Çm,m[>). Let w be a

generator of the multiplicative group of nonzero elements in k' such that

let x be the character of that multiplicative group determined by

x(w) =et*i">i™<>. Then we have

La.b(U) = l + xiiy-^i-sr^jU*,

where j is the Jacobi sum in k' defined by

j =   X   xix^xiy)*0-
x+a+h-e
x,y in kf

This suggests that the La,b(U) are no other than the Artin L-functions belong-

ing to the representations LV¡>, which is indeed the case. In order to verify it,

one need only remark that those L-functions, in view of the results stated

above, must respectively be the G.C.D.'s of Z(U) and of the L-functions of

the field ß(f, x, y) over &(f, x!, ye) ; the latter, being abelian L-functions, are

easily determined (the case y — — 1, h = 1 has been treated by Davenport and

Hasse in [5], and the general case is quite similar).

Now we take for k an algebraic number-field. If p is a prime ideal in k,

prime to efyô, the equation (III), reduced modulo p, defines a curve over the

finite field with q = Np elements; if we call Zf(U) the zeta-function of that

curve, Hasse defines the zeta-function of the curve (III) over k as

z« = II Wrs)>

and he conjectured that this is a meromorphic function satisfying a functional

equation of the usual type. Now consider the group Y and its representations.
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When we reduce everything modulo p, the group H is replaced by the sub-

group Hq of H generated by q; Y is replaced by the subgroup To consisting of

the elements of Y of the form (t, u, v) with t(E.H0; and Da,b splits up as fol-

lows on To. If m0 is again the smallest integer such that a(, = m0af~1 and

bo = m0be~~1 are integers, and if H¿ is the subgroup of H consisting of the

elements of H which are =1 (mod mo), Da,b splits up on To into the sum of

the representations Dta,tb of Y o where / runs over a set of representatives

for the cosets of H0H¿ in H. Now, to Da,b and p, we attach the product

Pa.b.tiU) of the L-functions LtaJb(U) of the curve (III) reduced modulo p

when / runs over a set of representatives for the cosets of H0H'0; and we in-

troduce the function

■G..&(i)   =  II Pa.t*(Np-').

It is clear that J^a,b(s) =1 when one and only one of the numbers af~l, be~1,

af~l-\-be~l is an integer, and that

-Cm(s) = U(s)ïk(s - l)Go.o(ä)-1

where fjt(s) is the Dedekind zeta-function of the field k and Qo,o(s) is the

product of those factors in the infinite product for ffc(s)f&(s — 1) which pertain

to the prime ideals dividing efyô. Let now a, b be such that a/-1, be-1, af~1-\-be~i

are all jéO (mod 1); define nt0, a0, b0 as above; put f0 = e2,ri/"í0 and

£ = (Y-15)a°( — 5)6». For each prime ideal $ prime to efyô in the field &(fo), let

Xv(x) be the character modulo ty in ¿(fo) defined by taking

xv(x) m xW-vi^ffl)

for all integers x in &(fo). Then, after some calculations which we will omit,

one finds for ^,¡,(5) the expression

■C..»W = II (l - x*«)/«„.6„LAr*<ro)/0<fo>$]Wp-s)

where the product is taken over all prime ideals $ prime to efyô in k(Ç0) ; N

denotes the absolute norm, and N^r^/g^^ the relative norm over 0(fo) of

ideals in &(fo); as to /ao,o0(a), it is the character we have introduced and

studied in §1.

Classfield theory shows that x$(£) is a character in &(f 0) belonging to the

cyclic extension &(fo, £1/mo) of &(fo). The infinite product for /¿a,b(s) is there-

fore no other, except possibly for a finite number of factors, than that for the

reciprocal of the Hecke L-function defined on the field £(fo) by the "Grossen-

charakter"

x($) = x*(Ö/«..».l>*(r.)/e<r.>$]-

The missing factors, whose product we shall denote by Qa,b(s), are those per-

taining to the prime ideals dividing efyô which do not divide the conductor
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of that character. As the above character is of absolute value Nty112, we write

our result as follows:

■Ca.b(s)   =   Ha.bi S-J     Qa,b(s)~1,

where iJo,0(s) is the Hecke L-function defined by means of the character
X(^)A«P-1/2.

These results imply that Z(s) is a meromorphic function and that

Z(2—s)Z(s)_1 can be expressed as a product of a finite number of "elemen-

tary" factors (including of course gamma functions) which could easily be

written explicitly. Thus we have verified Hasse's conjecture in the case of

the curve (III). For e = 2 and/ = 3 or 4, (III) defines an elliptic curve with a

complex multiplication; it would be of considerable interest to investigate

more general elliptic curves with a complex multiplication from the same

point of view.

University of Chicago,
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