
INVESTIGATIONS IN HARMONIC ANALYSIS?)
BY

H. J. REITER

This paper is concerned with the theory of ideals in the algebra L1 of

integrable functions on a locally compact abelian group.

After some preliminaries an analytical proof is given of the known theo-

rem that an analytic function of a Fourier transform represents again a

Fourier transform (p. 406). Then, in part I, the continuous homomorphisms of

closed ideals I of L1 upon C, the field of complex numbers, are studied. Any

such homomorphism is given by a Fourier transform and, if I o is its kernel,

the quotient-algebra I/Io, normed in the usual way, is not only algebraically

isomorphic, but also isometric with C (Theorem 1.2). Another result states

that homomorphic groups have homomorphic L'-algebras and that a cor-

responding property of isometry holds (Theorem 1.3).

In part II, which may be read independently of part I, a theorem of

S. Mandelbrojt and S. Agmon, which generalizes Wiener's theorem on the

translates of a function in Ll, is extended to groups (Theorem 2.2). Several

generalizations of Wiener's classical theorem have been published in the past

few years; references to the literature are given on p. 422. The rest of part II

is devoted to some applications (pp. 422-425).

In conclusion it should be said that the work is carried out in abstract

generality, with the methods, and in the spirit, of analysis, which is then ap-

plied to algebra.

To Professors S. Mandelbrojt, B. L. van der Waerden, and A. Weil I

owe my mathematical education. The inspiration which I have received in

their lectures, in letters, and above all in personal contact, is at the base of

this work ; may I here express my gratitude.

Basic concepts and results. Notation

Groups and Fourier transforms. The standard work of reference is

A. Weil's book [14]; cf. also [4].

For the definition of a topological group see [14, p. 9]. The additive

group of real numbers (the "real axis") is denoted by R1, ^-dimensional space

by Rp. The group operation will always be denoted multiplicatively (it is

hoped that this will not cause confusion in the case of R1). The identity

(unit element) of the group is denoted by e.

We shall deal only with locally compact abelian groups G. By G we denote
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the dual group, by (x, x) the value for x£G of the character defined by

x£G. For R1 the symbol (x, x) may be regarded simply as an abbreviation

of exp(27Ti'xx) and Rl is the same as R1.

The measure of a set SCG (5CG) is denoted by m(S) (m(S)). L\ U, L°°

denote, respectively, the space of complex-valued functions on G which are

integrable, of integrable square, measurable, and essentially bounded. The

last notation, a slight departure from Weil's, is used in [4]. Functions in

Ll, L2, Lx will be denoted, respectively, by/(x), • • • , F(x), • • ■ , <¡>(x), • ■ • .

We use a dot to indicate the conjugate of a complex number and we write

/*(x),**(x) for/»(r-1),+•(*-»).

The Faltung of two functions in L1 is

f*£ = f* ¿(x) = J f(y)é(^y-1)dy.

We shall also use the Faltung /*<¡>(x), 4>G£°°. Sometimes we shall write

/(x) * <¡> or even f(x) * «}>(x), according to convenience. If «¡>i=/ * <]>, then

$*=/* * <¡>*.

The Fourier transform of /G-Í*1 is(2)

/(x) - J f(x)(x, x)'¿x.

This is the definition adopted in [4, p. 87] rather than that used by Weil

[14, p. II2]—the difference is irrelevant. For G = R1 it represents a slight, but

convenient, deviation from the classical definition.

Banach spaces. For the definition and properties of Banach spaces B over

the field of complex numbers, and the notation, we refer to Hille's book [8].

L1 and Lx are Banach spaces, the norms being, respectively,

/
f(x) I dx,       H^IU = ess. sup I <¡>(x) | (x £ G).

The dual space of L1 is Lx; we shall write the general bounded linear func-

tional on L1 in the form

/
/(x)«¡>*(x)dx.

The following "distance theorem" is a reformulation of a well known result

[8, Theorem 2.9.4]:

Let L be a closed linear subspace of B and define for XiC-2?

(2) Thus a function in L1 is indicated by a letter in boldface type and its Fourier transform

by the same letter in italic type. This notation, considerably different from that used by French

authors, was dictated by technical necessities of printing. Likewise for the use of the dot in-

stead of the customary bar.
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dist {xi, h] = inf |[Xi — Xo|| (x0 G L).

If there is no bounded linear functional x*(x) satisfying

x*(xi) = 1,
(*)

x*(xo) = 0 for all Xo G L,

then XiG¿

If there are bounded linear functionals satisfying condition (*), then

dist {xi, L] = 1/min ||x*||,

where x* ranges over all these functionals.

This is an immediate consequence of Theorem 2.9.4 in [8] and the fact

that if x* satisfies (*) then x*(xi —x0) =1, and hence ||x*|| ^l/||xi — x0||.

This theorem will be applied, in the space L1, to calculate the distance

in some cases (cf. [3, chap. III]).

The function <¡>(x) is called orthogonal to i(x): <j>-L/, if ff(x)§'(x)dx = 0.

It is called orthogonal to the linear subspace IC_Ll: «¡»-LJ, if <¡>_L/ for all /GJ.

If ^-LL1, then <¡> vanishes almost everywhere.

The Z^-algebra. L1 is not only a Banach space, but also a commutative

Banach algebra [8], multiplication being defined by the Faltung.

A (closed) ideal in the algebra L1 is defined as a (closed) linear subspace

of L1 which contains, with a function /, all products / * g, for any gEL1.

Closed ideals will be denoted by I.

A closed linear subspace is an ideal if and only if it is "invariant under

translation," i.e., contains, with a function I(x), all "translates" /(xy_1),

for any (fixed) yGG. For the sufficiency see [6, p. 127]. The necessity is

proved here, for the sake of completeness.

Consider any /G-T and any gÇzL1. Then, by hypothesis, f*gGI and

hence if ff(x)$'(x)dx=0 for all fEI, then

JV(x)¿xJf(xy-1)g(y)dy = 0

or

f g(y)dy f f(xy-i)V(x)dx = 0.

Since g(y) is arbitrary, it follows that

f /(xy-1)<J)-(x)¿x = 0.

Since this holds for any 4>-L7, it follows that I(xy_1) G-L for any (fixed) y EG.

The intersection of the zeros of the Fourier transforms of all functions in
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J, which is a closed set in G, is called the co-spectrum of J by L. Schwartz

[12]. We shall denote it by ZT.

By I(x, x)' we shall mean the "rotated" ideal obtained by replacing all

/(x)GjT by f(x)(x, x)*, x being any (fixed) element of G.

Preliminary considerations

Let 5 be a compact, symmetrical neighborhood of the identity e£G and

denote by S(x) the characteristic function of S:

S(x) = 1, x G S,

S(x) = 0, x G ÇS.

This will be used as a standard notation throughout, and neighborhoods

S, S', Sn, etc., will always be supposed to have the above properties (without

explicit mention).

Define now

-/
S(x) =   I S(x)(x, x)dx.

Since S~l = S, S(x)is real and S(x~l)=S(x). If G-Ä» and S=[-e/2, e/2],

S(x) =(sin irex)/irx; if G is compact and 5= [e], then S(x) =1.

Consider now the Faltung

S *5(x) = m(xSr\S).

By the theorem of Plancherel-Weil

5 *S(x) =   f S(x)2(x, *)'dx.

In the applications we shall "normalize" the above Faltung by means of

the factor \/m(S). The function thus obtained takes values between 0 and 1 ;

it is 1 for x=e and vanishes outside the neighborhood S2.

The function S(x)2 is non-negative and has the following properties(3) :

(i) «-»(5) f S(x)2dx = «-»(SJHswHi = (m-1/2(S)||.S(x)||2)2 = 1.

This follows immediately from the theorem of Plancherel-Weil, applied to

S(x) and S(x).

Given e>0, for any (fixed) y G G

(ii) m-i(S)\\S(y-ix)2 - S(x)2\\1 < e,

(s) We  shall denote the norm   in   L2   (and  in  the corresponding  space L2)  by ||f||j

{f\F(x)\*dx\W.
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provided S is small (SE U, a neighborhood of e depending on € and y).

By Schwarz's inequality

m-\S)\\{S(y-H) + S(x)} {S(y-'x) - S(x)}\\i

<s m-\S)\\S(y-'x) + S(x)||2||S(y-1x) - S(x)||2.

By the theorem of Plancherel-Weil this is equal to

m-v\S)\\S(x){(y, »)• + \)\\2m-V\S)\\S(x){(y, »)' - l}||,

g 2^w~1(5)  f | (y, x)' - 1 |2¿x)     < €,

provided SEU, where the neighborhood U of e is such that \(y, x) — 11

<e/2 for all xEU and the given y.

Take now two neighborhoods S and 5' (cf. the convention concerning

the notation on p. 404). Then the product SS' is a neighborhood of the

same kind.

Consider the characteristic functions

S(x)    and   SS' (x)

(the use of two letters to denote a function is perhaps somewhat unusual, but

convenient here). The normalized Faltung of these functions,

m-\S)S *SS'(x) = m-^mixSnSS'),

takes values between 0 and 1; it is 1 for xG-5', vanishes outside S2S', and is

the Fourier transform of

m^(S)S(x)-SS'(x).

We shall need later the following estimate:

(iii) ||S(x)SS'(x) - S(x)2||i ^ {m(SS') - m(S)}1'2m1i2(S).

Indeed,

||S(x){SS'(x) - S(x)}\\i ^ ||S(x)||2||sS'(x) - S(x)||2 =

||5(x)||s||55'(x) - S(x)\\2 = ml'2(S){m(SS') - »(5)}1'2.

We shall also need a stronger form of property (ii): Given any (fixed)

compact set CCG, then for any e>0

(ii') w-K^llsty-^-SM'II^É

for all y GC, provided 5 is small (SQ U, a neighborhood of e which depends

on e and C).

Referring to the proof of (ii), it is required to show that there exists a

neighborhood U of e such that | (y, x) — 11 <e/2 for all y EC and all xG U

(this is obvious in the case G = Rl; in the general case it is precisely the défini-
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tion of the topology of the dual group given by Pontrjagin).

The character (y, x) is a continuous function on GXG [14, p. 101 ]. Thus,

given e>0, for each point y ,£ C there are neighborhoods V¡ of y, and Í/, of e

such that | (y, x)-l| = | (y, *)-f>„ e)\ <e/2 for all y<EVL and all i£i/,

Since C is compact, a finite number of the neighborhoods Vt already cover C,

and we may take for U any neighborhood of e contained in the intersection of

the corresponding neighborhoods U,. Thus (ii') is proved (4).

Another estimate to be applied later is the following:

Let CCG be a compact set and let e>0 be given. Then

(iv)        m-\S)\\S(y-lx)SS'(y-lx) - S(x)SS'(x)\\l < e(m(SS')/m(S)yi2

for all yGC, provided both 5 and S' are chosen small (namely, such that

SS'dU, where U is some neighborhood of e depending on e and C).

The proof is analogous to that of properties (ii) and (ii'), U being such

that | (y, x) -11 <e/2 for all yGC, xG U.
We also have

(v) w-1(-S')||S(x)SS,(x)||1 = (m(SS')/m(S)yi\

Analytic functions of Fourier transforms

Theorem. Let f(x) be a function in L1 and let CCG be a compact set.

Denote by T the set of points z, in the complex plane, of the form z=/(x), x(EC.

Let now A (z) be a (single-valued) analytic function, regular at all points of T.

Then there is a function in L1 whose Fourier transform is equal to A(f(x)) for

all x(E.C.

This theorem is proved in two steps: first it is proved locally, i.e., for a

sufficiently small neighborhood of any (fixed) point x0ÇzC; then the exten-

sion to the whole set C is carried out. The proof is modelled after that given

by Carleman for the case G = Rl [3, chap. IV](6).

Let x0 be any (fixed) point of C and expand A (z) in a power series about

z0 =/(x0) .We may write, for x in some (small) neighborhood of x0.

A(f(x)) - A(f(xo)) + ¿ cn(f(x) - /(*„))».
n=l

Consider now the Fourier transform (cf. p. 405)

s(x) = m-1(S)S(x) * SS'(x).

If both 5 and S' are small, the function

CO

s(xo x)A(f(x0)) + £t,{s(j| x)(f(x) — f{xo))Y
n=l

(4) The reader may now turn immediately to part I (p. 409) or part II (p. 417).

(6) Professor A. Weil has directed my attention to Segal's paper [13]. Theorem 3.8 in [13]

practically contains, as a special case, the theorem given here.
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exists for all x<E.G and coincides with A(f(x)) for xG^o-S1'-

The product

s(xo x)(f(x) - f(xo))

is the Fourier transform of

q(x) =  [s(x)(x, Xo)]*/(x) — s(x)(x, x0)/(x0)

where

s(x) = m-1(S)S(x)SS'(x).

Write now

q(x) =   I s(xy-1)(xy~1, Xo)f(y)dy - s(x)(x, x0)  I  f(y)(y, Xo)'dy

= J (xy-\ Xo){s(xy-1) - s(x)}f(y)dy.

Hence

IkWlli èj\i(y)\dyj\ s(xy->) - s(x) | dx.

Given €>0, let KEG be a compact set such that

f^  | f(y) \dy < 6.

By property (iv), pp. 406-408, the neighborhoods S, S' may also be so chosen

that

||«(r-»x) - s(x)||i < •(•CSSOMS))1'1

for ally ÇK Keeping 5 fixed, we may take 5' so small that m(SS') <2m(S)(6).

Under these conditions

H«(*)||i * 2«*  f |/(y)|áy+2||S(x)||16
J K

^e{21/2||/||1+2(2)1'2} (cf. p. 406).

Define now

qn(x) = q * qn-i(x),        n > 1,        qi(x) = q(x).

Then

(6) This follows from the regularity of Haar measure (cf. [7]) and the fact that for any

open set O containing 5 there is an 5' such that SS'EO.
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Ik-lli = Ikll". »ai.
By a suitable choice of the neighborhoods involved, we can thus obtain

a function q(x) such that ||q||i<i?, where R is the radius of convergence of

the power series Xln=i c»z"- Then the series

00

(x, Xo)s(x)^(/(xo)) + XI cnqn(x)
n-l

converges in L'-norm and its Fourier transform coincides with A(fix)) for

all xGxoS'.

The theorem has now been proved locally; to extend it to the set C as a

whole, we proceed as follows:

To every point xtGC there corresponds a (small) neighborhood xtVlt Fc

being a neighborhood of e, such that there exists a function AG-L1 whose

Fourier transform /,(x) coincides with A(f(x)) for all xGx.Ff. The reason

for considering first x,F, and then xtF,3 will appear shortly. Since C is com-

pact, a finite number of those neighborhoods, say X\V\, x2F2, ■ • • , xnVn,

already cover C:

N

CCU xrFr.
r=l

Take a neighborhood 5 so small that SC Fr (1 £r£N); then

" 2

CS C U xrFr.
r=l

Define now a partition of the set CS as follows:

n-l

csi = cs n *i7i,    csn = es n x„f„ n g u a       (2 = « = ao.
r_l

Thus

CSr C xrFr2,       C5^ C xrvl (l èr ^ N).

Consider the functions /r(x)G¿1 (íúrúN) whose Fourier transforms

/r(x) coincide "locally" with A(f(x)), i.e., for xÇ_xrVf, respectively.

Let CSr(x) be the characteristic function of the set CSr (i^r^N). Then

the Faltung

m-1(S)S(x) * CSV(x)

is the Fourier transform of

m-1(S)S(x) ■ CSr(x)

(the notation being the usual), and vanishes outside CSrS. Moreover the sum
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N

X) m-*(S)S(x) * CSr(x)
r=l

is just

m~1(S)S(x) * CS(x) = mrl(S)m(xS C\ CS)

and hence is 1 for x(ElC.

Now the Fourier transform

N

2(«) = H fr(x)[m-1(S)S(x) *CST(x)]

coincides with A(f(x)) for all xÇiC.

Indeed, if xEC, then in the product

fr(x)[m-1(S)S(x) *CS,.(x)]

either the Faltung in the bracket vanishes or else, if it does not, fr(x) coin-

cides with A(f(x)), since C5r5CxrFr3.

Thus, for all xGG, 2(x) =^4(/(x)) • 1 and the theorem is proved.

The following particular case should be especially noted:

///(x)G-i'1 is such that f(x) ^0 on the compact set CEG, then there is a

function g(x)Ç:Ll such that

g(x) = l//(x) for all xEC.

This theorem is at the base of the results that follow. For that reason it

seems worthwhile to have a purely analytical proof; other proofs have been

given by Godement [6, Théorème A] and Segal [13, Theorem 3.8].

Corollary. Let f(x), g(x), be in L\. Iff(x) vanishes outside some compact

set and the zeros of g(x) are all interior to the set of zeros of f(x), then there is a

function h(x)^L1 such that

f(x) = g(x) *A(x).

I. Closed ideals in L1 and their homomorphisms

Lemma 1.1.1. // fEL1 is such thatf(e) ¿¿0, then every solution <¡>0G£°° of the

integral equation

f * cj>o*(x) = 0

has the following property :

ess. sup | y + <¡>o(x) I > | Y 11

for any constant y, unless <¡>o is zero almost everywhere.

Consider the function m~1(S)S(x)2. If 5 is small, we have, by the corol-

lary above since/(x) ¿¿0 in some neighborhood of e,
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m~1(S)S(x)2 = f*h(x),

so that

w-1(S)S(x)2*^)o*(x) = 0.

Now

m-\S)S(x)2 * I Y + <¡,0(x) I2 g ess. sup | Y + <¡>0(x) |2.

The left-hand side may be written(7)

m-\S)S(x)2 * { | y |2 + 2R[v'4,0(x)] + | <J,0(x) |2}

= |r|2+ 2R[r-m-1(S)S(x)2 *(j)o] +m~1(S)S(x)2 * |<¡>0|2.

But the middle term vanishes and hence, unless «J>0 is zero almost everywhere,

| Y |2 < ess. sup | y + <i>o(x) |2,

which was to be proved.

Lemma 1.1.2. If /G-L1 is such that/(e) =0, then the integral equation

i * <>*(x) = 1

has no solution §(E.L°°.

Suppose there is a <¡>G£°° such that

f i(y)^'(x-ly)dy = 1 for all x G G.

Multiply both sides by m~1(S)S(x)2 and integrate with respect to x:

f m~i(S)S(x)2dx f' i(yW(x-^y)dy =

or

f f(y)dy f m-1(S)S(x)2^-(x-1y)dx = 1.

Since ff(y)dy =0, the left-hand side is equal to

j f(y)dy J* m-\S)S(xy{v(x-iy) - 4>'(x)} dx

= f f(y)dy f m-i(S){S(y-ix)2 - S(x)2}p(x)dx.

Given e>0, there is a compact set CCG such that

(7) i?[z]=realpartof z.
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J,, f(y) \dy <e.
Qc

Furthermore, for any y G C,

w-^IISty-^-S«2!!! < e,

provided 5 is small, by property (ii'), p. 405. Thus the last repeated

integral is in absolute value smaller than e2||«I>||00 + ||/||1e|!<|>||00. Since this

may be made arbitrarily small, no solution ^G-k00 can exist.

Given a function fEL1, denote by (/) the closed ideal generated by /, i.e.,

the smallest closed ideal in L1 containing /. It may be defined explicitly as the

closure of the set of all linear combinations of "translates" of f(x):

N

]C fln/(y»x)

where ait a2, • • ■ , an are arbitrary complex numbers, yx, y2, ■ • ■ , yN are

any elements of G, and N is any positive integer (cf. p. 403).

Define now the ideal (f)e as the closure of the set of all linear combinations

N

22 bj(ynx)
n=l

where the coefficients bn satisfy the condition

N

¿Zbn=0.
n=l

The reason for the notation will appear later.

Remark. It is important to observe that (f)e may also be defined as the

closure of the set of all linear combinations

N

£ an{f(ynx) - f(x)}
n=l

with arbitrary coefficients an.

Theorem 1.1. For any f(x)ELl

/I N I        I r'to - E W(ynx) \dx = \      f(x)dx
11=1 IJ

where N ranges over all positive integers, bx, b2, ■ ■ ■ , bN range over all complex

numbers satisfying X^-i bn = 0, and yir y2, ■ • ■ , yj» over the elements of G.

(If the equality sign is replaced by "^ ", the statement becomes trivial.)

Making use of the definition of the ideal (f)e, the theorem may be stated
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concisely thus:

dist {/,(*).}  =\f(e)\.

The proof is an application of the distance theorem (p. 402) : we have

dist {/,(/)„}  = 1/min ||<¡>||,»,

where <¡> ranges over all functions in L°° satisfying

f f{y)V(y)dy = l,

j{ f(xy) - f(y)}V(y)dy - 0 (x G G)

(here the remark on p. 411 is used). If no such <[> exists, then /GCO«.

Thus we have to investigate the solutions of the integral equation

/ *<¡>*(x) = 1.

Suppose first that y=ff(x)dx?±0. Then every solution may be written in

the form

«Kx) = 1/y' + <¡>o(x),

where <j>o satisfies / * <¡>*(x) =0. By Lemma 1.1.1 the function <¡>(x) =1/y* is

the solution with the smallest norm and hence

dist. {/,(/).} -|/(«)|.

If fi(x)dx = 0, then, by Lemma 1.1.2, there is no <¡>G£°° satisfying

/ * <j>*(x) =1 and hence /GCOe- Thus the proof of the theorem is complete.

Theorem 1.1 may be generalized. Let / be the closed ideal generated by

the functions /, g, • • ■ , i.e., the smallest closed ideal containing (/), (g), ■ ■ ■ ;

we express this by writing

/-(/, A ••• ).

We define now the ideal Ie as the smallest closed ideal containing

CO «i (é)e, ■ ■ ■ and write

/*= (f,g,---).

Thus Ie is the closure of the set of all finite sums of certain linear combina-

tions (see p. 411) of the translates of /, g, ■ ■ • , respectively.

Then for any k(EI

dist {k, Ie} = | k(e) |.

Indeed, since k(EI, there are, for any e>0, among the generating functions

/, g, • • ■ , a finite number, say f\, f2, • • • , Ir such that the function
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B      Sr

£*to   =   EE «rS/r(yrSx)
r=l  «=1

(where the choice of the coefficients ara and the elements yra G G depends on e)

satisfies the condition

H*to - jt.toiix < *.
Consider now the function kt and the ideal (ke)e: by Theorem 1.1

dist {*., (kt)e\ =    f ke(x)di

From the definition of I, it is clear that

(k<)eEIe

and since for all h Ele

f | kt(x) - h(x) | dx fc    i kt(x)dx

it follows that

dist {kt, Ie) =     1  ke(x)dx   .

This implies that

dist {A, /.} ^ ||¿ - A.Hi-f    f ke(x)dx

6  + f £(x)¿x   + e.

Now the inequality dist {k, Ie\ ^ |/k(x)dx| is again trivial and hence, since

e>0 is arbitrary, the result is proved.

We proceed now to the final generalization of Theorem 1.1.

If I=(f), we define the ideal Ix = (f)x as the closure of the set of all linear

combinations

N

X bn(yn, x)'f(ynx)

where x is a fixed element of G, N is any positive integer, ynEG (l^n^N),

and the coefficients satisfy the condition

N

E h - o.
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If / = (/, g, • • ■ ), we define /, = (/, g, ■ ■ ■ ) x as the smallest closed ideal

containing (f)x, (g)x, ■ ■ • . We have now (in the notation of p. 404):

dist {k(x), Ix} = dist {k(x)(x, x)', Ix(x, x)').

But the ideal Ix(x, x)' bears to the ideal I(x, x)' the relation

IX(X,  X)'  =   (f(x)(x,  X)', g(x)(x,  X)\  ■  •  ■  )e = I(x,  X)'e,

and hence we may apply the first generalization of Theorem 1.1 to the func-

tion k(x)(x, x)"G^(x, x)' and the ideal I(x, x)'„ so that we finally obtain

dist {k, Ix} =| k(x) |.

The results obtained may now be summarized as follows:

Theorem 1.2. Let I be a closed ideal in L1. Define, for a fixed xEG, the ideal

IxEI as above. Then for any function fEI

dist \f,Ix) = |/(x)|.

Hence Ix is the kernel of the homomorphism

f^f(x)

of I into C, the field of complex numbers. Thus Ix is a maximal ideal of I or

coincides with I according as xGCZ/ or xG.Z/. Moreover, if the quotient-

algebra I/Ix is considered as a Banach algebra(s), then the isomorphism

IIIx SË C (xE QZj)

preserves the norm.

Conversely: given a continuous homomorphism

f-*Kf)

of I upon C, then

m(/) =   I  /(x)(x, xß)-dx,

where x^EG is a uniquely determined element of QZi.

To establish the converse, let s be any (fixed) element of G. It is proved

in [6, p. 122] that

p,t(s-lx)) = (s, *„)>(/),

where x„ is a uniquely determined element of G.

Consider now the ideal /-. It is the kernel of the (continuous) homo-

morphism

(8) See, e.g. [8, Theorem 22.11.4].
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/—> I   /(x)(x, x^'dx.

Let In be the kernel of the given homomorphism /-^/¿(/). If we can prove

that Ix¡i(ZIp, it will follow that IXii = Iß and hence that /¿CO =Jf(x)(x, xß)'dx.

Suppose there is a function gE:Ixß which is not in /,,. Then n(g) ¿¿0 and,

for all sGG,

/»(¿(a-1*)) = (s, xß)-ß(g),

while

I   g(x)(x, xß)'dx = 0.

Now p(f), considered as a bounded linear functional on I, may be extended

to the whole space L1, by the complex analogue of the Hahn-Banach theorem

[8, Theorems 2.9.2 and 2.9.5]. Hence

n(f) = j f(x)$l(x)dx «., G L-).

We have therefore for the function g(x):

I ¿(s_1x)<¡v(x)¿x = (s, xj'uié) for all s G G,

í ¿(x)(x, x,)'dx = 0.

If we write this in a slightly different form and apply Lemma 1.1.2, we

see that it is impossible. This completes the proof.

Theorem 1.3. If the group G' is a homomorphic image of G, then the

L^-algebra on G' is a homomorphic image of the L1-algebra on G. The kernel

Io of this homomorphism consists of all functions in LX(G) whose Fourier

transforms vanish on the dual group G'CG, and the isomorphism

U(G)/h S LKG')

preserves the norm (the measure on G' being properly normalized).

For any i(x)£Ll(G), define

T(f(x)) = f'(x') = j i(xy)dy,

where the closed subgroup ¿CG is such that G' = G/g [14, p. 11 ], and x'

denotes the coset xg. Then i'(x')Ç:L1(G') and (with proper normalization of
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the measure)

f f(x)dx =   f   f'(x')dx'.
J G J G'

This result (immediate for G = ¿?1) is proved in [l]. We have also

Miifcikik
Furthermore, since G' = G/g, the dual group G' is contained in G and

(y, x')=l wheneveryGé, «'6G' (cf. [14, pp. 108-109]). Thus for x=x'GG',

f /(x)(x, x'Ydx =   (   dx'  f f(xy)(xy, x')'dy
J G J G' J é

=   f   dx'(x', x'Y  f f(xy)dy
J G' J ¿

=  f   /'(x')(x', x')'dx'.
J G'

Since a function in L1(G') is entirely determined by its Fourier transform,

it follows that T(f(x)) is determined by the values of f(x) for x=x'GG'.

Hence we have

T(fi * ft) = T(/i) * T(f2),

i.e., T is a homomorphism of L1(G) into ¿-'(G').

The kernel of this homomorphism is the closed ideal Io consisting of all

functions in L1(G) whose Fourier transforms vanish on G'CG.

We have

inf || f(x) - fo(x)\\i à ||/'(x')||i (/o G lo).

To establish the opposite inequality, we use the distance theorem (cf.

p. 402) :

dist {/, 70} = 1/min ||<î>[|„

where

«¡> ± lo, f f(x)V(x)dx = 1.

Lemma. Any <]>-L/o has the property that

«¡»(sx) = <¡>(x) (s G g)

almost everywhere (and conversely).

For any k(x)ELl(G), k(sx)-k(x)EIo, i.e.,
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[k(sx) - k(x)] *<¡>*(x) = 0

or

k(x) * [^(s^x) - <¡>*(x)] = 0.

Since kÇzLi(G) and s(Eg are arbitrary, the assertion follows (the converse

follows from the fact that f(x) *<J>*=/'(x') * <>'*—cf. below).

Thus the function <¡>-LJo defines a function <¡>'(x') on G' and we have

1 =   C f(x)$'(x)dx =   f f'(x')V-(x')dx'.

Hence

ikiuiiii = i
and thus

This gives the opposite inequality.

Thus the Banach quotient-algebra L1(G)/Io is not only algebraically iso-

morphic, but also isometric with the image of L1(G) in L1(G') under the

homomorphism T. It remains to show that this image is Ll(G') itself.

Since L1(G)/Io is complete, it suffices to show that the functions T(f)

are dense in L1(G'). But this follows from a proof given by A. Weil [14, pp.

42-43]. Thus the theorem is established.

II. A generalization of Wiener's theorem, with applications

By Wiener's theorem is meant Theorem IV in [15]. It was extended by

Godement [6, p. 125] to locally compact abelian groups and reads:

Let / be a closed ideal in L1. In order that I = Ll, it is necessary and suffi-

cient that for every x0(EG there exist an f(x) (El such that/(x0) 5^0.

In the course of the proof of Wiener's theorem a result is established

which may be stated as follows:

An ideal I contains all functions /c(x) whose Fourier transforms vanish out-

side some compact set CCEQZi.

(Actually this is stated here in a slightly more general form which is

precisely what we shall need. The proof is that of Godement.)

For any x.GG there is a function AG-T such that |/,(x) | = 1 in some small

neighborhood x,5, of x,. Since C is compact, it may be covered by a finite

number of those neighborhoods, xr5r (1 ^r^N). Then the Fourier transform

of the function ^i^ /r(x) * /*(x)G-T is strictly positive on C. If we now

apply the corollary, p. 409, to fc(x) and this function, the result follows.

We shall suppose from now on that G has a denumerable fundamental

system of neighborhoods of the identity (but cf. Appendix). We may then
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choose in G a fundamental sequence (Sn), n^i, of compact, symmetrical

neighborhoods of e such that Sn+iESn. Then every subsequence (SUr), r^l,

will still be a fundamental system.

Lemma 2.1.1. For any function «^G^00 there exists (at least) one constant M

such that, for a certain subsequence (nr),

m-\Snr)Snr(x)2 * <> -> M (r -> oo),

for all xEG.

Since the numbers m~1(Sn)fSn(y)2^(y)dy are all bounded, in absolute

value, by ||^>||„o, there exists a subsequence (nr) such that m~1(Snr)fSnr(y)2

■§(y)dy tends to a limit, M, say, as r—*<x>.

We want to show that for any (fixed) xGG, m~1(Snr)STir(x)i * «¡>—»Af

(r—»oo). It will be sufficient to prove that

m-\Snr) f SnXyYiHxy-1) - 4>(y)}dy -*0 (r-» oo)

for any (fixed) xEG. Now the integral may be written

™-KSnr) j {Snr(x-iy)2 - Snr(y)2}$(y)dy

and this, in absolute value, will be smaller than e||<¡>||cc, by property (ii), p.

404, if Mr is sufficiently large. This completes the proof.

Lemma 2.1.2. Suppose that <J>J_7 and that the identity eEG is not a limiting

point of Zi. Then, if the neighborhood S is small (S2r\Zi(~\Q\e\ = 0),

m-\S)S(x)2 *<¡> = const.,

the constant being independent of S (subject to the above condition).

Remark. This is of course trivial if G is compact, since then we may take

S = {e}. See also the Appendix at the end of this paper.

Take a neighborhood Sn of the fundamental sequence of neighborhoods,

so small that S2S?f(~}Zir\Q{e} =0. Then the Fourier transform

S * SSn(x) - S * SSn(x), n> N,

vanishes outside the set S2SN(~^QSn (cf. p. 405; it may be helpful to plot a

figure for the case G = Rl). Applying the result on p. 417, we have

S(x)-SSN(x) - S(x)-SSn(x) E I.

It is our first aim to prove that

s(x)-ssN(x) - s(x)2ei.
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Indeed, we have

S(x)-SSN(x) - S(x)2 =  {S(x)-SSN(x) - S(x)-SS„(x)}

+ {S(x)-SSn(x) -S(x)2}.

The first part is in I (see above); the second is, in L'-norm, less than

{m(SSn) — m(S) }ll2m1/2(S) (cf. property (iii), p. 405). But this can be made

arbitrarily small, by taking n sufficiently large(9), and thus the partial result

is proved.

On the other hand, if we take SnC.S, then

m~1(S)S(x)-SSN(x) - m-1(Sn)Sn(x)-SnSN(x) G /

(cf. p. 405) the reader may again find it helpful to plot a graph of the Fourier

transforms for the case G = R1).

But

m-i(Sn)Sn(x)-SnSN(x) - m-\Sn)Sn(x)2 G /

(set S = Sn in the partial result just proved).

Hence finally

m-\S)S(x)2 - m-\Sn)Sn(x)2 G /

for all Sn(ZS, i.e.,

{m-\S)S(x)2 - m-\Sn)Sn(x)2} *<¡>* = 0,

<¡> being the function of the hypothesis. Hence we have

m~1(S)S(x)2 *<¡> = w-1(5'„)S„(x)2n<J>.

Let now (nT) be a subsequence such that

m-i(SnrSnr(x)2 *<{,-> M (r -> » )

(Lemma 2.1.1). Since the left-hand side of the above equation is independent

of n, it follows that

m~1(S)S(x)2 *<j> = M = const,

which proves the lemma. It also entails that M is unique. In this case we

write Af {<¡>(x)} instead of M and call it the mean value of $(x).

This terminology is justified by the fact that, ifa(x) is not only in L°°, but

also almost periodic in the sense of von Neumann, then

lim mrl(Sn) f Sn(x)2a(x)dx

(9) This follows from the regularity of the Haar measure (cf. [7]) and the fact that, for

any open set 0 containing S, the product SSn will be contained in 0 for large n.
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exists and coincides with the usual mean value. Let A be that mean value. Then,

given e>0, there exist positive numbers ci, c2, ■ ■ ■ , cjy, whose sum is 1, and

elements yi, y2, ■ ■ ■ , y.vEG such that for all xÇzG

| CiCt(yix) + • • • + cNa(yNx) - A \ < e.

We may write the difference

m -\Sn) f ' Sn(x)2a(x)dx - A

in the form

N

¿^ crm
r=l

-'(Sn) fsn(x)2{a(x) -a(yrx)}di

+ m-\Sn) f Sn(x)2í ¿ cra(yrx) - a\ dx.

But each term of the first sum tends to 0, as w—>oo, by property (ii), p. 404,

and the second term is in absolute value less than e, for every n. Since e>0

is arbitrary, the result is proved.

From Lemma 2.1.2 there follows immediately a general result:

Theorem 2.1. Let I be a closed ideal in L1 and suppose that XiGG is not

a limiting point of Zj. Suppose that <¡>-LJ. Then the mean value o/<¡>(x)(x, Xi)'

exists and, if S is sufficiently small (xiS2i~\Zir\Q{xi\ =0),

m-\S)S(x)2 * [i?(x)(x, xi)'] = M{$(x)(x, XiY}.

Indeed, we may reduce this case to Lemma 2.1.2 by writing <J>(x)(x, Xi)*

-L/(x, Xi)', the right-hand side denoting the "rotated" ideal (cf. p. 404).

Now we are ready to prove a generalization of Wiener's theorem (for

groups G whose dual groups have a denumerable fundamental system of

neighborhoods of the identity; cf. however the Appendix):

Theorem 2.2. Let I be a closed ideal in L1, with co-spectrum Zi (p. 404).

If the function k(x)Ç.L1 is such that its Fourier transform k(x) satisfies the

following conditions :

(i) ZkZ)Zi (Zk denotes the set of zeros of k(x)) ;

(ii) J(Zk)r\J(Z¡) is denumerable (J(Z) denotes the frontier of Z),

then k(x) El-

This theorem was first proved, for the case G = R1, by S. Mandelbrojt

and S. Agmon [il, Théorème II], making use of Carleman's analytic func-

tions [3, p. 75]. The reader will see for himself the connection between their

proof and that given here.



1952] INVESTIGATIONS IN HARMONIC ANALYSIS 421

To prove the theorem, it suffices to show (cf. the distance theorem

p. 402) that whenever <j>±7 then <}>J_A.

Consider a <¡>-LJ and define the function <¡>i(x) by 4>i(x) =A*(x) * <¡>(x).

If we can prove that ^i-LL1, then it will follow that k * <j>*(x) =0, and <¡>-L/c.

Let Ii be the set of all f(ELl such that / * «^=0; this is a closed ideal.

We shall prove:

(i) zZl c j(zk) n j(Zj),

(2) Zil has no isolated points.

From (1) it follows, under the hypothesis of the theorem, that Zi^ is de-

numerable, and from (2) that it is perfect. This implies that Zi^=0, and

hence (Wiener's theorem) I\ = Ll. Thus the theorem will be proved if we can

establish (1) and (2).

(1) Since g * «¡>* =0 for any g(EI, we have

¿ * $* = g * k * <¡>* = k * g * <]>* = 0.

Thus ifi-LI, i.e., IC.Ii, and hence Zj,CZj. Now we shall show that no interior

point of Zh can belong to Ziv

Indeed, if x0 is an interior point of Zk, let 5 be so small that XoS2CZk, and

consider the function (x, xo)S(x)2. This function is in ¿i, since [(x, Xo)S(x)2]

* <¡>*=[(x, Xo)S(x)2] * k * <j>*=0 (observe that the Fourier transform of

[(x, Xo)S(x)2] * k vanishes identically). Thus x0 is not in Z/t (cf. [il,

Lemme I]).

Therefore Zix is in Zi and contains no point interior to Zk. Since ZiCZk,

the only points that can possibly belong to Zj1 are those points of J(Zr)

which are in J(Zk). Thus (1) is proved.

(2) Let us suppose that XiC7{Zi)r\J(Zk) is not a limiting point of Ziv

Consider first the case Xi=e. By Theorem 2.1

m~1(S)S(x)2 *<>! = M{$i}

or

mr1(S)S(x)2 *<>!* = M'{«!>i},

e.i.,m-1(S)S(x)2 */c *^>* = M'{«|n}.

Take now S = Sn. By Lemma 2.1.1 there exists a subsequence (nr) such

that m~1(Snr)Snr(x)2 * <J»* tends (boundedly) to a constante (r—>»). But then

the left-hand side of the last equation tends to cfk(x)dx = c-k(e) =0. Thus

M' {<¡>i} =0, i.e., S(x)2G-fi, and hence e is not in Z/, (see also Appendix).

The general case may be reduced to the preceding one by considering

instead of $i(x) the function

*i(x)(x, xi)' = [&(x)(x, xi)-]* * [<¡>(x)(x, *i)*].

The ideal corresponding to that function is just the "rotated" ideal (cf.
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p. 404) ii(x, Xi)', with co-spectrum xïlZIv and the co-spectrum of k(x)(x, Xi)'

is x^Zk- Thus, by the special case just proved, e is not in x¡" 1Z¡¡, i.e., Xi is

not in Ziv and the proof of (2) is complete.

Remarks. Condition (i) of the theorem is obviously necessary as well;

moreover, for compact groups it is also sufficient, condition (ii) being then

superfluous, since the dual group of a compact group is discrete. Thus for

compact groups G there is a one-to-one correspondence between the closed ideals of

L1 and the subsets of G which inverts the inclusion (cf. [10, p. 392]). On the

other hand L. Schwartz has proved [12] that condition (i) alone is not suffi-

cient in general, if G is not compact. This shows the role of condition (ii).

The reader is referred to Mackey's survey [10, pp. 392-395] for a discus-

sion of previous generalizations of Wiener's theorem. Besides the papers by

Mandelbrojt-Agmon [ll] and Godement [6], we mention here in particular

those of Ditkin [5], Segal [13], and Kaplansky [9](10).

We shall now apply the preceding results to study the functions <j>GI<M

orthogonal to a given ideal /, when the co-spectrum Z¡ has a particularly

simple structure.

// Zi is finite, then any <J>±/ is a linear combination, with constant coeffi-

cients, of the characters of G defined by the elements of Zi.

Let Zi consist of Xi, x2, • • • , x#. If k(x) is any function in L1, then (for 5

suitably small)

k(x) - k(x) * £ (x, xn)m-1(S)S(x)2
n=l

will be in I (Theorem 2.2), i.e.,

\k(x) - k(x) * ¿ (x, Xn)m-i(S)S(x)2~] *<j>* = 0

for any <]>-Lj. By Theorem 2.1 we may then write

*(x) * V>*to - E a»to Xn)\  = 0

where a„ = M{<J>(x) (x, x„)*}.

Since k(x) is an arbitrary function in L1, it follows that

JV

<¡>to   =   E a"(x,   Xn)
n-1

C10) It should be pointed out that some of these papers contain theorems proved for arbi-

trary locally compact abelian groups. Since the present paper was submitted for publication,

Dr. Henry Helson has kindly sent me a reprint of his paper Spectral synthesis of bounded func-

tions, Arkiv for Matematik vol. 1 (1951) pp. 497-602. This paper contains also a generalization

of Wiener's theorem (for arbitrary locally compact abelian groups). The theorem is stated there

in a weaker form, but the proof would actually yield the result given here.
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almost everywhere. Cf. [6, Hypothèse A, p. 136] and [9].

If Z¡ is discrete, then any uniformly continuous <¡>_L7 is almost periodic, with

spectrum in Zj (and conversely).

Let kc(x) be any function in L1 whose Fourier transform vanishes out-

side some compact set C. Then, in the same way as before,

kc(x) * <>* = £ *c(*.)«.'(x, *,) (*, GZ,n C).

Now the functions of the type kc are dense in L1 [13, Theorem 2.6].

Thus for any k(ELl the function k * (¡> is almost periodic, with spectrum in

Zi. In particular, set k(x) =m~l(V)V(x), where F(x) is the characteristic

function of a neighborhood V of e. Given e>0, there is a F such that

| w_1(F)F(x)*<j) — «J>(x)| <€, for all x(EG, by the assumed uniform con-

tinuity of <¡>(x). Hence <¡>(x) itself is almost periodic, with spectrum in Zj

(the converse follows from the approximation theorem for almost periodic

functions).

For the case G = R1 this was proved by A. Beurling [2].

If now G = RP, let Vn be a sequence of (/'-dimensional) cubes, with center

at the origin and sides of length i/n. Then m~1(Vn)Vn(x)*§ —► <¡>(x)

almost everywhere (m—*»). Since mr1(Vn)Vn(x) * <j> is almost periodic,

there are trigonometric polynomials P„(x), with frequencies in Zi, such that

| m-1(F„)F„(x)*<¡>— P„(x)| <l/w, M —1. Thus Pn(x) —> «¡»(x) almost every-

where (n—>oo) and | P„(x)| <||cj>||«,-fT for all n. Hence, for G = RP, if Zr is

discrete, then the set of all <¡>_L7 consists of all those functions in L™ which are

limits (almost everywhere) of sequences of uniformly bounded trigonometric

polynomials with frequencies in Zj.

In the case G = Rl this was proved by Carleman [3, p. 115], with an addi-

tional restriction on Z¡.

If Zi is discrete, then to any §1.1 there corresponds (by Theorem 2.1)

the "Fourier series"

«¡>(x) ~ S «.(«i xt)

where at — M{<¡>(x)(x, *,)"] and the summation extends over allx.GZ/. The

"sum" is purely formal—no ordering of the terms, or convergence, is implied.

If all the Fourier coefficients are zero, then <¡>(x) vanishes almost every-

where ("uniqueness theorem"), since then ^LL1.

"Bessel's inequality" holds in the sense that

X [ «. |2 = hm inf mr\Sn)  f S„(x)2 [ <¡>(x) \2dx,

the set of all a^O being denumerable. The proof is the same as in the clas-

sical case.

The question now arises under what conditions it is true that
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lim mrKSn) f Sn(x)21 <¡>(x) \2dx = £ | at \2
n—»«> J

("Parseval's equation").

Consider the function

a(x) = m-\S) f S(yn(yx)V(y)dy,

which is orthogonal to I. We have, for large n,

M{a(x)(x, *,)*} =   f m-\Sn)Sn(x)2(x, Xl)'dx j' m-\S)S(y)2^(yx)i?'(y)dy

= f m-\S)S(y)2V(y)dy f m-i(Sn)Sn(x)2(x, *.)'*(yx)áx

= f m-\S)S(y)2V(y)dy fm-^SJS^yx-inyx-i, *.)4»(x)¿x.

But, in view of Theorem 2.1, this is just

f m-i(S)S(y)2V(y)ai(y, xt)dy

= a,f»->(5) J* s(y-T(y-i, *.)**G0<*y

= alXA('. K)a« (A(i, k) = w   (5)5*5(x,x,   ),
K

by an argument already familiar. The last sum (over all xKEZf) has actually

only a finite number of terms.

Set now S = S„ and write correspondingly Otn(x), A„(i, k). We are going to

indicate some restriction on Zi which will guarantee the absolute convergence

of

¿2 A„(i, K)ataK.
l,K

Suppose Zi is such that, for some S, xSf^Zr —x, for all x EZi (Zi may then

be called "uniformly discrete"). Then we have, for sufficiently large n,

«„(e) = E I «i I2.
i

by the uniqueness theorem.

Suppose now that Zi is the union of a finite number N of sets, each uni-

formly discrete. Then for sufficiently large n, say n^n0, the following holds:
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if one of the indices i, k is kept fixed, then A„(i, k) >0 for at most N values of

the other one.

Define now the function T(i, k) by

T(i, k) = 1 if A»0(i, k) > 0,

T(i, k) - 0 if An„(t, k) = 0.

Then both X« T(i, k) and X» T(i, k) are at most equal to N. Hence

£ T(t, k) I a, | | a, | = £ T(i, «)(| a. |2 + | a« |2)/2

=£ ivEkl2-

Hence the series

£,,„ A„(i, K)a,a/

will converge absolutely, and (some order of the terms having been fixed)

uniformly with respect to n. By the uniqueness theorem

ttn(e) = X An(t. ic)ataK.
i,*

Thus

M{ | <> |2} = lim w-1^) f Sn(x)21 4>(x) |2áx

exists and

^■{kl2} = Zkl2-

Thus, tf Z/ may be decomposed into a finite number of sets each of which is

uniformly discrete (p. 424), then "Parseval's equation" holds for all <j>_LJ. It

follows that the Fourier series of § converges "in the mean" to <[>.

For the case G = Rl, this means that all <¡>LI are almost periodic B2

(Besicovitch), since in this case M{|«¡>|2}, as defined here, coincides with the

mean used by Besicovitch, in view of a theorem of Wiener [16, Theorem 21].

Appendix(u)

It is possible to modify the proof of Lemma 2.1.2, avoiding Lemma 2.1.1

entirely and dropping the assumption that the dual group possess a de-

numerable fundamental system of neighborhoods of the identity (first axiom

of countability). The modification is as follows:

In Lemma 2.1.2 it is proved that the function

(») Added September 15, 1952.
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m~1(S)S(x)2 *<¡>,

for 5 sufficiently small, is independent of S, without any recourse to the first

axiom of countability (it is convenient, of course, to change the notation,

writing, say, S', S" instead of Sn, Sx, respectively, where S'ES").

To show that the function above is also independent of x, take x=eand

set

m~1(S)S(e)2 *<¡> = M.

Now the difference

m-1(S)S(xY *<¡> - M

is equal to

m-1(S')(S'(x)2 *<> - »T1(5")S'(«)a *<¡>.

for any S'ES, and hence we have

| m~l(S)S(x)2 *<> - M\ = m-^S')    f {S'(xy-1)2 - S'(y-1)2}^(y)dy

^ m-\S')\\S'(x-iy)2 - S'(y)2\\iU\\x

^ «11*11-
by property (ii), p. 404, if S' is small enough. Thus Lemma 2.1.2 is established

by a method which is more general as well as simpler.

The only other place where the first axiom of countability is used is on

p. 421 where it is proved that in the equation

m~1(S)S(x)2 * k *<¡>* = M-{$i\

the constant M' {<J>i} is zero. Keeping S fixed and setting

m~1(S)S(x)2 *$ = it(x),

we have

k *tf = M-{i?i)

and also

f k(x)dx - 0.

Now in Lemma 1.1.2 (part I) it is proved, without any countability restric-

tion, that the last two equations imply

M'M = 0.

It results that the proof of the extension of the theorem of Mandelbrojt-

Agmon (Theorem 2.2) is valid for locally compact abelian groups in general.
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