
PRIMITIVE ROOTS IN A FINITE FIELD

BY

L. CARLITZ

1. Introduction. A number ß£GF(pn), ß^O, is a primitive root of the

field if k =pn — 1 is the smallest positive integer such that ßk = 1 ; the number

of primitive roots is <j>(pn — i), where 4>(m) is the Euler function. Ore [6] has

introduced an analogous concept in the following manner. For each yÇzGF(pn)

there exists a "linear" polynomial

m

(1.1) a(x) = X arxpr («r G GF{p), am y¿ 0)
r-0

with minimum m such that a(y) =0; 7 is said to belong to a(x). In particular

if a(x) =xp" — x, Ore calls 7 a primitive root. It is easy to see that the two

varieties of primitive roots are not identical; for example in the GF{21) de-

find by 04+0+l, 0 is a primitive root in the original sense but not in Ore's

sense (since it belongs tox*-\-xi-\-x2-\-x). On the other hand it can be verified

that 83 is primitive according to Ore but belongs to the numerical exponent 5.

To avoid confusion we shall refer to ordinary primitive roots as primitive

roots of the first kind, while those satisfying Ore's definition will be called

roots of the second kind. Ore proved that primitive roots of the second kind

exist; indeed there are precisely $(x" — l)ÇzGF(pn), where f> now denotes

the Euler function for GF[p, x]. The equivalent result in terms of the

existence of a normal basis (see §2) had been proved by Hensel.

It is natural to ask whether one can find a number ß£iGF(pn) which is

simultaneously a primitive root of both the first and second kinds. More

generally if e\p" — i and a(x)\xpn — x, can one find a number ß belonging to

the numerical exponent e and the linear polynomial a(x)? We shall show

that the first question is answered in the affirmative for pn sufficiently large;

the second question also admits of an affirmative answer provided pn is large

and e deg a(x) is sufficiently large. The method of proof is suggested by the

proof of Vinogradoff's theorem that the least primitive root of a prime p is

0(pll2+') ; see [5, p. 178], also [3].

In the opposite direction we show (Theorem 4) that for given p, r there

exist infinitely many irreducible polynomials P such that no polynomial of

degree ¿r can be a primitive root of the second kind (mod P). Finally (Theo-

rem 6) we obtain a bound for

Nr(e,a(x)) --^—NT(a(x)),
pn — 1
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where NT(e, a(x)) is the number of polynomials of degree <r belonging simul-

taneously to e and a(x), and NT(a(x)) is the number of polynomials of degree

<r belonging to a(x).

2. Notation. Following Ore, we shall generalize slightly the concepts

defined above. For yGGF(pnm), let

h

(2.1) a(x) = X) +&" (fit G GF(p*), am ̂  0)
r-0

be a "linear" polynomial of minimal order k such that a(y) = 0; y is said to

belongtoa(x). H A =A(x) =ao+aiX+ • • • -\-amxk, we say that a (x) corresponds

to A(x). Let B=B(x) be another polynomial ÇzGF[pn, x] and b(x) the cor-

responding linear polynomial; then if C = AB and c(x) corresponds to C(x)

we have c(x) =a(b(x)) =b(a(x)). If A(x)\xm— 1, then there are precisely

$04) numbers (E.GF(pnm) which belong to a{x), where $(A) now denotes

the Euler function for GF[pn, x].

If 6 belongs to the linear polynomial x"nm — x, then the numbers 6,

Qp\ . . . , flp-t-"-« form a normai basis of GF(pnm) relative to GF{pn) ; we shall

say that 0 generates the basis. There are i>(xm— \)/m such normal bases;

indeed if a =a(0), where a(x) has the same meaning as above, then a generates

a normal basis if and only if (A(x), xm— 1) =1. If (A(x), xm— 1) =D(x) and

xm— 1 = D(x)B(x), then a=a(6) belongs to b(x), where b{x) corresponds to

B(x); in particular if xm— 1 =A(x)B(x), then a belongs to b(x).

3. The X-functions. We now define a set of functions X(a) as follows.

Let Co, Ci, • • • , cm-i be w arbitrary numbers of GF(pn) and let 9 generate a

normal basis of GF(pnm) relative to GF(pn). Put

(3.1) a = ao0 + ox*»* H-+ «„-r" (a, G GF(¿»)).

Then we define

(3.2) X(a) = Xc(«) = f'(«»0)+'-+»„-1<.-i),

where f = 22"1" and

/(a) = a + a" + • • • + apn_1,

so that t(a)ÇzGF(p). It follows at once that

(3.3) X(« + ß) = X(«)X(|8),        X(0) = 1.

There are evidently pnm distinct X-functions; the function Xo(a) —1 cor-

responds to Co = • • • =cm_i = 0.

TheX's are evidently characters of the additive group of GF{pn). Note that

for X;¿Xo,

(3.4) Z      X(«/J) -   if
(« = 0)

îGcfTp""*) l0 (a^O);



1952] PRIMITIVE ROOTS IN A FINITE FIELD 375

also that for aE.GF(pn), the sum

(3.5) E    r(a6) = {f
bGßF(pn) W

(•-0)

(a * 0).

Next let ft, • • • , ßr&GF(pnm) and be linearly independent relative to

GF(pn). The numbers

0 = hßx + ■ ■ ■ + brßr (h G GF(p"))

define a module Mr of rank r. We now state without proof some lemmas

which can be obtained by standard arguments.

Lemma 1. For X^X0, a^GF{pnm),

^ (PnT (a G M'm-r)

(3-6) £ X(a/3) =  in * ^
í6jí, U) (a G Mm~r),

where M¿,-r *s a certain module of rank m — r.

In the next place we have

„ (pnm (a = 0)

(3.7) !>(<*)= «r
x lO MO),

where the summation is over all pnm X's.

Suppose now that as in §2, xm— 1 =A(x)B(x) and a(x) corresponds to

A(x). We consider the set of functions X such that

(3.8) X(a(7)) = X„(T).

Lemma 2. The number of X's satisfying (3.8) is pnk, where k =deg A(x).

Lemma 3. If\ runs through the pnh solutions of (3.8), then the sum

_ (pnk (b(ß) = 0)

(3.9) E x(/j) = r
x lO (508) ̂  0).

In the next place if %(a) denotes a multiplicative character for GF(pnm),

we put

(3.10) r - t(X, x) - E M«)x(*).
a

Then by a familiar argument, if Xp^Xo, X^Xoi

|r|2= E X(a - jS)x(«)x(|S)
a,(9*0

= E X((« - l)|8)x(a) = E X(«) E X((« - 1)0).
a,ß a ß

Since by (3.4) the inner sum vanishes unless a = l, we have
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(3.11) | t| -#"-'» (X^Xo, x^Xo).

In addition it is evident that

(3.12) t(Xo, x) = 0 (x^Xo),

(3.13) t(X, xo) - - 1 (Xî*Xo).

4. The main theorem. Let pnm — l = ef and consider the function

1   _    fx(d)       ,_
(4.1) «es) = -Z^   £ xW-

where the inner sum is restricted to the df characters such that xrf/ =Xo- Now

it is clear that

Z x(/s) = {
•/ (ße - 1)

0 (/3e * 1),

so that for die

1      ^ (1 (ßeld = 1)

■¿    Z   xOS) = {
¿/   x"-x. 10 (/S'" * 1).

Hence if y3e5^ 1 it follows that w(/3) =0. If ß belongs to the exponent e, then

d = \ is the only value of d that need be considered in (4.1) and we see that

co(/3) =1. Finally if ß belongs to the exponent e/s, s> 1, then (4.1) becomes

«08) = Z A»(<0 = 0.
<i|s

This proves

Lemma 4. J//3 belongs to the exponent e, then co(ß)=l ;for all other ß, w(ß) = 0.

In the next place we put xm—l =A(x)B(x) and define

(4.2) m = r^T   Z    f^? ZX03) (I B\ = f»***),
\B\      D\A       \D\   l(DB)

where the inner sum is restricted to the X's such that \(h(y)) =Xo(y), where

h(x) is the linear polynomial corresponding to H(x) —D(x)B{x). We shall

prove

Lemma 5. If ß belongs to the linear polynomial a(x), then ü(ß) = 1 ; for all

other ß, ß(ß) = 0.

In the first place it follows from Lemma 3 that for D|^4,

1 v-   , ,^        Í1 (*<W = 0)Z m = {î
DB     x<^> 10 (¿03) ̂  0),
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where k(x) corresponds to K(x) =A(x)/D(x). Hence if a(0) ?¿0 the inner sum

in the right member of (4.2) vanishes for all D and therefore £2(0) =0. If ß

belongs to a(x) then D = 1 is the only value of D that need be considered

and it follows that fi(0) =1. Finally if ß belongs to a linear polynomial that

corresponds to A(x)/S(x), S(x)¿¿l, it is clear that (4.2) becomes

0(0) = E MOD) = 0.
D\S

This completes the proof of the lemma.

Combining Lemmas 4 and 5 it is evident that cu(ß) ü(ß) vanishes unless ß

simultaneously belongs to the numerical exponent e and the polynomial

a(x). Hence the number of such ß's is given by

(4.3) N(e, a(x)) =       E      «(0)0(0).

By (4.1), (4.2), (3.10) the right member of (4.3)

(4-4) =tv^\¿-<~r~^T^r   E    2, Ax).
f\B\    d\e        d      D\A     \D\       x<V_Xo       A«"»

Now for X =Xo, X =Xo we get

1      m   HA)  . t.       4>(e)HA)
(4.5) -¡—r-¡—¡- (pnm - 1) =-

}\B\     e      \A\ pnm

The remaining part of (4.4)

á7r^E^-E^/-^/-|^|.|r(X,x)|

è Pnm'2Z MV) E S(D),
d\e D\A

by Lemma 2 and (3.15), (3.12), (3.13). Hence substituting from (4.4),

(4.5), (4.6) in (4.3) we have

(4.7)

where

N(e, a(x))-
pnm

g pnm^5(e)A(A),

S(<0 = Em2W,       A04) = E mW

It therefore follows that

<f>(e)$(A)
(4.8) #(«, a(x)) = + 0(*""'<1'2+«>) (*""-»«>),

pnm

where we have used
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8(m) = 0(m'),       A(Jf) = 0( | M |e).

The first of these is familiar, the second can be proved in a similar way.

For the applications (4.7) and (4.8) are of interest mainly when the

product (¡>(e) -<I?(A) is not too small; roughly the product should be larger

than p*nn>i2. Now it is well known that

(4.9) m/<j>(m) = O(w');

the analogous estimate

(4.10) M/$(M) = 0(| M |0

is easily proved. If therefore e\A\ >pcnm, where c>3/2, it follows from (4.9)

and (4.10) that

4>(e)$(A)
è C(e)p"m^1-'\

pnm

where C(e) is a positive number depending only on e. Comparison with (4.8)

now shows that N^O.

We now state

Theorem 1. Let pnm-\=ef, xm — \=A{x)B{x); let N=N(e, a(x)) denote

the number of ß's in GF{pnm) which simultaneously belong to e, a(x). Then N

satisfies (4.7) and (4.8). In particular if e\A\ >pcnm, c>3/2, then N>0 for

pnm sufficiently large; indeed

N ~ <j>(e)$(A)/pnm.

For example, the theorem applies when

e = (pnm _ i)/(r _ !)(       A = (3« _ !)/(x _ !).

If e=pnm— 1, A{x) =xm— 1, we get as an immediate corollary:

Theorem 2. Let N' denote the number of ß's that are simultaneously primi-

tive roots of the first and second kind ; then

4>(pnm — l)$(xm - 1)
N' = —-—:- + 0(pnm<-l,2+i)).

pnm

It follows, therefore, that N' > 0 if pnm exceeds a certain numerical bound.

Whether there are any exceptions for small values of pnm is not known.

When the condition on e| A \ in Theorem 1 is not satisfied we have •

Theorem 3. If, with the notation of Theorem 1, e\A\ =0(£nm(3/2+e)), then

N  =  0(¿,nm(l/2+e)).

5. Some other results. It will now be convenient to use the concrete

representation GF[pn, x]/P(x) for the GF(pnm), where P(x) is an irreducible
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polynomial GGF[pn, x] of degree m. Thus the results of §4 can be expressed

in terms of polynomials (mod P(x)). Davenport [3] showed that for large p,

one can always find primitive roots of the first degree. It does not seem

possible to carry over the proof for the type of problem considered in this

paper, even if we allow the required polynomial to be of degree ^m/2, say.

The difficulty appears for example in the problem of primitive roots of the

second kind of a given degree. It would suffice to have a nontrivial estimate

for

(5.1) Sr = Sr(\) =   E    HA) (X^X„),
deg A<r

where the summation is over all A (including 0) of degree <r, and X(^4) is

defined in accord with the definition of X(a) in §3. It follows from (5.1) that

(5.2) \Sr\2= E \(A-B) = p"    E    HA) = pnrSr.
deg A<r, deg B<r deg A<r

Thus Sr = 0 or pnr. We have also, using (3.9),

£s,=  E   Zha) = p™.
X deg A<r       X

Hence for pn(m-ri X's we have SrÇK) —p"r, for the remaining functions Sn{\) =0.

However this information apparently does not suffice for the problem men-

tioned above. We shall instead prove the following result in the opposite

direction (compare [3, Theorem 2]).

Theorem 4. For given pn, rïïO, there exist infinitely many irreducible

P£GF[pn, x] such that a(R)=0 (mod P) for all R(=GF[pn, x], deg M£r,

where a(x) corresponds to A(x) =(xm — l)/(x — 1), w=deg P.

It follows that no polynomial R of degree ^r can be a primitive root of

the second kind (mod P).

To prove the theorem, we note first that the condition a(R) = 0 is equiva-

lent to the existence of a polynomial U such that

(5.3) If" - U = R(modP).

It is possible to make use of some known results [2, §11] concerning the con-

gruence (5.3) ; however it is perhaps simpler to give a direct proof of the fol-

lowing theorem.

Theorem 5. PutP=xm+CiXm~1+ ■ ■ ■ -\-cm, c¡(^GF{pn). Then a necessary

and sufficient condition that

a(R) = R + Rpn + • • • + Rp»i">-» = 0 (mod P)

for all R of degree ^ r is furnished by

(5.4) p | m\       cs = 0 (l^sg r, p\s).
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Let u be an additional indeterminate; then we have

771-1

P(u) m II (« - s*") (mod P(x)),
s=0

from which it follows on differentiating that

_      P(u) _  P{u) - Pix^)

*   »-1 Mr  _   xrpn.

Z  Z   C»-r -— (Co   =   1)
r=l „=0 U —  X1-

m   m—1

= Z Z Cm-M-1 + x^w-* + • ■ • + «e-»*")
r-1 «-o

m      r

= Z Z c«-,«4-1ff(*r-i)
r-1 t'-l

771 77»

"■ Z «i-1 Z cm_ra(x'-i) (mod P(x)).
i=l r=i

On the other hand since

P'{u) = WM™-1 + (m — l)ciM™-2 + • • • + Cm_i,

comparison of coefficients leads to the following set of congruences:

m = a(í),

(m - l)ci = cxa(l) + a(x),

(5.5) (m — 2)c2 = C2«(l) + Cia(x) + a(x2),

(m — r)cr m cra(l) + cT-ia(x) + • • • + a(xr).

If we now assume

(5.6) a(l) ■ a(x) = • • • = a(xr) a 0 (mod P),

then (5.4) holds. Indeed p\ m follows from the first congruence, while the re-

mainder of (5.4) is true since nothing is asserted when p\s. Conversely if

(5.4) holds, then (5.6) as is clear from (5.5) and the fact that a(xrp)^a"(xr);

consequently a(R)=0 for all R, deg R^r. This completes the proof of

Theorem 5.

Returning to the proof of Theorem 4 it is now necessary only to show the

existence of irreducibles of degree m for which (5.4) holds. Put

- "F(l) -
P*(x) = xmP[ — ) = 1 + dX + • • • + cmxm.
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Then by Artin's refinement [l, p. 246] of Kornblum's theorem [4] we can

assert the existence of irreducibles P* of sufficiently high degree such that

P*(x) =G(x) (mod xT),

where G(x) is an arbitrary polynomial subject only to x\G(x). In particular

then the conditions (5.4) can be satisfied. Theorem 4 now follows immedi-

ately.

Returning to the problem mentioned at the beginning of this section, the

following result may be of some interest.

Theorem 6. Let Nr(e, a(x)) denote the number of polynomials A of degree

<r which simultaneously belong to e and a(x) (mod P); let Nr(a(x)) denote the

number that belong to a(x). Then

(5.7) Nr(e, a{x)) = Nr(a(x)) + 0(i»«»/»^>).
pnm _  I

Indeed as in §4, we have

(5.8)

Nr(e, a{x)) =     Z   o>(R)Q(R)
deg Ä<r

1   £^2;^   E   £.7.(x,x).

where

f\  B\    die        d      D\A     \D\

Tr(X, x) =    Z   HR)x(R).
deg R<r

Similarly

1     _   n(D)     _
(5.9) NMx)) = r-T Z T^f   Z rr(X),

\B\DU   \D\     x<m»

where rr(X) = Zdeg«<r X(.R).

Now for X^Xo, x^Xo, R^O,

\(R)x(R)r(k, x) =   Z   HR - U)x(R)x(U)
deg E/<m

= Zx(*(i- u))x(u),

so that

r,(X, x)r(X, X) = Z x(U)    Z    X(Ä(1 - U)).
U deg B<r

Therefore by (3.6) and (3.11)

(5.10) | rr(X, x) | Ú Pnmn (X 7* Xo, x ?* Xo).
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It is also easy to show in the same way that

(5.11) E   x(R)
deg R<r

<   «■/!£P (X ^ Xo).

Now using (5.8) and (5.9), we have

4>(e)
NT{e, a(x))

pnr,

1

7Tb
i

i Nr(a(x))

Kf)_        ¡¿(D)
^"      j     "    I nl
d\e        a      D\A     | 1J |

/|  -B |    d\e ¿       D|A     I D |

= o(*nm(1/2+e))

E  (    E     rr(\,X) -rr(\))\

E ( E I tv(x, x) I + i)
x(ca> \ x^xo /

by (5.10) and (5.11). This completes the proof of (5.7).

In the same way we can prove a theorem like Theorem 6 in which the poly-

nomials belonging to e and a(x) are primary of degree r.
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