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If C is an arbitrary Jordan curve of the z-plane containing the origin in its

interior, and if f(z) is an arbitrary function continuous on C, it is known

[l, p. 39] that/(z) can be represented on C by a uniformly convergent se-

quence of polynomials in 2 and 1/z of the form

(1) Pn(z)   =    Z     <lnkZk.
k!=—n

Components of these functions are defined for z interior to C (assumed

rectifiable) by the equations

" 1    r   Pn(t)dt 1    r   f(t)dt
(2) Pm(z) - Z o.*» - —       ?±!—,        h(z) m —        iii-,

jk=o 2tí Je    t — z ¿ti Jet — z

where the integrals are taken counterclockwise, and for z exterior to C by the

equations

(3) pu{z) m Z ankz« m —-       -,        /,(*) « —-,
k=-n 2.1VI J c    t — Z 2Vî J c   t — z

where the integrals are taken clockwise ; it follows that we have for z interior

to C

(4) lim pln(z) = fi(z),
n-»w

and for z exterior to C

(5) lim p2n(z) = /2(z).
n—»00

It is the object of the present note to indicate that under suitable condi-

tions (Theorem 1) various degrees of approximation of pn(z) to f(z) on C

imply certain continuity properties of f(z), and (Theorem 2) under suitable

conditions equations (4) and (5) in more precise form are valid even on C

itself. We consider also (Theorems 3, 4, 5) approximation on C by analytic

functions more general than polynomials pn(z), and prove the analogues of

(4) and (5) in more precise form. We mention briefly (Theorems 6 and 7)

approximation in a multiply-connected region.
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All numbers A and B with or without subscripts are constants inde-

pendent of n and z.

Theorem 1. Let C be an analytic Jordan curve containing the origin in its

interior, and let the function f(z) be defined on C. A necessary and sufficient

condition that f(z) be of class L(p, a) for 0<a<l or of class Zp for a = \ on

C is that there exist polynomials pn(z) given by (I) such that we have (n>0)

(6) | f(z) - pn(z) | g A/n^", z on C.

Here p is a non-negative integer and L(p, a) and Zv are respectively the

classes of functions continuous on C whose p\\\ derivatives with respect to

arc length on C are continuous and satisfy on C a Lipschitz condition of order

a or a condition of form

(7) | F(s + A) + F(s - A) - 2F(s) | á ¿i | A |

uniformly with respect to arc length j and h; this latter condition has been

investigated especially by Zygmund.

The existence of the pn(z) satisfying (6) has already been established [2],

by separate approximation in the two closed regions bounded by C of the

respective components of f(z).

Conversely, if inequalities (6) are valid there exists some constant A2 such

that we have |/>„(z)| ^^42, z on C. In a suitably chosen annulus containing C

in its interior we then have [l, p. 259]

(8) \pn(z)\^A2R\

Inequalities (6) and (8) imply [3, Theorem 4] that/(z) is of class L(p, a) if

0<«<1 and is of class Zp if a = l on each of two open Jordan subarcs of C

which overlap at both ends and cover C; this implies the conclusion of

Theorem l(l).

Theorem 2. Let C be an analytic Jordan curve containing the origin in its

interior, and suppose for a sequence of polynomials pn(z) given by (I) and for

some function f(z) we have (n>0)

(9) | f(z) - pn(z) | S A2/n"+",    z on C,

where p is a non-negative integer, 0 <a^l. Then in the notation of (2) and (3)

we have, for a suitably chosen As, (w>l)

I /i(z) - pm(z) | ^ Az log n/n"+a,    z on C,

I Mz) — pin(z) I ^ Ai log n/n**a,    z on C.

Several lemmas are convenient in the proof of Theorem 2.

Í1) We remark incidentally that Theorem 1 and numerous other results [3] assuming

various degrees of approximation can be extended to apply under the hypothesis of more gen-

eral degrees of approximation, by application of classical theorems due to de la Vallée Poussin.
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Lemma 1. Let the function F(s) be measurable and in modulus not greater

than M on C: \z\ =1, with the formal development on C

F(z)dz
(11) F(z) ~z akzh, ak

2-iriJ c     z

Then there exists an absolute constant B such that (n>l)

(12)
k=—n

= B ■ M log n,    z on C.

On C we write z = eiB,

cos kd =
zk + z

sin kd =

yk    -    V      k

2i

so the summation in (12) is precisely the sum of the first w-fT terms of the

formal Fourier expansion of F(z) ; inequality (12) is merely another formula-

tion of a well known inequality due to Lebesgue.

Lemma 2. Under the hypothesis of Lemma 1, there exists an absolute constant

B' such that

Z akZk   = B'M log n,    z on C,
k~a

akz'
k=—n

5= B'M log n,    z on C.

We note that the formal expansion on C of z"F(z) is

zvF(z) ~ Z akZk+",

for we have by (11)

1   r  z"F(z)dz       1   r

2-rriJc      zk+1 2iriJc

F(z)dz

-A-H-1
=   ffi-

of course on C we have |z"E(z)[ ^M, and we have |a*| %.M. If w(>2) is

even there follows by applying Lemma 1 to the function z~n!2F(z)

(13) Z«fcZ' <: BM log (n/2),    zonC;

if n(>3) is odd we have by use of (13)

(14)

n-i

Z akZk + anzn
k=0

= BM log [(« - l)/2] 4- M,    z on C.
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The conclusion of Lemma 2 now follows from (13), (14), similar inequalities

for the case w = 2 and n = 3, and from (12).

Lemma 3. Let C be an analytic Jordan curve containing the origin z = 0 in

its interior; there exists a constant B'(C) depending only on C such that if

P(z) — Et--» a*z* and if we have \ F(z) | áM on C, then we have on C (n>\)

E« ,:3" ^ B'(C)M log n.

Here it is convenient to use Faber's polynomials <t>n(z), w = 0, 1, 2, • • • ,

of respective degrees n belonging to C. Let w=(p(z), z=ip(w) map the exterior

of C onto the exterior of y : \w\ =1 with <p( oo ) = oo. Then we have for z in-

terior to C (the details are discussed in more detail in [2])

E«*2*
k=0

Ck

E Ck4>k(z),
2-Kl Jet  —  Z fc=o

1    r  F(l)dt

',-iri J c   t —

1    r   F[\f/(w)]dw

2xiJy        wk+l

this expansion is valid also on C. It is to be noted that the coefficients Ck of

order greater than n all vanish, for we have (k>n)

L
F[4>(w)\dw

w4+1
= 0,

since the integrand is analytic for | w\ ^ 1 and vanishes to at least the second

order at infinity.

On C we have <pk(z) =w*+?-*(z), where \rk(z)\ ¿A'rk, 0<r<l, A' and r

depend only on C, so we can write on C

n n n

E Ck<pk(z) = E °kWk + E ckrk(z).
k-0 k=0 *=0

The first sum in the second member is on y precisely the first sum of Lemma 2 ;

moreover we have   c* | ^ M, whence

E CkTk(z)
Jt-0

g MA'/(Í - r);

thus we have (n>l)

E ci4>k(z)
k=,0

á [B' log n + A'/(I - r)]M,

from which Lemma 3 follows.

Of course the proof and conclusion of Lemma 3 apply under broader



1952] APPROXIMATION TO FUNCTIONS ON A JORDAN CURVE 451

conditions than those mentioned; the conclusion essentially refers to the sum

of the first ra + 1 terms of the formal development in Faber polynomials of an

arbitrary measurable function on C with bound M.

We are now in a position to complete the proof of Theorem 2. From (9)

it follows by Theorem 1 that/(z) is of class L(p, a) or Zp on C according as

we have 0<ct<l or a = l. Consequently, by the theory of the boundary

values of the functions represented by the Cauchy integral as first considered

by Plern.elj [2; 7], it follows that/i(z) and f2(z) as defined by (2) and (3)

are also of class L(p, a) or Zp on C. Then there exist [for 0 <a < 1 this result

is due to Curtiss; see 2, 4] polynomials Pi„(z) in z and P2n(z) in 1/z of degrees

n such that we have on C (n>0)

(15) | fi(z) - Pln(z) | = Ai/n^",     | /2(z) - P2n(z) | = At/n^*.

However, f2(z) vanishes at infinity and it is important to choose the poly-

nomials P2n(z) so as to vanish at infinity; this is done by choosing arbitrary

polynomials of the requisite degree of convergence on C, a degree of con-

vergence valid throughout the closed exterior of C and hence at infinity,

and subtracting from each approximating polynomial its value at infinity;

such subtraction does not alter the degree of convergence on C nor the

function approximated, namely f2(z). In the notation of (2) and (3) we write

(9) in the form |/x(z) +/2(z) -pm(z) -p2n(z) \ SA2/n*+a, z on C, which by (15)

gives

(16) | Pm(z) + P2n(z) - pm(z) - p2n(z) | = A6/n»+<*,    z on C.

Lemma 3, together with a corresponding conclusion concerning P2n(z) —p2n(z),

—a direct consequence of hypothesis and conclusion of Lemma 3—now yields

(n>\) for z on C

| Pin(z) - pm(z) | = A6 log n/n*+a,

| P*n(z) - p2n(z) | = A 6 log n/W*",

and (10) follows from (15).

Theorem 2 assumes the validity of (9) for every n(>0). It is readily

shown by standard methods that the validity of (9) for an infinite sequence

of indices not possessing arbitrarily large gaps implies the existence of pn(z)

defined for every n(>0) such that (9) is valid, after possible modification of

the constant A2. If the hypothesis of Theorem 2 is modified so as to assume

that/(z) is of class L(p, a) or Zp on C, and if (9) is assumed not for every n

but for an infinite sequence of indices n, then (10) is valid for that same

sequence.

Of course Theorem 2 cannot be extended to the general case where we

assume pn(z) merely to converge to f(z) uniformly on C and attempt to prove

(4) and (5) uniformly on C, for if /(z) is an arbitrary function continuous on C

there exists a sequence pn(z) converging to/(z) uniformly on C, but the func-
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tions /i(z) and /2(z) defined by (2) and (3) need not be continuous on C. A

sufficient condition that (4) and (5) hold uniformly on C is that pn(z) con-

verge to/(z) on C with a degree of convergence l/nß for some /3>0.

On the other hand [l, §9.9] it is true that if we replace (9) by the hy-

pothesis

lim sup [max | f(z) - pn(z) \, z on C]1/n á Í/R < 1,
n—*oo

the inequalities (10) may be replaced by the conclusion

lim sup [max | /x(z) — pln(z) \, z on C]1/n ^ 1/i?,
n—»oo

lim sup [max | /2(z) — ^>2„(z) |, z on C]l/n â 1/-K-
n—»oo

Theorem 2 is related to, and can be extended to include, approximation by

functions more general than polynomials:

Theorem 3. Let C be an analytic Jordan curve contained in an annular

region D. Let the sequence of functions Fn(z) analytic in D satisfy the inequality

(17) \Fn(z)\ ^ A7R«,    R>1,    zinD,

and suppose for some function f(z) defined on C we have (n > 0)

(18) | f(z) - Fn(z) | g A 8/V+",    z on C.

Then on C the function f(z) is of class L(p, a) if 0<a<l, and of class Zp if

a = l. Moreover, if we set as in (2) and (3)

1    r   Fn(t)dt 1    n   Fn(t)dt
(19) FlB(2)=— I    -^—,       F2n(z)=~\    -^—,

2-iriJ c    t — z 2iriJ c    t — z

respectively for z interior and exterior to C, then we have (n> 1)

| /i(z) - Fm(z) | ^ A9 log n/n"+a,    z on C,

| /2(z) - F2n(z) | ^ A9 log n/nv+a,    z on C.

Let w—<p(z) map the exterior of C onto \w\ >1 with <p(°c)= co ; let z = 0

lie interior to C, and let w = <3?(z) map the interior of C onto |w| <1 with

4>(0)=0. We assume the functions Fn(z) to be analytic and to satisfy (17)

in the closure of D, where D is now bounded by the curve Cp: \ <p(z) \ =p(> 1)

exterior to C and the curve Ci/P: \ $(z) | =l/p interior to C.

We expand Fi„(z) in the Faber polynomials belonging to C, where the

function is represented by the formula

1    r  Fn(t)dt
Fin(z) =-; I    ->     z interior to Cp,

2iri J c    t — z

and the coefficients are found by integration over Cp or over | w\ =p. Then
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there exist  [compare 3] polynomials pi,\n(z) in z of respective degrees Xra

such that we have

(21) | Fln(z) - PiM(z) | g BiiR/fî»,    z on C;

here X is any positive integer such that R/px < 1.

In a precisely similar way, we expand F2n(z) defined now by the formula

27TÎ J c

Fn(t)dt
— !    z exterior to Ci/,,,

i/P  l

in polynomials in 1/z, the expansion being valid throughout the closed ex-

terior of Cy,,. The function F2n(z) vanishes at infinity and thus, as in the proof

of Theorem 2, for suitably chosen polynomials p2,\„(z) in 1/z of respective

degrees X« which vanish at infinity we have

(22) | F2n(z) - p2+n(z) | = B2(R/p^)\    z on C.

The functions/i(z) and/2(z) represented by (1) and (2) are [3, Theorem 4]

on C of classes L(p, a) if 0<a<l or Zp if a = l. Consequently there exist

polynomials Pi.xn(z) in z of degrees Xw and polynomials P2,\n(z) in 1/z of

degrees \n vanishing at infinity such that we have (n > 0)

| fx(z) - Pi,Uz) I = Bi/(\ny+",    z on C,

| Ms) - Pi,xn(z) | è B3/(\n)"+",    z on C.

On C the equations f(z)=fi(z)+f2(z), Fn(z)= Fin(z) 4- F2n(z) and in-

equalities (18), (21), (22), (23) yield (w>0)

| Pi,xn(z) + P2,xn(z) - pi,xn(z) ~ p2.\n(z) \ Ú Bi/ÇKn)^",    z on C.

From Lemma 3 we have (n>l)

| Pi,\n(z) - Pim(z) I Ú Bb log n/n"+a,    z on C,

| P2,xn(z) - p2,xn(z) | = Bi log n/n»+a,    z on C.

Inequalities (20) now follow by (21), (22), and (23).

We add the remark that Theorem 3 is related to previous work [5], con-

cerning approximation on an arbitrary rectifiable Jordan curve C by certain

functions Fn(z) not required to be analytic on C itself, and where we assume

lim sup [max | f(z) — Fn(z) |, z on C]1/n < 1.

Theorem 3 includes Theorem 2, for in the proof of Theorem 1 we have

indicated that (6) implies (8), and (8) is precisely (17) for the functions

pn(z). Still more can be concluded.

Lemma 4. Let C be a Jordan curve, let w=<p(z) with c/>(») = » map the

exterior of C onto  \w\ >1, and let  Cr denote generically the Jordan curve
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|<£(z)| =i?(>l) exterior to C. Let the function Rn(z) be analytic exterior to C

and continuous in the corresponding closed region except possibly for poles not

more than n in number all of which lie in the closed exterior of Cp. Then the

inequality

| Rn(z) \ Û L,    z on C,

implies (Ri<p)

(pRi - 1\"
| Rn(z) | i= LI-1 ,    z on Ckv

\p — Ri /

Lemma 4 can be proved by applying in the w-plane a known method of

proof [l, p. 231, Lemma I].

Theorem 4. Let C be an analytic Jordan curve, let Fn(z) be a sequence of

rational functions of respective degrees n whose poles have no limit point on C,

and suppose for some function f(z) defined on C we have (18). Then we also

have (17) for a suitably chosen D and R; the conclusion of Theorem 3 is valid.

Since the poles of the Fn(z) have no limit point on C, all such poles lie

exterior to some annular region D' containing C bounded by the two Jordan

curves | <p(z) | =p and | $(z) | = 1/p, where we assume the origin to lie interior

to Cand w = 3>(z) maps the interior of Conto | w\ <1 with<ï>(0) =0. It follows

from (18) that the functions Fn(z) are uniformly bounded on C, and follows

from Lemma 4 as applied first directly and second after map of the interior

of C onto \w\ >1 that (17) holds with R = (pRi — l)/(p— Ri) in the annular

region D containing C bounded by the two Jordan curves ¡</>(z)| = Ri

(1 <i?i <p) exterior to C and | <3?(z) | = 1/Ri interior to C. Thus the conclusion

of Theorem 3 is valid. The first part of this conclusion, relative to the prop-

erties of f(z) on C, has connections with recent results due to H. M. Elliott

[6].
Like Theorem 2, the conclusion of Theorem 4 is valid if we assume (18)

not for all w(>0) but merely for an infinite sequence of indices n which does

not possess arbitrarily large gaps.

Theorem 3 has application to approximation by bounded analytic func-

tions:

Theorem 5. Let C bean analytic Jordan curve containing the origin O in its

interior, and let D be a bounded region containing C whose closure does not

contain 0. Let the function f(z) be continuous on C. For each positive M let

Fm(z) be the (or a) function analytic and of modulus not greater than M in D

such that the measure of approximation

(24) pm = max [ | f(z) — FM(z) \, z on C]

is least. Then a necessary and sufficient condition that f(z) be of class L(p, a)
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with 0 < a < 1 or of class Zp with a = 1 on Cis that

(25) log M-pm

be bounded as M—> ».

We merely sketch the proof of Theorem 5, for the details are similar to

those in the proof of an analogous result [3, Theorem 3]. If (25) is bounded,

we choose the sequence of values M = en, and the conclusion follows from

Theorem 3. Conversely, if f(z) is given with the required properties on C, we

make use of the polynomials of Theorem 1. Inequality (8) is then valid in D,

if R is suitably chosen [l, p. 259], and the boundedness of (25) follows.

It may be noted that if we consider a sequence of extremal functions

FM(z) for values M = ARn, R> 1, it follows from the boundedness of (25) that

the analogue of (18) is valid, and hence the analogue of (20) is also valid.

If f(z) is continuous on C we introduce the definition

lim inf F ~l0g m 1 = ß
M->»    L log log M Jlog log M.

the values ß = 4- co and ß = — » are not excluded. Then whenever we have

p-\-a<ß, the function f(z) is of class L(p, a) or Zp on C according as 0 <a < 1 or

a = 1 ; but f(z) is of no class L(p, a) or Zp on C if we have ß^O, and is not of the

class L(p, a) or Zp on C if we have p+a>ß. lif(z) and ß are given, and if we

have p-\-a<ß, then we have for M sufficiently large

— log PM
> P + a,

log log M

from which the boundedness of (25) follows. Conversely, if /(z) is of class

L(p, a) or Zp, the boundedness of (25) implies

log pm + (p + a) log log M < Bo,

p + a ^ ß.

If giii(z) is an arbitrary function (not necessarily extremal) analytic and of

modulus not greater than M in D we set

pm = max [ | f(z) — gM(z) |, z on C],

whence pM^pM,

*
[—log pm 1

-    = ß-
log log M Jlog log M.

We emphasize the fact that this relation holds for an arbitrary family of

functions gM(z) analytic and of modulus not greater than M in D, and (as is
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readily shown) holds even if M becomes infinite merely taking the values of

a sequence M=BoR", i?i>l.

We turn now from the study of approximation on a Jordan curve to the

study of approximation on an annulus or region of higher connectivity, for

the methods just developed apply in this new situation with relatively little

change.

Theorem 6. Let Cbea closed point set whose boundary consists of an analytic

Jordan curve Co and mutually exterior analytic Jordan curves Ci, Ct, • • - , C,

interior to Co. Let Dk denote that region of the extended plane bounded by Ck

containing the interior of C, and let D't denote the complementary closed region.

Let a point ctk be chosen arbitrarily interior to D't, k =0, 1, 2, • • • , v.

Let the function f(z) be given continuous on C, analytic in the interior points

of C. A necessary and sufficient condition that f(z) be of class L(p, a) for 0<a

<1 or of class Zpfor a = l on all Ck is that there exist rational functions Rn(z)

of respective degrees (v-\-l)n having in each point ctk no pole of order greater

than n and having no other poles, such that (n > 0)

(26) | f(z) - Rn(z) | ^ A/nP+",    z on C.

If a sequence of functions Fn(z) analytic in a region D containing C satisfies

the inequality

(27) \F„(z)\ ^ AiRn,    z inD,

and if for some function f(z) defined on C we have (n>0)

(28) | f(z) - Fn(z) | ^ A2/n"+",    z on C,

then on each Ck the function f(z) is of class L(p, a) for 0 <ct < 1 or of class Zp

for a = i. Moreover, each of the y-f-1 components Fkn(z), k=0, 1, 2, • • • , v, of

Fn(z) satisfies an inequality (n>0)

(29) | fk(z) - Fkn(z) | è A3/n*+<*,    z on C,

where fk(z) is the corresponding component of f(z).

In particular if the functions Fn(z) are rational functions of z of respective

degrees n with no limit point of poles on C, then (28) implies (27) in a suitable

region D.

A function f(z) analytic interior to C and continuous on C can be split

into y + 1 components by the equations (all integrals are to be taken in the

positive sense with respect to C)

' 1    n  f(t)dt
(30) f(z) = £/»(*),       fk(z) - —       J-^- ;

k=0 2« J ckt — z

the second of equations (30) is valid for z interior to C, and defines /*(z)

throughout £>*; it will be noted that fk(z) is analytic at every point of Dk,
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and/*(») =0 for k>0; the first of equations (30), valid for z interior to C,

then defines fk(z) also on Ck, so/*(2) is continuous on the closure of Dk and

if/(z) is of class L(p, a) or Zp on Ck so also is/*(z). These comments obviously

apply to the v-\-l components Rkn(z) and Fkn(z) of the functions Rn(z) and

Fn(z); each component is analytic at every point of C.

Let/(z) of the first part of Theorem 6 be of class L(p, a) or Zp on all Ck;

then fk(z) is continuous in the closure of Dk and analytic interior to Dk; also

fk(z) is of class L(p, a) or Zp on Ck and can be approximated in the closure

of Dk by a sequence of rational functions of respective degrees n whose poles

lie in ak with degree of approximation l/np+a. If Rn(z) denotes the term-by-

term sum of these v-\-\ sequences, we have (26). Conversely, if the Rn(z)

exist so that (26) is valid, the function/(z) is necessarily continuous on Cand

analytic interior to C. From Theorem 4 applied to each Ck it follows that

f(z) is of class L(p, a) or Zk on each Ck.

If the functions F„(z) analytic in D satisfy (27) and (28), then Theorem

3 applies at once, and shows that /(z) is of class L(p, a) or Zp on each Ck.

Moreover we have

fk(z) — Fkn(z) =-: I    -,    z in Dk,
2wi J ck t — z

so on each of the curves Cj with/^ß we have from (28)

(31) I /*(*) - Fkn(z) I Ú At/nv+o.

Inequality (28) can be written

Z [fk(z) - Fkn(z)]   = At/n*+«,    z on C,

so from (31) we have (n>0)

(32) I fk(z) - Fkn(z) j ^ A5/n»+«,    z on Ck;

thus (32) is valid in the closure of Dk and in particular includes (29).

In (32) we have considered that component Fkn(z) of Fn(z) which is de-

fined in Dk, not that component F%t(z) of Fn(z) defined by

„ If   F„(l)dt
Fkn(z) =-; I    -;    z interior to Dk.

2wi J ck t — z

However, at a point z of the D't, we have

'     1    r   Fn(t)dt
0 = Z ~.\    -= Fon(z) + ■■■ + Fk-i,n(z)

k=o 2riJck t — z

+ pL(z) + P*+i.n(z) + • • • + F,n(z),
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with similar equations for the components /t(z) of f(z). We define F^,(z)

from the equality of these first and third members so as to be continuous on

Ck, hence continuous in D't, and similarly for ft(z). Thus the behavior of

F£,(z) in D't is readily deduced from (32) ; we have

| ft(z) - F*kn(z) | Ú A6/n"+",    z in DÍ

The last statement in Theorem 6 follows as in the proof of Theorem 4.

By our method of proof of (29) it is clear that any degree of approxima-

tion of Fn(z) to f(z) on C assumed in place of (28) implies the same degree of

approximation of F*„(z) to fk(z) on C; this is in strong contrast to Theorems

2 and 3.

Theorem 6 admits an application precisely as Theorem 3 admits Theorem

5 as application; we omit the proof:

Theorem 7. With the topological notation of Theorem 6, let D be a region

containing C whose closure contains none of the points a*. Let the function f(z)

be continuous on C, analytic interior to C. For each positive M let Fm(z) be the

(or a) function analytic and of modulus not greater than M in D such that the

measure of approximation (24) is least. Then a necessary and sufficient condi-

tion that f(z) be of class L(p, a) with 0 <a < 1 or of class Zp with a = 1 on C is

that (25) be bounded as M—* oo.

The comments relating to Theorem 5 concerning the boundedness of

(25) obviously apply also to Theorem 7.
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