APPROXIMATION AND VARIANCE

BY
ARTHUR SARD

1. Introduction. A process is an operator T on a Hilbert space 3¢ (de-
scribed in the next section) to 3¢. We use a process T" to approximate a function
f=f(x)E3C in the following way: Given f+4d§fE 3, where df is the error, we
approximate f by T(f+9f).

We shall study three processes. Each is defined relative to a given fixed
closed linear manifold M C3C. In a particular instance, N might, for example,
be the manifold of solutions of a linear homogeneous equation related to the
source of our interest in approximating f.

An operator T is a least square process if, for each f in 3¢, the inner product
(W[f—Tf], f— Tf) is minimal among all operators T such that TfEN(, where
W, the weight, is a nonnegative definite operator proper on N (§§2, 5). The
least square process exists, is unique, and is bounded and linear (Theorem 3).

The least square process is particularly useful because of its linearity and
continuity. It is sensitive to the weight W, however. The choice of W affects
the approximation T'(f+8f). What W.is appropriate? Gauss suggested, in a
particular case, that an appropriate W be one which would make the least
square process have the additional property of being an approximation proc-
ess. Approximation processes are defined as follows.

Assume that the error 8f =8f(x, w) is a function of (x, w), where w is a
point of a probability space £, and that the expected value E§f vanishes identi-
cally in x. (The complete hypothesis on éf is given in §3.) For almost each w
in Q, 8f(x, w) =68f is a possible error in the datum f48f. Assume also that
f=f(x) is an arbitrary element of 3. In any particular use of the process T,
of will be determined by an element w in Q and f will be determined in some
fashion unrelated to w(?).

Presented to the International Congress of Mathematicians, September 4, 1950, under the
title Least square error and variance; received by the editors November 16, 1951.

(1) Alternatively, the results of the present paper apply to certain cases in which both the
function f and the error &f are stochastic and in which the distribution of &f is related to the
value of f. An exact description of one such case is as follows. Let X be thereal line — » <x < .
Let Q;, Q. be probability spaces, with probability functions i, ps, respectively. Denote ex-
pected value on ©; X Q; by E; on Q. by E,. Assume that f=f(x) =f(x, w1) is a complex function
of (%, w1) measurable mp;, on X X Q; (m is described in §2 below); that f(x, ))& for almost
each w; in ©;, where( is a closed linear manifold in 3C; that the space essentially spanned by
S, 1), w1 Qy, is dense in N (i.e., the space spanned by f(x, w1), v, Q¥ is dense in N when-
ever Q* is a subset of @, of probability unity). Assume that f =5f(x) =5f(x, w1, w2) is a complex
function of (x, w1, wz) measurable mp;p, on X X QX Qs; that E;5f =0 on almost all ©;; that
E”8f||2< . These assumptions are to replace (i), (ii), (iii) of §3. In the definitions of approxi-
mation process and curve fitting process, the condition “ET(f+8f) =f or E(g+8g) =f whenever
FEM” is to be replaced by “E,T'(f+8f) =f or E»(g+5g) =f on almost all ©,.” Then the theorems
and lemmas of the present paper remain true providing merely that, in Lemma 3, mp bere-
placed by mp1p; and Eég by E.5g. The modifications of the proofs are slight.
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Let <A be the class of all bounded linear operators T on 3¢ to 3¢ which are
such that(?)

ET(f+06f) =f whenever f &€ M.

An approximation process is an operator T in <4 which minimizes E” T&f”z.
One might describe an approximation process as a bounded linear operator
which produces the minimal response to-errors, subject to the constraint of
being unbiased on 9.

Let V be the variance of 8f (§3). A necessary and sufficient condition that
the unique least square process be itself an approximation process is that VW
C1 (Theorem 4). Heretofore only the following has been known [Gauss 3;
Aitken 1, 2; Kolmogorov 7]: The least square process is an approximation
process if W= V-1, providing that 3C is finite-dimensional and V is invertible.
Now the condition VWM CI includes the condition W= V-1 and is of
greater scope: In the infinite-dimensional case, for example, V will never be
invertible when E||&f]|? is finite (§11).

The approximation process seems the most important of the three
processes that we study. Theorem 1 gives a necessary and sufficient condition
that an operator be an approximation process. Theorem 2 gives a necessary
and sufficient condition that approximation processes exist. If approximation
processes exist, then least square processes which are approximation processes
exist (§8). Our principle results do not require that V be positive definite.
Accordingly we admit any degree of dependence among the errors whatever.

The curve fitting processes (§9) turn out to be approximation processes;
their study illuminates the case in which 9 is finite-dimensional.

Kolmogorov and Wiener, in [6] and [11] respectively, consider problems
involving least square error, prediction, and approximation. Both authors
take the datum f4-8f to be a stationary stochastic process, with mean identi-
cally zero. Our investigation is essentially different from theirs.

2. The space 3C. Let m =m(x) be a nondecreasing function defined for all
real ¥ and not identically constant. The space 3¢ is the space of all complex
functions f=f(x) of the real variable(3) x which are measurable relative to m
and are such that “f”2= S | f(x)] %dm(x) < . Here and elsewhere integrals
are to be understood in the sense of Lebesgue-Stieltjes. Two functions which
are equal almost everywhere m correspond to the same element, if any, of 3C.
The reader may consult references [4; 8; 9; 10] for definitions and details
omitted from our discussion.

The space 3¢ is a Hilbert space of a countable infinity of dimensions or a
finite-dimensional complex Euclidean space. The latter case occurs if and

(%) The symbol E operates on its argument as a function of  alone. Thus, for example,
ET(f+48f) = E(Tf+Téf) = Tf+ETS$f, since Tf is independent of w.

(®) More generally, x may be a point of real Euclidean N-space Ry; m(x) a measure, not
identically zero, on Ry; and f=f(x) a complex function of the N real variables x.
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only if m(x) is constant except for a finite number of jumps. We refer to the
latter as the tabular case. In the tabular case f(x) is characterized by a table
of its values at the finite number of points x at which m(x) has jumps. The
jumps in m(x) may be thought to measure the importance of the respective
tabular values. Indeed in all cases dm(x) may be thought to measure the im-
portance of f+08f at x. All three processes that we consider depend on 7 in an
essential way since the inner product (f, g) =/Z.f(x)g(x)dm(x) depends on
m.

That elements of 3C need be given only almost everywhere m is an essen-
tital point. In the tabular case, for example, the table of values of f+8f is
adequate because it is a description of f+6f almost everywhere m.

By a bounded linear operator we mean one which is bounded and linear on
all of 3¢. We say that an operator T is nonnegative definite if T is bounded,
linear, self-adjoint, and if (T, f) =0 for all f in 3¢. We say that T is positive
definite on a closed linear manifold 9 if T is nonnegative definite and if
(Tf, f) =0, fEM imply that f=0. We say that T is positive definite if T is
positive definite on 3C.

LEMMA 1. Suppose that T is a bounded linear operator and M a closed linear
manifold. Then the conditions

TN =0 aend T*3C C M-
are equivalent.

Here we write T for the set of all elements Tf, fENM. The adjoint of T
is T*. The orthogonal complement of N is N(*.

Proof. Let P be the operator of projection onto M. Then TN =0 is
equivalent to TP =0; hence to (T P)*=0=P*T*=PT*; hence to T*3¢CNM*,
since N, N are the sets of elements fEI such that Pf=0, Pf=f, respec-
tively.

3. The error §f. Let Q be a probability space of points w with probability
function p. If z is a function of w, the expected value of z is Ez= [ozdp.
We assume of the error 6f that

(i) 8f=0f(x) =0f(x, w) is a complex function of (x, w) and is measurable
mp on the product space of the real line and Q.

(ii) Eéf=0.

(iii) E[[of]|2< .

Thus 6&f is a stochastic process. For each x except those on a set of m-meas-
ure zero, 0f is a random variable. For each w except those on a set of p-measure
zero, Of is an error in f-+9f.

The variance V of 8f is the operator which carries A& 3C into

Vh = E(h, 5f)8f.

The operator V is the integral operator whose kernel is the covariance func-
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tion of 8f. In the tabular case, the matrix of V is sometimes called the vari-
ance-covariance matrix.

LEMMA 2. The variance V is nonnegative definite; also
trace V = E||of]|2 < .

Proof. The existence of Vi, k€3¢, can be established and the inversions
below of orders of operations can be justified by Fubini’'s theorem, Schwarz’s
inequality, and Lebesgue’s theorem on series of nonnegative terms.

First, the definition of V implies its linearity.

Second, V is bounded. Thus, for hE3C,

Vh = E(h, 8f)of = E'(h, 8f")of";
VA2 = (Vh, Vi) = (E(h, 5f)5f, E'(h, of )8f")
= EE'(h, of) (3", k)(6f, 8f")
< EE'| (b, 8f)(k, o) [ |lofl] larll = [E] (B, a0 | |lof][ ]
Hence
|va| = E[ (n, 80 | llofll = Ell#] lloA] lorll = B]|4l],

where B =E||§f]|2< .
Third, V= V*. Thus, for k, k' €30,

(Vh, ') = (E(h, 8f)of, k') = E(h, 5f)(3f, K');

(h, V') = (VK', k) = E(K, 8f)(8f, h) = (Vh, }').
Fourth, V is nonnegative definite. Thus, for AE3C,

(Vh, k) = E(h, 8)(3f, k) = E| (b, 8f) |2 = 0.

Last, consider trace V. Suppose that {e,}, r=1, 2, - .+, is a complete
orthonormal set in 3¢. Then [9, pp. 93-101],

trace V.= (Ve, &) = 2 E| (8, &) |2 = EX | (8, &) |* = E||of]|* < .
T r r
REMARK. Any nonnegative definite operator of finite trace is the vari-
ance of some stochastic process df satisfying conditions (i), (ii), (iii) above.

LEMMA 3. Suppose that 5g = ASf, where A is a bounded linear operator. Then
dg 1s itself a stochastic process, 8g is measurable mp, Edg =0, and E||8g]|"’< 0,
The variance of 6g is AVA*.

Proof. The theory of the direct product of two Hilbert spaces shows that
g is indeed defined almost everywhere mp and is measurable mp; also that

Ebg = EASf = AEsf = 0.

Now
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Eljsgll® = Ell4l|lafl| = ||4ll2Ellafl|> < w.
Finally, the variance of 8g is the operator which carries #E3C into
E(h, 8g)og = E(h, ASf)Adf = EA(A*h, 8f)8f = AE(A*h, 8f)of = AVA*h.

4. Approximation processes. Let I be a fixed closed linear manifold of
3C. Let of be the stochastic process of the preceding section. Suppose that 4
is a bounded linear operator. For any f in 3¢, put

gt+og=A(+2of), g=Af og=Adf
Let <A be the class of bounded linear operators 4 such that
(1) Eg+og =f whenever f € M.

Among the operators in <4, there may be some which minimize the quantity
E||6g||2. We call such operators approximation processes.
Note that

E(g + 8g) = Eg+ Eég = g+ 0 = Af.

Hence condition (1) amounts to this: That Af=f whenever fEN(; that is,
that

2 (4 =D =0,
where I is the identity operator. Condition (1) therefore implies that the
error g+08g —f in the approximation of f by g-}6g is §g whenever fEN.

LEMMA 4. A bounded linear operator A is an approximation process if and
only if trace A VA*=E||6g||? is minimal, subject to the constraint (2).

Proof. Lemmas 2, 3 imply that trace 4 VA* = E|3g||2. Conditions (1) and
(2) are equivalent.

THEOREM 1. A bounded linear operator A is an approximation process if
and only if

3) VA*3c CIM and (4 — DN = 0.
The approximation process is unique if V is positive definite on M-,

Note that the condition VA*3C( is equivalent to 4 VA*=0, by
Lemma 1.

Proof. Suppose that a bounded linear operator 4 satisfies the constraint
(2). A bounded linear operator 4 +AA will also satisfy that constraint:

(A+ A4 — DA =0,
if and only if AA9 =0, that is,
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4) AA* 30 C ML,

by Lemma 1. Assume (4).
Lemmas 2, 3 imply that

v = trace AVA* = Eljog||? < ;
also that trace (4 +A4) V(4 +AA)* and trace AA VAA* are finite. Hence
Av = trace (4 + A4)V(4 + AA)* — trace AVA*
= trace AAVAA* + trace (AVAA* 4+ AAVA¥).
We now prove the sufficiency of (3). Assume (3). Then 4 VA{+ =0, and
AVAA*3e C AVIME = 0,

(®)

.

by (4); hence
AVAA* = 0 = (AVAA*)* = AAVA*.
Hence, by (5),
(6) Av = trace AAVAA* = Y (AAVAA*e., e,) = 2 (VAA*e,, Ad*e,),

where {e,} is a complete orthonormal set in 3. As V is nonnegative definite,
each term on the right is nonnegative and is minimal for A4 =0. Hence
Av =0, v is minimal, and 4 is an approximation process. (Indeed 4 minimizes
(A VA*e, e), subject to the constraint (2), where e is any fixed element of 3C.)

We now prove the necessity of (3). Suppose that A4 is an approximation
process. Then Av =0 for all bounded linear operators A4 for which (4) holds.
Hence (4) must imply that

trace (AVAA* 4+ AAVA*) = 0;

that is,

(7 > (AVAA*e, + AAVA*e,, e,) = 22 Real (AVAA*e,, e,) = 0.

(Otherwise we could make Av <0 by putting yAA for A4 in (5) and letting
the real number v be sufficiently small and of proper sign.)
It follows that (4) must imply that

(8) (AVAd*e,, e) =0 for each r.

To establish this assertion, consider another A4, viz. A4,, defined as follows.
Let 7, be fixed; put

AA1h = (AAR, e)e, = (B, Ad*e,,)er, h € 3.
Then
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AA ¥k = (h, e,)AA%e,,;
and (4) holds with A4 replaced by AA4,. Hence (7) must hold with A4 re-
placed by AA,; that is,
0 = Y Real (AVAAy*e,, ¢,) = Real (AVAA*e,, e,),

since Adi*e,=(e,, €,,)AA*e,,=0,,AA*%e,,. The entire argument holds with
AA replaced by (—1)V2AA. Hence (4 VAA*e,,, e,,) =0. Since this holds for

any 7,, (8) holds.
We conclude that 4 VAt =0. Thus, consider fENM! and the particular
bounded linear operator A4, defined as follows:

AAdR = (h, f)er, . h € 3C, ro fixed.
Then AA*h = (h, e,,)fENM*, and
(AVAA*e,, e,) = (AV(er, €r)f, ) = 8,4(AVS, &) = 0,
by (8). Hence
(4Vf, e"o) = 0.
Since this holds for any 7o, A Vf=0.

To complete the proof of the theorem, we show that the approximation
process is unique if V is positive definite on MM, Suppose that 4 is an ap-
proximation process. Consider any bounded linear operator 4+A4 such
that (4) holds. Then (6) holds. Now AA4*e,ENM* by (4). If V is positive defi-

nite on ML, Av>0 unless A4 *e, =0 for all , by (6); that is, Av>0 unless A4
=0. Hence only 4 in <4 minimizes v: The approximation process is unique.

COROLLARY. Suppose that A is an approximation process. Then so is A9,
where q is any positive integer. Also ‘

AVA* = AV = VA*.
.The variance of 6f —0g is
I—-AVI—-A*=V — AV,
so that the variance of 8f is the sum of the variances of dg and 8f — dg.
Proof. If A satisfies conditions (3), so does 4. Also
AVA* = A(VA*) = V4*

by (3); and VA*=AV since A VA* is self-adjoint. That (I—A)V(I—-A)* is
the variance of 6f —dg = (I —A)df follows from Lemma 3.

5. Operators proper on N(. We say that an operator U is proper on
MM if a positive constant b exists such that
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9 | PUf| = 8|1 whenever f € N,

where P is the projection onto M. Thus a necessary condition that U be
proper on N is that UfEM*, FENM imply that f=0. This condition is suffi-
cient, if U is bounded and linear and 9( is finite-dimensional (see Lemma 17).

LEMMA 5. If a bounded linear operator U is proper on M, then UM and
PUI are closed linear manifolds.

Proof. This elementary lemma is an immediate consequence of [4, Theo-
rem 2, pp. 37-38], since || Uf|| 2| P U7, € 5.

Now consider a bounded linear operator U. We denote by U~ any bounded
linear operator such that

(10) (U~PU — )M = 0.
Thus U™ is a left inverse of PU on 2.

LEMMA 6. A necessary and sufficient condition that a bounded linear operator
U be proper on I is that an operator U™ exist.

This lemma is essentially Toeplitz’s theorem [5, p. 1430] applied to PU
on M. For simplicity we give the proof. Suppose that U is proper on 7.
Define U™ on the closed linear manifold N=PU( as follows. Suppose that
gEN. Then at least one element fEN exists such that PUf=g. That ele-
ment f is unique. For, if PUf’ =g, f'ENM, then PU(f—f") =0 and f—f' =0, by
(9). Put

Utg =/, gEN.

Then U~ is linear on N. Also
[o=dl = Il = o= PUAl| = 5jgll, gEN;

hence U~ is bounded on N.

To complete the definition, U~ may be an arbitrary bounded linear
operator on N*. Then U~ is a bounded linear operator on 3¢, and U~ P Uf =f,
fEM. Since U N=N, it is always possible to define U~ so that U~ =N.

Conversely, suppose that an operator U~ exists. Then for fEN,

lv~pus| = 7 = BllPUA, B >0,

since U~ is bounded. Hence (9) holds with b=1/B.
6. Companions. A bounded linear operator U is a companion (of V rela-
tive to M) if U is proper on N and if

(11) VU* C 9.

LeMMA 7. If U is a companion, A=U~PU 1s an approximation process.
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Proof. By Theorem 1, it is sufficient to show that (4 —I)N=0and VA*3C
CM. The first is precisely (10). Also
VA*3e = VU*PU~*3c C VU*M C M,

by (11) and the fact that P is the projection onto M.
If in addition UM CM, then (U~PU)2=U~PU, by (10) since UTPU3C
C M.

LemMA 8. If an approximation process exists, companions exist. Indeed, if
A 1s an approximation process,

U=XA+4+7Y

is a companion, providing that X and Y are bounded linear operators, X 1s
proper on M, and Y*NWM=0.

Proof. Such operators X, Y exist; one pair is: X =1, ¥Y=0. (Thus 4 is
itself a companion, as is evident directly. But A~ PA need not be 4.)
We now show that U=XA+ Y is a companion. Thus, by Theorem 1,

VU*M = VA*X*M 4+ VY*M = VA*X*M + 0 C VA*3¢ C M.
Also, if fEN,
PUf = PXAf + PYf = PXJ,
since Af=f, Y3cENM"; hence
lPUfll = [lPxAl| = ll/, b >0,
since X is proper on M.

LEMMA 9. If an approximation process exists, positive definite companions
exist. Indeed, if A is an approximation process,

(12) U=A*2A+7Y

15 @ positive definite companion, providing that the operator Z is proper on M
and positive definite, and the operator Y is positive definite on M+ and Y =0.
All positive definite companions are of the form (12), with A, Z, Y satisfying
the stated conditions.

Proof. Such operators Z, Y exist; one pair is: Z=1, ¥ =1I— P, the projec-
tion onto N, '
Suppose that A4 is an approximation process. Then, by Theorem 1,

(A—DP=0=[(4 - IP]* = P(4* - I).

Hence, PA*=P and PA*Z=PZ. Hence A*Z is proper on I, since Z is.
By Lemma 8, then, U is a companion, since Y*N{ = VYA =0.
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Now U is positive definite. For, U*=U. Also

Each of the last terms is nonnegative. And (ZAf, Af) >0 unless Af=0. Now
if Af=0, then (Yf, f)>0 unless f=0. Thus, write

f=h+/y hem HLemt
Then
(Yf, /) = (¥fu, f) + (Yfy, f2) + (Vfo, f1) + (Yo, fo) = (Yfa, f2),
since Yfi=Y*fi=0. Also
A(fi+ f) =0=Afi+ Afp = fi+ Afs,

and
fi= — Afe.

By hypothesis (Yf;, f:) =0 implies that f; =0; hence that
fi=0=/

We omit the proof that all positive definite companions are of the form
(12).

Lemmas 7, 8, 9 imply the following theorem.

THEOREM 2. A pproximation processes exist if and only if companions exist.
If U is a companion, U PU 1is an approximation process. If approximation
processes exist, positive definite companions exist.

An example in which no approximation process exists is given in §12. An
example in which a unique approximation process exists even though V has
no bounded inverse is given in §11.

7. Least square processes. Let TV be a fixed nonnegative definite operator,
proper on M. By a least square process we mean an operator C which assigns
to each f in 3¢ an element g=Cf with the following properties:

(i) g€M;

(ii) For each fixed f in 3¢, (W[f—g], f—g) is minimal among all elements
gEM.

A series of lemmas on W leads to Theorem 3 below.

LeEMMA 10. The weight W 1is positive definite on .

Proof. Since W is nonnegative definite, (Wf, f) =0 only if Wf=0 [9, p. 53].
Suppose that fENM, (Wf, f) =0. Then ||PWf||=023|/f||, 5>0; hence f=0.
The proof is complete.

The manifold W9 is closed and linear, by Lemma 5. Put
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L= (Wan)t.
Then (L,WM) =0=(W.L, ) and
WL C ML,
LemMma 11. If
f+e=f+1¢; L EM g ¢ €L
then .
f=r g=¢.

Proof. We shall show that
f+g=0, fen el
imply that f=g=0. Thus
0=W[f+elf+e =N+ Wg+ Wg f)+ (W, g)
= (Wf, ) + (Wg, g),

since (W, L) =0. Now each of the last terms in nonnegative. Hence

(Wf, f) = (Wg, g) = 0.

But W is positive definite on N, by Lemma 10. Hence f=0. Hence g =0.

LEMMA 12. The manifold {9, L} spanned by I and . is closed.

Proof. Suppose that

HeEM ol fo+ g —hasv— oo,
We shall show that k=f+g¢, fENM, g&L. Thus
PW(f, + g&) = PWf, + PWg, = PW/,
since W.LC (. Hence
W~PW(f, + g) =W~ PWf, = f.

Now W™PW(f,+g,) >W~PWh=F}, say, since W”PW is continuous. Hence
fr—h and W €N, since M is closed. Hence g,—h—k' EL, since L is closed.

Hence
h=HW+ (h—K)eE {9 L}
LEMMA 13. Any f 1n 3C can be written
(13) f=h+fa flE?)’(,fze.C_.

Proof. It will be sufficient to show that {9, .C}*=0, for then {%f,
L}t =35={n, L}, since {M, L} is closed. Suppose that
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JEM and fELE = (WH)LL = W

Then f=WgENM*, where gEN. Hence g =0, since W is proper on 7. Hence
f=0. This completes the proof.

The elements f; and f; of Lemma 13 are unique, by Lemma 11. Define the
operator C as follows:

Cf=h fex
where f1 is determined by (13). Then ’
(14) Cf=0 if and only if f € (.

LeEMmMA 14. The operator C is bounded and linear; 1t is uniquely character-
1zed by the additional properties:

(15) € - DN =0,
(16) cie C M,
17) WC = C*W.

Proof. Clearly C is linear on 3C. Suppose that f,—0, f,&3C. Then Cf,—0.
Thus

fr=CHh+ T - Of, e -0l
Then PWf,=PWCf,, since PW.L=0; and
W~PWf, = W~PWCf, = Cf,,

since Cf, &EM. Hence Cf,—0, since W~ PW is continuous. Hence C is bounded.
Clearly C has properties (15) and (16). To establish (17), suppose that
f=h+fy, g=g1+g fr, nEM, fo, g2EL. Then

(ch’ g) = (Wfl) g) = (fl’ Wg) = (fly ng) + (fl; Wg?) = (fly ng)
= (fl’ ng) + (f2’ ng) = (fr ng) = (f’ ch),

since (A, W.L) =0. Hence (WC)*=WC=C*W.
Conversely, suppose that C is a bounded linear operator with properties
(15), (16), (17). Then

f=C+ T -0 Je %

It will be sufficient to show that CfEM, (I-C)fEL, by Lemma 11. Now
CfEM, by (16). Let g be any element of W(; that is, g=Wyg’, g’ €. Then

(I =0Of g =g — (Cfg=(f Wg) — (Cf, Wg)
= (f, Wg') — (WCf, &) = (f, Wg') — (f, WC¥')
= (f, Wg') — (f, W¢') =0,
by (17) and (15). Hence (I— C)fE(WM)* =L,
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THEOREM 3. The least square process exists, is unique, and is bounded and
linear. A necessary and sufficient condition that a bounded linear operator C be
the least square process is that(*)

C—-—Da=0  C3 CNM, WC = C*W.
Proof. Given fE3C, g is to be an element of N which minimizes
y=W[f-¢glf-2.
Write f=fi+f2, LEM, f2EL. Then

y= (W[fl - g],fl -8+ (W[fl - 8]vf2) + (Wf, [fl - g]) + (Wi f2)
= (W[fl - g]1f1 - g) + (Wf2, f2)r

since (W, L) =0. Now the second term is independent of g; and the first
term has a minimum uniquely at g =fi, by Lemma 10.

Lemma 14 completes the proof. We note in passing that (WCf, Cf)
=(WCf, f) =(Wf, Cf). Hence the minimal y is (WY, f) — (W(CY, f).

8. Approximation and least square processes.

THEOREM 4. The unique least square process is an approximation process if
and only if

VW C I

Otherwise put, the least square process is an approximation process if
and only if the weight W is a companion. Since positive definite companions
exist whenever approximation processes do (Lemma 9), i s always possible,
given the existence of ome approximation process, to consiruct a least square
process (with positive definite weight) which is also an approximation process.

Proof of Theorem 4. Suppose that VWM CN. To show that the least
square process C is an, approximation process, it is sufficient to show that
(C—1)9=0and VC*3CM, by Theorem 1. Now the first is true, by Theorem
3. Also WM ="+, and CL =0, by (14). Hence C*3¢C.L*, by Lemma 1. Hence

VCr3e C V.LE = VIV C 9.

Conversely, suppose that the least square process C is an approximation
process. Then VC*3¢CM and CVA-=0. Hence VM*C.L, by (14). Since
W =L",

Vs, W) = 0 = (DL, VW),

Hence VWM CNA.
9. Curve fitting processes. The curve fitting processes will be defined in

(%) Thus C is a pseudo-projection: If W were positive definite, C would be the projection
onto N relative to the new inner product ((f, f)) = (Wf, f1), f, f'E30.
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terms of independent elements uy, ug, - - - that span N rather than in terms
of MM itself. By requiring that ui, us, - - - be orthonormal and complete, one
could treat the infinite-dimensional case. We consider it of more interest to
admit i, pe, - + - which are not necessarily orthonormal.

In this and the next section, N will be assumed to be n-dimensional. The
indices 7, j, k, I will range over 1, - - - , n (1Sn< x). Assume that p1, - - - , Un
are fixed (independent) elements of 3C that span M.

Let ¢F, - - -, ¢ be a set of functionals, each bounded and linear on 3C.
For each f in 3¢, put

a; + da; = ¢X(f+ 8f), @i = ¢,
g+ i = (Tt )+ ) = X (et say

g = ( Z I-‘i¢i*>f = Z itk

Consider those sets of functionals {¢¥} which are such that
E(g+dg) =f whenever f € .

Among those sets of functionals there may be some which minimize the
quantity E Y ; [6a.~| % By a curve fitting process, we mean an operator
Z,- uo* in which { oF } is such a minimizing set. Thus a curve fitting process
is unbiased on Nl and minimizes the expected response of the coefficients of
combination «; to the error df.

For each bounded linear functional ¢* on 3¢, there exists a unique element
¢ of 3¢ such that ¢*f=(f, ¢), fEIC; and vice versa. The functional ¢* and
the element ¢ are adjoints of one another. Henceforth we shall characterize
a curve fitting process by the set of 7 elements ¢; which are respectively the
adjoints of the functionals ¢f. We shall say that the elements {¢.—} and the
curve fitting process correspond to one another(®). The curve fitting process
that corresponds to {¢;} carries fE3C into X.: (f, bo)ui

The omitted proofs of the following lemmas and theorem are similar to
proofs in earlier sections.

LemMmA 15. Suppose that
ba; = (8f, ¢4), ¢ € 3.
Then Edo;=0, and the variance matrix of {da;} is(5)

(%) Let xo be a fixed value of x. The functional ¢*f=f(x,) is bounded and linear on JC if and
only if %o is a point of positive m-mass. Now it is precisely then that f(x,) seems a natural
element of a procedure of approximation.

(%) In our symbol for a square matrix, the index which comes earlier in the alphabet is the
row index. For example, 4 is the row index in both {a;;} and {b;.}.



442 ' " ARTHUR SARD [November

{Esada;} = {(Ve) ¢}

LeEMMA 16. The n elements {d);} of 3C correspond to a curve fitting process if
and only if

trace {(Voj, ¢5)} = Z (Voi, ¢:) = EZ | da: |2

1s minimal, subject to the constraint
(i, $5) = 8,5

THEOREM 5. The n elements { ¢o.~} of 3C correspond to a curve fitting process
if and only if

Vo €M and  (ui, ¢;) = bi,.

" The functions {¢:} and the curve fitting process are unique if V is positive defi-
nite on M-

COROLLARY. Curve filting processes exist if and only if approximation
processes exist. Any curve filting process is an approximation process. If A is
an approximation process and if

(18) ¢ = A*Z Pj.ikiy {pii} = {(uy wr)} =,

then {¢.,—} correspond to a curve fitling process.

REMARK. If V is positive definite on A+, each above process is unique;
hence either both processes exist and are the same or else neither exists.

Proof of Corollary. Suppose that {¢,~} correspond to a curve fitting process.
We shall show that 4 = Y _;u.$:* is an approximation process.

If fEM, then f= 3_;Bu; and

Af = 20 (fy ddms = 20 Biks, ddps = 2 Bdjims = 2 Biuj = f.
i 4,5 %7 i
Hence (A — )M =0.
Also A*= Y ;¢f, and, for any fin 3,

VA*f = VZ (fv :“i)d’i = Z (f’ l-"i)Vd’i € I,

since Ve, ENM. Hence VA*3CCNH, and A is indeed an approximation
process (with the following special property: 43¢ =N().

Next, suppose that A is an approximation process. Define ¢; by (18).
Since the elements p; are independent, the Gram matrix { (us, p,k)} is in-
vertible and {p.;} is defined. Then

Véi = VA*Y pju; € 9N,
J
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since VA*3cCM. Also

(uir 5) = (ue, VADY Pk,a'uk) = 2 piu(Aus, we) = 2 pjulps 1)
k k k
=0j:= 0i,j

since pi,;j=pjr and (A —I)M=0. Hence {¢;} correspond to a curve fitting
process (which, however, is not necessarily 4).

10. Companions and curve fitting processes. In this section, as in the pre-
ceding, M is n-dimensional. The elements u;, - -+, 4, span M. .

LeEMMA 17. A bounded linear operator U is proper on M if and only if the
nXn matrix {(Up;, p;)} 1s invertible.

Proof. The operator U is proper on N if and only if
|PUf| 2 5>0  whenever f €9, ||f]| = 1.

Assume that fENM, ||f]| =1 throughout this proof.
Put

b = min ||PUf||;

this minimum exists, since f varies on a compact set. Now b=0 if and only
if there is an element

f= Zﬂj#j, Al =1
J
such that PUf=0; that is, UfENM*; that is,
(Uf, w) = 22 Bi(Unjp ) = 0 for all 4;
j

that is, the » X» matrix {(Up.,-, u,-)} is singular.
LemMA 18. If U is a companion and
(19) ¢i=U*D rims  Amii) = {(Upn m)}™
j

then {¢,~} correspond to a curve fitting process.
If {d).-} correspond to a curve fitting process, then

(20) U=7Y+ 2 i
i
is @ companion, providing that the operator Y is bounded and linear, Y*N =0,

and the n’ Xn matrix {c;,,-} 1s invertible. All companions are of the form (20).
Also

(21) U=Y+ 2 ¢i i
i,
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is a positive definite companion, providing that the operator Y is positive defi-
nite on M+, YW =0, and the n X n matrix {c;;} is Hermitian and positive
definite. All positive definite companions are of the form (21).

If the U of (20) or (21) s substituted in (19), the ¢; produced by (19) are
precisely the ¢; in (20) or (21).

11. The inverse V—! need not exist. When 3C is infinite-dimensional, the
condition E||6f||2<  implies that V cannot have a bounded inverse. For,
trace V=E| Bfl 2and V is therefore completely continuous [9, p. 98]. Hence
a complete orthonormal set exists relative to which the matrix of V is
diagonal:

V= {61

Since trace V= _,v,< ,9,—0 as r— o, and 1/7, cannot be bounded. But if
V-1 were to exist, its matrix would be {8,/ v,}, which does not have bounded
rows. Approximation processes can exist nonetheless.

A particular instance is the following. Let {e,} be a complete orthonormal
set in an infinite-dimensional space 3C. Let N be the manifold spanned by
e, * -+, en. Let V be the operator whose matrix is

{(Ves, e,)} = {6,,,,/1'2}, r,s=1,2,---.

Then V is a positive definite operator of finite trace. Hence V is a variance.
Let P be the projection onto M. Then 4 =P is the unique approximation
process. Thus, (A—I)M=0 and VA*)=VP*)=VPRI=VMCM, by
construction.

12. An example in which no approximation process exists. Let {ex},
A=0,1, - - -, be a complete orthonormal set in an infinite-dimensional space
3¢. Let 9 be the one-dimensional manifold spanned by e,. Let V be the oper-
ator whose matrix is

1 N Vo V3

{(Vewe)} =402 0 w 0 --- ) N\ »p=01,-
V3 0 ws
We shall show that the numbers v,, w,, r=1, 2, - - -, can be chosen so that

V is positive definite, of finite trace, and so that no approximation process
exists. One such choice is

v, = r1/23-r, w, = 7377, r=1,2, -

Throughout this section 7, s range over the positive integers; \, » range over
the nonnegative integers; summations are taken over r. We denote the co-
ordinates of an element f in 3C by fi=(f, ex).
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For V to be bounded, self-adjoint, of finite trace, it is sufficient that
v > 0, w, > 0, v < ®, > w < o,

Suppose these conditions satisfied.
For V to be positive definite, it is necessary and sufficient that

VH D = folP + Fo 2o vefe + fo 2o ofe + 2 e | £o]?
=|fot+t Do+ Zwlflt—|Xof2>0
whenever 0<|fo| 2+ X |f.|2< ; that is,

Zw,lf,l’-—lZvrf,|2>0 Whenever0<2|f,|2< ©,
But Schwarz’s inequality implies that

1T o] = (w1, w/w),

with equality attainable. Hence V is positive definite if and only if

> vf/w, <1

Assume this.

Now suppose that an operator A were an approximation process. Then
AP =P, since (A—I)P=0; and AV(I—P)=0, since A VH* =0. Denote the
matrix of 4 by

{(Aey, ex)} = {ax,,}.

The matrix of P consists entirely of zeros except that its leading element is
unity, Hence AP=P if and only if

a0 = &0;
and A V(I —P) =0, in addition, if and only if
0w, = 0, Vs + ao,,ws = 0;
that is,
a5 =0, Gos = — Vs/ W,

But 4 is surely not bounded if the sum of the absolute squares of the ele-
ments of the first row of its matrix is infinite, that is, if -

2 2
> v /w, = o,
In this case, then, there can be no approximation process.
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