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1. Introduction. A process is an operator T on a Hubert space 3C (de-

scribed in the next section) to 3C. We use a process T to approximate a function

/=/(x)G3C in the following way: Given /+Ô/G3C, where of is the error, we

approximate f by T(f-\- of).
We shall study three processes. Each is defined relative to a given fixed

closed linear manifold 9¡tC3C. In a particular instance, fTjrC might, for example,

be the manifold of solutions of a linear homogeneous equation related to the

source of our interest in approximating /.

An operator T is a least square process if, for each / in 3C, the inner product

(IF[f— Tf],f— Tf) is minimal among all operators T such that TfdVíí, where

IF, the weight, is a nonnegative definite operator proper on "M (§§2, 5). The

least square process exists, is unique, and is bounded and linear (Theorem 3).

The least square process is particularly useful because of its linearity and

continuity. It is sensitive to the weight IF, however. The choice of IF affects

the approximation T(f-\-Sf). What IF is appropriate? Gauss suggested, in a

particular case, that an appropriate IF be one which would make the least

square process have the additional property of being an approximation proc-

ess. Approximation processes are defined as follows.

Assume that the error bf = bf(x, co) is a function of (x, co), where u is a

point of a probability space fi, and that the expected value Edf vanishes identi-

cally in x. (The complete hypothesis on ôf is given in §3.) For almost each co

in Q, df(x, co)=ô/ is a possible error in the datum f+Sf. Assume also that

f=f{x) is an arbitrary element of 3C. In any particular use of the process T,

Of will be determined by an element co in 0 and / will be determined in some

fashion unrelated to (¿i1).
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(') Alternatively, the results of the present paper apply to certain cases in which both the

function / and the error ôf are stochastic and in which the distribution of of is related to the

value of/. An exact description of one such case is as follows. Let X be the real line — =° <x < °o.

Let ííi, ÍÍ2 be probability spaces, with probability functions pi, pi, respectively. Denote ex-

pected value on fiiX02 by E; on fi2 by Ei. Assume that/=/(x) =/(*, ai) is a complex function

of (*, coi) measurable mp\ on IXfli (m is described in §2 below); that/(x, «i)G5W for almost

each wi in fii, whereTii is a closed linear manifold in 3C; that the space essentially spanned by

f{x, ai), tiiGöi, is dense inUYC (i.e., the space spanned by/(x, wi), aiGil*, is dense m7ïC when-

ever fii* is a subset of Q¡ of probability unity). Assume that Sf= 5/(x) =5f(x, on, 012) is a complex

function of (x, on, w2) measurable mpipt on XXfiiXfis; that EiSf=0 on almost all iii; that

£||5/||2< 00. These assumptions are to replace (i), (ii), (iii) of §3. In the definitions of approxi-

mation process and curve fitting process, the condition "ET(J+bf) =/ or E(g-\-&g) =/ whenever

fCM" is to be replaced by "E2T(f+&f) =f or E2(g+Sg) =f on almost all Oj." Then the theorems
and lemmas of the present paper remain true providing merely that, in Lemma 3, mp be re-

placed by mpipi and ESg by E2Sg. The modifications of the proofs are slight.
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Let i/í be the class of all bounded linear operators T on 3C to 3C which are

such that(2)

ET(f + of) = f whenever / G VKt.

An approximation process is an operator T in zA which minimizes 2£ TVi/l2.

One might describe an approximation process as a bounded linear operator

which produces the minimal response to errors, subject to the constraint of

being unbiased on 'M..

Let V be the variance of ôf (§3). A necessary and sufficient condition that

the unique least square process be itself an approximation process is that VWM

E'M (Theorem 4). Heretofore only the following has been known [Gauss 3;

Aitken 1, 2; Kolmogorov 7]: The least square process is an approximation

process if W= V~l, providing that 3C is finite-dimensional and Fis invertible.

Now the condition VWMEJtt includes the condition W= V~l and is of

greater scope: In the infinite-dimensional case, for example, F will never be

invertible when jE||o/||2 is finite (§11).

The approximation process seems the most important of the three

processes that we study. Theorem 1 gives a necessary and sufficient condition

that an operator be an approximation process. Theorem 2 gives a necessary

and sufficient condition that approximation processes exist. If approximation

processes exist, then least square processes which are approximation processes

exist (§8). Our principle results do not require that V be positive definite.

Accordingly we admit any degree of dependence among the errors whatever.

The curve fitting processes (§9) turn out to be approximation processes;

their study illuminates the case in which 5W is finite-dimensional.

Kolmogorov and Wiener, in [6] and [ll] respectively, consider problems

involving least square error, prediction, and approximation. Both authors

take the datum /+£>/ to be a stationary stochastic process, with mean identi-

cally zero. Our investigation is essentially different from theirs.

2. The space 3C. Let m = m(x) be a nondecreasing function defined for all

real x and not identically constant. The space 3C is the space of all complex

functions f=f(x) of the real variable (3) x which are measurable relative to m

and are such that ||/||2=/-» |/to| 2dm(x) < oo. Here and elsewhere integrals

are to be understood in the sense of Lebesgue-Stieltjes. Two functions which

are equal almost everywhere m correspond to the same element, if any, of 3C.

The reader may consult references [4; 8; 9; 10 ] for definitions and details

omitted from our discussion.

The space 3C is a Hubert space of a countable infinity of dimensions or a

finite-dimensional complex Euclidean space. The latter case occurs if and

(2) The symbol E operates on its argument as a function of œ alone. Thus, for example,

ET(f+df) = E(Tf+ TSf) = Tf+ETSf, since Tf is independent of «.
(3) More generally, x may be a point of real Euclidean iV-space Rn; m(x) a measure, not

identically zero, on RN; and f—f{x) a complex function of the N real variables x.



430 ARTHUR SARD [November

only if m(x) is constant except for a finite number of jumps. We refer to the

latter as the tabular case. In the tabular case f(x) is characterized by a table

of its values at the finite number of points x at which m(x) has jumps. The

jumps in m(x) may be thought to measure the importance of the respective

tabular values. Indeed in all cases dm(x) may be thought to measure the im-

portance of /-p-ô/at x. All three processes that we consider depend on m in an

essential way since the inner product (/, g) =J-*f(x)g(x)dm(x) depends on

m.

That elements of 3C need be given only almost everywhere m is an essen-

tital point. In the tabular case, for example, the table of values of/+S/ is

adequate because it is a description of /+Ô/ almost everywhere m.

By a bounded linear operator we mean one which is bounded and linear on

all of 3C. We say that an operator T is nonnegative definite if T is bounded,

linear, self-adjoint, and if (Tf, /) ^0 for all/ in 3C. We say that T is positive

definite on a closed linear manifold Vit if T is nonnegative definite and if

(Tf, f) =0, fEVit imply that f — 0. We say that T is positive definite if T is
positive definite on 3C.

Lemma 1. Suppose that T is a bounded linear operator and Vit a closed linear

manifold. Then the conditions

TVit = 0    and    T* 3Z C VÚ1

are equivalent.

Here we write TVit for the set of all elements Tf, fEVit. The adjoint of T

is T*. The orthogonal complement of Vit is Vit1.

Proof. Let P be the operator of projection onto Vit. Then 7^ = 0 is

equivalent to TP = 0; hence to (TP)* =0=P*T*=PT*; hence to T*K.EVúL,

since Vît1, Vît are the sets of elements /G3C such that P/ = 0, Pf=f, respec-

tively.

3. The error 5/. Let ß be a probability space of points « with probability

function p. If z is a function of w, the expected value of z is Ez—fazdp.

We assume of the error öf that

(i) 5/ = 5/(x) =5/(x, w) is a complex function of (x, w) and is measurable

mp on the product space of the real line and fl.

(ii) Edf = 0.

(iii) E\\5f\\2<*.
Thus 5/ is a stochastic process. For each x except those on a set of w-meas-

ure zero, of is a random variable. For each w except those on a set of ^-measure

zero, ôf is an error in /+ 5/.

The variance V oí Sf is the operator which carries hEK- into

Vh = E(h, 5f)5f.

The operator V is the integral operator whose kernel is the covariance func-
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tion of èf. In the tabular case, the matrix of F is sometimes called the vari-

ance-covariance matrix.

Lemma 2. The variance V is nonnegative definite; also

trace F = £¡|á/||2 < ».

Proof. The existence of Vh, &G3C, can be established and the inversions

below of orders of operations can be justified by Fubini's theorem, Schwarz's

inequality, and Lebesgue's theorem on series of nonnegative terms.

First, the definition of F implies its linearity.

Second, F is bounded. Thus, for AG3C,

Vh = E(h,8f)8f= E'(h,8f')Sf;

\\Vh\\2 = (Vh, Vh) = (E(h, 8f)8f, E'(h, Sf')8f)

= EE'(h,8f)(8f',h)(ôf,5f)

= EE> | (h, 8f)(h, 8f) | ||5/|| ||i/'|| =  [E\ (h, if) | ||ô/||]2.

Hence

||FA|| = E\ (h, Sf) | ||S/|| = E\\h\\ \\8f\\ \\8f\\ = ü||a||,

where5=£||5/||2<».

Third, F= F*. Thus, for h, h'CSC,

(Vh, h') = (E(h, 8f)8f, V) = E(h, 8f)(8f, h')\

(h, Vh') = (Vh', h) = E(h', 8f)(8f, h) = (Vh, h').

Fourth, Fis nonnegative definite. Thus, for AG3C,

(Vh, h) = E(h, 8f)(8f, h) = E\ (h, 8f) \2 = 0.

Last, consider trace F. Suppose that \eT\, r = \, 2, • • • , is a complete

orthonormal set in 3C. Then [9, pp. 93-101],

trace F = £ (Ver, er) = £ E \ (8f, er) |2 = E^ | (8f, er) \2 = E\\8f\\2 < ».
r r r

Remark. Any nonnegative definite operator of finite trace is the vari-

ance of some stochastic process ôf satisfying conditions (i), (ii), (iii) above.

Lemma 3. Suppose that Sg—A8f, where A is a bounded linear operator. Then

ôg is itself a stochastic process, 8g is measurable mp, E8g=0, and £||5g||2< ».

The variance of 8g is A VA *.

Proof. The theory of the direct product of two Hubert spaces shows that

Sg is indeed defined almost everywhere mp and is measurable mp; also that

E8g = EASf = AESf = 0.

Now
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E\\ôg\\2 ^ E\\A\\2\\5f\\2 = \\A\\2E\\ôf\\2 < oo.

Finally, the variance of ôg is the operator which carries &G3C into

E(h, bg)bg = E(h, Abf)Abf = EA(A*h, 5f)Ôf = AE(A*h, 8f)ôf = AVA*h.

4. Approximation processes. Let Vit be a fixed closed linear manifold of

3C. Let ôf be the stochastic process of the preceding section. Suppose that A

is a bounded linear operator. For any/ in 3C, put

g + ôg = A(f + Of),        g = Af,        ôg = Abf.

Let zA be the class of bounded linear operators A such that

(1) E(g + bg) = / whenever fEVit.

Among the operators in zA, there may be some which minimize the quantity

E||ôg||2. We call such operators approximation processes.

Note that

E(g + bg) = Eg+E8g = g + 0 = Af.

Hence condition (1) amounts to this: That Af=f whenever fEVit; that is,

that

(2) (A - I)Vit = 0,

where I is the identity operator. Condition (1) therefore implies that the

error g + dg —f in the approximation of / by g + ôg is ôg whenever /G Vit.

Lemma 4. A bounded linear operator A is an approximation process if and

only if trace A VA* = E\\ôg\\2 is minimal, subject to the constraint (2).

Proof. Lemmas 2, 3 imply that trace A F¿4*=£||Sg||2. Conditions (1) and

(2) are equivalent.

Theorem 1. A bounded linear operator A is an approximation process if

and only if

(3) VA*3C C Vit    and    (A - I)Vit = 0.

The approximation process is unique if V is positive definite on VitL.

Note that the condition VA*3CCVit is equivalent to AVVst1=0, by

Lemma 1.

Proof. Suppose that a bounded linear operator A satisfies the constraint

(2). A bounded linear operator ^4+A^l will also satisfy that constraint:

(A + AA - I)Vit = 0,

if and only if kAVit = Q, that is,
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(4) AA*X.CM\

by Lemma 1. Assume (4).

Lemmas 2, 3 imply that

» = trace AVA* = E\\8g\\2 < »;

also that trace (A +AA) V(A +AA)* and trace AA VAA* are finite. Hence

Av = trace (A + AA)V(A + AA)* - trace AVA*

= trace AAVAA* + trace (AVAA* + AAV A*).

We now prove the sufficiency of (3). Assume (3). Then A VM1 =0, and

AVAA*3CCAVM->- = 0,

by (4) ; hence

AVAA* = 0 = (AVAA*)* = A^F^l*.

Hence, by (5),

(6) Av = trace A^FA.4* = £ (AAVAA*er, er) = £ (VAA*er, AA*er),
r r

where {er\ is a complete orthonormal set in 3C. As F is nonnegative definite,

each term on the right is nonnegative and is minimal for AA =0. Hence

Av^O, v is minimal, and A is an approximation process. (Indeed A minimizes

(A VA*e, e), subject to the constraint (2), where e is any fixed element of X.)

We now prove the necessity of (3). Suppose that A is an approximation

process. Then Az/_0 for all bounded linear operators AA for which (4) holds.

Hence (4) must imply that

trace (AVAA* + AAV A*) = 0;

that is,

(7) Y, {AVAA*cr + AAVA*er, er) = 2^ Real (AVAA*er, er) = 0.
r r

(Otherwise we could make Azj<0 by putting yAA for AA in (5) and letting

the real number y be sufficiently small and of proper sign.)

It follows that (4) must imply that

(8) (AVAA*er, er) = 0 for each r.

To establish this assertion, consider another AA, viz. AAi, defined as follows.

Let r0 be fixed; put

A^jÂ = (AAh, ejerí¡ = (h, AA*eJer„, h G 3C.

Then



434 ARTHUR SARD [November

AAi*h = (h, ero)AA*eH;

and (4) holds with AA replaced by AAi. Hence (7) must hold with AA re-

placed by A^; that is,

0 = 2 Real (AVAAi*er, er) = Real (AVAA*eT„ er„),
r

since AA1*er = (er, er<¡)AA*eril = br,r(lAA*er(¡. The entire argument holds with

A,4 replaced by ( — l)1,2AA. Hence (^4FA^4*ero, er„) =0. Since this holds for

any r0, (8) holds.

We conclude that A Wit1 = 0. Thus, consider fEVit1- and the particular

bounded linear operator AA, defined as follows:

AAh = (h,f)ero, . A G OC, r0 fixed.

Then AA *h = (h, e,0)/e3K\ and

(AVAA*er, er) - (AV(eT, er„)f, er) = ST,Ta(AVf, er) = 0,

by (8). Hence

(AVf,ero) =0.

Since this holds for any r0, AVf = 0.

To complete the proof of the theorem, we show that the approximation

process is unique if V is positive definite on Vit1. Suppose that A is an ap-

proximation process. Consider any bounded linear operator A-\-AA such

that (4) holds. Then (6) holds. Now AA*erEVitL by (4). If Fis positive defi-
nite on VitL, Av>0 unless A^4*er = 0 for all r, by (6); that is, Av>0 unless AA

= 0. Hence only A in zA minimizes v: The approximation process is unique.

Corollary. Suppose that A is an approximation process. Then so is Aq,

where q is any positive integer. Also

AVA* = AV = VA*.

The variance of hf—bg is

(I - A)V(I - A)* = V - AV,

so that the variance of bf is the sum of the variances of bg and bf—bg.

Proof. If A satisfies conditions (3), so does Aq. Also

AVA* = A(VA*) = VA*

by (3); and VA*=A V since A VA* is self-adjoint. That (I-A) V(I-A)* is
the variance of bf—bg = (I — A)bf follows from Lemma 3.

5. Operators proper on Vit. We say that an operator U is proper on

Vit if a positive constant b exists such that
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(9) \\PUf\\ = b\\f\\ whenever/ G M,

where P is the projection onto M. Thus a necessary condition that U be

proper on M is that UfCML,fCM imply that/ = 0. This condition is suffi-

cient, if U is bounded and linear and M is finite-dimensional (see Lemma 17).

Lemma 5. If a bounded linear operator U is proper on M, then UM and

P UM are closed linear manifolds.

Proof. This elementary lemma is an immediate consequence of [4, Theo-

rem 2, pp. 37-38], since || Uf\\ ̂ \\PUf\\,fC3C.
Now consider a bounded linear operator U. We denote by U~ any bounded

linear operator such that

(10) (U~PU - I)M = 0.

Thus U~ is a left inverse of PU on M.

Lemma 6. A necessary and sufficient condition that a bounded linear operator

U be proper on M is that an operator U~ exist.

This lemma is essentially Toeplitz's theorem [5, p. 1430] applied to PU

on M. For simplicity we give the proof. Suppose that U is proper on M.

Define U~ on the closed linear manifold J<i = PUM as follows. Suppose that

g(EH- Then at least one element fCM exists such that PUf = g. That ele-

ment/is unique. For, if PUf'=g,f'CM, then PU(f-f) =0 and/-/'=0, by
(9). Put

U~g = f, gCK

Then U~ is linear on ?{. Also

\\u~g\\ = 11/11 = HI PUf\\ = Hkll- s G H;
hence U~~ is bounded on ?•{.

To complete the definition, U~ may be an arbitrary bounded linear

operator on N/. Then U~ is a bounded linear operator on 3C, and U~PUf=f,

fCM. Since U~H = M, it is always possible to define U~ so that U~3C = M.

Conversely, suppose that an operator U~ exists. Then for f'CM,

\\U~PUf\\=\\f\\úB\\PUfl B>0,

since U~ is bounded. Hence (9) holds with b = l/B.

6. Companions. A bounded linear operator ¿7 is a companion (of F rela-

tive to M) if U is proper on M and if

(11) VU*MCM.

Lemma 7. If U is a companion, A = U~PU is an approximation process.
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Proof. By Theorem 1, it is sufficient to show that (A — I)Vit = 0 and VA*3C

CVit. The first is precisely (10). Also

VA*X = VU*PU~*SC E VU*Vit C Vit,

by (11) and the fact that P is the projection onto Vit.

If in addition U~VitEVft, then (U~PU)2=U~PU, by (10) since U'PUK,
EVit.

Lemma 8. If an approximation process exists, companions exist. Indeed, if

A is an approximation process,

U = XA + Y

is a companion, providing that X and Y are bounded linear operators, X is

proper on Vit, and Y*Vit = 0.

Proof. Such operators X, Y exist; one pair is: X = I, F=0. (Thus A is

itself a companion, as is evident directly. But A~PA need not be A.)

We now show that U = XA-\- F is a companion. Thus, by Theorem 1,

VU*Vit = VA*X*Vit + VY*Vit = VA*X*Vit + 0 C VA*3<¿ E Vit.

Also, ii fEVit,

PUf = PXAf + PYf = PXf,

since Af=f, YXEVit1; hence

\\PCJf\\=\\PXf\\^b\\f\\, b>0,

since X is proper on Vit.

Lemma 9. If an approximation process exists, positive definite companions

exist. Indeed, if A is an approximation process,

(12) U = A*ZA + Y

is a positive definite companion, providing that the operator Z is proper on Vit

and positive definite, and the operator Y is positive definite on Vit1- and YVit = 0.

All positive definite companions are of the form (12), with A, Z, Y satisfying

the stated conditions.

Proof. Such operators Z, Y exist; one pair is: Z = I, Y=I — P, the projec-

tion onto Vit1.

Suppose that A is an approximation process. Then, by Theorem 1,

(A - I)P = 0 = [(A - I)P]* = P(A* - I).

Hence, PA*=P and PA*Z = PZ. Hence A*Z is proper on Vit, since Z is.

By Lemma 8, then, U is a companion, since Y*Vit= YVst = 0.
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Now U is positive definite. For, U* = U. Also

(Uf, f) = (A*ZAf, f) + (Yf, f) - (ZAf, Af) + (Yf, /).

Each of the last terms is nonnegative. And (ZAf, Af)>0 unless ^4/ = 0. Now

if Af = 0, then (F/,/)>0 unless/ = 0. Thus, write

/ = /i + h, h CM,f2CMi.

Then

(Yf, f) = (Yfi, fi) + (Yfy, f2) + (Yf2, fO + (Yf2, f2) = (F/2, /,),

since F/i=F*/i=0. Also

A(fi + /*) - 0 - Afi + Af, - /, + 4/i,

and

fx =   - ¿/i-

By hypothesis (Yf2, f2) =0 implies that/2=0; hence that

/i = 0 = /

We omit the proof that all positive definite companions are of the form

(12).

Lemmas 7, 8, 9 imply the following theorem.

Theorem 2. Approximation processes exist if and only if companions exist.

If U is a companion, U~PU is an approximation process. If approximation

processes exist, positive definite companions exist.

An example in which no approximation process exists is given in §12. An

example in which a unique approximation process exists even though F has

no bounded inverse is given in §11.

7. Least square processes. Let IF be a fixed nonnegative definite operator,

proper on M. By a least square process we mean an operator C which assigns

to each/ in 3C an element g = Cf with the following properties:

(i) gCM;
(ii) For each fixed/in 3C, (W[f—g],f—g) is minimal among all elements

gCM.
A series of lemmas on IF leads to Theorem 3 below.

Lemma 10. The weight W is positive definite on M.

Proof. Since IF is nonnegative definite, (IF/./) =0 only if IF/ = 0 [9, p. 53].

Suppose that/GTSf, (IF/, /)=0. Then ||PIF/|| =0^&||/||, &>0; hence/ = 0.
The proof is complete.

The manifold WM is closed and linear, by Lemma 5. Put
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£ = (WVá)1.

Then (£,WVá) =0 = (W£, Vit) and

W=C C Vit1.

Lemma 11. If

f+g=f' + g'; f,f'EVit;g,g'e£;

then

f = f,       g = g'-

Proof. We shall show that

f+g = 0, fEVit, g EC

imply that/=g = 0. Thus

0 = (W[f + g], f + g) = (Wf, f) + (Wf, g) + (IFg, /) + (Wg, g)

= (Wf,f) + (Wg,g),

since (WVit, £) =0. Now each of the last terms in nonnegative. Hence

(Wf, f) = (Wg, g) = 0.

But W is positive definite on Vit, by Lemma 10. Hence / = 0. Hence g = 0.

Lemma 12. The manifold {Vit, „£} spanned by Vit and £ is closed.

Proof. Suppose that

fvEVît,    g„ G =G /„ + £,—» A as v —» oo.

We shall show that A=/+g, fEVit, gG-C Thus

PW(f, + g,) = PWfr + PWg, = PWfv,

since WJ^EVit1. Hence

W~PW(f, + g,) = WPWf, = fi.

Now W~PW(f,-\-g,)^W~PWh—h', say, since W~PW is continuous. Hence

fp—>h' and h'EVit, since Vit is closed. Hence g,—»A — A'G=0 since «£ is closed.

Hence

h = h' + (A - A') G {?tf, £}•

Lemma 13. Any f in 3C can be written

(i3) / = /i + /2, /ie5tf,/»e.G

Proof. It will be sufficient to show that   {ifaf, £}1=0, for then   {Vit,

j£\±-L=3C ={Vtt, £}, since {í7>f, jQ is closed. Suppose that
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/ G M1-    and   / CjQ- = (WM)^ = WM.

Then/= WgCMx, where gCM. Hence g =0, since IF is proper on M. Hence

/ = 0. This completes the proof.

The elements fi and/2 of Lemma 13 are unique, by Lemma 11. Define the

operator C as follows :

Cf = /i,     / G ae,

where/i is determined by (13). Then

(14) Cf =0 if and only if / G -G

Lemma 14. The operator C is bounded and linear; it is uniquely character-

ized by the additional properties:

(15) (C - I)M = 0,

(16) C3C CM,

(17) IFC = C*IF.

Proof. Clearly C is linear on 3C. Suppose that/,—»0, /„G3C- Then Cf,—»0.

Thus

/, = Cf, + (I - C)f„ Cf. G M, (I - C)f, G -G

Then PWf,=PWCf„ since PIF£ = 0; and

W~PWf, = W~PWCf, = Cf„

since Cf,CM. Hence Cf,—>0, since IF~PIF is continuous. Hence Cis bounded.

Clearly C has properties (15) and (16). To establish (17), suppose that

/=/i+/2, g=£i+g2,/i, gxCM,f2, g2CC Then

(IFC/, g) = (Wfu g) = (/u Wg) = (fu Wgi) + (h, Wg2) = (/x, IFgO

= (/i, IFgl) + (/2, Wgi) = (/, IFgl) = (/, WCg),

since (SW, IFC)=0. Hence (WC)* = WC=C*W.
Conversely, suppose that C is a bounded linear operator with properties

(15), (16), (17). Then

/ = Cf + (/ - C)f, f G 3C.

It will be sufficient to show that CfCM, (I-C)fG*Ç,, by Lemma 11. Now

CfCM, by (16). Let g be any element of WM; that is, g= IFg', g'CM. Then

((/ - C)f, g) = (}, g) - (Cf, g) = (/, IFg') - (Cf, Wg')

= (/, Wg') - (WCf, ¿) = (f, Wg') - (/, IFCg')

= (/, Wg') - (f, Wg') = 0,

by (17) and (15). Hence (I-C)fC(WM)x =£.
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Theorem 3. The least square process exists, is unique, and is bounded and

linear. A necessary and sufficient condition that a bounded linear operator C be

the least square process is that^)

(C - I)Vit =0,       C3C C Vit,        WC = C*W.

Proof. Given/G3C, g is to be an element of Vit which minimizes

y= (w[f-g\,f-g).

Write f=fi+f2,fiEVit,f2e£ Then

y = (W[ft - g], fi - g) + (W[fi - g], /,) + (Wf2, [fi - g}) + (Wf2,f2)

= (W[fi- g],fi- g) + (Wf2,f2),

since (WVit, jQ =0. Now the second term is independent of g; and the first

term has a minimum uniquely at g =/i, by Lemma 10.

Lemma 14 completes the proof. We note in passing that (WCf, Cf)

= (WCf, f) =(Wf, Cf). Hence the minimal y is (Wf, f) -(WCf,/).
8. Approximation and least square processes.

Theorem 4. The unique least square process is an approximation process if

and only if

VWVit C Vit.

Otherwise put, the least square process is an approximation process if

and only if the weight IF is a companion. Since positive definite companions

exist whenever approximation processes do (Lemma 9), it is always possible,

given the existence of one approximation process, to construct a least square

process (with positive definite weight) which is also an approximation process.

Proof of Theorem 4. Suppose that VWVitCVit. To show that the least

square process C is an. approximation process, it is sufficient to show that

(C-I)Vit = 0andVC*3CEVtt, by Theorem 1. Now the first is true, by Theorem

3. Also WVá=C and C£ = 0, by (14). Hence C*KEXl1, by Lemma 1. Hence

FC*3C C FO = VWVit C Vit.

Conversely, suppose that the least square process C is an approximation

process. Then VC*3CEVit and CVM1 =0. Hence VVit1CC by (14). Since

WVit^jtl1,

(Wit1, WVit) = 0 = (Vit1, VWVit).

Hence VWVÚEVit.

9. Curve fitting processes. The curve fitting processes will be defined in

(4) Thus C is a pseudo-projection: If W were positive definite, C would be the projection

onto Vit relative to the new inner product ((/, /')) = (Wf, /'), /, f'EsC-
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terms of independent elements jui, ¿i2, • • • that span M rather than in terms

of M itself. By requiring that Mb M2, ■ ■ ■ be orthonormal and complete, one

could treat the infinite-dimensional case. We consider it of more interest to

admit /ii, fx2, ■ ■ ■ which are not necessarily orthonormal.

In this and the next section, M will be assumed to be n-dimensional. The

indices i, j, k, /will range over 1, • • •, n (l^n <»). Assume that pi, ■ ■ • , n„

are fixed (independent) elements of 3C that span M.

Let <p*, ■ ■ ■ , </>* be a set of functionals, each bounded and linear on 3C.

For each / in 3C, put

ou + Sai = 4>*(f + 8f),        ai = <p?f,

g + àg = ( Z ß«t>A (f + 5/) = Z («< + MW.

g = (  E ßi<Pi*)f =  Z «<**<■

Consider those sets of functionals {<p*} which are such that

E(g + H) = f whenever f CM.

Among those sets of functionals there may be some which minimize the

quantity E^' |ôa<|2. By a curve fitting process, we mean an operator

Yiprf)* in which [<f>*} is such a minimizing set. Thus a curve fitting process

is unbiased on M and minimizes the expected response of the coefficients of

combination a,- to the error 5/.

For each bounded linear functional <p* on 3C, there exists a unique element

<p of 3C such that c/>*/=(/, c/>), /G3C; and vice versa. The functional <p* and

the element <j> are adjoints of one another. Henceforth we shall characterize

a curve fitting process by the set of n elements <pi which are respectively the

adjoints of the functionals c/>*. We shall say that the elements {<pi\ and the

curve fitting process correspond to one another(6). The curve fitting process

that corresponds to {ce,} carries/G3C into Z» (/> $»))"»•

The omitted proofs of the following lemmas and theorem are similar to

proofs in earlier sections.

Lemma 15. Suppose that

8olí = (8f, 4>i), 4>i G X.

Then ESa» = 0, and the variance matrix of {Sen} is(6)

(6) Let xo be a fixed valueof x. The functional </>*f=f(x0) is bounded and linear on 3C if and

only if xo is a point of positive ra-mass. Now it is precisely then that f(xo) seems a natural

element of a procedure of approximation.

(6) In our symbol for a square matrix, the index which comes earlier in the alphabet is the

row index. For example, i is the row index in both {a,-,;} and {bj,i\.
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{Eíttitey}   =   {(y*s, <bi)}.

Lemma 16. The n elements {</><} of X. correspond to a curve fitting process if

and only if

trace {(V<ph 4>i)} = E (V4n, *<) = Ej^ \ ôai\2
i i

is minimal, subject to the constraint

(Pi< <Pi) — bi.i-

Theorem 5. The n elements {<£,} of 3C correspond to a curve fitting process

if and only if ,

V4>i E Vá   and    (p{, <p¡) = Stj.

The functions {(pi) and the curve fitting process are unique if V is positive defi-

nite on Vit1.

Corollary. Curve fitting processes exist if and only if approximation

processes exist. Any curve fitting process is an approximation process. If A is

an approximation process and if

(18) *¡ = í*Ipa        {pi,¡} = {(tu, Pk)}-\
i

then {4>i} correspond to a curve fitting process.

Remark. If F is positive definite on Vit1, each above process is unique;

hence either both processes exist and are the same or else neither exists.

Proof of Corollary. Suppose that {<p,} correspond to a curve fitting process.

We shall show that A = X»/-1^»* is an approximation process.

U fEVit, then/= Ysißißi and

Af = X (/. 4>i)tn = Z) ßj(ßi, <t>i)Pi = X) ßßj.iPi = X) ßiVi = /•
» i,i i,j i

Henee (A-I)Vit = 0.

Also A* — X''^'M*. and, for any /in 3C,

VA*} = FE (/, p^i = Z (/- HÙVfr G Vit,
i i

since   VipiEVít.  Hence   VA*3CEVít,   and  A   is   indeed   an   approximation

process (with the following special property: A3C = Vit).

Next, suppose that A is an approximation process. Define <pt by (18).

Since the elements ¿u,- are independent, the Gram matrix {(pi, pk)} is in-

vertible and {pij} is defined. Then

F^= VA^p^pjeVit,
i
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since VA*KCM. Also

(Mil 4>l)   =   [»i, A* Z  Pk.jPk)   =   Z Pj,k(Api, file)   =    Z Pj,k(Pi,  Pk)
\ k / k k

since pk,j—pi,k and (j4 —J)7)f = 0. Hence }(/>¡} correspond to a curve fitting

process (which, however, is not necessarily A).

10. Companions and curve fitting processes. In this section, as in the pre-

ceding, M is w-dimensional. The elements pi, • • • , p» span M.

Lemma 17. A bounded linear operator U is proper on M if and only if the

nXn matrix {(Up,-, pi)} is invertible.

Proof. The operator U is proper on M if and only if

\\PUf\\ = b > 0        whenever/ G M, \\f\\ = 1.

Assume that fCM, \\f\\ =1 throughout this proof.
Put

b = min||P(V/||;

this minimum exists, since/ varies on a compact set. Now & =0 if and only

if there is an element

/ = Z ßfi*    11/11 = ii
such that PUf = 0; that is, UfCM^; that is,

(UJ, Pi) = Z ßi(Uph Pi) = 0 for all i;
i

that is, the «X« matrix {(Up,-, pi)} is singular.

Lemma 18. If U is a companion and

(19) <*>•■= U*En.mi,      ln,i} = {(Uphpk)}-\
i

then {cpi} correspond to a curve fitting process.

If {cpi} correspond to a curve fitting process, then

(20) U = F + Z ßid^t
i, i

is a companion, providing that the operator Y is bounded and linear, Y*M = 0,

and the nXn matrix {c¿,y| is invertible. All companions are of the form (20).

4/so

(21) U= 7+Z*iC-.y*¿*
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is a positive definite companion, providing that the operator Y is positive defi-

nite on Mx, YM — Q, and the nX n matrix }c¿,y} is Hermitian and positive

definite. All positive definite companions are of the form (21).

If the U of (20) or (21) is substituted in (19), the c6¿ produced by (19) are

precisely the <pi in (20) or (21).

11. The inverse F_1 need not exist. When 3C is infinite-dimensional, the

condition E

trace V = E\

[2< »  implies that  F cannot have a bounded inverse. For,

2 and F is therefore completely continuous [9, p. 98]. Hence

a complete orthonormal set exists relative  to which  the  matrix of   F is

diagonal :

F = {8r¡svr\.

Since trace V— Z>-Z'r< »,fr—>0 as r—>»,and l/vr cannot be bounded. But if

F-1 were to exist, its matrix would be {8r,,/vr}, which does not have bounded

rows. Approximation processes can exist nonetheless.

A particular instance is the following. Let {er} be a complete orthonormal

set in an infinite-dimensional space 3C. Let M be the manifold spanned by

Ci, • • • , en. Let F be the operator whose matrix is

{(Ves,eT)) =  {8rJr2}, r, s = 1, 2, • • • .

Then F is a positive definite operator of finite trace. Hence F is a variance.

Let P be the projection onto M. Then A —P is the unique approximation

process. Thus, (A-I)M = 0 and VA*W=VP*3C=VP3C=VMCM, by
construction.

12. An example in which no approximation process exists. Let {e\},

X = 0, 1, • • • , be a complete orthonormal set in an infinite-dimensional space

3C. Let M be the one-dimensional manifold spanned by e0. Let F be the oper-

ator whose matrix is

1 Vi v2 v3   ■

Vi Wi 0 0   •

v2 0 w2 0   •

»3 0 0 w3 ■

{(Ve„ej) = ,    X, v = 0, 1,

We shall show that the numbers vr, wr, r = 1, 2, • • ■ , can be chosen so that

F is positive definite, of finite trace, and so that no approximation process

exists. One such choice is

vr = r1/23" Wr r3~r 1,2,

Throughout this section r, s range over the positive integers; X, v range over

the nonnegative integers; summations are taken over r. We denote the co-

ordinates of an element / in 3C by f\ = (/, ex).
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For F to be bounded, self-adjoint, of finite trace, it is sufficient that

Vr  >   0, Wr  >   0, ]C "r   <   °° , E  Wr  <    °° •

Suppose these conditions satisfied.

For F to be positive definite, it is necessary and sufficient that

(Vf, /)   =  | /O |2 + /»Z Vjr + /oE */» +   E «V I fr |2

=   I /o +   E »r/r |2 +   E  «V | /, |2  -   | E «V/f I'  >  0

whenever 0< |/0| 2+ E|/r| 2< °° : that is,

E wr | /r |2 — | E vrfr |2 > 0 whenever 0 < E I fr \2 < °° •

But Schwarz's inequality implies that

I E "»'fr |     ̂    ( E  W>- I /r I   )( E »r/«V),
with equality attainable. Hence F is positive definite if and only if

E »r/W,   <   1.

Assume this.

Now suppose that an operator A were an approximation process. Then

AP=P, since (A-I)P = 0; and A V(I-P) =0, since ^ Ffttx=0. Denote the

matrix of A by

{(4e„ ex)} = {a\,,\.

The matrix of P consists entirely of zeros except that its leading element is

unity. Hence AP = P if and only if

«X,0 = ôx,o;

and A V(I—P) =0, in addition, if and only if

ar,sws = 0,        v, + ao,,w, = 0;

that is,

a,,, = 0,        aa.s = — Vs/ws.

But A is surely not bounded if the sum of the absolute squares of the ele-

ments of the first row of its matrix is infinite, that is, if

E »r/Wr  =    co-

In this case, then, there can be no approximation process.
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