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1. Introduction. Let G be a connected locally compact separable metriz-

able topological group of finite dimension n. When G is compact or solvable,

it is known that G is locally the direct product of an invariant compact zero-

dimensional subgroup Z of G and an invariant local Lie subgroup(2) 5 of G

[4; 6; 8; 10; ll](3). This same fact is probably true in general but is un-

proved. However, in a recent paper of D. Montgomery [9], a long and suc-

cessful stride has been taken in this direction. Namely, he proved that G is

locally the topological product of a compact zero-dimensional subset Z of G

and a connected locally connected invariant local subgroup 5 of dimension

n of G (see §2). His result does not imply that the subset Z can be selected

to be a subgroup of G.

In the present paper, Montgomery's result just mentioned will be

strengthened for the particular case that the center of G is locally connected.

In fact, the following Local Structure Theorem is proved in the sequel.

Theorem I. // the center of G is locally connected, then G is locally the

semi-direct product of a compact zero-dimensional subgroup and a connected

locally connected invariant local subgroup of dimension n. In greater detail: G

contains a compact zero-dimensional subgroup Z and a connected locally con-

nected invariant local subgroup S of dimension n such that U = ZS is an open

neighborhood of the neutral element e in G and the map F:ZXS—*U of the topo-

logical product space ZXS onto U defined by

F(z, s) = zs (zGZ,sG S)

is a homeomorphism of ZXS onto U. Hence every element uÇlU is decomposed

uniquely and continuously into the product u=zs where z(ElZ and s(E.S.

It should be emphasized that the local decomposition of G given in the

theorem is only a semi-direct product instead of a direct product. In fact,

the author is not able to prove that the subgroup Z can be selected to be

invariant.

Presented to the Society, February 23, 1952; received by the editors February 6, 1952.

0) A major part of this work was done under Project M801 of Engineering Research In-

stitute, University of Michigan, during the summer session of 1951.

(2) Following L. Pontrjagin [lO], closed subgroups and closed local subgroups will be

simply called subgroups and local subgroups.

(3) Numbers in brackets refer to the bibliography at the end of the paper.
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The proof of Theorem I given in the following sections is based on the

results of D. Montgomery and some assertions given in a previous paper [7]

of the author together with a reduction theorem (see §6) on local group ex-

tensions which was suggested by an analogous theorem of Eilenberg and

MacLane [5] on abstract group extensions.

If G does not have arbitrarily small subgroups, then it follows immedi-

ately that the center of G is locally connected and that the compact zero-

dimensional subgroup Z of G in Theorem I must be discrete. This implies

that the local subgroup S is an open neighborhood of the neutral element e

in G. Since S is locally connected, we obtain the following theorem(4) as a

corollary of Theorem I.

Theorem II. If G does not have arbitrarily small subgroups, then G must be

locally connected.

2. Montgomery's results. Throughout the present paper, G will denote a

locally compact separable metric topological group of finite dimension n. The

assertions given in this section are proved by D. Montgomery in one of his

recent works [9].

(2.1) There exists an open neighborhood V of the neutral element e in G

with compact closure such that the component R of V which contains e is locally

connected and n-dimensional and an invariant local subgroup of V [9, p. 598].

Choose an open neighborhood W of e in G satisfying the following con-

ditions:

(i) W is symmetric;

(ii) F4 is in V;

(iii) (W2 r\R)2CR,       {W2 n R)-1 C R;

(iv) x G W    and    y G F2 H R   imply    xyx-1 G R.

(2.2) The quotient local group Q=W/R [9, p. 596] is zero-dimensional

[9, p. 599].
The canonical map tt'.W-^Q which maps each wÇ_W onto the coset wR

(~\ W is continuous and open and a local homomorphism of W onto Q. We

shall denote by q0=r(e) the neutral element of the local group Q.

(2.3) There'exists a local cross-section of Q into W [9, p. 600]. In more de-

tail, there exists a continuous map x • M-^W defined on a compact open neighbor-

hood M of q0 in Q such that tx(x) =x for every element x in M. Moreover, we

may assume that x(<Zo) ■■*.

Choose 5 as a symmetric open connected subset of R which includes e

and is such that
Ss C R C\W.

(4) The author was informed by K. Iwasawa that Theorem II is also known to M.

Kuranishi.
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Then 5 is an invariant connected, locally connected, locally compact n-dimen-

sional local subgroup of G. Choose a compact open neighborhood N of go in M

such that

x(N)S C W.

Call Z=x{N). Then Z is a compact zero-dimensional set in G.

(2.4) The subset U = ZS of G is an open neighborhood of e in G and the map

F:ZXS-^U of the topological product space ZXS onto U defined by

F(z, s) = zs (zEZ,sE S)

is a homeomorphism of ZXS onto U [9, p. 600].

Let Go denote the smallest subgroup of G in the algebraic sense generated

by the elements of R. The abstract group Go may be topologized so as to form

a topological group G* by taking as a basis of the open neighborhoods of the

neutral element e in G* those open subsets of R which contain e. Let h: G*^>G

denote the identity map.

(2.5) G* is a connected locally compact locally connected n-dimensional

group and h: G*-*G is a one-to-one continuous homomorphism of G* onto a sub-

group H = h(G*) of G, not necessarily closed, which is dense in the neutral com-

ponent of G [9, p. 602].
3. Locally compact zero-dimensional local groups.

Theorem 3.1. Let Q be a locally compact zero-dimensional local group(b).

If M is a given neighborhood of the neutral element g0 in Q, then there exists a

compact open neighborhood N of q0 in Q such that NÇLM and N is a (global)

group under the multiplication defined in the local group Q.

Proof (6). Let M be a given neighborhood of the neutral element q¡> in the

local group Q. Since Q is locally compact and zero-dimensional, there exists a

compact open neighborhood K of go in Q such that K(Z M and that, for every

pair of elements x and y in K, xy and xr1 are defined and depend continu-

ously on x and y simultaneously.

Let x be an arbitrary element in K. Since K is open and qox=xÇzK,

there exist an open neighborhood Ux of go and an open neighborhood Vx of x

such that

UXVX C K.

Since K is compact, there exist a finite number of elements of K, say

(6) A local group Q is said to be zero-dimensional if, for any given neighborhood M of the

neutral element q<¡ in Q, there is an open and closed subset N of Q such that gs^NC^M. We do

not assume Q to be separable metric.

(6) The author is grateful to the referee for this quick proof of Theorem 3.1. The original

proof was much more complicated and was essentially the same as that of L. Pontrjagin [10,

p. 77] given to the analogous theorem for locally compact zero-dimensional global groups.
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#1» • • • i Xn, such that K is the union of the open sets VXl, ■ • • , VXn. Let us

denote by  U the intersection of  the open neighborhoods  Uxv ■ ■ ■ , UXn.

Then U is an open neighborhood of g0 in Q such that UKC.K.

Choose an open neighborhood W of q<¡ in Q such that

W-1 - W C If.

Then we have WKCZK. This implies that IF" is defined and is contained in

K for every natural number n = \, 2, ■ ■ • . Let

N - U IF».
n=l

Since every Wn is an open neighborhood of go contained in K, so is their

union N. Since i£ is compact (and hence closed), the closure Cl (N) of N is

contained in K. Now let xGCl (N). Since x W is an open neighborhood of x,

it must contain some point y of iV. Then there is a natural number m such

that y G IF"1. yÇixW implies that y =xw for some element w of IF. It follows

that

x = yw-1 e Wm+1 c iV.

This proves that N is a closed subset of i? and hence it is compact.

It remains to show that N forms an abstract global group under the

multiplication defined in Q. For this purpose, let x and y be any pair of ele-

ments in N. Then there exist natural numbers m and n such that x£IF™

and y G IF". On account of the relation W~1 = W, we have

xy-i e Wm+n c ¿y.

This completes the proof.

Note. As a consequence of Theorem 3.1, we may assume that the com-

pact open neighborhood N of q0 chosen before the assertion (2.4) is actually

a global subgroup of the local group Q.

4. Local group extensions. For the remainder of the paper, we shall as-

sume that G is a connected locally compact separable metric topological group

and shall use all the notations given in §2. Since G is connected, it follows

from (2.5) that the image H of the one-to-one continuous homomorphism

h: G*-^G is dense in G.
As in (2.1), let R denote the invariant locally connected «-dimensional

local subgroup of G. An element c(E.R is said to be central if there is an open

neighborhood T of e in R such that tct"1 is defined and is equal to c for every

element tÇ^T. The totality of the central elements of the local group R is

called the center C of R. Let B denote the center of the global group G. Since

H is dense in G, it follows easily that

C = RC\B
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and hence C is an abelian local subgroup of R.

Choose an open neighborhood Woi e in G satisfying the conditions (i)-(iv)

of §2. Then, by (2.2), the quotient local group Q = W/R is zero-dimensional.

Let tt'.W—*Q denote the canonical map. According to (2.3), there exists a

local cross-section of Q into W, that is to say, there is a continuous map

X'-M—>W defined on an open neighborhood M of the neutral element go in

Q such that ttx(x) ■"* for each x(E.M and that x(Ço) "■*.

According to the condition (iv) of §2, for each xG-^f and each y^W2C\R,

x(x)yx(x)~l is m -R- Hence the correspondence

y->ax(y) = xix)yx(x)-1

defines a local automorphism ax of the local group R. The correspondence

a:M-*A(R)

of M into the group A(R) of local automorphisms of R defined by a(x) =ctx

for each xÇ.M will be called a collective character. Obviously, a depends on

the local cross-section x *• M—> W. Let %' : M'—> W be another local cross-section

of Q into Wand let xÇ^MCsM'. Since irx(x) = x=irx'(x), it follows that the

element p(x) =x'WxW""1 is in R. Hence

&i(y) = x'(x)yx'(x)-1 = p(x)ax(y)p(x)-\

that is to say, ax and a'x differ only by an inner local automorphism of R.

Hereafter, we shall choose a local cross-section x'M—>Woí Q into Wand call

it our basic local cross-section. The collective character a : M—>A (R) determined

by X will be called our basic collective character. Since the center C of R is

contained in the center B of G, ax operates trivially on C.

A local group extension of the local group R by the local group Q is a triple

(-E, <p, ip) where £ is a local group, <j> is an open continuous local homo-

morphism of E onto Q, and \¡/ is an open continuous local isomorphism of R

onto the kernel of <p [7, §14].

A local cross-section of a local group extension (E, (p, \p) of R by Q is a

continuous map u : M—>E defined on an open neighborhood M of go in Q in

such a way that cpu(x) =x for each x^M and that ii(g0) is the neutral ele-

ment eo of E. A local group extension (E, <p, \f/) is said to be fibered [2] if it

has a local cross-section ; it is said to be inessential [3 ] if it has a local cross-

section u which is a local homomorphism of Q into E.

Let (£, cp, ip) be a fibered local group extension of R by Q. Choose a local

cross-section u'.M—>E of (E, <p, \p). Take an open neighborhood Mo of q0 in

M and an open neighborhood R0 of e such that, for each xG^fo and each

yERo,

^(u(x)HyMx)-1)

is a well-defined element of R. (E, <p, \p) is said to be corresponding to our basic
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collective character a if the local cross-section w:Af—>E and the open neighbor-

hood Mo and Ro can be so chosen that

lA_1(«(*)lKy)w(*)_1) = ax(y)

for each xG^fo and each yE.R0. Such a local cross-section u'.M-^E will be

called admissible.

Let i denote the identity local isomorphism of R onto the kernel of

7r: W—>-Q. Then, as shown above, (IF, ir, i) is a fibered local group extension

of R by Q corresponding to our basic collective character a with our basic

local cross-section x'-M-^W as an admissible local cross-section of Q into

W. Hereafter, we shall call (IF, w, t) our basic local group extension of R by

Q. The purpose of these elaborations is to see whether or not (IF, tv, i) is

inessential.

5. Equivalence classes of the extensions. Let us consider the set ß

of all fibered local group extensions of R by Q corresponding to our basic

collective character a. Any two of such extensions (E\, <¡>i, \pi) and (£2, </>2, ^2)

are said to be equivalent if there exists an open continuous local isomorphism

(r'.Ei « £2

such that there are an open neighborhood E{ of the neutral element ei in Ei

and an open neighborhood R' of e in R such that

<rti(y) = ^(y),        <t>2<r{z) = 0i(z)

for each yÇ^R' and each z£E{. If U\.M\-^E\ is an admissible local cross-

section of (£1, (¡>i, \pi), then the continuous map ux'.Mî—*E2 defined by w2(x)

= <tmi(x) for each x^M¡¡ = uí1(E{)QMi is clearly an admissible local cross-

section of (£2, 4>i, ̂ 2).

This equivalence relation divides the local group extensions £2 into dis-

joint equivalence classes. Our main concern in the sequel is to enumerate

these equivalence classes. In the next section, we shall reduce the enumera-

tion of these equivalence classes to that of the equivalence classes of the cen-

tral fibered local group extensions of the abelian local group C, the center of

R, by the local group Q. For the convenience of the reader, we shall recall in

the rest of the section the necessary definitions about central local group

extensions of C by Q.

As in §4, a local group extension of the abelian local group C by the local

group Q is a triple (B, £, rj) where B is a local group, £ is an open continuous

local homomorphism of B onto Q, and 17 is an open continuous local iso-

morphism of C onto the kernel of £. A local cross-section of (B, §, r¡) is a con-

tinuous map v:N—>B defined on an open neighborhood N of q0 in Q in such a

way that £o(x) =x for each x£iV and that v(q0) is the neutral element bo of

B. Fibered and inessential extensions of C by Q are defined verbally as in §4.

Let (B, £, r¡) be a fibered local group extension of C by Q. Choose a local
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cross-section V.N-^B of (B, £, r;). Take an open neighborhood N0 of go in N

and an open neighborhood Co of e in C such that, for each xC.No and each

zGCo,

Cx(z) = î7~1(î'(x)57(3)î)(x)-1)

is a well-defined element of C. (B, £, r¡) is said to be central if A^> and Co can

be so chosen that Cx(z) =z for each xG-A^o and each zGCo- It follows from the

commutativity of C that the above notion of central extensions does not de-

pend on the choice of the local cross-section V.N-+B.

Let r denote the set of all central fibered local group extensions of C by

Q. An equivalence relation can be defined between the extensions in T just

as for the extensions in Í2 given at the beginning of the present section. This

equivalence relation divides the central extensions T into disjoint equivalence

classes.

6. The reduction theorem. We shall denote by Í2# the set of all equivalence

classes of the fibered local group extensions Q of R by Q corresponding to our

basic collective character a. Similarly, r' will denote the set of all equivalence

classes of the central fibered local group extensions of the abelian local group

C by Q. The reduction theorem reduces the enumeration of £2# to that of T*.

It can be simply stated as follows(7).

Theorem 6.1. ö' and Tf have the same cardinal number.

Proof. The proof depends on a construction of a product of local group

extensions, analogous to the one used in abstract group extensions by R.

Baer [l ] and others.

Let 933 = (IF, w, i) be our basic local group extension of R by Q and let

33 = (B, £, t]) be an arbitrarily given central fibered local group extension of C

by Q. In the direct product WXB of the local groups IF and B [10, p. 85] con-

sider the local subgroup E* of all pairs (w, b) with ir(w) =£(¿0 and define a local

homomorphism <f>* of E* onto Q by taking

4¡*(w, b) = r(w) = {(6), (w, b) G E*.

It is easily seen that <f>* is open and continuous. Let E* denote the invariant

local subgroup of E* consisting of all pairs (t(c), 57(c)-1) for c(E.C. Let

Ei = E*/E*o

(7) The proof of the Reduction Theorem 6.1 actually handles a situation more general than

implied by the standing hypotheses. More precisely, let R and Q be any given local groups

such that the center C of R is abelian. Let a: M—>A{R) be a given collective character in R

and b the collective character in C induced by a by means of Bx=ai| C. Let ß denote the set

of all fibered local group extensions of R by Q corresponding to a and r denote the set of all

fibered local group extensions of C by Q corresponding to b. If fi^ and r* denote the sets of

equivalence classes, then Theorem 6.1 is true for this general case.
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denote the quotient local group of E* over E* [10, p. 85]. Since <p* maps

E* into the neutral element g0 of Q, it induces an open continuous local homo-

morphism <p* of Ef onto Q. Let p denote the canonical map of the local

group E* onto the quotient local group E ; then p is an open continuous

local homomorphism of E* onto E*. Define a local homomorphism \p* of R

into E* by taking

¥(y) = P(<y)< *o)

for every element y in a sufficiently small open neighborhood of the neutral

element e in R, where b0 denotes the neutral element in B. It is easily verified

that ^ is an open continuous local isomorphism of R onto the kernel of <pf.

Thus we obtain a local group extension

& = (Ef, <pt, ypf)

of R by Q called the product of SB and 33, in notation :

& = SB ® 33.

Let x'-M—>W be our basic local cross-section of (W, x, i) and v:M0—>B

be a local cross-section of (B, £, rj). Choose a sufficiently small open neighbor-

hood M* of g0 in Q and define a continuous map ut:Mt^>Ei by taking

u*(x) = p(x(x), v(x))

for every element x in Mf. From this definition it follows immediately that

<t>tu*(x) = <p*p(x(x), v(x)) = tp*(x(x), v(x)) = rx(x) = x

for each xG Mi. Hence u* is a local cross-section of (Ef, <p*, <pf). This proves

that (5# is a fibered local group extension of R by Q. Moreover, we have

tf-i[u*(x)W(y)ui(x)-i] = P-I[p(x(x), v(x))p(i(y), b0)p(x(x), v(x))~l]

= ¥~1P(x(x)yx(x)-\ v(x)b0v(x)-1) = W-lp(ax(y), b0)

= ypt-^a^y) = ax(y)

whenever xÇ.M* and y(E.R are sufficiently near the neutral elements. This

proves that & is corresponding to our basis collective character a and that

u*:M,-^>Ef is an admissible local cross-section of &.

Therefore, our product construction gives a map k:T—»ß defined by the

correspondence S3—»SB®93. We are going to show that k maps equivalent

extensions in Y into equivalent extensions in Q. Indeed, let

Si = (Bu & Vi),       332 = (B2, b, *)

denote any two equivalent extensions in T. Then, by definition, there is an

open continuous local isomorphism

<r:.Bi « Bi
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such that there are an open neighborhood B{ of the neutral element b\ in B\

and an open neighborhood C' of the neutral element e in C such that

<rnÁy) = yz(y),   &<r(z) = £i(z)

for each yÇ.C' and each zG-Bi • Let us denote by

ej = (E*, ¿, 4 = 3JB 8 ».- (i = 1, 2)

the product extensions in Í2 constructed as above. Then an open continuous

local isomorphism

t        t
t'.Ei «s Ei

can be defined by taking

rpi(w, z) = pi(w, cr(z))

for each pi(w, z) in a sufficiently small open neighborhood El of the neutral

element d in £', where pi'.Ef—*Et (i=i, 2) denote the canonical maps. It is

easily verified that

i t f #
-nAi(y) = <h(y),      ^(a) = <j>i(z)

for each zG£i and each y in a sufficiently small open neighborhood R' of e

in R. This proves that (§* and ®| are equivalent. Hence the map k maps

equivalent extensions in T into equivalent extensions in £2.

Thus the map k:T—>£2 induces a map a*:Tf-+Çl* of the equivalence classes.

The theorem is proved if we have shown that k* maps T* onto Q' in a one-to-

one fashion. This follows from the two auxiliary lemmas in the following

sections.

7. The first auxiliary lemma.

Lemma 7.1. Every extension in Q is equivalent with an extension of the form

93® 23 with some 93 inT.

Proof. As in §6, let S3 = (IF, ir, i) denote our basic extension and x'-M—>W

denote our basic local cross-section of SB. Choose an open neighborhood

Mo of go in Q and an open neighborhood R0 of the neutral element e in R so

small that the following relations (i)-(iv) are true. For every xÇzMo and

yG-Ro, we have

(i) x(x)yx(x)~1 = ax(y),

where a denotes our basic collective character. Since 7rx(x) =x for each x£Jli

and Mo is sufficiently small, we may define a continuous map

f:Mo XMo-^R

of the topological product space MoXMo into R by taking
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(ü) f(xi, x2) = x(xi)x(x2)(x(xix2))-1

for any pair of elements x1 and x2 in M0. The associativity on the multiplica-

tion in W as well as the relations (i) and (ii) imply that

(ni) f(xi, x2)f(xix2, xs) = aXl(f(x2, x3))/(xi, X2X3)

for Xî, x2, x3 in Mo and

(iv) axfiX2(y) = f(xu x2)ax¡X2(y)f(xu x2)~l

for Xi, x2 in Mo and y in i?0.

Now let ® = (E, <p, \p) be an arbitrary local group extension of R by Q in

iî and u'.M*.—>E be an admissible cross-section of S. Choose an open neigh-

borhood Mi of go in Q and an open neighborhood Ri of e in R so small that the

following relations (v)-(viii) are defined and true. For every xG-M'i and

yG-Ri, we have

(v) ^-\u(x)yp(y)u(x)-1) = ax(y).

Since #w(x) =x for each xÇzM* and Afi is sufficiently small, we may define

a continuous map

g:Mi XMi-^R

of the topological product space MiXMi into R by taking

(vi) g(xu x2) = yp~1(u(xi)u(x2)(u(x1x2))-1)

for every pair of elements Xi and x2 in Mi. The relations of (v) and (vi) and

the associativity of the multiplication in E imply that

(vii) g(xi, x2)g(xix2, xz) = aXl(g(x2, Xi))g(xi, x2xz)

for Xi, x2, x3 in Mi and

(viii) dxfiXt(y) = g(xi, x2)aXlXi(y)g(xi, x2)~l

for Xi, x2 in Mi and y in Ri.

If M2(ZMoC\Mi and R2 = R0i~\Ri are sufficiently small open neighborhoods

of the neutral elements, then one can easily derive the following relation by

means of the formulas (iv) and (viii) :

g(xu x2)f(xh x2)-1y(g(xi, x2)f(xu Xü)-1)"1

= g(xi, x2)\j(xi, Xi^yfixi, x2)]g(xi, Xü)-1

= g(xi, x2)[aXlXlaXiaXi(y)]g(xi, x2)
-1 -1 -1

= axfiX2aXlXfixlXfix2ciXl(y) = y

for every pair of elements X\, x2 in M2 and every y in R2. This implies that

g(xi, x2)f(xi, x2)-1 is an element in the center C of the local group R and hence

we may define a continuous map
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d:M2 X Af2->C

of the topological product space M2 X M2 into C by taking

d(xi, x2) = g(xlt x2)f(xh X2)""1

for each pair of elements in M2. It follows directly from (ii) and (vi) that

d(x, Ço) = d(q0, x) = d(q0, q0) = e

for every x in M2. Since ax operates trivially on the center C of R, one can

easily verify by means of (iii) and (vii) that

(ix) d{x\, x2)d(xix2, x3) = d(x2, xs)d(xi, x2x3)

for Xi, x2, x3 in M2.

By means of the continuous map d, we are going to construct a local

group extension 93= \B, £, r¡] of C by Q as follows. The space of B is the

topological product space QXC. The multiplication in B is defined by

(xi, yi)(x2, y2) = (xix2, yiy2d(xu x2))

whenever Xi, x2GQ and yi, y2GC are sufficiently near the neutral elements.

One observes that (ix) implies that this multiplication is associative and

hence it is easily verified that B is a local group. The local homomorphism

%:B—>Q is defined by

£(x, y) = x, (x, y) G B.

Since £ is the projection of Q X C onto Q, it is open and continuous. The kernel

Bo of £ is the set of all pairs (q0, y) for all y (EC. The open continuous local

isomorphism r)'.C—>Bo of C onto B0 is defined by

v(y) = (?o, y), y GC.

The local group extension 93 constructed above has an obvious local

cross-section V.Q—>B defined by

v{x) = (x, e), x G Q-

When xÇzQ and y (EC are sufficiently near the neutral elements, we always

have

»T^^MyM*)-1] = T'K*. «)(?o, y)(x, e)"1] = ^[(x, y)(x, e)"1]

= T'Kîo, y)(x, e)(x, e)"1] = v'KQo, y) = y-

Hence 93 = (B, ¿, r;) is a central fibered local group extension of C by Q; in

other words, 93 is in T. Now let

& = (Et, <}>*, ^) = IF <g> 93

denote the product extension of 3B and 93 constructed in the proof of Theorem
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6.1. We are going to show that the given extension (5 is equivalent with (S#.

As shown in §6, & has an admissible local cross-section uf:Mf-^>Ef de-

fined on an open neighborhood MfCZM2 of q0 in Q by

u*(x) = p(x(x), v(x))

for each xGAf#. Choose an open neighborhood £0 of the neutral element z0

in E so small that all the expressions involved in the following construction

are well-defined. First, define a continuous map ß:Eo-^R by taking, for

each 2G-E0,

ß(z) = i-'Iî^W)-1].

Next, define a continuous map a:E0—>Ef by taking, for each zG-Eo,

<j(z) = \p*ß(z)u#<b(z).

Obviously, a maps an open neighborhood of Zo in E topologically onto an open

neighborhood of the neutral element Zg in E*. To prove that o" is an open

continuous local isomorphism of E onto Er, it needs only to be shown that o

is locally homomorphic

Let Zi, z2 be any two elements of E near the neutral element z0. Call

xi = 4>(zi),        x2 = <j>(z2),       yx = ß(zi),        y2 = ß(z2).

Then, for each i = i, 2, we have

<t(zí) = \p*(yi)ui(xi) = p(i(yi), bo)p(x(x¡), v(x{)) = p(yix(Xi), v(x¡)).

Hence we obtain

tr(zi)o-(z2) = P(yix(xi)y2x(x2), v(xi)v(x2)) = p(yiaXl(y2)x(xi)x(x2), v(xi)v(x2)).

On the other hand, we have

<KziZ2)  = <t>(Zi)<l>(z2)  =   X1Z2,

ß(ziz2) = ^[ziZ^^Xixi))-1] = ^-'['KyOw^iWyüMtfüX^XiX:!))-1]

= ^[Hyùi^^iy^iigixi, x2))] = yiaXl(y2)g(xi, x2).

Hence we obtain

<r(ziz2) = \ptß(ziz2)u*<p(ziz2) = p[yi<xXl(y2)g(xi, x2)x(xix2), n(xix2)]

- p[yiaXl(y2)d(xi, x2)f(xh x2)x(xix2), v(xix2)\

= p[y^xl(y2)f(xi, x2)x(xix2), d(xu x2)v(xix2)\

= p[y^x1(y2)x(xi)x(x2), v(xi)v(x2)] = o(zi)o-(z2).

This proves that <r is locally homomorphic and hence an open continuous local

isomorphism of E onto E*.

Now let yG£ and zG-E be given elements sufficiently near the neutral

elements. Then we have
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o^(y) = \Pßf>(y)u*<H'(y) = f*(y)u*(qo) = ¥{y),

4>tc(z) = 4>t[ptß(z)ut<t>{z)} = &p[ß{z)x<l>{.z), #(2)]

= p*[ß(z)x<l>(z), v<¡>(z)] = &0(a) = <Kz).

This proves that (2 and @i = 2JB®93 are equivalent and hence the proof of the

lemma is complete.

8. The second auxiliary lemma.

Lemma 8.1. Two extensions 93i and 932 in T are equivalent if and only if

2J8®93i and 9B®932 are equivalent.

Proof. Let 93¿ = (-B¿, £,-, ij¿) and choose a local cross-section Ví'.Mí-^Bí for

each i = \, 2. Take a sufficiently small open neighborhood AfoC^i^-^2 of

qo in Q and define continuous maps

di'.Mo X Mo^C (i = 1, 2)

of the topological product space M0XM0 into the center C of R by taking

(i) di(xi, Xi) = ru {vi(xi)vi(x2)(vi(xix2))   )

for every pair of elements Xi and x2 in Mo- It follows from the associativity

of the multiplication in 5¿ that

(ii) di(xu x2)di(xix2, Xi) = di(x2, x3)di(xu x2x3)

for xi, x2, x3 in Mo.

As in §6, 9JB = (IF, 7T, 1) will denote our basic extension of R by Q with our

basic local cross-section x'M—*W. We may assume M0(ZM. Let

G? = IF 8 93,- = (E*, ¿, 4,') (i = 1, 2)

denote the product extensions as constructed in §6 and

uï.Mo-*e\ (i = 1, 2)

the local cross-sections defined by

i
Ui(x) = pi(x(x), Vi(x)) (i = 1, 2)

for each xG-^o, where £,■:£*—>£/ denotes the canonical map of E* onto E*

as in §6. Then, when M0 is sufficiently small, we have

i_i   t        * * _i
ft   [Mí(xi)m¿(x2)(m1(x1x2))    J

(in) = fi    pi[x(Xl)x(Xi)(x(XlX2))     , Vi(Xi)Vi(x2)(Vi(XiX2))     ]

t—1 -1

= h   Pi[f(xi, x2), r)idi(xu x2)J = di(xi, x2)/(xi, x2)
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for every pair of elements Xi and x2 in M0, where/:M0XM0-^R is the con-

tinuous map defined by (ii) of §7.

The necessity of the lemma is already proved in §6. It remains to show

the sufficiency of the lemma. Hence we assume that (§' and (§f are equivalent;

that is to say, there exists an open continuous local isomorphism

I f
t'.Ei « £2

such that there are an open neighborhood E{ of the neutral element ef in

E{ and an open neighborhood R' of e in R such that

à s ff
T^Áy) = iMy).      </>2o-(z) = <í>i(z)

for each yG-R' and each zGEi ■ When Mo is small enough, we may define a

continuous map

biMo-tR

of Mo into R by taking

(iv) b(x) = ip2   [tui(x)(u2(x))   ]

for each xG-^fo- Since the local cross-sections u\ and u{ are admissible, we

have

$ ê § §
(v) Mi(*)^i(:y) = tiQ-x(y)ui(x),

f      f ft
(vi) u2(x)ip2(y) = yp2ax(y)u2(x),

for each xGA^o and yÇiR' provided that Mo and R' are chosen sufficiently

small. On applying t to the equation (v) we find

iff t i i
(vii) yp2h(x)u2(x)yp2(y) = ^2ax(y)yp2b(x)u2(x)

for each iGAf0 and yE.R'- It follows easily from (vi) and (vii) that

(viii) h(x)ax(y) = ax(y)b(x)

for each xG-M"o and yG£' provided that Mo and R' are chosen sufficiently

small. Since ax(R') is a neighborhood of the neutral element e in R, (viii)

implies that £>(x) is a central element of R and hence b(M0)(ZC.

According to (iii) for i = 1, we have

ft #r t
Ml(xi)«i(Xí)   = ^i[¿i(Xi, X2)/(xi,  X2)]wi(xiX2)

for each pair of elements Xi and x2 in M0. Applying r to this equation and using

the fact that 6(x2) is in C and that u\ is an admissible local cross-section, we

obtain
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A J J | 2 A Â

4>Mxx)\l/2h(x2)u2(xi)u2(x2) = to[di(xu x2)f(xu X2)]^2b(xiX2)w2(xiX2).

But, according to (iii) for ¿ = 2,

§ é è $
m2(xi)m2(x2) = ^2[¿2(Xl, x2)/(xi, X2)]«2(XiX2),

hence, we obtain

(ix) ¿i(xi, x2)6(xix2) = 6(xl)b(x2)¿2(xi, x2)

for each pair of elements Xi and x2 in Mo-

Choose an open neighborhood Bl of the neutral element &i in B\ so small

that all the expressions involved in the following construction are well-defined.

First, define a continuous map ß:Bl-^>C by taking

ß(z) = vT'HvxUz))'1]

for each zG5i • Next, let us define a continuous mapping a'.Bl —>B2 by taking

a(z) = i72i3(z)<72bêi(z)!/2£i(z)

for each z£5i. Obviously, <r maps an open neighborhood of bi in B\ topo-

logically onto an open neighborhood of the neutral element b2 in B2. To prove

that a is an open continuous local isomorphism of B\ onto B2, it needs only to

be shown that a is locally homomorphic.

Let Zi, z2 be any two elements of B\ near the neutral element b\. Call

xi = íi(zi),       x2 = £i(z2),       yi = /3(zi),       y2 = /3(z2).

Then, for each i = i, 2, we have

<r(zi) = ^(zi^ííiíiCziWiCzO = V2[yMxi)]v2(xi).

Hence we obtain

o-(zi)o-(z2) = 572[yib(xi)]ti2(xi)î72[y2b(x2)]ti2(x2) = i72[yiy2b(xi)b(x2)]i>2(a:iM*2).

On the other hand, we have

£i(ziz2) = Si(zi)Si(z2) = xix2,

/3(Z1Z2)   =   -71    [ziZ2(!)l(xiX2))      ]   =  771    hl(yi)»l(*l)'7l(y2)fl(x2)(wi(xiX2))      ]

= Vi hi(yi)')i(y2)î'i(xi)îii(x2)(z)i(xix2))    ] = yiy2¿i(*i, x2).

Hence, using (ix) and (i), we obtain

o-(ziz2) = î72/3(ziZ2)î72b?i(ziZ2)î)2£i(ziZ2) = íj2[yiy2¿i(xi, x2)b(xix2)]»2(xix2)

= Vi[yiyMxi)í)(xx)]ii2dz(xi, x2)d2(xiX2) = 772[yiy2b(xi)b(x2)]i>2(xj>2(x2)

= a(z1)<r(z2).

This proves that <r is locally homomorphic and hence an open continuous local
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isomorphism of Bi onto B2.

Now let yGG and zG-Bi be given elements sufficiently near the neutral

elements. Then we have

o-ni(y) = ??2/5r?i(y)î72f)£iî7i(y>2£i?7i(y) = t]2(y),

i.2o-(z) = £2[v2ß(z)vMi(z)v£i(z)] = £x(z).

This proves that Bi and B2 are equivalent and hence the proof of the lemma

is complete.

Thus, we have completely proved our reduction theorem 6.1.

9. The trivial local group extension in Q. There is a trivial local group

extension @0 = (E0, <Po, ipo) in Í2 which will be constructed as follows. The

space Eo is the topological product space QXR of Q and R. The multiplica-

tion in E0 is defined

(xi, yi)(x2, y2) = (xix2, yiaXl(y2))

whenever Xi, x2G(? and yi, y2ÇzR are sufficiently near the neutral elements.

One verifies easily that this multiplication is associative and makes EQ a local

group. The local homomorphism <po'.Eo-^>Q is defined by

<t>o(x, y) = x, (x, y) G -Eo-

Since <po is the projection of QXR onto Q, it is open and continuous. The

kernel R0 of cp0 is the set of all pairs (go, y) for all y (ER- The open continuous

local isomorphism \p0'R—>Ro of R onto R0 is defined by

¿»(y) = (go, y), y G R.

The local group extension So constructed above has an obvious local

cross-section Uo'-Q—>E0 defined by

Uo(x) = (x, e), x G Q-

When xG(? and y(ER are sufficiently near the neutral elements, we always

have

to [uo(x)4>o(y)uo(x)   ] = iAo  [(x, e)(ço, y)(x, e)   ] = yf/Q [(x, ax(y))(x, e)    ]

= to [(go, ttx(y))(x, e)(x, e)   ] = ipo [foax(y)] = ax(y).

Hence ©o = (E0, <po, ifio) is a fibered local group extension of R by Q cor-

responding to our basic collective character a, that is, (So is in ß with uo'.Q

—»Eo as an admissible local cross-section.

It follows from the definitions of the multiplication in E0 and the local

cross-section Uo'.Q—->£o that w0 is locally homomorphic. This implies that

(5o = (E0, <po, to) is inessential. Hereafter, ©0 will be called the trivial local

group extension in Í1

10. The local structure theorems. Throughout this last section of the
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paper, we shall assume one more condition than in the previous sections,

namely, that the center C of the locally connected local group R will be as-

sumed to be locally connected and hence an abelian local Lie group. Then C

is either discrete or is locally isomorphic with a finite-dimensional vector

group. Under this new assumption, we are able to strengthen Montgomery's

results as follows.

According to Theorem 3.1, the quotient local group Q= W/R in (2.2) is

locally isomorphic with a compact zero-dimensional global topological group

Qo- It follows from the assertions proved in a previous paper [7] of the author,

namely, the assertions (7.5), (9.1), (12.2), (12.3), and (14.3) in [7], that

equivalence classes T of the central fibered local group extensions of C by Q

are in a one-to-one correspondence with the elements of a subgroup of the

two-dimensional Cech cohomology group of Qo with coefficients in a finite-

dimensional vector group. Since Ço is zero-dimensional, this cohomology

group contains only a single element. This implies Tf consists of only one

equivalence class. Then it follows from our reduction theorem (6.1) that Uf

contains only one equivalence class and hence our trivial local group exten-

sion ©o = (Eo, <po, to) of R by Q constructed in §9 is equivalent with our basic

extension %& = (W, it, t).

Therefore, there exists an open continuous local isomorphism a:Ea~ W of

Eo onto W such that

<rpo(y) = i(y),        tto-(z) = <po(z)

for every y G-R and zGE0 sufficiently near the neutral elements. Let u0' Q—>E0

be the obvious local cross-section of @0 constructed in §9. Then we may

choose a sufficiently small neighborhood M0 of go in Q and define a local

cross-section

Xo-.Mo->WCG

of SB by taking xo(x) =au0(x) for each xÇzM0. Since both u0 and a are locally

homomorphic, so is xo- Thus, we have proved the following assertion which

is a strengthened form of (2.3).

(10.1) There exists a locally homomorphic local cross-section of Q into W.

In more detail, there exists a continuous map xo'M0—>W defined on a compact

open neighborhood M0 of g0 in Q such that xo(go) =e, 7rxo(x) — x for each xG M0,

and Xo(xiX2) = Xo(xi)xa(x2) for every pair of elements Xi and x2 in M o sufficiently

near g0.

According to Theorem 3.1, we can choose M0 in such a way that M0

becomes a compact open global subgroup of the local group Q and that xo

becomes an open continuous isomorphism of the global group Mo into the

global group G.

As in §2, choose 5 as a symmetric open connected subset of R which in-

cludes e and is such that
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s3 c R r\ w.

Then 5 is an invariant connected, locally connected, locally compact n-dimen-

sional local subgroup of G. Choose a compact open subgroup N of the compact

zero-dimensional group M0 such that

Xo(N)S C IF.

Call Z=xo(N). Then Z is a compact zero-dimensional subgroup of G. With

this new Z, the assertion (2.4) still holds. Hence we have strengthened Mont-

gomery's result (2.4) with additional information that, if C is locally con-

nected, then Z may be assumed to be a subgroup of G.

Now let us assume that the center B of the group G is a Lie group. Accord-

ing to §4, we have

C = RC\B.

As a local subgroup of a Lie group B, C is a local Lie group. Hence Theorem I

of the introduction is now an obvious consequence of the above information.
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