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Introduction. A general problem in the theory of abstract Riemann sur-

faces is to construct a function which minimizes the value of a given func-

tional m defined on a class F of functions on a given Riemann surface R.

The minimizing function is, at each point of the surface, a new functional of

F and m. We shall give, by two typical examples, a method for constructing

such functionals.

For F, we shall first take the class {P\ of analytic functions with the

expansion

1
P = p+ip = — + X) <hz'

Zk 1

in a fixed parameter disc |z| ál and with a single-valued real part p on R.

For the quantity m to be minimized, we take

m\(p) = 2ir\kak +   I  pdp.
J ß

Here X is a real parameter belonging to the interval ( —1, 1), ak stands for

Re (ak), and ß is the (ideal) boundary of R. The integral along ß is defined as

the limit of integrals along boundaries of exhausting domains. We shall

prove that there exists in {P} a unique function P\, called the principal

function,

1
P\ = p\ + ip\ = — +  E axX,

zk i

which minimizes m\ for a fixed k. This function is a linear combination of

P-i and Pi. The minimum of m\ can be expressed solely in terms of a_u and

oiik. For any p, the deviation of m\ from this minimum is equal to the Dirichlet

integral of p—p\. The coefficient a* is minimized by «u and maximized by

oi-ik for functions with fßpdp^O. The P-span

op = a-ik — aik

is equal, up to a constant factor, to the minimum of fßpdp. This minimum is

attained for p0 = (pi+p-i)/2. All functions p with fßpdp^O coincide if and

only if the P-span vanishes. The function p^i — pi is bounded and minimizes
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the Dirichlet integral among (normalized) single-valued harmonic functions

on R. The minimum is, up to a constant factor, the reciprocal of the P-span.

For a second class, we shall consider the subclass IQ} of {P} defined by

the additional property that the period of the imaginary part q vanishes along

every cycle dividing R into disjoint parts. In this class, there is again a

unique principal function Q\ which minimizes m\(q). The properties attributed

above to P\ are shared by Q\ when a\k and the Q-span ctq =a_u — a« are taken

with respect to {Q}. On planar surfaces, the functions Q are single-valued,

and Ci and <2_i (for k — 1) map R onto the vertical and horizontal slit domains.

The Q-span coincides with the span introduced by Schiffer for multiply-

connected plane domains [14].

The problems of maximizing a, of minimizing fqdq, and of finding the

connection between these extrema were introduced by de Possel [ó],

Grunsky [2], and Schiffer [14] respectively. These authors gave the solution

for plane domains. The contributions of the present paper to these problems

are: (1) By the choice of m\ as a combination of ak and fqdq, the three prob-

lems are unified and solved simultaneously. (2) The solution is given also for

the more general class \P}, that is, without assumptions on the imaginary

part. (3) The problems are formulated and solved for arbitrary Riemann

surfaces.

These results have applications to the classification theory of Riemann

surfaces. With notations introduced in §4, the following relations will be

proved:

Ohb C Ohbd = Ohd = Sp,

Okb C Orbd = Okd = Sq,

Owe — Oab C Oad,

and, for planar surfaces,

Oab C Oabd = Oad — Ose = Sq.

These relations include those established by Ahlfors-Beurling [l], Lehto

[3], Lokki [4], Parreau [5], Royden [7], and Virtanen [15], using primarily

the method of extremal length and Dirichlet's principle.

The extremal method suggested in the present paper can also be used in

the investigation of bounded schlicht functions and functions with a single-

valued modulus. It leads, in a natural way, to relations concerning the

capacity of a boundary component of an arbitrary Riemann surface [13].

Furthermore, it yields a general operator L\ [12], applicable in the linear

operator method [lO] ; there the quantity m to be minimized by the principal

function characterizes its boundary behavior. A survey of the above methods

with applications is presented in [ll].

1. The class {P}. Let R be an arbitrary open Riemann surface. Consider

the class JP} of analytic functions with the expansion
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1
(1) P = p + ip~ = — +  Z a,z'

zk 1

in a fixed parameter disc D: \z\ =T and with a single-valued real part p on

R. Here k is a fixed positive integer. The functions P are supposed to be free

from singularities other than 2 = 0. Write

1
(2) Px = px + ip~x = — +  Z «x-z"

Zk i

and set a\k = Re (a\k).

Theorem 1. In the class {P\, there is a uniquely determined principal func-

tion P\ which minimizes

(3) ntx(p) = \-2irkak+   \
Ja

pdf.

This minimizing function has the following properties :

Io. The deviation of m\ from the minimum is given by the Dirichlet integral,

that is,

(4) mx(p) = mx(px) + D(p - px).

2°. The minimum for any X in the interval ( —1, 1) can be written in terms

of an and a_u and has the value

(5) mx(px) = 2-17r£[(l + \)2alk - (1 - X)*o_u].

3°.  The function Px is a linear combination of Pi and P_i as follows :

1 + X 1 - X
(6) PX = __P1 + _P_,

Proof. Suppose first that R is bounded by a finite set ß of closed analytic

Jordan curves. In the class {p}, consisting of the real parts of functions {P j,

there are two particular functions pi and p_i determined by the conditions

(7) pi = const, on ß,

dp-i
(8) -L— = 0 on ß,

dn

where d/dn is the normal derivative. These functions can be constructed by

well known methods (for example [10]). Let

1 + X 1 - X
(9) px = ~— px + —— p-x.
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For any p on R, we have, writing p — p\=h,

mx(p) = 2x\kak +   f pxdpx +  f pxdh +  j  hdpx + D(h).
J ß J ß J ß

Here

1 - X2 r 1 - XJl - X2 r                               1 - X¿ r
p\dp\ = - I  p-idpi + pidp^i = ——- I  p-idpi — pidp^i

ß                    4     Jß                                       4      Jß

1 - X2 f 1 - X2 f=- I  p-idpi — pidp^i =- I  p-idpi + P-idpx
4 Ja 4 J a

1   -   X2 /*
=-Im   I P-idPi,

4 JŒ

where the transfer from /3 to a: \z\ = 1 is justified by Green's formula. It fol-

lows, by (2), that

(10) f ¿>x#x = 2-VÄ(l - X2)(au - <*-i*).

Furthermore,

r    ,    i - x r     -    i - x      r
I  pxdh - - I  />_i¿A = -Im   I  P-idíT = ttA(1 - \)(ah - axk),

J ß 2        J ß 2 J a

and similarly,

r i + x c i + x      r
I   A#x = - I   A#! = -Im   I  ZMPi = xA(l + \)(aXk - ak).

J ß 2        J ß 2 J a

Adding these expressions, and making use of the formula

1 + X 1 - X
«x* = -ctik -\-a-ik,

2 2

we have the important relation

(11) mx(p) = 2-VA[(l + \)2an - (1 - X)2«-u] + D(p - px).

The theorem then follows for the case of a region with analytic boundary.

For X = 1, — 1 we find in particular

2irk(Xk +   I  pdp ^ 2irkoiik, — 2irkctk +   I   pdp ^ — 2wka-ik,
J ß J ß

and consequently

(12) au ¿ají a_ii
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for functions p with fßpdp^O.

Now let R be an arbitrary open Riemann surface of finite or infinite

genus and let {Rn} be an exhaustion of R, where Rn is bounded by a finite

set j3„ of closed analytic Jordan curves. Suppose that

1
Pxn = — +   Z aXn.Z"

Z* ,=1

is the minimizing function for Rn. It follows, by (11), for n^N that

Dn(Pxu — Pxn) = mxx(pxn) — mxN(pxN),

where the Dirichlet integral Dn is taken over Rn, and where mxN is (3) for

Rn- Since the Dirichlet integral of pxn over R„ — Rn is non-negative, we have

(13) I      pXndfxnû    f    PxJpXn,

and

niXN(pXn)   ^  mxn(pxn).

Hence, by (11),

DN(pxn — Pxn) á 2-17t£[(1 + \)2(aink — onNk) — (1 — X)2(a_i„* — a_uv*)].

Now we make use of our assumption |X| £»1. It implies, by (13) and (10),

that fßNpxndpxn is nonpositive. Therefore, the relations (12) can be applied:

Oílnk  Í3   OC-lNIc, Ct-ink  ^   OtlNk.

It follows that

(14) DN(Pxn - Pxn) ^ tt£(1 4- \*)(et-uik - aiNk).

Thus, the class {^xn} for n = iV is a normal family in R¡f. Since 1?„—>P, a

subsequence, say [pxn}, tends to a function px in R,

px = lim px„.

By the minimum property of pxn in Rn,

»tXn(pXn)   ^  mxn(pX{n+X))   á  WX(n+l)(^X(n+l)).

This yields

lim mxn(pxn) è inf mx(p) á mx(px),
n—»m

where inf ntx(p) is (3) for the class {p} on R. In fact, every p on R is an

admissible function on Rn, which implies that mxn(pxn) ^m\(p). Thus the

first inequality is established. On the other hand,
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m\(p\) = lim m\n(p\) = lim   lim m\n(p\m) á Ihn ni\m(p\m).
n—»oo  m—»oo

Therefore,

(15) min mx(p) = ni\(px) = lim m\n(p\n)-
«—♦oo

For any p=p\-{-h and any real e,

m\(p\ + «A) = wx(^x)

JeD(h) + l\-2Trk(ak - ax*) +  f (jMA + A#x)lj-

The minimum property of p\ implies that

(16) \-2irk(ah - alk) +   \ (pxdh + Mp\) = 0,
Jß

for otherwise m\(p\-\-eh) —m\(p\) would change its sign with e for sufficiently

small | e|. Setting e = l, we have equation (4):

m\(p) = mx(px) + D(p — p\).

The uniqueness of p\ now follows. Let p{ and p" be two minimizing func-

tions. Then

mx(pl) = mx(pl') + D(pl - pi') = nix(pl')

and

D(p'x - pi') = 0.

Thus, since p{ —pi' =0 at z = 0, we have p{ =p\ . In particular, the original

sequence p\„ converges.

By (11) applied to Rn and by (15), equation (5) follows for R. Similarly,

the equation (9), defining the approximating functions p\n on Rn, continues

to hold for the limit function on R. The theorem is thus proved for an arbitrary

R.

2. Other extremal properties of the principal function p\. In order to

apply Theorem 1, we combine (4) and (5) to obtain the fundamental formula

(17) wx(#) = 2-V£[(l + X)2alk - (1 - X)2a_14] + D(p - px).

We define the P-span a> by

op = a^ik — au.

Theorem 2. Pi minimizes and P_i maximizes ak among functions P with

fpdp^O, that is,
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(18) an á otk i£ a_u.

The boundary integral for px has the nonpositive value

(19) f PxdPx = 2-V¿(X2 - 1)(Tp ̂ 0.

Ira particular,

f /»i¿#i =   j  p-xdp-i = 0,

(20) f /»o#o = min (   f ^ J = - 2-1Trkffp ^ 0

wAere p0 = 2_1(£i+P-i)-

The function p-i — pi is bounded on R.

Proof. (18) follows from (17) forX = l, -1. For p=px, (17) gives (19) and

(20). In Rn — D, we have \p-in\ ámax« |p_i„]. In fact, if p_i„ is continued

harmonically on the "double" surface formed by symmetrizing Rn — D with

respect to j8„, it assumes identical values on the two copies of a; the inequality

follows from the maximum principle. In view of the uniform convergences

of p-in, this implies that \p-i\ ^maxa \p-i\ in R — D.

Similarly, \pin\ ámaxa \pin\ in Rn — D. In fact, if |pin| = const. =c„ on

ßn were > max« | pin|, then | pin \ < cn in Rn — D and dpin/dn would not change

its sign on ßn. Since Pin^const., this derivative cannot vanish on the whole

ßn, contrary to the condition fßndpxn=0. It follows that \pi\ ¿maxa \pi\ in

R — D. Boundedness of p-i and pi on R — D implies that of p-i — pi on R.

Consider now the class of analytic functions f+if on R which have the

development

CO

i

in D with a single-valued real part on R. Set

(21) /o + i/o = — (P-i - Pi).
Cp

Theorem 3. The function f o gives to D(f) the minimum

(22) min D(f) = D(f0) = 2%k/aP.

Proof. Write

p — pi
f = -    with    ak = a-ik.

ap
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Then, by (17),forX = l, -1,

D(p - pi) - D(p - />_i) = 27rAo>.

Therefore,

1                           2irk
D(f) =-D(p- pi)= -+ D(f - /o).

Cp Cp

We add the following remark:

For all functions p with Jpdp = 0 (for example pi and p_i),

D(p — po) = 2~1irkcp = const.

This follows from (17) for X=0.

Theorem 4. For an arbitrary given Riemann surface R, the following prop-

erties are equivalent:

(a) The P-span vanishes.

(b) There are no functions P with fpdp < 0 on R.

(c) All functions P with fpdp^O are identical.

Proof. By (17),

(23) D(p - po) =   f pdp + 2~1irkcP.

Hence, (a) implies (b) and (c). Conversely, (a) follows from (b) or (c) by

Theorem 2.

3. The class {Q\. So far we have dealt with single-valued functions p

without making any assumptions on the imaginary part. Consider now the

subclass {Q) of {P\ determined by the requirement that the period of the

imaginary part q of Q vanishes along every cycle dividing R into two parts.

We note first the following simple statement:

Every open Riemann surface R can be exhausted by compact sub-domains

Rn, bounded by analytic Jordan curves, each of which divides R into disjoint

parts.

In fact, let first {Rn} be any exhaustion on R, such that the complement

R — Rn consists of a finite number of noncompact domains Sni- In Sni, it is

always possible to find a doubly connected domain Dni separating the com-

mon boundary part of Rn and Sn¡ from the common boundary part of R and

Sni. Map--D„¿ conformally onto an annulus Dn,. Take in Dni a circle p„<. The

corresponding curves j8„¿ (n fixed) on R are analytic Jordan curves bounding

a subdomain RnZ)Rn and each dividing R into disjoint parts. By enlarge-

ment in the same way of any Rm which contains Rn, we form Rn+i- The se-

quence {Rn} is the desired exhaustion.

Theorem 5. In {Q}, there is a unique principal function Q\ which mini-
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mizes m\(q). Theorems 1-4 remain valid when P and P\ are replaced by Q and Qx-

The coefficients a^k have to be taken with respect to {Q} and the P-span replaced

by the Q-span (XQ=a^ik—aik.

Proof. If the boundary ß of R consists of a finite number of analytic

Jordan curves y¡, replace pi in (7) by the function qi determined by

(24) ci = const, on y,-.

Write g_i=£_i. The above proofs will then be valid with q and q\ substituted

for p and p\ respectively. If R is arbitrary, let {Rn} be an exhaustion, Rn

being bounded by a finite number of analytic Jordan curves each of which

divides R into disjoint parts. A function of the class {Q} in R or in R„+i

then satisfies fdq=0 along each boundary curve of Rn and the proof of

Theorem 1 will hold verbatim.

In Theorems 2-4, replace o> by o-q, and /, /o by g, go, respectively, the

latter being subclasses of the former, satisfying fdg=fdgo = t) along dividing

cycles. Theorem 5 then follows.

Theorem 5 is illustrated by its application to planar surfaces (genus = 0).

The functions Q are now single-valued analytic functions and the function

Ç_i —Qi is bounded. Select k = l. Since, as is well known, Qi and (?_i map R

onto vertical and horizontal slit domains, <jq is the span of R (Schiffer [14]).

Denote by A the complementary area in a schlicht mapping of R by a func-

tion Q.

Theorem 6. For a planar surface R, we have the following extremal proper-

ties:

Io. The vertical slit mapping Qi gives the minimum

(25) min (2irai — A) = 2irai,i.

The horizontal slit mapping Q-i gives the maximum

(26) max (2x«i 4- A) = 2wa-i,i.

2°. The function Q0 gives to A the maximum

(27) I     odq =   I     q0dq0 = 2  litcQ.
J -ß J -a

The function Go = (1/<tq) (Q-i — Qi) gives to the area D(G) the minimum

2irk
(28) min D(G) = D(GB) =

°-Q

among all single-valued analytic functions

OO

G= Y, btz',       Re (h) = 1.
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Theorem 7. For planar Riemann surfaces, the following conditions are

equivalent :

(a) The Q-span vanishes.

(b) R is rigid, that is, schlicht mappings of R are linearly dependent. In

particular, Ç_i = Qi.

(c) R can not be conformally mapped (by Q) onto a surface with fqdq<0.

(d) A =0 in every schlicht mapping of R.

Both theorems are immediate applications of Theorems 2-4 for functions

Remark. For planar surfaces, the class \q\ for which fßqdq^O is a gen-

eralization of schlicht functions. We have, therefore, obtained for arbitrary

Riemann surfaces results for functions which play for these surfaces the same

role as the generalized schlicht functions play for planar surfaces. The author

had stimulating discussions with Professor Schiffer on this subject.

4. Classification of Riemann surfaces. We conclude with an application

to the classification of Riemann surfaces. The following abbreviations (cf.

[9]) for certain properties of functions will be used:

II harmonic single-valued nonconstant,

K H with an imaginary part having no periods along dividing cycles,

A analytic single-valued nonconstant,

IF meromorphic nonconstant,

S schlicht single-valued nonconstant,

B bounded,

D with a finite Dirichlet integral,

E omitting a set of values of positive area.

By a combination of letters, we denote classes of functions with the cor-

responding combination of properties. Let Of be the class of Riemann sur-

faces with an F-removable boundary (cf. [8]), that is, with no functions belong-

ing to a given class F. We shall compare these classes mutually and with the

classes Sp and Sq, defined by vanishing span:

Sp the P-span vanishes,

Sq the Q-span vanishes.

Theorem 8. For single-valued harmonic functions,

(29) OttB C Oubd = Ohd = Sp.

Proof. The last equality is given by (22). Suppose now Sp>0. Then p_i

— pi 9e const, and belongs to HBD.

The first two relations were found, by other methods, by Royden [7],

the relation OhbCOhd also by Virtanen [15]. The last relation is new, ex-

pressing the fact that there exist functions HD if and only if the P-span is

positive.
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It follows from Theorem 8 that the vanishing of the P-span is a con-

formally invariant property of the surface, i.e. independent of the location

and order of the pole of the functions {P}.

Theorem 9. For single-valued harmonic functions whose conjugates have no

periods along dividing cycles,

(30) O KB C Okbd = Okd = SQ.

Proof. The relations are obtained by a proof analogous to that of Theorem

8.

Theorem 10. For planar surfaces,

(31) Oab E Oabd = Oad = Ose = Sq.

Proof. Since, for planar surfaces, K=A, the first two relations and the

equality Oad=Sq are included in Theorem 9 and written here for the sake

of completeness. The last equality is given by (27) for Q and by Schiffer's

result on the univalency of Ç-i+Çi-

The relations OabEOad = Ose were first proved by Ahlfors and Beurling

[l ] using the theory of extremal length. The last equality is due to Lehto [3].

We turn now back to arbitrary Riemann surfaces.

Theorem 11. For analytic functions,

(32) Owe = Oab E Oad.

Proof. Suppose that a function of class WE maps R onto a surface R'.

Then, on the projection R of R' on the complex z-plane, the function zEWE.

By Theorem 10, there is a function of class AB on R, hence on R' and finally

on R. The opposite inequality is trivial and the first equality follows. An

analogous reasoning shows that the existence of a function of class AD on R

implies the existence of a function of class AB on R.

Royden [7] was the first to remark on the generality of the inclusion

OabEOad for arbitrary surfaces, while Parreau [5] announced an inde-

pendent proof. Later, also Lokki [4] proved it. The obvious extension of the

relation Owe = Oab to arbitrary surfaces seems to be new.
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