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Introduction

The following is an attempt to construct a mathematical model for use in

quantum field theory.

Although few nonspecialists have had opportunity to become familiar

with the language of modern pure mathematics, quantum theory seems to

have reached a point where it must use that language if it is to find a genuine

escape from the divergence difficulties. Divergence can not be properly coped

with when convergence itself has never been rigorously defined. In the

classical analysis of real and complex numbers, results, even correct results,

can be obtained by algebraic manipulation of formal power series; but these

numbers are not just algebras, they are topological algebras, and only with

Cauchy's introduction of the epsilon-delta treatment was mathematics pro-

vided an explicit method of separating sense from nonsense. Similarly, in the

modern analysis of infinite-dimensional algebras results can be obtained by

algebraic manipulation of formal expressions, but these results often require

topological justification.

One standard way of introducing a topology into the algebra of observ-

ables is to make them operators on a Hubert space. This method, which does

not seem to be extensively employed in quantum electrodynamics, can be

used to construct a mathematically rigorous formalism the manipulation of

which is directly followable by one's physical intuition. This construction

requires the exercise of two dissimilar disciplines, mathematics and physics,

so the exposition is divided into two parts upon which relative emphasis can

be adjusted to suit individual tastes. In particular, physicists can greatly

simplify the mathematics by ignoring: (1) operator-domain considerations

(as is done here in the derivation of the Yukawa-potential); (2) discussions

involving the group algebra of the symmetric group (since only the Fermi-

Dirac and Bose-Einstein cases have ever actually occurred) ; (3) material

depending on the simply-connected covering group of the Lorentz group

(since it is not needed to derive Maxwell's equations). However, Part I is

empty, unmotivated mathematics without Part II; and Part II does not

exist without Part I. The two are designed to be read, not consecutively, but

in parallel. Sections are numbered accordingly.

I would like to thank Professor I. E. Segal for liberal use of his time and

advice in the preparation of this paper. It is to be submitted to the Depart-
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ment of Mathematics of the University of Chicago in partial fulfillment of re-

quirements for the Ph.D. Most of the work was done under contract with the

Office of Naval Research.

Part I. Mathematical preparation

1. Definition 1. Let ft = X^n-o©^00! where 9Î is a given Hilbert space oS

arbitrary dimension and 9î(n)=9î<g> • • • ®di is the tensor product of 3t with

itselS n times.

(For a definition of the tensor product (direct product) see [6, Part I,

chap. II].) Let9î(0) be the one-dimensional Hilbert space of complex numbers;

and let j be the natural isomorphism 9î(n>—>0© • • • ®0®Wn)®0® • ■ • of

mM into ft.
Definition 2. Let Ai be densely defined, closed, linear transSor mations on

the Hilbert spaces ¡Q{. Then Ai® ■ ■ • ®A„ is the densely defined, closed, linear

transSormation on ¡Qi® • • ■ <8>§„ with domain 25^® • • ■ ®Da„ equal to the

set of all h in ¡Qi® ■ ■ • ®§n such that there exists a g in ¡£>i® • • ■ ®!q„ with

ig, <t>i® ■ ■ ■ ®(j>„) =ih, A*<j>i® • ■ ■ ®A*d>n) Sor all <pi in 35a,.*; in which case

iAi2> ■ • ■ ®A„)h=g.
25^' is dense in §< [8, p. 29], so the linear set generated by 25¿1*<g) • • •

®25a„* is dense in §i® • • • ®¡£>„, and (^4i® • ■ • ®A„)h is uniquely defined

when it exists. If ^,G25^,., then iA¡® • • • ®A„)(j>i® ■ • ■ ®<pn=A1<t>l® ■ ■ ■

®A„4>„, so Ai® ■ • • ®A„ is densely defined. It is closed and linear by con-

tinuity and linearity of the inner product.

Now, making the conventions: (1) [A, B] =AB —BA ; (2) AM =A ® ■ ■ •

®A operates on 9î(n); (3) 8(i,j) =0 or 1 according as iv*j or i=j; (4) A° = I;

(5) ¿X! A*«-»® ■ ■ • ®As<-i'n)=0 if n = 0; (6) T~ is (when it exists) the

minimal closed linear extension of the transformation T; we define a map-

ping ß by

Definition 3. IS A is a densely defined, closed, linear transformation on 9Î,

then Q(A) is the densely defined, closed, linear transformation Q(A) = T^T-n

©(XXi -48(i'1)® • • • ®As<-{^)~ on ft.
25(2?_i¿*(m)®—»¿»An))' contains all 0i<g> • • • ®<f>„ such that <¿>¿G2V, so

(XXi ~AHiA)® ■ • • ®As<-i-^)* is densely defined and (XXi A*«-»® ■ ■ ■
®As<-i'n))**=iJ2^1As<-i^® ■ ■ ■ ®As<-i'n>)~ exists [8, p. 30].

Theorem 1. If A is normal, then so is £2(/l), and QiA)* = QiA*).

Proof. We need only prove ( XXi^50,1'® ' ' • ®ASii'n))~ normal and

(Et-i ■4ÍÍÍ'1)® • • • ®¿a(i'n))~* = (XXi A*'«-»® • • • ®A*S«^)~ [8, pp.

34 and 32].

Let {E\} be j4's resolution of the identity. Then {E^® • • • ®E\n} is an

«-parameter resolution of I(n) [8, p. 19], and XXi^i(i,1>® ■ • ' ®ASii'n)

= XXiA.^Ex,® ■ ■ ■ ®£xnÇ/(Z?_i \i)dEXl® ■ ■ ■ ®EK which is normal
[8, pp. 22, 45, and 47]. Therefore
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( ¿ A*«» ® •■■ ® A«'*)  £ fl ¿ X,J d£Xl ® • • • ® £x„.

Now let /6%aÄ,0...Äj and fk = (Ek-E^k)f for *-l, 2, • • • .

Then /*GS)c22.i¿í(«)®-(8A«<,»)~. hm*..* /*-/, lim¡fc<0<,(XXi ^S(i4)® • • •

®>l«t'.»))7t=/(5]J_1Xi)d£xI® • • • ®7ixJ, and so /eS><s,-i*8.i>®-«i»tt«r.
and (Z?-i^s(i'1)® • • • ®A*^)~ =f(Zï-x X,-)d£Xl® • • • ®7£x„.

Similarly, (^?-i ¿*J(i'1)® • • • ®^*J(i'"))~=/( Z?-i X4*)cf£Xl® • • •

®-Ex„ = (Z?-i^5<M)® • • • ®¿i(<'n,*)~.

Corollary 1. 77se normal operators A and B commute if and only if Sl(A)

and Q,(B) commute.

Corollary 2. 7/^4 and B are densely defined, closed, linear transformations

such that A^B and at least one is bounded, then Q(A) =• Q(B).

Proof. Let (A —£)'=■ 0 be a self-adjoint extension of A -B^O [8, p. 35].

Then Q((A—B)')^0 also, as follows from the proof of the theorem. Since

Çl(A) — £2(1?) is densely defined, we shall be done when we have proved

Q((A-B)')^iï(A)-ti(B), i.e., when we have proved (A-B)'®I^A®I
-B® I.

Let/eS)¿®7_ü®7. Then ((A®I-B®I)f, cf>1®cp2) = (f, (A*-B*)cp1®<t>2)
for all c/>i®02£3V_.b'®£)i. But either A or B is bounded so (A-B)*=A*

-B* [8, p. 29]; and A-BQ(A-B)'. Therefore A*-B* = (A -B)*
^(A-B*Y, and ((A®I-B®I)f, <fc®<M = (/", (A-B*)'^®^) for all
c/)1®c/)2eS)u-B*)/®S)/. Therefore (A®I-B®I)f=((A-B)'®I)f and f

6®a-i)'®;, (A-B)'®I^A®I-B®I.

Theorem 2. If A and B are bounded linear transformations on 9Î, then:

(a) Q(aA+ßB) = (aÜ(A)+ßü(B))~, (b) Q([A, B]) = ([ü(A), 8(B)])", (c)
.4^5 w^/ies S2(i4)èQ(5), (d) Q(A)* = Ü(A*), (e) SD0<a) = Í? *w/>/t'es 4=0.

Proof, (a) Let/GS)fl(^+ÍB), and (7«»0 • • • ©7<»>©0<',+1>©0<"+2> • • • )/

=/„. Then lim»,. /»=/ and lim».» Ü(aA+ßB)fn = ü(aA+ßB)f. But /„

eS«íi(j)+fS(i) and ß(a^-r-ß73)3an(4)-r-/3n(7i). Therefore/eSVn<A>+fm(B»~

and Ü(aA+ßB)f=(ati(A)+ßQ(B))f.
(b) [0(4), 0(5)]c¿;.0©[i;ti ¿{(M)® • • • ®¿5(i'"\ E"-! B,u-n

® . . . ®b«h.»)]= Er-offiZû-i Uä<i,1)® • • • ®45(i'n), JS8^1'® • • •
®13s<'»]=IXo©Z?=i [il"."® • • • ®4 ««•«>, B5«'»®--- ®58<i'»>]
= Er=o© £"-i M- 5]ä»-»® • • • ® [A, J3]««-«> = Q([.4, 5]). Now proceed
as in (a).

(c) Follows from Corollary 2.

(d) Obvious.

(e) If A 7^0, then there exists an element <££9î such that \\<p\\ = 1, Acp^O.

Then  Zn-i©(l/«)<¿® • • • ®<PG$, but ||íl(-4) ¿T-i©(l/»)*® ■ ■ ■ ®<t>\\2
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= Z»=i   l/«2XX-i   (¿i(i,1)0® • • •    ®As^^<p,   A^^<¡>® ■ • •    «il«'-»)
=£;.. (iM(»kll2+»(»-i)iw,«i2)dNI!l;-i i/n=co.

Theorem 3. If H and A are linear transformations on 9Î smcä /&a/ iî î's

self-adjoint and A is densely defined and closed, then

exp (iü(H))ü(Ä) exp (-iü(H)) = ü(exp (iH)A exp (-iH)).

Proof,  exp   (¿ß(i7))=X)»-o©   exp   (¿(XXi   H50'-1'® • • • ®HS<>^)~)
= Z»%©IT"-! exp (»ff««-«® • • • ®ir»".»')= x;;.0eIL"-i exP (a?)»«.»
® • • • ® exp (iH)s<>'n\ so

(7) exp (iïl(H)) = X) © exp (;#)<«>.
n=0

We are dealing with automorphisms of 9Î, St(n), and ft, so

exp (♦Q(S))Q(il) exp (-»Q(Ä))= ET-o©exp (*#)«( Z?-i il'«-"® • • ■
®^«(/,»))~ exp (-iH)W= XXo©Œ?-i exp (*íO(n)^-ítí,1)® * ' ■ ®^ä°''n>

exp (-*H)W)~= D;_08( £"-i exp (tÄ)^'""» exp (-¿ff)®---

®exp (¿ii)^5«."> exp (—¿H))~= Éñ-o©(Z"-i (exp (*I?M exp (-iff))«"-1)

® • • • ®(exp (íi7)¿ exp (-t£T))i<»''»))~ = ß(exp (¿ÍZ)^ exp (-iH)).

2. To every permutation 7r, in the symmetric group H~n of degree n, there

corresponds a unitary operator U„ on 9î(n) uniquely defined as the bounded

linear extension of the operation U^i® ■ • • ®^n=lAx(i)® ■ ■ • ®^n.„) on

decomposable tensors. The n¡-dimensional ring Ç„ generated by \U*} is

isomorphic with the group algebra [9, §14] of IIn.

To every d> in 9î there corresponds the linear transformation (<£®) on ft

uniquely defined as the bounded linear extension of the operation (<A®)i^i

® • ■ • ®\pn = i<t>®ti® ■ ■ ■ ®\pn. Then ||(0®)|| =||^||, and (0®)* is the

bounded linear extension of (0®)*j^i® ■ • • ®^B = i(^ii <f>)ip2® • ■ • ®^„

(where (<j>®)*a = 0 for aG9î(0))-

Let G be a function which assigns to every « = 0, 1, 2, • • ■ an operator

G„ in Çn- Then
Definition 4. coq and «g* map 5ft into the set oS all densely defined, closed,

linear trans]'or-mations on ft by «g(<£) =( Xr=o©C-n)(<£®). wg*W>)
= ((0®)*(X»%©G„*))~.

oj(j(0) is closed because (X]«-o©C») is closed and (0®) is bounded.

If /G25w®)*(2-_0(8)g„*) and gG25BöW, then ((0®)*( XXo©C-n*)/, g)
= (/, ( Zn%©CO(0®)g), so »o(0)ç((</>®)*( £;_„©G.*))* is densely defined

and coG*(0) = ((0®)*(X;.o©C„*))~ = ((0®)*(X;.o©C„*))** exists [8, p.
30], and equals (( XXo©C»*)*W>®)**)* by [8, p. 29]. Therefore

(8) COg(0)     =  û>g(0), 0>gÍ4>)     =  «g(0).

«icog(0i) +a2d>G(02) and ai*«G*W>i)+a2*coG*W>2) are densely defined linear

transformations    such    that    (aia>G(0i)+«2^0(02))   =WG(ai0i+a202)    and
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(a*uo*(<pi) +oc2*ua*(<pî))   =wG*(ai0i+o:2<£2).

Theorem 4. If A is self-adjoint, then exp ( — iü(A))uo(<f>) exp (¿12(4))

= coG(exp ( — iA)<p) and exp ( —il2(4))coG*(#) exp (¿12(4)) =ua*(exp ( — iA)<f>).

Proof.

exp ( — iQ(A))ua(<t>) exp (¿0(4))

= ( ¿ © exp (-i4)<"> ) coG(tf>) ( ¿ © exp (i4)<"> J

= ( ¿ © Gn) ( ¿ © exp (-i4)<->) (<j> ®) ( ¿ © exp (i4)<">)
\ n=0 /  \ ra=0 / \ n-0 /

= ( Z ©GU(exp(-J4)4>®)

= oG(exp (— iÁ)<¡>)

by (7). The second expression follows by taking adjoints.

Theorem 5. If A is a densely defined, closed, linear transformation on 9Î,

and 0ES)4, f£î>A', then [12(4), ug(<p)] and [12(4), ua*(^)] °,re densely de-

fined, linear transformations on g such that ([12(4), ug(<j>)])   = o>G(4<£) and

([m),UG*(ii<)])~=-uQ*(A*4,).

Proof. Let fn(EWMn®lSHAU„gW], ^GSXi*. Then [12(4), u0(<p)]fn
Gi3i(n+1), and ([12(4), u0(cp)]fn, W-x® • • ■ ®^„+1) = (f„,  [uG*(<p), 12(4 *)]j^

®---       ®^n+l) = (fn, [(<A®)*, Q^KEi-O©^*)^!®   •   •   •       ®^n+l)

= (/„, (40 «)*(£„%©G«*)^® • • ■ ®ypn+x) = (fn,ua*(A<?)vP1® ■ ■ • ®4>n+1)
= (uG(A<p)fn, j^i® • • ■ ®^„+i), so [12(4), ua(4>)]fn=ua(A(p)fn.

If /G3)[qm),„„(«j then /= XXo /» with /„ G Í9Í(n)nS)[8(X) ,*„(*)], and
[12(4), a>G(</>)]/= Z»"-o[ß(4), M*)]/-= Zr.o a>G(40)/n=WG(4tf>)/ and so
[ß(4), <öe(^)]Cöff(4^).

Since [12(4), coG((/>)] has a closed linear extension coG(4</>), it has a closure

([12(4), u0(<¡>)])~QuG(A<p). Now let /G®.0m«, /= Z-"-o /-. /»GtfR"0.
[12(4), wG(</>)] is densely defined on }9î(n), and there exists g,-,„GÍ9í(n>

nS)[ü(¿),Mo(0)] such that limf _M gf,n =/„. wG(4$) is bounded on each j9î(n\

so lim!,«, uo(A<p)gi,n=ua(A<p)f„, _ i.e., limi<00 ([12(4), u0(A(p)])~gi,n

= uG(A(j))fn. But ([12(4), ua(4>)])~ is closed, so /„GS5([0(A),»o(«])~ and

([12(4), û>o(</>)])7~=«c(4^)/„. Now lim«,«, XX0/»=/ and limm,M

([12(4), coG(0)])~Zr.o /» = Hmm.. 2£_0 coG(4tf>)/n=coG(4<¿>)/, so /
GSD([om,.-0(«])~ and ( [12(4), coG«>)])7 = a,G(4<A)/. Therefore ([l2(4),wG(0)])~

=w<?(40).
Toprove the second expression, let/nGi9î(',)^S)[Q(¿),<J,JV)],^',•GSXi^ Then
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[QiA), <OG*W]/nGp<"-1\ and ([Q(¿), ua*W)]fn, tfl® ••— ®^n-l) = (f«,
M*), ß(^*)]^x® • • ■ ®*_i)=(f», (Z;=o©C„)[(^®), ß(^*)]i^i® • • •
®0n_l) = iS„,       (Zn"»0©G„)(-^V®)Í^l®   ■   •   •   ®<A«-l) = Cfn,     -COG^V)^!
® • • •®^n-i) = (-wo*(^!V)/». i'/'i® • • • ®^»-i), and as before [ß(^),

ü)g*(^)]/„= —<j3o*iA*4')S„. The remainder of the proof is identical with that

of the preceding case.

3. From the general theory of group algebras [9, §§14, 15] we know that

the center of Ç„ is generated by a set of orthogonal projections {PT} indexed

by the characters t of II„, such that PT = (l/w!) Z*Gn» tÍtt)Ut. The cor-

responding resolution of the identity J(n) = X^^ of 8î(n) gives the central

decomposition of Ç„ into factors PrÇ„ of type Im, where ot = w(t) is the di-

mensionality of that irreducible representation of IIn belonging to t. Each

PT can be further decomposed into orthogonal minimal projections PT

= XXi Pr.i (by means of Young symmetrizers). The only r such that w(r) = 1,

i.e., such that Pr is itself minimal, are the alternating character a„ ia„iir) = 1

or — 1 according as tt is even or odd) and the identity character sn(s„(7r) = 1

for all ir). These two characters are the only ones which are homomorphisms

of LT„, and are the only ones which we shall investigate further. Pa„ is the

projection of diM on its subspace of anti-symmetric tensors, PSn is the projec-

tion of 9î(n) on its subspace of symmetric tensors.

To treat the anti-symmetric case first, we restrict all our operators to the

subspace 2I = (Xln-o -Pajft and define coo and wo* by picking G to be that

particular function A which assigns to every non-negative integer n the

operator n"2Pan in Çn. Thus uAi4>) = ( Z»-o©«1/2-P«»)W>®). and co¿*(0)

= (W>®)*( Zn°-o©w1/2i>an))1/2 considered as linear transformations of Sí. 31

reduces QiA), so the discussions in §§1 and 2 apply unchanged.

For any orthonormal basis {<pi} of 3Î, we define an orthonormal basis

{&?<& • ■ • )a} of St, where «¿ = 0 or 1 and ¿< n¡< », by (#ty? • • • )a

-Í((Sí OQ^-PaWÊi® • • • ®0i®02® • • • ®02®03® •* • . (The ele-
ment 0i appears n, times in the tensor product.) Extend the definition of

i<j>ï'4% • ■ • )a so that it is zero if nk> 1, or nk<0 for any k.

By direct computation it is seen that

ü)AÍ<j>k)i<bi   ■ • • <bk   ■ ■ • )a = (— 1)        (0i   •••0t      • • • )x,

o>AÍ<t>k)i<l>i   ■ ■ ■ <¡>k   ■ ■ • )a = (— 1)        (01   • • • 0¡b      • • • M.

Therefore ou(0) is a bounded linear transformation on 21 such that

IM*)|| -IWI and UAiacp+ßt) = aau(0)+/?ûu(^).
Definition 5. IS i>\, 1^2 G9Î, then ip\^p* is the bounded linear operator on $R

defined by i^\^p*)4> = i<¡>, ^2)^1.

Lemma 1. auW>)w/(^) = ß(#*), «/(^)wíW = «>, ̂ )7-ß(#*).

Proof. By (9) it is obvious that wa(0i)«¿*(0i) = ß(0i0i*) and o}aÍ4>i)o>a*Í<Pí)
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= !2(<£i<¿>2*). Therefore, since we can assume <p=a<pu ip = ßi<pi-\-ß?<l>i, the first

assertion follows by linearity.

Similarly, ua*(4>i)ua(<Pi) =7-12(#i0i*), uA*(<pi)uA(<p2) = -12(02^*), and

the second assertion also follows by linearity.

Define [4, B]+=AB+BA. Then:

Theorem 6. [uA(cp), uA*(\p)]+ = (<p, \p)I, [uA(<p), uA(ip) ]+ = [uA*(<t>), uA*(\¡/)]+

= 0.

Proof. Use Lemma 1 on the first expression and (9) on the others.

Theorem 7. If {<£,} is an orthonormal basis of 5R, then the set {uA((pi)}

is irreducible on SI.

Proof. Let £ be a projection such that EuA((pi) =uA((pi)E for all i. Then

we must prove £ = 0 or 7 [8, p. 33],

EuA(4>i)uA*(4>i) =(uA(<t>i)uA*(4>i)E and EuA*(<pi)uA(cpt) =uA*(<pl)uA(<Pi)E.

But, by Lemma 1, uA(<^i)uA*(qbl) = ü(<piq^if) the projection of 31 on the sub-

space spanned by basis elements of the form (tpï'fâ • ■ • )a. with w¿ = l; and

uA*((pi)uA(4>i) = I — iï((j>t<t>?) the projection of SI on the subspace spanned by

such basis elements with m, = 0. The set of all these projections generates

the maximal abelian algebra of all normal operators for which every

W^? • " • )a is an eigenvector. But, by (9), the only such subspace invari-

ant under all uA(<pi), uA*(qb¡) is either 0 or 31.

4. To treat the symmetric case, we restrict all our operators to the subspace

© = ( En-o©-f>«n)S and define uq and wG* by picking G to be that particular

function S which assigns to every non-negative integer n the operator

»»»P.. in Çn. Thus us(<p) = ( Z»-o©«1/2^.n)(0®) and u*(cj>) = ((<f>®)*( Z;.„
©m1/2PsJ) considered as linear transformations of ©. © reduces 12(4) so

the discussions in §§1 and 2 apply unchanged.

For any orthonormal basis {<£,} of 9Î, we define an orthonormal basis

{($?<!% ■••).} of ©, where «=0, 1, 2, • • • and £< «,< oo, by

(<pl <t>2    •  ' '  )«

'(!><) V2
P'sm^ ® • ■ • ® <t>i® 4>2® ■ ■ ■ ® <¡>%® 4>i®

/(2><)1Y

(Each 0,- appears »,■ times in the tensor product.)

For any subset 9Î of 9Î, let [íK] be the closed linear manifold which it

generates; and for any closed linear manifold W of 9Î, let Pm be the projec-

tion on that manifold. Then

Lemma 2. S)w,w = SVw = S)(ßcpM»1/2. If /= Z«»i»i--(*îW ■ • • )•
£$..<♦«>. then  u,(<pl)f= 2>Bl„s...   («.+l)1/2(<rW • • • 0?+1). ««¿ «.*(**)/
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Proof. By a straightforward manipulation of the definitions it can

be seen that «.(&)(*?*? • • • ). = (w, + l)1/2(0i'0? • • • fa^+1 ■■••)• and

«.*(**) (#ft? • • • ).=w,1/2(0ï'0? • • • W1 • • ■ ). (making the convention

i4>"'4>2 • • • )« = 0 if w,<0). Therefore, since w„(0¿) and u3*(fa) are closed,

/G2)«,(0,.) if and only if ^(ni+l)\ani„2 • ■ • |2<=°, in which case ut(fa)S

= Za,I,,..(»i+l)1'i(*W ■ • • 0?'+1 •••).! and /G2V<*o if and only if
X)w<la»i»ï • ' •  |2<°°.    in   which   case   co„*(0.-)/= X^*»inr"»<1/2(0ï"0? ■ • ■

¿r1 •••)«•
Since Z(wi + l)|a«In2---| 2 = ll/||2+ ZMi|°!«i'>2---|2. it is easily seen (let 0i

= (1/||0||)0) that if 0 is any element of 5ft then ||cos(0)/[|2 = ||«*(0)/||2

+ ||0||2||/||2, so *>..(«-©„.•(«. Further, since («(P»,]))1'^^ • • ■ ).

= Mi1/2(</>i'0* • • • )*=ws(0i)(0î' V? '••)«! the only remaining assertion is

obvious.

Let V^x be the bounded linear extension of the transformation

V^iffîtë • • • )» = (0?'+10? ■ • • ). of ©. Then V%t is the bounded linear ex-
tension of the transformation F£(0î*02* ■ ■ ■ ), = i<l%~1<t>2 •'•')»• VH is an

isometry of the range of (ß(Pt«i]))1/2- The polar decomposition [8, p. 53]

cos(0i) = Fil(ß(PM)+I)1/2, co*(0i) = F:i(ß(P[0ll))i'2 of u.ifa) and W*(0i),

and therefore of co,(0), w*(0) for arbitrary 0, follows immediately from the

preceding lemma.

For this symmetric case we can supplement Theorem 5 by the statement:

[ß(^4), w«(0)] is closed if and only if A =0 and 0 = 0; [ß(^4), w,*(^)] if and

only if A = 0 and ip = 0.

Proof. Assume that [ß(^4), ws(0)] is closed, i.e., that S)[B(A).«,c#)]

= 25«,(a#). Then 0 must be an eigenvector of .4 since otherwise, by Lemma 2,

25„,(Aí) is not contained in 25«,(#). If ^40=X0 with X0?¿O, then for g = X^»-i

®(l/w3'2||0||")0® • • • ®0(«0's)wehave||g||2= XXi(l/w3)<°°,||cos(,40)g:||2

= ||X0||2Xn"=i (« + l)/«3<~, \\QiA)g\\*=\-K\*Z:.i 1/»-«. So gG25Uf(jl«
but gG25ß(A)325[a(A),«,(0)]. This contradiction implies ^40 = 0. But then

© = 25B,(A« = 25[0(A),«,(«] =25q(A), so ^4=0 by the proof of Theorem 2(e).

Also 25M,(#) = ©, so 0 = 0.

The second assertion is proved similarly, and both converses are obvious.

Lemma 3. w,(^)w,*(0) aw¿ w,*(^)w,(0) are densely defined linear operators

with closures (ws(0)co*(0))~ = fi(¿0*), (w*(^)co,(0))~ = (0, ^)7+ß(0^*), ¿o

which the first is equal if and only if xf/y^O or 0 = 0, tóe second if and only if

0=X<¿\

Proof. co,(^)w*(0) and co*(\p)ù>,(4>) are obviously densely defined

linear operators. Since the lemma is trivial when 0 = 0, we may assume

that {0,} is an orthonormal basis of 9î such that <t>=fa, \f/ = a\fa+a2(^2.

Then cos(^K*(0)(0?'0? ■ ■ ■ )s=«i1/2ws(^)(0r10r ■ ■ ■ )s = «i«1(0ï'0? • • • ).
+«2(«i(«2 + l))1/2(0r10?+1 • • • ), = QiH>*K4>i<fí ■ ■ • ). so o>»(VO«*(0) and
ß(^0*) agree on an orthonormal basis of each ©(n) = (0® • • • @0®IM
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©O© ■ • • )©. Since they are both bounded when restricted to @(B), they

must agree all over ©(n). Now let / = 2n-o/nGS)u.<*)««.*<*>> /»G©0"'. Then

«.*(*)/= Z."-o«.'W. and coä(0)w*(0)/ = £."-0«8(0)co*(0)/n = £;_„ 12(00*)/n

= 12(00*)/, so/GÍW> and ut(^)u*(<p)f=^(^*)f, cos(^)u*(<t>)Qil(^<p*).
Since w8(0)co,*(0) has the closed linear extension 12(00*), it has a closure

(<o.(0)co*(0))~ç:i2(00*). If /GSDo(W«i, /=Um... E»-o /», /«G©(n), then
Zn-o /.GSD<-.(*)-.»(«r and lim.,. (W,(W(o*W)~ao /„ = 12(00*)/, so
£©<«.(*>..•(*»- and (cos(0)co*(0))~/ = Q(H>*)f- M0K*(0)f = 12(00*).

If 0 = 0, then S)B,(*}u,*(« = S)B.*(«^© = S)o(0) = S)a(^'), so us(\p)u,*(<p) is

not closed. Conversely, if 05^0, then us(\[/)uf(<p) = ||0|| PV/|I\H|(^Cm)
+7)1/2cos*(0) is the product of an isometry, of a transformation with a

bounded inverse, and of a closed transformation in that order. Therefore, as

can be seen from the definition of a closed operator, it is closed.

The discussion of av(0)cos(0) is similar. As before, assume {0¿} an ortho-

normal basis of 9Î, 0=0i, and 0 = o¡i0i+o:202- Then w*(^)w,,(0)(0ï'0* ' * • )•

= «*GM(ni+l)U»(0r+1$r • • • )«=«*(« + l)«>ÏV>? • • • )«+«2*((«i+l)«2)1/2

■(¿r+Vr1 • • • ). =a1*I(<PÏ'të ■ ■ ■ ). + (a1*i2(010Î)+a2*i2(01<i.2*))(0ï'02' • • • ).

= ((0, 00*7+ 12(0^*0!* + *!«&*))(0ÎW • • • ). - ((0,0)7+12(00*))
•(0ï'02' ••')», so w,*(0)û>,(0) and (0, 0)7+12(00*) agree on an orthonormal

basis. Therefore, as in the previous case, «*(0)w8(0)Ç(0, 0)7+12(00*) and

(co,*(0)(co8(0)f = (0,0)7+12(00*).
Now assume 0=X0. If 0 = 0 then w*(0)co8(0) is closed, so assume ||0|| =1.

Then <o*(0)cos(0) =X*"W(0)ws(0) = X*-1F/(12(7>W))1/2^(12(PW) + 7)1'2
=X*-1(ß(7'w)+7)1/2F/F0(12(P(0])+7)1/2 = X*-1(fi(Pt*])+7), which is closed.

Conversely assume 0G[^]- Then 05^0 and, since 0 = 0 implies S)u,V)u,,<0)

= S)u,(,H?i© = £)o = S)(^)r+sW> = S)(U,V)U,(0))~, i.e., implies ws*(0)co8(0) not

closed, we may also assume 0^0. Now we need only construct a g in

SW(*>«.<*>~ such that g$S„/(i)B,w. Let 0'=0-((0, 0)/||0||2)0 and 0O
= (1/||0'||)0'. Then (00*)0O = O and, if we let g = 0ffi Zn-i©(l/»)tf>o® ■ ■ ■
®0o, then 12(00*)g = O, gGSa»rt =©»,«/+!!(#•) =S(«I,(i)».(«)-. But 0=/3o0o
+p\0, with ßo^O, so ws(0)g = OffiZr-1©(l/w(w + l)1/2){0®0o® • • ■ ®0O
+00®0® • • • ®0o+ • • • } (0o appears n times in each tensor product)

= O©Z;=1ffi[(l/«(« + l)1/2){/3o(« + l)0o® • • • ®0o}+0«+i], where the
tensor product 0O® • • ■ ®0o of 0O with itself w + 1 times is orthogonal to

0n+1   in   »(•+«.   Therefore   ||co,(0)g||2 = \ßo\ 2Zn"-i   {((n + l)/n2) + \\xpn+i\\2}

^|ßo|2Zn=i(i/») = °°, g SE £><».<*> 2 £>„.•(*)„.(*).

Theorem 8. The brackets [u,(tp), w8(0)],  [u?(4>), w*(0)],  [w,*(0), w,(0)]

ore densely defined, linear transformations with the closures ([w8(0), cos(0)])

= 0, ([w,*(0), w,*(0)])~=O, ([w*(0), co8(0)])~ = (0, 0)7 /o w/wc¿ ¿Äey are equal

if and only if 0=0 = 0.

(Using Lemma 3 on the third expression, the proof is an easy repetition

of methods already used several times.)
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Theorem 9. IS {fa} is an orthonormal basis o/ 9î, then the set {<o„(0¿)} is

irreducible on ©.

Proof. Assume £ to be a projection such that Eco^ifa) Qo>Bifa)E for all i [8,

pp. 32-33]. Then Eus*ifa)Qw,*ifa)E also, and Eù)sifa)cûs*ifa)Qù),ifa)o)s*ifa)E.
But cos(0,)io,*(0;) = üifafa*) = ^(P^j) by Lemma 3, and projections arising

from the spectral decompositions of the ßP([#j]) generate the maximal abelian

algebra of all normal operators for which every (0*0? • • ■ ), is an eigenvector.

Therefore E© is spanned by some subset of these eigenvectors. But, by

Lemma 2, the only such subspace invariant under all a¡ifa), w*(0.) is either

0 or © itself.

Definition 6.

Pifa = *([«.(«) - «.*(*)Jr/21'1, qifa = (k(0) + co*(0)])~/21/2.

This definition implies that the operators have closures, a fact contained

in the following theorem :

Theorem 10. pifa and qifa are selS-adjoint.

Proof. Since qifa = pi — ifa), we need only consider pifa. Further, since

pifa =||0||/>(0i), where ||0i|| =1, we can assume that 0=0i an element of the

orthonormal basis {0,} of 9?. 25M,<#1)=:2)«,\0i)=2)i[<4,<*1)-a.,,<#I)] is dense in

©, so (t[w,(0i)— co*(0i)])* exists and (î[co,(0i)-w*(0i)])*= — i[a,ifa)

-w**(0i)]*3-*'[co*(0i) -ws(0i)] = -i[u.*i4>i) -cc.ifa)] = i[a3(fa)-w*(fa)],
i.e. i[cos(fa)— w*(0i)] is symmetric [8, p. 34], and hence has a closure; so

£(0) and q(fa exist.
i( [co„(0i) — 03 *(0i) ]) is self-adjoint if and only if its deficiency indices are

(0, 0) [8, p. 38]. Since it is real [8, p. 40] on the orthonormal basis

{íni(0í'022 " " • )»}» its deficiency indices have the form (w, m), and we need

only prove that the single deficiency space 25_ is zero-dimensional, where

25- is the set of all g in © which are orthogonal to (i[ws(0i) — w»*(0i)]

-¿i)$fl».<*i>—/<*iM-      But    if    T,gmimr..i(t>?4>? ■ ■ ■ )»=gG25-,    then    0
=(g,  ii[co,ifa)-ü>*ifa)]-ii)ifaw ■ ■ ■ ),)=ig, i-(«i+Di/2(0r+102n' • • • ).
-in^ifar1^ ■ ■ ■ )«-¿(0Í"02' •••)«) = - ig* ,+!.»,.• ..(»i + i)1'****.,-!..,....
»î/2+*gni .»„••• (making the convention g-i,»,,«,,... =0). Therefore we have the

recurrence formula in1 + l)1'2gni+i.ni....=g„1.„2,...+n\/2g„1-i,„,,.... In particu-

lar, go.„1,---=gi,„2,---.

If for some n2, n3, • • • we have go.n^.-.^O, let f = (l/go,n2,...)g. Then

go,n2,-.- =gi,nj,.-. = 1. But, from the recurrence formula, |ni_i,n2,...^l,

|«a.«„..-êl implies £„1+i,„2,... = (|„1,n2,...+MÍ/2g¡'1-i,I.2,-..)/(»i+l)1/2e (1

+«î/2)/(tti + l)1/2=L Hence, gk,„2,...èl for all k=0, 1, 2, ■ • ■ , contradict-

ing llfll < c0- Therefore go,n2,.-.=gi,n2,... =0 for all n2, n3, ■ ■ • . But this im-

plies, by another easy induction using the recurrence formula, that f»lf»f,...

= 0 for all «i, n2, ■ • • , and so g = 0, 25~ = 0.



232 J. M. COOK [March

Theorem 11. The brackets [q(<p), <z(0)], [q(<l>), £(0)], ana" [£(<£)> PdP)] are
densely defined, linear operators with the closures ([q(<¡>), 3(0)]) —(dp, <p)

-(0, 0))7/2, ([g(0), P(0)])~=i((0, 0)-(0, 0))7/2, ([p(<p), ¿>(0)])~ = ((0, <p)
— (0, lA))7/2 to which they are equal tf and only if 0 =0 = 0.

Proof. Since p(<p) = q(itp), we need only consider the bracket [g(0), g(0)].

Let gG5W).,(#>]. Then ((0Ï'0* • ■ • )., [g(0), g(0)]g) = ([(cos(0)
+co*(0))/2i/2, (W8(0)+£o*(0))/2i/2](0ï,0r- • •)., g) = ((l/2)((0, *)-(*,

0))(0?'0? •••).,   g) = ((0ï,0"' •••).,    (l/2)((0,   0)-(0,    0))g),   so

[?(*), ?M0] £((*,*) - (4>,W/2.

Lemma 4. 7/ 4 ¿s a self-adjoint operator on 9Î ana 0GS)¿, then¿([12(4),

¿>(0)])~ = ¿>(¿40) a«ü([l2(4), <z(0)])~ = <Kí40).

Proof. ¿([12(4), <z(0)])~2¿[12(4), (co8(0)+co*(0))/21/2]3O„(í40) by Theo-
rem 5, where q0(iA(p) is q(iA<f>) restricted to the domain of all Zb-o®/» in ©

such that i/„GS)f!(¿) for » = 0, 1, 2, ■ • • and only a finite number of the/„ are

nonzero. But (q0(iA))~ = q(iA<p) so ¿([12(4), g(0)])~2g(¿40).

Therefore g(*40)*3-¿([l2(4), q(<p)])~*^-i[q(<t>)*, 12(4)*] =-¿[g(0),
12(4)], g(¿40)=g(¿40)*3-¿([O(0), Í2(4)])~ = ¿([12(4), q(<p)])~, q(iA<p)
= i([ü(A),q(<p)])~.

Part II. Physical interpretation

1. The elements/ of %, normalized to ||/|| =1, will represent states of a

many-particle system in such a way that ((0© • • • ©0©7(B)©0© ■••)/,/)

is the probability that/ consists of n particles, where (0© • • • ©0©7(n)

©0© • • • ) is the projection of % onto i$ft(n). (See [3, p. 637].)

If/nGÏ9î(n) and 4 is self-adjoint, then (12(4)/„, /„) = ((4®7® • • • ®7

+ • • • +7® • • • ®7®4) /„, /„) is the expectation value in the «-particle

state/„, as given in the standard theory, of that «-particle observable which

corresponds to the single-particle observable 4. Since 12(4) leaves each

j9î(n) invariant, (12(4)/,/)= Z«=o (12(4)/„,/„) is the corresponding expecta-

tion value in the generalized state/where the total number of particles may

not be definitely known.

In particular, if 7 is the identity operator on 9Î and /GSW), then 12(7)

= Z;=o©«/(n)_and (12(7)/, /) = Z-"-o «((0© y • ©0©7«©0© •••)/, /)
is the expectation of the total number of particles in the system when the

system is in the state/.

Similarly, if P is a projection on 3Î onto itself corresponding to the property

P of the original one-particle system [7, Chap. Ill, §5], then (Çl(P)f, f) is the

expectation number of particles in the system % having the property P since:

Let {0j(1)} be an orthonormal basis of the subspace P9Î of 3Î and {0jo>} an

orthonormal basis of its orthogonal complement (7—P)9Î. Then elements of

the form ¡ffc»®0£,)® ■ • • ®0¿"), s, = 0 or 1, ̂  = 1, 2, • • • ; «=0, 1, 2, • • • ,
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form an orthonormal basis of ft such that ß(P)n/£d® • • • ®ip(£) = ifPfíí0)

® tó' ® • • ■ ® tón) + i^1' ® iP4>ísñ ® ■■■ ®tâ)+ ■■• + itó>® • • •

®(^£n))= XX i (S¿i^í!°® • • • ®^fr))=»i^£,>® • • • ®^ä,). where m
= X^t-i Sjt = XXi 5* is the number of the $£<) which are in P9Î. Thus, the
eigenvalues of ß(P) are the non-negative integers m (occupation numbers of

P9Î), and the corresponding eigenvectors \p such that QiP)\p = m\¡/ are those

states of ft representing a system in which exactly m of the particles have the

property P. For example, if P = P^] (projection on the one-dimensional sub-

space [0] of 9Î spanned by 0), then the eigenvalues of ß(P^]) are the occupa-

tion numbers of the state 0 and (ß(P[*])/, /) is the expectation number of

particles having the property that they are in the state 0.

If the above case, since its eigenvectors span the whole Hilbert space ft,

it is obvious that ß(P) is self-adjoint. Theorem 1 makes the more general

statement that if A is an observable, then so is ß(^4).

Since any self-adjoint A =J\dE\ is approximated by sums of the form

XX»(Exi+1 — Ex.) and ß is linear (Theorem 2), ß(.4) is, in some unspecified

sense, approximated by sums of the form X^»'^(-^.-+i — -£*.-) where

ß(Exi+l — E\j) is that operator which gives the expectation number of particles

having the property that their value in A is certainly between X¿ and Xl+i,

i.e., the eigenvalues of ß(Exl+1 —Ex,) are occupation numbers of the subspace

(Ex,+1 —Ex;)9î of 9Î. We write, symbolically, ß(^4) =/Xdß(Ex), without trying

to indicate the exact type of convergence involved. At any rate, for a dense

set of states / we have (ß(^4)/,/) =/X^(ß(Ex)/, /) so, very roughly speaking, to

find the expectation value of ß(4) we take each eigenvalue X of A, multiply

by the probable number of particles in that eigenstate, and sum over all

eigenstates.

The heuristic discussion in the preceding paragraph will not be further

rigorized because we can always use ß(.4) in place of /X^ß(Ex). However, in

order to show how the mathematical formalism of this paper fits onto a phys-

ical theory it will be convenient, at times, to translate that formalism into

the conventional terminology of standard works on the subject. For example

we can derive the formula ÍTa^ívv = ^2 khukiNk +1/2) of [10, p. 34, (6.22)]

except that the infinite null-point energy never appears. The single-particle

energy operator H is here H = c(w2c2+p2)1/2, where m is the mass of the

particle, c is the velocity of light, andp= — ¿ÄV=(pi, p2, p3). Now, diagonaliz-

ing the maximal-abelian algebra generated by the three operators pi, p2, pi, we

get p=/XáEjt, where the resolution {Ex} of the identity consists of the set of

all multiplications by characteristic functions defined on the diag-

onalizing measure space (which is here just momentum space). Hence

H=fcim2c2+l2yi2dE^, and 0(H) =/c(w2c2-|-3t2)1/2aß(£x). (We actually have

rigorous equality here because the approximating sums on the right con-

verge weakly to ß(ii) as can be seen from Lebesgue's bounded convergence

theorem.) This corresponds exactly to the formula  X^*^0*^* (where mo-
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mentum space has been artificially discretified by making ordinary space

compact) since p = hk, huk=c(m2c2+p2)112; and Nk gives the number of

particles in the momentum eigenstate k just as does dQ(Enk).

The photon case is like that of the scalar mesons, except that the mass m

is zero and that we must sum over two polarization states. Again an expres-

sion is obtained which is exactly analogous to formula (16.45), p. 117 of [10 ],

without the infinite null-point energy Z* h°\ k\ •

Similarly, the total momentum G of the field (if by "momentum of the

field" we mean the sum of the momenta of the particles associated with the

field) is given by G = 12(p) =fXdü(Ex), which corresponds to formula (6.28)

of [10] (or (16.45) for photons).

Theorem 2 describes the algebraic properties of 12. Its extension to Lie

algebras of unbounded operators would bring in mathematical complications

which can be avoided in most cases by the use of Theorem 1. For example:

Theorem 2 shows that the bounded operators 4 and B commute if and only

if their images 12(4) and 12(5) commute, whereas Theorem 1 (Corollary 1)

shows that this is also true if 4 and B are normal. Thus, in the previous dis-

cussion, p and H = c(m2c2-\-p2)112 commute, so G = !2(p) and 12(77) do also

and, as was to have been expected on physical grounds, the total momentum of

the field is a constant of its motion. Similarly, since the identity commutes

with everything, so does 12(7) with every 12(4). Physically this means that

any observable relating to "particle-like" aspects of the field may be meas-

ured with a simultaneous determination of the total number of particles of

the field (given by 12(7)). That this is not true of observables relating to

"wave-like" aspects of the field will be seen when the field-variables are de-

fined.

If the observable F(t) is a suitably differentiable function of the time t,

and 77 is the energy, it is customary to define another observable F(t)

= (i/h)[H, F(t)] + (d/dt)F(t) which has the property that (d/dt)(F(t)<p(t),
0(0) = (F(t)<j>(t), 0(f)). By a purely formal manipulation using Theorem 2 we

have (i/h)[Q,(H), ü(F(t))] + (d/dt)Q(F(t)) = Q((i/h)[H, F(t)] + (d/dt)F(t)),
i.e., ü(F(t)) = ü(F(t)); although this formula is true rigorously only if the

proper restrictions are placed on F(t) and 77.

In the above discussions we have several times assumed that 12(77) is

the total energy of the system. This is permissable when no foreign particles

(fields) are present. Interaction forces are ignored and each element of the

field moves along its trajectory according to the one-parameter group of

unitary operators exp ( — (i/h)tH) exactly as though it were the only particle

present. Hence we have by formula (7): exp (—(i/ñ)tQ(U))= Zñ.n

©(exp (-(i/h)tH)Yn\

77 is the single-particle Hamiltonian (operating on 9Î). If 4 operates on

9Í, let 4, = exp ((i/h)tH)A exp (-(i/h)tH); if T operates on g, let Tt

= exp  ((i/h)tQ,(H))T exp  ( —(¿/&)¿12(77)). This time-dependence gives us
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the observables in the interaction representation. By Theorem 3 we have

Q(Â)t**QiAt).
2. The UGifa and u>o*(fa of Definition 4 are creation and annihilation

operators respectively, though much too generally defined until G is further

specified.

Commutation relations involving ß and w with themselves and with each

other are given in Theorems 2, 5, 6, and 8. They will be needed later on in

application of the formalism to actual physical situations.

If for 0 in dt we define a time-dependence by 0« = exp (—(i/K)tH)fa then

Theorem 4 says that wg(0)í=«g(0-í) and cüg*(0)í=wg*(0-í)- More generally

let exp (irA), where A is self-adjoint and r is real, be any [8, p. 69] continuous

one-parameter group of automorphisms of 9î. Then ft, by its construction,

goes to X^n=o© exp(î'r.4)(n)ft, and an operator T on ft goes to Tr— X^T-o

©exp (iV^.)<n)rXn-o©exp (-irA)™. For example if 9Î is 22(E3), the set of

all square-integrable functions 0(xo, yo, Zo) on Euclidean 3-space, then the

one-parameter group exp (ix(l/i)(d/dx0)) is that generated by translations

<t>x(xo, yo, Zo) =0Oo, -x, y0, Zo) of E3.

In connection with such one-parameter groups it is customary to define

a derivative by (d/dT)BT =i( [BT, A ]) if B operates on 9Î. If T operates on ft

then, by (7), the corresponding infinitesimal generator is iril(A), and

(d/dr)TT=i([TT, &(A)])~. In particular, by Theorems 4 and 5, we have

(d/dr)o}a(fa = -ua((d/dr)fa, (o/or)wG*(0) = -wo*((ô/ôr)0), and by Lemma 4

(10) (d/dr)p(fa =  - P((d/dr)4>, (d/dr)q(fa =  - q(id/dr)fa.

3. Every observation of a system of n identical particles is invariant under

permutation of those particles, i.e., A = U~*A UT for the corresponding oper-

ator A. So all such observables must belong to the centralizer Ç'„ of G¡„. The

central decomposition of Ç„ decomposes Ç'n into direct factors PrÇ'n, and

reduces 9JCn) to a direct sum of non-interacting subspaces PT9î(n) of wave-

functions which have inequivalent symmetry properties depending on t.

Each Pr9î(n) can be further reduced into the direct sum of noninteracting

subspaces PT,i9î(n), i=l, 2, • • • , m(r), of wave-functions having equivalent

symmetry properties.

Such discussions of the group algebra Ç„ are omittable in view of the

present state of physical theory. All particles so far discovered have either

obeyed Fermi-Dirac statistics and belonged to the subspace PaJRM, or

obeyed Bose-Einstein statistics and belonged to PSll9î(n). We shall consider

the Fermi-Dirac case first.

The superscripts nk in the elements (0J1 • • • 02* • • • )a of the ortho-

normal basis of 21 are occupation numbers, as can be seen from the fact

that ß(P[^])(0?'0? • • • )A=nki<pï'fâ ■ ■ ■ )A and ß(J)(0T'0? • • • )a
= (X^<wi)(0i'02' • ' • )a where nk equals one or zero according as the state

0* is occupied or not and X3« w« is the total number of particles in the system.
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If the 0m are all eigenvectors of the Hamiltonian, 770M=Xm0m, then we get

the formulas 12(77)o>/(0m) =co/(0m)(12(77) -Xm), 12(77)w^(0m) =uA(<pm)( 12(77)
+Xm) of [10, p. 166] by use of Theorem 5.

When we substitute elements 0, of {0,-} into Lemma 1 in place of 0 and

0, we get formula (20.20) on p. 164 of [l0]. It follows that if the system is in

the state /GSl, then the expectation number of particles in the state

0,- is ||co/(0,.)/||2, since ||«/(0i)/||2 = (co^(0>/(0,)/, /) = (12(0,0,*)/, /)

-(0(PWlf,i).
Theorem 6 is a similar generalization of the standard anti-commutation

relations [10, p. 165, (20.23)]. The time-dependent anti-commutator brackets

are then, by Theorem 4: [uA(<p)t, co/(0)i,]+ = (exp (((t'-t)/ih)H)<p, 0)7,

[uA(<p)t, uA(xy)t.]+ = 0, [0/(0),, co/(0)(.]+ = O.

12(4) is usually expressed in terms of creation and annihilation operators

as Z»'.i03a(<Pi)(A(j>i, 0i)wG*(0j) (see [3, pp. 634 and 629]). The formal identity

of the two expressions in the Fermi-Dirac and Bose-Einstein cases can be

seen as follows: Let 4 be any self-adjoint operator on 9Î with pure point

spectrum, i.e., such that there exists a set of eigenvectors {0,}, 40¿=X,0t-,

which are also an orthonormal basis of 9t. Then, using " = " to mean "formally

identical," we have 12(4) = 12( Z<X<PW<]) = X>iß(Pw<]) = ZA,wG(0i)coG*(0,')
by Lemmas 1 or 3 according as G is 4 or 5. Therefore 12(4) = Z» (40,, 0¿)

wG(0,>G*(0i) = Zi.i (A^Pi, "/,3#o('/'y)wG*(0<) = Z;,y i^i, tj)uG( Z«(^i, 0»)</v)
UG*( J^mbPi, 0m)0m) - Z'-.J.m.n (40f, 0;) (0j, 4>n)(dPi, 4>m)*UG((pn)uG*((pm)
= Zm.n (4 Z< (0"» <A»)^i> Zi (<£«> 0y)0i)wG(0„)cOG*(0m) = £„,» (40m, 0„)
O)G(0„)wG*(0m).   SO   12(4)= Tji.i^o(4>i)(A<Pj, 0i)wG*(0y).

Presumably this formula can be extended to hold for any self-adjoint

transformation by passing to some kind of limit on both sides, and to an

arbitrary transformation by writing it as the sum of its real and imaginary

parts and using linearity. We shall not try to justify these manipulations. The

form 12(4) should be sufficient for all physical applications.

4. A system obeys Bose-Einstein statistics if and only if its wave-function

is contained in the subspace © of symmetric tensors of %. The superscripts

nk in the elements of the orthonormal basis (0"'02' • • • )» of © are occupation

numbers: í2(P[^])(0Í'02' " ' ' )s=nk(<p1'<p2lt • • • )» so the non-negative integer

nk gives the number of particles in the system which are in the state <pk.

Lemma 3 is a formal generalization of formula (6.18) [10, p. 33] since:

Replace Euclidean space, E3, by the 3-dimensional torus; i.e., impose a

periodicity condition [10, p. 26]. Then momentum space becomes discrete to

consist of the orthonormal basis {0fe} of ?2(7i.0- In the terminology of [l0]:

aft = w8*(0fe), dfc* = ws(0fe); and akak*=us*(<pk)us((pk) = 7+12(0k<pk*) = \+Nk, and

ak*ak = u,(<pk)u*(4>k) = 12(0ft0fe») = Nfc.

If the system is in the state/G©, then the expectation number of particles

in the state 0G9c(||0|| =1) is |h*(0)/||2 since ||w*(0)/||2 = (co8(0)co*(0)/, /)

= (12(00*)/, f) = (Q(Pw)f,f).
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If co, and «„* are taken as functions of an orthonormal basis of 9Î, then

Theorem 8 becomes the standard commutation relations for creation and

annihilation operators [10, p. 34, (6.19)]. The corresponding time-dependent

commutator brackets are [cos(0)i, cos(^)<'] =0, [ws*(0)¡, o)s*(\¡/)t>] =0, and

[co*(0)í, 03s(ip)t'] =(exp (((t — t')/ih)H)fa fal as follows from Theorems 4

and 8. By using these commutation relations it will be possible to carry

through the physical theory without having recourse to the singular Dirac

S-function and Jordan-Pauli invariant .D-function.

The creation and annihilation operators are not normal, so they do not

represent observable quantities. However they can, by Definition 6, be used

to construct quantities p(fa) and q(fa which are, by Theorem 10, observables.

It is customary, in the quantum theory of wave fields, to assign to every

point x of Euclidean 3-space an operator q(x) representing the value of the

field and an operator p(x) representing the corresponding Hamiltonian-

conjugate momentum at that point. It has been generally recognized, how-

ever, that this is an artifice which does not correspond to physical reality (see

[4, Chap. Ill, §1; 1, §2; 2]). The only way a field strength can be measured,

and therefore the only way a meaning can be given to the concept, is by in-

troducing a test-body into the field. This test-body will always have a finite

nonzero volume. It will never be just a point. In other words it will always be

an element of a Hilbert space, never an element of Euclidean 3-space; and

the field strengths measured will always be averages over a certain volume,

never values at a point. Even if the test-body is a single electron and, instead

of giving it a nonzero diameter we have assumed the point-model which

seems to lie at the basis of quantum mechanics, we are still not allowed to

use that point itself in any of our calculations. Only a certain probability

distribution appears, again an element of Hilbert space.

In the present formalism, the operators are defined to depend directly on

weighted distributions. The second quantization mapping q takes 9Î into a

set of operators on © ; but elements 0 of 9Î, as opposed to those of ©, need not

be interpreted as the wave-functions of particles. For example, that field

which is felt by a small spherical volume of radius e2/mc2 is given by the

operator q(fa where 0 is a function defined to equal one on the volume in

question and zero outside of it. More generally, if 0 is any real square-

integrable function, then it represents that field which is felt by the cor-

responding mass-distribution; or, alternatively, it can be interpreted as a

probability-distribution and used in calculating expectation values. Square-

integrability, the condition that puts 0 in 9Î, is not necessary, but is very

convenient and sufficiently weak to include the physically interesting cases.

The distribution may be defined, not only on Euclidean 3-space, but on

any measure space X such that yt = '&2(X). Thus Fourier transforms are auto-

matically taken care of and momentum space is handled exactly as is ordinary

space.
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If the 0 and 0 of Theorem 11 are elements of an orthonormal basis {0,-j

of 9Î, then ([g(0,), p(<t>,)])~ = i8{ and ([g(0,), g(0y)])~ = ([¿>(0;), ¿(0,)])~=O;
which are the standard commutation relations [10, p. 27, (5.4)]. Correspond-

ing commutation relations for the time-dependent operators [10, p. 20,

(4.12)] are, by Theorems 4 and 11:

[(<?(0)<, <zWr])~ = (l/2)((exp (((/ - t')/ih)E)P, 0)

- (exp (((/' - t)/ih)H)4>, 0))7,

([?(*)«, rt+h)r = (¿/2)((exp ad - nmmt, 0)
+ (exp (((/ - t)/ih)H)4>, W,

([pWt, pWr])~ = (l/2)((exp ((« - 0/^)77)^,0 )

- (exp (((f - t)/ih)H)<p, Mi-

li we wish to examine the effects of the field taken over two bounded sub-

sets 5 and S' of Euclidean 3-space, situated at times t and /' respectively, then

we use the time-independent characteristic functions 0=x» and 0 = x>'. If 5

and S' are outside of each other's light-cones, then (exp (((t — t')/ih)H)\f/, 0)

= 0 since 77 must be constructed so as to prohibit exp ((t/ih)H) from propa-

gating a disturbance faster than light and therefore exp (((t — t')/ih)H)\p,

considered as a function on Euclidean 3-space, is zero on the set 5. Therefore,

by (11), the operators commute and we get the usual result that measure-

ments of the field quantities may be taken over mutually space-like regions

of space-time without uncertainty restrictions. (See [l].)

Although these results may seem, at first glance, to have been obtained

by methods rather different from those normally employed, this is not the

case. There is a complete analogy which can be verified at each step, and the

Jordan-Pauli T)-function can, if we are willing to accept the customary re-

laxation of rigor, be derived directly from (11).

Rather than discuss this analogy more thoroughly, it will be of greater

interest to take the following actual application from meson theory and work

it through using the commutation relations and the general mathematical

structure which has been developed in the preceding pages.

Ascalar meson obeys the positive-definite Hamiltonian77 = c(m2c2 + h2k2)112,

where m is its mass and k= — ¿V- (See [10, §6].) Therefore the energy of the

meson field is given by 12(77). Now suppose that a foreign mass-distribution,

represented by the real square-integrable function p, is introduced into the

field; and that this fixed mass-distribution has the property that it can react

with the field by absorbing and emitting mesons from and into it. Then an

interaction term must be added to 12(77) in order properly to describe this

altered system. Let p(<j>) =/>(771'20) and g(0) = q(H~l!24>) [10, p. 34, (6.20)].

Then if pGS}//1/2AS)tf-1/2, the desired interaction term is hq(p) [10, p. 38,

(7.5)], and the total energy of the field is W= 12(77) + Äg(p). In order to study
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this expression, define a unitary transformation U = exp (ihp(H~2p)) of @.

Now there is some computing to be done which would be tedious to tackle

in full rigor; so, this being just an illustration of the theory, not a part of it,

we will again use the symbol = to mean formal equality and will use the

identity

(12) [exp (A), B] = ([A, B] + (1/2)[A, [A, B]]) exp (A)

which is formally true for any A, B such that [A, [A, [A, P]]]=0. Then

\-ihp(H-2p), hqip)}± -h2\\H-ip\\2I (by Theorem 11), so \U~\ hqip)]

^-h'llH-^U-1 (by (12)), and U~1hqip)U=hqip)-h2\\H-lp\\2I. Also
\-ihpiH-2p), üiH)] = -%qip) (by Theorem 5), [-ihpiH-2p), -hqip)]

= h2\\H-lp\\2I (as above); so [U~\ fi(H)] = (-Ag(p) + (A2/2)||iî-1p||2)c7-1 (by

(12)), and U-1üiH)U=QiH)-hqip) + ih2/2)\\H-1p\\2I. Therefore U^WU

= ÜiH)-ih2/2)\\H^p\\2I.
Since U~1WU has the same spectrum as W, this means that the entire

effect of the foreign distribution p has been to lower the energy of the system

by an amount (A2/2)||iî-1p||2-

H is diagonal on momentum space, so (/z2/2)||iï_1p||2:= (Ä2/2)(ii_2p, p)

= ih2/2)SSIip\ik)p]ik)*/c2im2c2+h2k2))dk1dk2dk3, where pf(ic) is the Fourier

transform of p(x). Let F(x) = (l/2ir)3///-exp iik-x) / c2im2c2%-2+k2)dkxdk2dk3

= -exp i-mc\x\/h)/4-wc2\x\ [10, p. 43-44, (7.14-15)]. Then -%2/c2im2c2

+ h2k2) is the Fourier transform Vik) of F(x), so we can write (A2/2)||íí_1p||2

= — il/2)SJJVik)p]ik)p]ik)*dkidk2dk3. But multiplication on momentum

space becomes convolution on ordinary space, so (Ä2/2)||iJ-1p||2

= — il/2)SJJiV*p)~\ik)p\ik)*dkidk2dk3. Finally, the Fourier transform is a

unitary operation so iñ2/2)\\H-1p\\2= -il/2)fSSiV'p)ix)pix)*dx1dx2dx3

and the entire expression can be written U~XWU = ß(ü) + (l/2)

SfVix-y)pix)piy)d'xdyi.
Thus, the interaction energy appears as a screened Coulomb potential

F(x) = —exp ( — mc\ x\ /%)/iirc2\ x\ of the mass-distribution p with respect to

itself. The meson field acts as an attracting force which the nucléons exert on

each other.

This derivation is analogous to the one originally given by Yukawa, yet

that which in Yukawa's treatment corresponds to our ß(.ff) is really quite

another thing. The fact that both methods will agree rests essentially on

the following formal coincidence.

Assume that all elements of the orthonormal basis {0,} of 9î are eigen-

vectors of the Hamiltonian H, Hfa = \¿f>i, X,->0. Then, since the energy of a

classical harmonic oscillator is (l/2)(£2+X2g2), write X^» (l/2)(?(0>)2

+X2g(0<)2) for the total energy of the field [10, p. 33, (6.14)] instead of

QiH). Then, manipulating this expression in a purely formal fashion, we

get £< (1/2)(?(0Í)2+X22(0,-)2) = EÍ (l/2)(^(XÍ/20,)2+X22((V1)1/20.)2)

- Zi (X,-/2)(j>(0.-)2+2(0.)2)= Z.- (Xl/2)((î/21'2)(a)<(0i)-co*(0,-)))2±((l/21'2)
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(W.(0i) +co*(0,-)))2) = Zi (Xi/4)( - (co8(0.) -a>*(0<))2 + (co8(0.) +co*(0,))2)

= Z,- (Xi/4)(2co8(0,>*(0l)+2a)*(0i>8(0,)) = Z< (X,-/4) (412(0,0,*)+2(0i,0,)7)
(by Lemma 3) = Z< Xi(Q(P»4j) + (l/2)/)= Z* ß(XP[M) + Z< 0</2)7
= 12( Z¿ aPi*,]) + Zi (X,/2)7= 12(77) + £< (X,-/2)7.

The highly divergent Z¿ (X.-/2) is the well known infinite null-point

energy. Ignoring this infinite term, as is customary, we get 12(77)

— Z» (I/2)(?(0»)2+X2g(0,)2) (an expression not needed in the present formal-

ism).

That relativistic invariance can be a built-in feature of the theory is illus-

trated by the following treatment of the electromagnetic field.

Before discussing the field itself it will be necessary to describe the in-

variant wave-equation obeyed by a single photon. Like the Dirac electron, the

photon will be a four-component vector function <p(x, y, z) = (<f>i(x, y, z),

4>2(x, y, z), 4>i(x, y, z), <pi(x, y, z)) defined on Euclidean 3-space £3. 9Î will be

the set of all such complex-valued vector functions 0 which are square-

integrable: 0=0i©02©03©04 with 0,- in 22(E3). However, the Dirac wave-

function is a spinor transforming as a (l/2)-integral representation of the

Lorentz group, whereas the four components of the photon wave-function will

transform directly under the Lorentz group itself. In order to express this

fact we write 9î as the tensor product 9Î = $?2(£3)®$4, where A4 is a four-

dimensional Hubert space; then if pi, p2, ps, Pi is an orthonormal basis of SU,

any 0 in %2(E3)®®i can be written uniquely as 0=0i®pi+02®P2+03®P3

+04 ®P4, giving us the isomorphism with 0i ©02 ©03 ©04 in the previous repre-

sentation ^H = 22(E3) ®22(E3) ®22(E3) ®^2(E3). Time-dependence is given by

the Hamiltonian H = ck®I, where k = (k2x+k2,+kl)112, kx=-ih(d/dx), k„
= —ih(d/dy), kz= —ih(d/dz). Now we can describe the action of the Lorentz

group on '3l = 22(E3)®®i by stating that it transforms the basis elements

Pi, Pi, Pz, Pi of A4 contragrediently to x, y, z, ct, and that it transforms the

time-dependent element exp ( — (ict/h)k)<¡) of %2(E3) as a scalar function of

space-time, i.e., if x, y, z, ct goes to x', y', z', ct' under the Lorentz trans-

formation, then 4>'(x', y', z', et') =0(x, y, z, ct). The equation of motion

(l/c)(d/dt)<t>(x, y, z, ct) = ((d2/dx2) + (d2/dy2) + (d2/dz2)yi2(p(x, y, z, ct) is ob-

viously Lorentz-invariant. (Inversions of the time-axis are excluded.)

In order to show how $4 determines polarization states, we write it as

$i = Ë2®$2* where S2 and S2* are two-dimensional Hubert spaces. The

simply-connected covering group of the proper Lorentz group is the set 57(2)

of all unimodular linear transformations on spin-space S2 (see [9, §20, p. 78]).

Let 171, r¡2 be an orthonormal basis of $2, and 171*, 772* one of $2*; then r)i®r¡2*,

i?2®rç*, Vi®!*, Vz®l* is an orthonormal basis of ®2®$t* and any element

p of S4 can be written p = Ciii7i®?7i*+Ci2??i®i72*+C2r'72®'7i*+C22'72®'72* (as in

[9, p. 79, (20.4)]). Then p1 = (l/21/2)(77l®772*+i72®77l*),P2=-(¿/21'2)(i7i®772*

-r?2®i?í*), P3 = (1/21/2)(í71®77i*-772®t?2*)-, p4 = (1/21'2)(vi®i?i*+rj2®r?2*) is

also an orthonormal basis of S4.
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Every proper Lorentz transformation 6 is represented by some transforma-

tion aid) in 5E(2). (This representation is two-valued, but it makes no dif-

ference which value we choose.) Let â(0) be the transformation on ®2* such

that the elements of its matrix with respect to the basis rj*, rj2* are the com-

plex-conjugates of those of aid) with respect to rii, r¡2. Then the mapping

6—*i(0)®a(0) is (by [9, p. 78]) our original representation on $4: (a(0)

®did)ix1pi+x2p2+x3p3+x4p4)=x'1pl+x2\p2+x¡p3+xipi where x^+x^+xl — xl

= xf+x'2+x^ — x4. The spin-matrices

».-(J   oV^C ~o)'**"(o   -1)
correspond to infinitesimal rotations of E3 about the x, y, and z axes respec-

tively. The Pi are eigenvectors of these infinitesimal rotations:

(13)

àxPi = + Pi, ay ® âypi = — pi, az ® <rzpi = — pi,

âxPi  =   —  p2, O-y  ®  âyp2 = + p2, az ®  ¿fjP2 = —  P2,

äxpü = — P3, ay ® âyp3 = — p3, a, ® âzp3 = + p3,

âxpi =  + Pi, ay ® äj,p4 = + p4, az ® âzPi = + pt.

Therefore, a photon i// traveling in the z-direction and polarized in the x-direc-

tion (i.e., yp=fa®pi where fa as a function on momentum space, is zero out-

side of a small volume about the positive z-axis) belongs to the eigenvalue

+ 1 of I®iax®âx) and —1 of l®iau®âv) just as expected on physical

grounds. There are two more polarization states still unaccounted for but

these will be automatically eliminated by the requirement of relativistic in-

variance and a restriction of the wave-functions to a certain subspace ty of 9Î

later required by the Lorentz condition id/dx)Ax+id/dy)Ay + id/dz)Az

+ il/c)id/dt)^ = 0 on  the as yet undefined  four-potential  field  operators

Ax, Ay, Az,  $.

The inner product on 9í = £2(E3)®$4 is invariant under rotations of E3

(since they correspond to the unitary transformations in 5E(2)) but is not

invariant under the Lorentz group. To form expectation values we need an

operator g' on A4 defined by g'p,=pi for i—1, 2, 3, g'p4=—P4. Then /®g'

maps a covariant element í^f =0iffi02©03©04 of 9î (i.e., i/'f transforms con-

tragrediently to x, y, z, ct under the Lorentz group) into a contragredient

element ^ = /®g'0t=0iffi02©03ffi —04- (We shall always denote covariant

elements with the dagger and contravariant elements without.) g' is obviously

relativistically invariant. Explicity it can be written g' = (1/2)(J®/ — ax®äx

— ffy®öy — az®äz) (by (13)) and invariance is once more easily recognized

from the fact that ax, ay, a¡, I transform like the covariant components of

a world-vector.

In order to get the subspace ^ßf of all those covariant wave-functions in

9Í which represent photons, we need to impose on ^t=0i©02©03©04 the
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conditions (d/dx)^>i+(d/dy)4>2 + (d/dz)<p3-(l/c)(d/dt)(f>i = 0. Since ((d/dx),

(d/dy), (d/dz), — (l/c)(d/dt)) is contravariant and (0lt 02,03, 04) is covariant,

this condition is invariant. On momentum space it is equivalent to

(14) *«0i + ky<t>2 + ¿203 + ^04 = 0.

If 0 obeys (14) at time 2 = 0, it will obey it for all times since

exp(-(í'/£)/77)0t = exp ( — (i/h)tck)<t>i®exp (-(i/h)tck)<p2®exp (-(i/h)tck)<p3

©exp ( — (i/h)tck)<pt,. 'ißt, the set of all such 0f, is a closed linear manifold in

91 since it is the set of all square-integrable vector functions (<p\(k), <f>2(k),

<t>î(k), <pi(k)) perpendicular at each point k of momentum space to the given

vector (kx, ky, k2, k) also depending on k.

To every photon is assigned a contravariant wave-function 0 and a co-

variant wave-function 0f. 7®g' is a self-adjoint, unitary transformation of 9Î

which is an isomorphism of the subspace ^3 of all contravariant wave-functions

with the subspace $f 0I all covariant wave-functions. It permutes correspond-

ing elements: 7®g/ 0=0t, 7®g' 0f=0.
If 4 is any normal operator on 9Î, we define its expectation value in the

state 0 to be (40, 0f). This value is real for all 0 if and only if 4 =4f,
where 4t = (7®a')4*(7®g'), as follows from (40, 0t) = (0, (4t0)t)
= (4f0, 0t)*- So we define the observables in this theory to be those oper-

ators 4 such that 4=4f. In particular, any operator on 9Î of the form

A=B®I, where B is a self-adjoint operator on 22(E3), is an observable:

75®7= (P®7)f. For example, the probability that a photon will be found in

a region D of Euclidean 3-space is given by Pd®I, where Pd is that projec-

tion operating on %2(E3) as multiplication by the characteristic function of D.

Any photon 0 can be written 0=0#+0r+0*+0c< in such a way that the

four components 0#, 0f, 0¡t, 0c¡ are, as vector-valued functions on mo-

mentum space, at every point orthogonal to each other ; 0# and 0^ are orthog-

onal at k to k and represent horizontal and vertical polarization, \pk is parallel

to k and represents longitudinal polarization, and 0C( is orthogonal to 3-space

and represents scalar polarization. But the condition (14) (applied to con-

travariant elements) means Q-<pH(k)-\-0-(pv(k)-\-k<pk(k.)— k<pct(k) =0 for

every k, where the 0r for r = H, V, k, ct are complex-valued functions such

that 0r(A) =er(A)0r(A), the er(k) being the new orthonormal basis at k.

Therefore 4>k(k) =(f>ct(k). Consequently the longitudinal and scalar com-

ponents of the photon tend to cancel each other out of expectation values.

For example, the energy of 0 is given by (770, 0f) = (c&®70i©02ffi03©04,

01©02©03©-04)=e(¿0lffi¿02©¿03©¿04,     01 ©02 ©03 © ~4>i) = c(k(j>H,     <f>H)

+c(k<pv, 4>r)+c(k<j>k, 4>k)—c(k<pct, 0c() =c(k<f>H, 4>H)+c(k(pv, <pv) = (H(\pH+ipr),

(0H+0»Ot). The longitudinal and scalar components make no contribution.

The same is true of momentum and any function of the momentum operators.

Only the horizontal and vertical polarization states remain, and these have

the desired spin properties as already noted.
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Formation of expectation values by iAfa ^f) instead of by iAfa \(/) does

not change the fundamental postulates or methods of quantum mechanics as

given in [7]. In any fixed Lorentz frame this new method of forming expecta-

tion values can be reformulated so as to be equivalent to the old one. Only in

passing from one frame to another does the full mechanism of the new method

come into play in a manner which is not equivalent to the old.

Now that the single-photon theory has been taken care of, we can apply

the previously discussed method of second-quantization to obtain an electro-

magnetic field theory.

As the relativistically invariant metric on © we take the self-adjoint

unitary transformation g= Z,T..o©(^®9')tn) (fl f°r S. N. Gupta, whose paper

Theory oS longitudinal photons in quantum electrodynamics, Proceedings of the

Physical Society, vol. A63 (1950), p. 681, suggested this indefinite metric

and the consequent elimination of longitudinal and scalar photons). The

expectation value of any observable T on ©, in the state/, is given by (P/,/t)

where/t = gf. If Pt = 8^*8> then we require P| = P as before. In particular,

any operator of the form fl(.¡4) with A\=A is an observable since (ß(.4))t

= ß(^4f) by (7) and Theorems 3 and 1. Longitudinal and scalar polarization

states again cancel each other out as above.

We must redefine the field operators p and q in the obvious way: Pi$)

= ii/2V*)i[to,W)-itfii,p])~: Q(*) = (1/2»*) ([«.(*)+«Wt)])"\ *£», in
order to get relativistic invariance and real expectation values. The indicated

closures exist because [8, p. 30] the adjoints are densely defined. The com-

mutation relations ([0W, W)])1/2 = (l/2) W, *t)-(*. *'t)K, ([<2«0,

W)]f = (*/2)((*', W + ifa yp)I, ([PW, P(«//)])~ = (l/2)((¿', *t)
— i\p, \¡/']))I are proven exactly as in Theorem 11, and are unchanged except

that the standard inner product if-g) is replaced by the relativistic one (/-gt).

Because of the relations Qifa®p,•) = qifa®p¿), i=l, 2, 3, Qifa®pi)
= —ipifa®pi) we can still use the results of Part I and define the covariant

four-potential operators of the electromagnetic field by Aiifa=hqiH~ll2<f>

®Pi), i = l, 2, 3, $(0) = -i%piH-ll2fa®pA) where faS22iE3) is in the domain

of k'1 and k2 and H = ck®I is the Hamiltonian. hQiH~ll2fa®p) is a real-linear

function of p, so these quantities transform correctly under the Lorentz

group. The four-potential operators are observables because (-4,(0)) f

= $hqiH-1i2fa®pi)*Q = QhqiH-1i2fa®pi)Q = hqiI®t¿'H-1i2fa®pi) (by (7) and

Theorem 4) =^(i?-1'20®g'p¿) =¿¿(0), and ($(0))t = e(-^(H-1'20®p4))*g

= <¿iñpiH-1'2fa®pi)Q = ihpiI®Q'H-ll2fa®p4) =ihpiH-u2fa®qi'pi) =ihpiH~1<2<p

®-p4)=$(0).

By Theorem 11, ([Ai(fa,Ai(fa)])~=-([$(fa,$(fa)])~ = (ñ2/2)(((l/ck)fa,
0)~(0> (l/c&)0'))-f and all °f the cross-commutators are zero. But 0 and fa

will be distributions on E3 with respect to which field-strength averages are

computed, so they are both real-valued functions on E3. Then il/ck)fa is

also a real-valued   function on  E3 and  the inner  product  ((l/c&)0', 0)
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= (0, (í/ck)<t>') is real. Therefore, in all cases with which we will be concerned :

(15)       ([4,(0), -4,(0')])- = ([4,(0), *(0')])~ = ([*(*), *(0')])~ = 0,

i,j- 1,2,3.

In order to derive Maxwell's equations for the case in which there are

no charges present to interact with the field, let the energy be given by the

operator 12(77). Then the four-potential satisfies the Lorentz condition

V-4 — (l/c)(d/dt)$ = 0   because   by   (10)   and   Lemma   4  we   have   (V-A

-(\/c)(d/dtm(<p) = ((V-A)(<p)-(i/ch)([ti(H), <i>(<p)])~)~ = (Al(-(d/dx)<j>)

+A2(-(d/dy)<p)+A3(-(d/dz)<p))~-(\/c%)^(ick<p)^(Q(kx((-i/(ckyi2^)®Pl)

+ Q(k1((~i/(cky'2<t>)®p2) + Q(kz((~i/(ckyi2ct>)®p3) + Q(k(( - ¿/w2)0)
®p4)) . But if 0=0i©02©03©04G'í3 and \p'= kxcp'®ky<p'®k¿i>'®k<p',

then (0, 0f) = (0i, ¿*0') + (02, M>') + (03, ¿20')-(04, k(j>') = (kxcp1+ky<p2

+ fc203 - kepi, 0') = fff(kx<pi(k) + ky<p2(k) + h<p3(k) - ¿04(A))0(k) *dkxdkydkz
=SÎJW(k)*tâxdkydkt by (14) (applied to <ß instead of $f)- So (0, 0't)=O.
Therefore, if/ is any element of © representing a collection of photons (ele-

ments of $) and /„ = (7<»©7(1)© • • • ©7<">©0© •••)/, we have ((V-4

-(lA)(a/f3í)*)(0)/,/t)=limn((V-4-(l/C)(f3/a/)í.)(0)/,/„t)=lim„(/,(l/2)^2

(co*(0')+co8(0't))/nt)(letting0'=-(¿/(^)i/2)0in0') = Hmn(l/2)i/2((/,co8*(0')/nt)

+ (w*(0't)/„, /t))=lim„ (l/2)1'2(0+0)=0. The expectation values of

(V- A— (l/c)(d/d¿)<í>)(0) are always zero when the particles are photons.

Further: (D243-)(0) = (V24y(0) - (i/ch)( [ü(H),(i/ch)( [I2(77),4y(0) ] ])~)~f
= (Aj(v2<p)-(l/c2h2)i([12(77), Aj(ickd>)])~)~ = (Aj(-(i/h2)k2<p)-(l/c2h2)Aj

(-c2k24>))~=0. Similarly (D2^)(<f>)=0.

It is easily seen that if a photon is horizontally polarized (as previously

defined), then the corresponding electric vector is horizontal also and the

magnetic vector is vertical—both perpendicular to the direction of motion

of the photon.

Planck's relation E = hv, where £ is the energy of a single photon and v

the frequency of the induced field, also follows directly.

Since 12(4) and q(<j>) do not in general commute, we are usually unable

to determine, simultaneously, particle-like and wave-like quantities. This

was to have been expected since the particle and wave concepts represent

complementary (in the sense of Bohr) aspects of reality. For example,

number-of-photons N (a particle-like quantity) and frequency v (a wave-like

quantity) must obey an uncertainty relation dN-dv^l. A spectroscope tries

to determine the intensity (number-of-photons) of that light having a certain

color (frequency). These two observables do not commute, so there is a

natural broadening of all spectral lines. The same effect prohibits high fidelity

radio transmission on a narrow broadcast band. The particle-like observables

12(4) are reduced by each SR(B), whereas the wavelike observables E(<p) and

77(0) are not—every reaction of the field upon a measuring instrument is

accomplished by the annihilation and creation of photons.
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