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0. Introduction

0.1 We consider in the present communication the space 21 consisting of

all almost periodic continuous functions on the real line. For our purposes, it

is convenient to describe 21 as the set of all uniform limits of trigonometric

polynomials

n

0.1.1 E ct^e''** (t, real, a, complex).

Our aim is, first, to present two realizations of the space 21* of all bounded

complex linear functional on 21, and, second, to use these realizations for

the study of positive definite functions which are not necessarily continuous.

In this fashion, we obtain a generalization of Bochner's representation theo-

rem for continuous positive definite functions as well as various facts concern-

ing positive definite functions and their structure.

0.2 Throughout the present paper, the symbol R denotes the real num-

bers, considered either as an additive group or as a field; K the field of com-

plex numbers; T the multiplicative group of complex numbers of absolute

value 1 ; Tm the complete Cartesian product of m groups each identical with

T, m being any cardinal number greater than 1. The characteristic function

of a subset B of a set X is denoted by \b- If G is any locally compact Abelian

group, we denote the group of all continuous characters of G by the symbol

G]. G] is given the usual compact-open topology. If X is any topological

space, we denote the set of all complex-valued continuous functions on X

which are bounded in absolute value by the symbol &(X). The space of all

trigonometric polynomials 0.1.1 is denoted by ^3; the space of all almost

periodic continuous functions on R by 21. For a normed complex linear space

8, we denote the space of all bounded complex linear functionals on 8 by

the symbol 8*.

1. The group bR

1.1 Following Weil ([l] and [2, pp. 124-139]) and Anzai and Kakutani

[l](1), we imbed the group R in a compact group, by the following construc-
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(l) Numbers in brackets refer to the bibliography at the end of the paper.
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tion. Let c be the cardinal number of the continuum. Then Tc is representable

as
P   7(0

where each Tit) is identical with T. The mapping

1.1.1 x-y {eitx)tE.R - $(*)

is plainly a continuous (but not bicontinuous) isomorphism carrying R into

Tc. The group $(R) has a topology induced by that of T"; we denote the

group $(R) with this topology by the symbol Rw. The closure bR of Rw in

Pc is a compact Abelian group, which we call the Bohr compactification of

R(2).

1.2 Theorem. The group bR] is the group Rd, defined as the additive group

R under its discrete topology.

Let tÇL\R be a fixed index, and let x= {x(t) ) ig¡¡ be a given element of bR.

Since bR is a subgroup of Tc, it is clear that the function irt, where irt(x) =x(/),

is a continuous character of bR. It is also clear that 7Til+i2(x) = 7r,,(x) -7Tí2(x)

and 7T_((x) = (7r<(x))_l, for all x(ELbR, since these relations are valid in the

dense subgroup Rw of bR. It follows that the characters irt form a subgroup of

bR], algebraically isomorphic to R and of course having the discrete topology.

To show that there are no other continuous characters on bR, we use the

fact that every continuous complex-valued function on bR is arbitrarily

uniformly approximable by complex linear combinations of characters

Ti(x)(8). Assume that/ is a continuous character on bR distinct from all irt.

Then for every e>0, we have a complex linear combination E"-i a'n't, such

that sup^&B |/(x)— E"-i ««■""'„(x) | <€- Denoting Haar measure on bR by

» and taking \(bR) = l, we have, in view of known orthogonality relations

(2) Note that our terminology differs somewhat from that of Anzai and Kakutani [l]. We

also observe that the manoeuver used here exemplifies a process very common indeed in the

study of function spaces and function rings. We select a certain subset ® of the set of all

bounded continuous complex functions on a given topological space X, and imbed the space X

in a direct product of complex fields, one factor-space for each gÇ.®, by x-*\g(x) ¡s£®. The

closure of the image of X is a compact Hausdorff space on which the space of all continuous

complex functions may be identified with the smallest uniformly closed ring containing ®, on X.

If © is all bounded continuous complex functions and X is completely regular, we obtain the

well known space ßX (discussed, for example, in Hewitt [l, pp. 53-67]). If X is a locally com-

pact Hausdorff space, and ® is all continuous complex functions vanishing outside of compact

sets, we obtain Alexandroff's completion of X by adding a point "at infinity"; and so on. In

the present case, all functions in © have absolute value 1, so that we may use T in place of K

in forming the mappings referred to.

(3) This follows immediately from the complex form of the Stone-Weierstrass theorem

(Stone [l]), as the functions t, are a separating family, and the ring of all 2^,_i «►"■i, >s closed

under complex conjugation.
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(Weil [2, p. 78]), that

f    | /(x) \2dx(x) =   f   [ I fix) \2 - E «,»«,(x)7(F)]¿i(x)

1.2.1 =  f   \ f(x) | • | fix) - E own.« | dxix)
J bR

/(x) — E «,T(,(x) | ¿»(x) < e.
-/

This obvious contradiction shows that bR]=R¿.

1.3 Theorem. PAe space (£(W?) is identifiable with the space 21, as a linear

space, as a ring, and as a normed linear space under the uniform norm. The cor-

respondence^:

1.3.1 E a»,e%'yx —> E «»""«r («, G A0

¿s a mapping of the ring of functions ^3 onto the ring of all linear combinations

of characters irt, which preserves sums, products, and scalar multiples; and

which has the property that

1.3.2 sup E a" sup E ot,Tv,r(y)

ty thus admits an extension carrying the completion 21 of ty onto the completion

(5(W?) of the set of functions E*=i at'lrtr, under the norms written in 1.3.2. This

extension is a norm-preserving algebra-isomorphism of 21 onto S(ôi?).

The only assertion here needing verification is the equality 1.3.2.  We

note that for fixed xÇLR and ¿£P, ei<x = 7rí((í>(x)). Hence we have

1.3.3 sup £«. e"v* sup E «»T(,(*(*))

As Rw is dense in bR, we have sup^gÄ |g($(x))| = supyg«e |g((y)|   for all

gGS(6P), and 1.3.2 is verified.

1.4 Theorem. The character group R¿] is the group bR; the value of the

character xC.bR at the point tÇL\Rd being the number irt(x). This character

7r¡(x) is continuous in I (usual topology) if and only if x£P,0. Thus the points

of Ru, correspond to continuous characters of R and the points of bRC\R'w to

discontinuous (and hence nonmeasurable) characters of R.

Pontryagin's duality theorem (see Weil [2, p. 108]) shows that bR

= bR]]=Rd]. The characters of Ra, in accordance with this duality, are all

of the form 7Tí(x), with x fixed in bR and t variable in Rd. Since the continu-
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ous characters of R all have the form ir «($(*)) = eitx (x fixed in R, t variable

in R), it is clear that every function of t irt(x) with x(£Rm must produce a

discontinuous character of R, and conversely.

We note also the following representation for bR.

1.5 Theorem. The elements of bR are all complex functions f on the real

line R such that for every e>0 and t\, h, ■ • • , i„£i? there exists a real number

x such that \eit,,x— f(tr)\ <e (v=l, 2, ■ ■ ■ , n). The functions in bR are all

of the characters of R; those not of the form eitx<> for some fixed x0£i? are discon-

tinuous and therefore nonmeasurable.

1.6 Remark. The foregoing can all be carried out for an arbitrary locally

compact Abelian group G, as Anzai and Kakutani [l] have observed. We

have gone through the construction again because our subsequent discussion

requires it.

1.7 Remark. The argument used in 1.2 shows that if G is a compact

Abelian group and 77 is a proper subgroup of G], then there exists x^e in

G such that A(x) = 1 for all A £77. This fails in general for non-compact locally

compact Abelian groups, as the group of characters {eirx}, r rational, shows

for the case G = R.

2. Representations for 21*

The function-space 21 has two distinct realizations, according to 1.3. Ac-

cordingly, we may expect two distinct realizations for the conjugate space

21*. The first of these is well known.

2.1 Theorem. The space 21* is realizable as the space of all complex-valued,

countably additive, regular Bor el measures y on the space bR. For /£2l and

Af£2I*, we have

2.1.1 l£if)=  f  f(x)dy(x)
J bR

and

2.1.2 ||17|| =   f   d\V\(x) =\V\(bR)(*).
J bR

The correspondence M—>y defined by 2.1.1 is a norm-preserving linear space

isomorphism carrying 21* onto the space of measures y as described.

The existence of a unique y satisfying the conditions above follows at

once from the Riesz-Radon-Kakutani theorem for real-valued continuous

(4) For measure-theoretic terms not explained here, see Halmos [l]. The measure \p\ for

complex n is defined by |ju| (A) =sup 2I¡Li |fC<4p)| for all Borel sets A, the sup being taken

over all finite families {^4v}"_j of pairwise disjoint Borel sets with union A. The theory of this

measure is set forth in Hewitt [3].



1953] LINEAR FUNCTIONALS ON ALMOST PERIODIC FUNCTIONS 307

functions on compact Hausdorff spaces (see Kakutani [l, p. 1012, Theorem

10]) if we write the functional If as (Mx — M¿) +i(M3— Mi), where the M, are

non-negative linear functionals (v = \, ■ ■ • ,4). The equality 2.1.2 is proved

in Hewitt [3, Theorem 1.3]. The last assertion is obvious.

We obtain a new representation for 21* by confining ourselves to the

space RwCZbR and considering our almost periodic functions as being defined

only on this space. We first consider some important sets.

2.2 Definition. Let A be any bounded nonvoid subset of Rw, and let a

be any real number ^ sup A— inf A. (We use here the ordering of R.)

The set Aa is defined as the set of all x£Pw such that x+naÇ.A for some

n, « = 0, ±1, ±2, ±3, • • • .
2.3 Definition. Let £ be the family of all subsets of Rw having the form

UtLi(f~l"£i Gj,k), where each set G¡,k has the form Ia for some open interval 7,

and let J be the family of all sets Z such that Z' ££. Let 6* be the smallest

algebra of sets containing £.

2.4 According to a theorem of E. Feiner [l ], the sets in J are precisely the

sets having the form E[x; x£Pw, f(x) =0] for/£2Í, and thus the sets in £

are precisely the sets which have the form E[x; x£P„„ |/(x)| >0] for/£2I.

We shall be concerned with finitely additive, complex-valued, bounded

measures defined on the algebra £*. For the definition and elementary prop-

erties of finitely additive real-valued measures, see Yosida and Hewitt [l].

The definition of a complex-valued finitely additive, bounded measure is

obtained by writing "complex" for "real" in the definition given loc. cit.

2.5 A non-negative finitely additive measure </> defined on £* is said to be

regular if for every A ££* and every e>0, there exists a set Z£J and a set

P££ such that ZC^CP and tj>(Pr\Z') <e. A complex finitely-additive

measure on £* is said to be regular if the positive and negative parts of its

real and imaginary parts are all regular. For a complex finitely additive

measure <¡> on any algebra of subsets lit of a set X, we define the measure \<¡>\

by the relation

n

2.5.1 \<¡>\(A) = supEUODl,
r—1

the supremum being taken over all finite families of pairwise disjoint sets

{^4„}"=1 in "M whose union is A. It is easy to prove that | <j>\ is a non-negative

finitely additive measure on 9st and that it is the smallest non-negative meas-

ure which exceeds the set-function J 0 (^4 ) | for every A £2»f.

We now state and prove a second representation theorem for the conju-

gate space 21*.

2.6 Theorem. Let M be an arbitrary element of 21*. Then there exists a

bounded, regular, complex-valued, finitely additive measure ¡j, on the algebra of

sets £* smcA that
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2.6.1 Mif) =   f   f(x)dp(x)(»)
"Mm

for all/£2l. If pi and p2 are distinct measures of the type described, then the

functionals

2.6.2 f  f(x)dpj(x) ij" 1.2)
JR„

are distinct. For M and p as in 2.6.1, we have

2.6.3 ||M|| =   f   d\p\ (x) = \fx\ (R„).

The correspondence M—*p defined by 2.6.1 is a norm-preserving linear space

isomorphism carrying 21* onto the space of measures of the type specified.

By making an obvious reduction, we confine ourselves to non-negative

linear functionals in obtaining the representation 2.6.1. This representation

has been established elsewhere for a general class of function spaces which

includes 21 (see Hewitt [2]). We recall the definition of p when Misgiven. For

a set P££, we define p(P) as

2.6.4 supifcf(/),

the supremum being taken over all real-valued /£2i such that 0 :£/=» Xp- F°r

an arbitrary subset 5 of Rw, we define p(S) as

2.6.5 inf      p(P).
pg£,pds

The sets measurable in the sense of Carathéodory form an algebra containing

£* on which p is finitely additive(6). It is easy to see that for a set Z£J, we

have

2.6.6 p(Z) = inf M(f),

the infimum being taken over all real-valued /£2I such that xz=f- It is

obvious that the p defined by 2.6.4-2.6.5 is regular. Let pi and ju2 be distinct

real-valued, finitely additive, regular measures on £*. Then there is a set

P££ such that pz=P2 — pi is different from 0 on P; we may assume

ju3(P)>0. It is easy to see that ps is regular, i.e., the positive and negative

parts pf and pä are regular, and we can select a Z£ J such that ZCP and

(5) This integral is defined by Lebesgue sums just as for countably additive measures.

(6) After the publication of Hewitt [2], we were kindly apprised by Dr. E. Feiner of the

results in Bochner [2], where a construction is given (Theorem 1, p. 773) for a finitely additive

measure very like that in Hewitt [2 ]. Bochner's measure is defined on a field in general smaller

than ours, however, as his example at the bottom of p. 776 shows. Where it is defined, of course,

Bochner's measure is identical with ours.
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p£(Pr\Z'), p^(Pr\Z') are both less than an arbitrary positive number -q.

As noted in 2.4, there exist/ and g£2I such that/ = 0 precisely on Z and

g = 0 precisely on P'. The function A= \g\ /( / +|g|) is clearly in 21 and

satisfies the inequalities XP = h^Xz- By selecting r¡ appropriately, we can ob-

tain the inequalities fRah(x)dp3(x) ^p%(Z) —pt(P(~\Z') —pï(PC\Z')>0. Hence

distinct real p's give distinct integrals, and similarly for complex p's. If we

start with an M£21*, define from M a measure p by 2.6.4-2.6.5, and then a

functional M' as the integral fRvJ(x)dp(x), it is proved in Hewitt [2] that

M=M'. If we start with a regular measure p, define the functional M(f) as

JnJ(x)dp(x), use M to define a measure p' by 2.6.4-2.6.5, and then define a

functional M' as fRwf(x)dp'(x), then M—M' and, by the uniqueness estab-

lished above, p=p'. This shows that the mapping M-^>p is one-to-one and

carries 2Í* onto the space of all regular, complex, bounded, finitely additive

measures on £*.

It remains to establish 2.6.3. For /£2I such that supX£:äJ/(x)| = ||/|| = 1,

let y."., f(x,)p(A„) be within e (in absolute value) of the integral fRwf(x)dp(x).

It is clear that

¿ f(xv)p(Av)    £ ¿ | p(Ar) | £ | M | (*.).

Thus \\m\\ ^ |ju| (i?,„). To verify the reverse inequality, let 5 be a positive real

number and let {^4„}"=i be a family of pairwise disjoint elements of £* such

that U"_! Ay = Rw and E"-i |mG4»)| +«> | A*| (Rw)- (We may assume that all

p(Ar)¿¿0.) Let Z,QA, be sets in J such that \p(Q)\ Ken-1 for all ÇC^„P\Z/.
Let/, be a function in 21 which vanishes exactly on Zv, and let g, be a function

in 21 which vanishes exactly on \Jj*v Z¡. Define A as

"     p(A,) | g,\

„=l   | /i(^,) I    I /, ¡ + I g, I
A simple computation shows that

r h(X)dp(x) ^ ¿ i pía.) i - €,

and 2.6.3 is thus established.

2.7 Theorem. Let p be any measure of the kind described in 2.6. Then p is

completely determined by its values on sets of the form Ia, where I is an interval

(a, b) and b — a^a.

Theorem 2.6 shows that the measures ¿i may be identified with functionals

in the space 21*. It is easy to see that if p is known for all sets 7„, then the

integrals f-aeltxdp(x) are determined for all t. Since polynomials E"-ia!'ei!'"T

are dense in 21, we see that the functional defined by p, and hence p itself,
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are determined by the numbers p(Ia)-

2.8 Theorem. Let <j> be any countably additive complex-valued measure of

finite total variation defined for all Borel sets in R. Then <p is completely de-

termined by its values on sets Ia (I an interval (a, b), b — a^a).

By the uniqueness theorem for Fourier-Stieltjes transforms, <j> is com-

pletely determined by fl„eitxd<p(x) (— <x> <t< + <x>). Then repeat the ob-

servation of 2.7.

3. Representation of positive definite functions

Throughout the present section, we identify P„ and 7^.

3.1 Definition. A complex-valued function p(t) defined on the real line

is said to be positive definite if

3.1.1 ¿ ¿ í(¿„ - i.)«Ä è o

for all pairwise different h, t2, • ■ ■ , ¿m£P and all ct\, • • • , amÇzR~.

We recall the well known theorem of Bochner [l, pp. 74-76] dealing with

positive definite functions which are continuous, and state this theorem in

terms of the measures now under consideration.

3.2 (Bochner's Theorem). Let p be a regular, bounded, non-negative

measure on £* which is countably additive^). Then the Fourier-Stieltjes trans-

form

3.2.1 f   eitxdp(x)
J —00

is positive definite and continuous; conversely, if pit) is any continuous positive

definite function, there exists a regular, bounded, non-negative real measure p

on £* which is countably additive and for which

/to eitxdp(x).
-00

Our aim here is to generalize 3.2 so as to represent all positive definite

functions by means of integrals 3.2.1.

3.3 Theorem. Let p(t) be an arbitrary positive definite function on R. Then

there exists a unique, regular, bounded, finitely additive, non-negative real measure

(7) The measure ¡x, defined only on the algebra of sets £*, is said to be countably additive

if 5Zr_i m(-4»)=m(U"_i-^») for all families {^„¡„^of pairwise disjoint sets in £* for which

U"_j v4£ Ê*. It is a classical theorem that such a measure admits a unique countably additive

extension over the o--algebra generated by £* (which is clearly the «--algebra of all Borel sets).

See Halmos [l, p. 54].



1953] LINEAR FUNCTIONALS ON ALMOST PERIODIC FUNCTIONS 311

p on £* such that

e"xdp(x), - » < t < + oo.
-00

Conversely, if p is any such measure, the Fourier-Stieltjes transform

eitxdp(x)
-00

is a positive definite function.

This theorem is easily inferred from the foregoing and the generalized form

of Bochner's theorem for arbitrary locally compact Abelian groups. (See

Weil [2, pp. 121-122], or Cartan and Godement [l, p. 89].) If we consider

the group bR and its character group i?<j (1.2), we see that the Radon meas-

ures treated by Cartan and Godement are, on the group bR, exactly the

measures described in 2.1. The generalized Bochner theorem asserts that

every continuous positive definite function p(t) on bR]=R<¡ has the form

3.3.3 pit) =  f   7r1(x)áy(x),
J bR

7Tt being as in 1.2, and y being a non-negative regular Borel measure on bR.

Since Rd is discrete, it follows that every positive definite function admits a

(unique) representation 3.3.3. From 2.1, we see that 3.3.3 may be rewritten

3.3.4 pit) - Jf,(T((x))(»),

for a positive linear functional on E(W?). In view of the equivalence between

S(&P) and 21 established in 1.3, we find

3.3.5 pit) = Mxieitx),

where M is a non-negative linear functional on 21. It remains only to apply

2.6 to guarantee the existence of a measure p on £* satisfying the conditions

set down and for which 3.3.1 obtains. Uniqueness of p is obvious, as is the

second assertion of the present theorem.

3.4 Remark. We are now in possession of a triple of mathematical ob-

jects: the non-negative, regular, finitely additive, bounded measures on £*;

the non-negative, finite, regular, countably additive Borel measures on bR;

and the set of all positive definite functions pit) on the line R. These objects

are equivalent in the sense that they all represent uniquely the non-negative

linear functionals on 21. It is an interesting and nontrivial problem to describe

specified properties of say a positive definite function in terms of properties

(8) The subscript x indicates that the linear functional M operates on ir,(x) as a function

of x.
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of the two measures which give rise to it. The following sections are devoted to

such problems.

3.5 The analogy between 3.3 and the usual form of Bochner's theorem

appears incomplete, inasmuch as the measures appearing in the latter are

countably additive Borel measures, while the measures mentioned in 3.3

are defined only on the subalgebra £* of the Borel sets. However, a measure

needs to be known only on a part of £* in order to integrate the functions

eitx (2.8); so that we lose nothing by considering our measures only on £*.

On the other hand, every finitely additive measure on £* can be extended

over all Borel sets so as to remain finitely additive. This extension is highly

non-unique, however, and it seems best to express our results in terms of £*

alone.

3.6 It is known that every finitely additive measure <¡> on an algebra of

subsets Mofa set X (real-valued and bounded) can be written uniquely as

a sum 4>c+4>p, where <pc is countably additive and <pP is purely finitely addi-

tive. (See Yosida and Hewitt [l].) With this in mind, we define pure dis-

continuity for positive definite functions.

3.7 Definition. A positive definite function p is said to be purely discon-

tinuous if there is no nonzero continuous positive definite function q such that

for some positive definite q', p = q+q'.

3.8 Theorem. Every positive definite function p can be uniquely written

in the form pc+pd, where pc is continuous and pi is purely discontinuous.

This follows at once from 3.6 and 3.3.

4. Relations between the measures p and y

It is of some interest to sketch the relations existing between the meas-

ure^ on Rw and the measure y on bR which represent a given linear functional

M on 21. We note that Rw is a subset of bR which is the union of a countable

number of compact sets (the intervals — n^x^n retain their usual topology

in Rw) which are necessarily closed in bR. Hence Rw is an F, and is a Borel

set. Therefore every Borel set in Ra is y-measurable, and we can examine y

both on Rw and on bRC\R'm. Measures p, on the other hand, must be examined

on Rw alone.

4.1 Theorem. If y is a non-negative measure as in 2.1, then y=yi+y2,

where yi(^4) = \f(Ar\Rw) and }a2(A) =^(Ar\R'w) for all Borel sets ACZbR.

yi = 0 if and only if the Fourier-Stieltjes transform 3.3.3 is purely discontinu-

ous; and\i2 = 0 if and only if the Fourier-Stieltjes transform 3.3.3 is continuous.

The proof is simple and is omitted.

4.2 Theorem. The invariant integral J on 6(ôP), normalized so that J(l)

= 1, is represented as Bohr's mean value
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1   rT
4.2.1 lim - I    f(x)dx =

r— 27 J_r
J(f)

on the function-space 21.

This assertion is apparent from the fact that the invariant integral is de-

termined from its values on characters, and on these must be 1 or 0 as the

character is 1 or not. As J has this property on 21, it must coincide with the

invariant integral.

4.3 Theorem. The Haar measure \ of Rw(ZbR is zero.

Let [a, b] be a closed bounded interval in Rw, and let a be a number

greater than h—a. It is obvious that there exists a continuous function/„

with period a such that / is non-negative, /= 1 on [a, b], and f\+af[x)dx

<2(b — a). Being continuous and periodic,/is in 21, and a simple computation

shows that J(f) = (l/a)ß+af(x)dx. The function / obtained by extending/

continuously over bR is 2:1 on [a, b]CZRw and has the property that J(f)

= J(f)<2ib-a)/a. The Haar measure i of [a, b] is ^J(f) <2(0-a)/a for all

a>ib—a), and hence is 0. As t is countably additive, it follows that i(i?„) =0.

4.4 Theorem. A measure y with continuous Fourier-Stieltjes transform

has the property that |y|(P¿)=0, and is therefore singular with respect to

Haar measure on bR.

We may obviously take y2j0. If p(t) = fbR7rt(x)d\i(x) is continuous, then

by Bochner's theorem, p(t) = /"„eitxdpi(x) for some countably additive, non-

negative Borel measure pi on Rw. By the uniqueness theorem for Fourier-

Stieltjes transforms on bR, we have y=jui> and thus |y| (R'w) =0. Since \(RW)

= 0, it follows that y is singular.

4.5 Theorem. If /£Si(öP) and f^O almost everywhere, then

fbRirt(x)f(x)di(x) is a purely discontinuous positive definite function, and the

measure <p on £* corresponding to this function is purely finitely additive. In

particular, if E^-i \aA < °° and {t»\7-i is a sequence of real numbers, then

the almost periodic function ET=i cireu*x is 2:0 everywhere if and only if the

function Er=i «fXi<„)(0 Jí positive definite; and all such functions are purely

discontinuous.

This follows immediately from 4.1.

4.6 Definition. Let x be a point in bR. The measure tx is defined for all

subsets A of bR by the relation

(Í    for    x£^,

l0    for   x £.4.

4.7 Since 21 is a Banach algebra as well as a Banach space, we may study
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the measures co of the kind described in 2.6 which produce algebra-homo-

morphisms of 21 onto K, i.e., for which

/+«> y» oo *• oo

f(x)g(x)dco(x) =   I    f(x)dwix)-   I     g(x)dco(x).
-00 J -00 J -00

Representing 21 as Ë(èP), we use a well known fact to assert that the meas-

ures y as described in 2.1 which preserve products are exactly those of the

form ex for some x in bR. It is clear that the finitely additive counter-

parts co of ex (x£PTO) on the algebra £* must be of a peculiar kind. As we

shall see in Theorem 5.2, the measures w are closely connected with non-

Lebesgue measurable functions of t, so that a complete description of these

measures is beyond our reach. Nevertheless, we have some information about

them.

4.8 Theorem. A finitely additive regular measure co on £* is multiplicative,

in the sense that 4.7.1 is satisfied for all f, g£2l, if and only if co assumes only

the values 0 and 1.

Let L be any algebra-homomorphism of 21 onto K, and let X and X be the

measures on Rw and bR respectively which represent L. As à is a measure

ex for some x£W?, it is clear that L is a non-negative functional and that X

is a non-negative measure. Since 7,(1) = 1, it is clear that 0^X(^4) ^ 1 for all

vl££*. If 0<X(,4)<1 for some ^4££*, there must be a P££ such that

0<X(P)<1. Since X is regular, there is a set ZGJ such that ZÇLP and

X(Z)>X(P)/2. As shown in the proof of 2.6, there is an /£2l such that

Xz^fSxp- It is clear that X(Z) ̂ L(f) gX(P). However, L(fn) = (7,(/))", and

asxz^/n^Xp(« = 1.2,3, • ■ • )wehaveX(P)/2^(X(P))"forra = l,2,3,

an evident contradiction. Hence X assumes only the values 0 and 1.

To establish the converse, suppose that co is a finitely additive measure

(not necessarily regular) on £* assuming only the values 0 and 1. Using the

identity iu+v)2 = u2 + 2uv+v2, we see that it suffices to verify 4.7.1 for the

case f=g. Suppose  that / is real.  Let a = 'mfxGRm fix), j3 = supießu> fix);

An,k = E[x; xGRw, 2""{(2" - k)a + kß]

^ fix) < 2-"{(2- - k-l)a+ik+ 1)0} ]

for « = 1, 2, 3, • • • and k = 0, 1, • • • , 2n —2; and Anjp-i by replacing "<"

by "a" in the last inequality defining i,,j. Since co assumes only the values

0 and 1, it is plain that we have a sequence of sets Ai,k¡; A2,k¡; Az,k%\ • ■ • ;

An.k»; • • • all of co-measure 1 and such that limn,œ/(x„) =lim„,oo 2~"An = o; for

any sequence x„£yl„ijfcB. It is also plain that fuwfix)dcoix)=a, and that

jRwP(x)dco(x) =a2. Complex/'s are handled by a brief computation, and the

present theorem is thus proved.

It seems likely that all 0-1 measures on £* are regular, but we have been

unable to decide this point.
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4.9 Remark. Theorem 4.8 gives us another representation for bR. In-

deed, bR is represen table as:

4.9.1 the closure of Rw in Pc(l.l);

4.9.2 the space of all algebra-homomorphisms of 21 onto K, given the

weakest topology in which these homomorphisms are continuous functions;

4.9.3 the space £2 of all regular finitely additive measures on £* assuming

only the values 0 and 1. For a given P££, a neighborhood AP consists of all

co such that w(P) = l, and is assigned as an (open) neighborhood of every

point it contains. (We define AA analogously for all A £ £*.)

Representation 4.9.2 is very well known and needs no further discussion.

Representation 4.9.3, which we shall use in the sequel, is discussed in 4.10

below. (A representation somewhat like 4.9.3 has been described in another

connection (see Yosida and Hewitt [l, Theorems 4.1-4.3]).) 4.9.1 is the

only one of the representations in which the group operation is evidently

definable. It is far from obvious that 4.9.2 and 4.9.3 actually define compact

Abelian groups. Representing bR as Rd] (1.4), we see by a Hamel basis argu-

ment that the cardinal number of bR is 2C. Hence there are 2C 0-1 measures

on £*, and obviously 2C of them are not of the form tx for x£P„.

4.10 Theorem. The space £1 of 4.9.3 is homeomorphic to the space bR.

Points of Rw correspond to measures ex with x£i?„. The correspondence

4.10.1 P->Ap

Aas the properties that

4.10.2 Apuq = ApVJ AQ,

4.10.3 APno = ApPiAQ,

and

4.10.4 (Ap)' = A,.'.

We first verify 4.10.2 and 4.10.3. If w(P) =«(<3) =0, then i»(PU0
=coiPr\Q')+coiP'r\Q)+coiPr\Q) =0, and therefore ApU0CApVJAQ. Con-
versely, if co(P) = 1, then 1 =w(P) gw(PUQ) £1, and hence 4.10.2 is verified.

If coiPr\Q) = l, then we have 1 =co(PnÇ) gco(P), co(Ç?)^l. Conversely, if

w(P) =«((?) = 1, then we have

i = co(p u Q) = co(P' n Q) + co(p r\ Q') + ioiP r\Q) = co(p r\ q).

Hence 4.10.3 holds. From 4.10.3, we see that the intersection of two

neighborhoods is a neighborhood, and thus ß is a neighborhood space.

To verify that Q is a Hausdorff space, let coi and co2 be distinct points of fí,

regarded as points of bR. Then there are continuous functions /x and f2 on

bR such that /,• is non-negative, //«y) = 1 fj'-i, 2), and £[/i>0]n£[/2>0]

= 0. WritingPj as RwC\E[tj>0], we see immediately that APlP\APl = 0, and
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that coj(EAPj ij=i, 2). It is evident that the natural mapping of the com-

pact Hausdorff space bR onto the Hausdorff space 0 is continuous, and

therefore Í2 is compact and homeomorphic to bR.

4.11 Theorem. Let M be any bounded linear functional on 21, and let p

and y be the measures on Rw and bR respectively which yield integral representa-

tions for M. Under the correspondence 4.10.1, we have

4.11.1 m(P)=v(Ap).

p is determined on the algebra of p-measurable sets by its values on £ ; and y on all

Borel sets in bR by its values on {AP}pgg. Hence p and y are identical on the

algebras generated by £ and {AP) P^£, respectively.

We may obviously suppose that M is a positive functional. In accordance

with 2.6.4, we note that p(P) =suPos/áxi> Mif). Now consider the extension

/ of / for an arbitrary / such that 0 ;£/g xp- Clearly / assumes only values in

the interval [0, l]. If co£(AP)'=Ap., then f"J(x)dco(x) = fP.f(x)dco(x) =0,

and 7 = 0 at co. Hence 0;£/:£xAp. Since y(Ap) =sup Mil), over all /such that

0^/^XAp. it follows that /¿(P) ^y(Ap). Conversely, if 0^/^xap. it is

obvious that the contraction / of / to Rw satisfies the inequalities 0 ^f^xp,

and from this 4.11.1 follows. To see that p is determined by its values on £,

we note that piZ) =p(Rà) —piZ') for Z£J, and that p's values on all A £ £*

are determined therefrom by regularity. The same argument applies to y.

It is now clear that the algebras generated by £ and {Apjpgg are iso-

morphic and that p and y have equal values for corresponding elements.

4.12 Remark. Most of the measures p are purely finitely additive, while

all of the measures y are of course countably additive. It follows that p and

y cannot possibly be in general identical on the cr-algebras generated by £

and {Apjpgg; and it is of some interest to see what happens to the algebra

£* when we go over to the corresponding algebra generated by (Apjpgg.

For a non-countably additive, non-negative p, there exists at least one se-

quence PiD ■ • • PnD • ■ • in £ with void intersection for which

limn,M /x(Pn)>0. The space bR, which contains all Ap„, provides points in

nT=i Apn so that y(limn<00 ApJ =lim„^M y(ApJ, in accordance with the de-

mands of countable additivity. An extreme example of this phenomenon is

provided by the functional 7,(7) = fbitf(x)a(x)di(x), where a(^0) is any func-

tion in 2i(bR), which for convenience we take to be non-negative. Let the

measures corresponding to L be X and à. Write Qn for the set E[x; x£i?«,,

|x| >»]. It is clear from 2.4 that (?„££, and from Theorems 4.3 and 4.11,

we infer that X(Ç„) =2i(At>J = X(P„) = X(bR). Thus lim„^o MQn)=MRw)
^X(lim„^oo Qn) =0. However, lim„.oo A0n = ôPP\P£,> as one sees immediately,

so that we have

3i(lim A0„) = X(bR H R'w) = X(bR) - X lim (AçJ.
n—►» n-+»
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4.13 Finally, we consider the operation of convolution, which can be

carried out on measures p, measures y, and functionals in 21*. The formula

4.13.1 L*M(f) - Lx(My(f(x + y))),

where the subscripts x and y indicate the variable with regard to which the

functional is to be applied, defines a functional L * M, the convolution of L

and 17, for every L and M in 21*. This is a particular case of a situation dis-

cussed, for example, in Hewitt and Zuckerman [l]. If X and p are the meas-

ures on£* corresponding to L and M, respectively, and X and y similarly Borel

measures on bR, then we obtain new measures X * p and X * y corresponding

to 7, * M. Plainly L * M(eitx) =L(eitx)M(eitx). For a Borel set A QbR, it can

be shown that X *y(.<4) = fbüX(A — x)ây(x); a similar formula is valid for X * p

and J££*.

5. Examples

We turn now to a description of a few discontinuous positive definite

functions and the measures p and y associated with them. We have first:

5.1 Theorem. Let G be any additive subgroup of R. Let p be any positive

definite function on R. Then the function q = pxo is also positive definite.

Consider the form

N

5.1.1 E  ?(';- tk)ßißk,
t,k=l

for h, ■ • • , /at£P and ßi, • • • , j3jv£7<'. Let h, • • • , tn be those t's which

are in G. Then t¡ — /*£(? for l^j^n<k^N, and 5.1.1 is therefore equal to

n N

5.1.2 T, P(tj - tk)ßjßk +    E    q(t,-tk)ßßk.
j,k=\ j,jfc=n+l

If no th n^j^N, has the property that t¡ — tk(EG for some k, n^k^N and

jr¿k, then the second summand in 5.1.2 reduces to

5.1.3 E P(0)ßßi-
J-1+1

If some tj, say tn+u has the property that tn+\ — 4£G for certain &'s>« + l,

let tn+2, ■ • ■ , tni be these /*'s. Then, since G is a subgroup, it is plain that

t,— tkGG for n + i gj, A^wi. We may thus write

N m N

5.1.4 E    q(tj - tk)ßßk =    E    P(ti - tk)ßßk +   E    q(tj - tk)ßßk.
J,fc=n+1 J,fc=*n+1 j.h*ni+l

An obvious induction completes the proof, showing that 5.1.1 is always non-

negative.
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Theorem 5.1 gives us a method of obtaining a large class of positive

definite functions, all of them discontinuous if G is a proper subgroup of R.

However, we fail to obtain all discontinuous positive definite functions in this

fashion, as the next theorem shows.

5.2 Theorem. Let tp(t) be an arbitrary character of the group R<¡. Then <p

is the Fourier-Stieltjes transform 3.3.2 of a 0-1 measure co on £*, or, equivalently,

the transform 3.3.3 of a point-measure ex in bR. Conversely, all such transforms

are characters. The character <j> is continuous if and only if x£PM, or equivalently,

the measure co is countably additive.

This assertion follows from 1.4. Given a character <¡>(t) of Rd, we know

from 1.4 that<£(/) =7r¡(x) for some fixed x£W?. As 7Tí(x) is exactly the value of

JbRTrt(y)dtx(y), the first two statements of the present theorem are clear. As

7ri(x)=e'"' for some a£P„ if and only if x£i?w, the third statement is also

verified.

5.3 Remark. 5.2 shows, curiously enough, that fl„eilxdcoix) is a discon-

tinuous and hence non-Lebesgue measurable character on Rd for every 0-1

measure co on £* which is not countably additive. This circumstance points

up the immense difference between countably additive and finitely additive

integrals.

5.4 Theorem. The positive definite function X(oi(0 iS the Fourier-Stieltjes

transform of the functional J described in 4.2. The measure i on bR corresponding

to X(o)(0 IS 77aar measure. The corresponding measure i on £* Aas the property

that for an arbitrary bounded Lebesgue measurable set TCZRw and a 3: sup T

— i.nf T, i(Ta) = (\/a)m(T). This defines i, within the class of all regular

bounded measures on £*.

The present theorem follows readily from 4.2 and 4.3. We omit the details.

The relation between the measure l(B) and the mean value J(xb) for

sets BCZRw is not simple. For example, H. Bohr [l] has shown that there

exists a function g£21 such that, writing Z = E[x; x£P, g(x) =0], the mean

value J(xz) does not exist. Since i(Z) must exist, by our construction for t,

it follows that there exist sets Z measurable (t) for which J(xz) does not

exist. We do not know if the existence of J(xb) for BCZRw implies that B

is i-measurable and i(B) =J(xb)-

Theorem 5.1 shows that the characteristic function of an arbitrary addi-

tive subgroup of Rd is positive definite and is hence the Fourier-Stieltjes

transform of a measure on £*. Consider the subgroup M== {2Tn} (» = 0,

±1, ±2, • • • ) of Rd- We find, surprisingly enough, thatx^O) bears the same

relation to mean value over the integers that X(oiW bears to mean value

over the entire line. We state a general result first. Let N denote the set

of all integers in Rw.

5.5 Theorem. Let p(t) be any positive definite function on Rd having period
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2-7T. Then there exists a non-negative regular bounded measure ct> on £* smcA that

4>iN')=0 and such that p(t) = f±Zeitxdcp(x). Conversely, if d> is a regular

bounded non-negative measure on £* such that tf>iN')=0, then the Fourier-

Stieltjes transform of <p has period 2ir.

Since pit) has period 27r, we may regard it as a function on the additive

group of real numbers modulo 27r, i.e., on the circle group T. It follows from

arguments for the group N and the group T = N], exactly like those given

for R and P = P] in §§1 and 2, that there exists a compact group bN, con-

taining an isomorph of A7 as a dense subgroup, with character group equal

to Td, which is T in its discrete topology. The entire theory worked out above

for functionals on 21 and their two integral representations can be carried

over without change to the case of N, bN, and P«¡. Thus we assert that there

is a finitely additive non-negative measure tf>i defined on a certain algebra

£*i of subsets of N with the property that pit) =fNeiindd)1(n), for all ¿£ [O, 2ir).

We take £jv as the family of all sets E[n; nCZN, f(n)¿¿0] for/'s which are

uniform limits of linear combinations of functions eitn on N (0^t<2ir). The

measure <pi is regular in the obvious sense. It is clear that the sets in £# are

exactly the sets which can be written in the form A(~\N for ACZ~£*- It is

thus easy to see that cbi can be regarded as a measure on £* and is regular.

The integral fRieitxd<pi(x) has a meaning for every real t, and in fact gives us

the periodic function pit). The uniqueness theorem 2.6 shows that the meas-

ure tpi and the measure </> on £* whose transform is pit) must be identical.

To establish the converse, consider any c6 such that cp(N') =0. Then

/eitxd<j>(x) =   i   eitnd<p(n) =   I   eiit+2T)nd(j)(n).

Ra J N J N

Therefore the transform of <b has period 2ît.

5.6 Remark. The resolution of a measure y on £*/ into its countably

additive and purely finitely additive parts is of course trivial. Let a„ = y( {n} ),

and let yc = E¡T="- °° «»<»• Then yc is the countably additive part and 7—7« the

purely finitely additive part of y. From this and 5.5, we infer that every

continuous positive definite function with period 2-ir has an absolutely con-

vergent Fourier series with all coefficients non-negative. (This of course is

well known.)

We now examine the positive definite function xm(í).

5.7 Theorem. The function xm(í) is purely discontinuous. The measure

\(/ on £* whose transform is xm(1) is purely finitely additive, has the property

that yp(N') =0, and is representable as a mean value:

5.7.1 f  f(x)dHx) = I"*--7-   ¿/M.
J Ra n^»  In +  1    y-„

for attfEX.
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We prove first 5.7.1. Let L(f) =fBJ(x)d\(/(x). Then it is clear thatL(eitx)

= 0 or 1 as t9¿2kir or t = 2kir for some integer k. An elementary computation

shows that
1 n ¿,—int  _   ¿>i(n-fl) t

5.7.2 -   E «*-
2n+\  vtln 2n + 1 1 - ei(

for /^2^7T. It is thus obvious that 5.7.1 represents L for trigonometric poly-

nomials. By continuity, the same is true for all functions in 21. The remainder

of the theorem now follows from 5.5.

5.8 Theorem. Let p(t) be any positive definite function, and let p be the

measure on £* of which p(t) is the Fourier-Stieltjes transform. Then the positive

definite function P(í)xm(1) is the Fourier-Stieltjes transform of the measure

p*ip.

This follows at once from 5.7 and 4.13.

It appears that measures on £* with transforms equal to the character-

istic functions of more complicated subgroups of i?<¡—e.g., the rational num-

bers—are very complicated indeed. Nevertheless, Professor M. Riesz has

generously communicated to us the following analytic representation for

the functional T on 21 whose transform is xo(t) (we write D for the rational

numbers) :

Tij)  =   lim   {lim  i— —   ¿  f(2„m\k)\\.

We have not succeeded in identifying the measure associated with T.

As an application of Theorems 4.5 and 5.1, we give a proof of a known

theorem on Fourier series (Zygmund [l, p. 109]).

5.9. Theorem. Let \a„} ™_0 be a decreasing, convex sequence of non-negative

real numbers such that En°-o «„ < °c. Let u be a positive real number. Then

ao/2+ E"-i a» cos nux *s non-negative.

.The even function pit) obtained by linear interpolation between the

values a„ at nu (n — 0, 1, 2, ■ • • ) is easily seen to be convex, in Si(— °o, =c),

and continuous. Hence it is positive definite, as its Fourier transform

2fô cos txpit)dt is evidently non-negative(9). By 5.1, the function qit)

— En--« ct„X{„u}(t) is also positive definite. Hence it is the Fourier-Stieltjes

transform of a non-negative measure on £*. However, q(t) is the transform

of the functional defined for /£2l by 77(/) =7(/A), where a_„ = a„ and

h= En=-~ a„ei""x = c¿o + 2 E"-i «» cos unx. Hence A is non-negative.

As another application of Theorem 5.1, we have:

5.10 Theorem. Let fix) = E«°-i Y^'""* be an almost periodic function

(9) This was pointed out to the writer by Professor A. Beurling.
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such that En-i IT»   < °° • Por G an arbitrary additive subgroup of R, the in-

equality | Eti„£ö Y»  âsupzgB |/(x)| is valid.

The positive definite function qit)=Xö(t) corresponds to a non-negative

functional Q of norm 1 on 21, which evidently carries / into the value

E«„G(? Y». That is,

E    7*
u„Gg

= I Q(f) I ̂  Hell • sup | /(*) | = sup | fix) i n.
igS ig«

A large number of other theorems on almost periodic functions can be

established by our present method. We intend to set them forth in a later

communication.

6. The space 21 as a convolution algebra

6.1 The space 21, considered as a space of functions on Rw, is of course a

complex Banach algebra under pointwise multiplication. It is indeed this fact

that makes Theorem 1.3 valid. The ideal theory of 21 is far from simple, but

it is more or less known: every closed ideal in 21 is the set of functions / in

2Í such that / vanishes on some closed subset of bR. The extremely compli-

cated structure of bR introduces essential complications into the study of

ideals in 21.

6.2 However, 21 admits a multiplication under which it is a complex

Banach algebra of a quite different type. For/ and g£2I, let the convolution

f*g be defined by the relation

/

6.2.1

1    rT
gix) =   lim — I    fix- y)giy)dyin)

r-»» ¿1  J -t

= J     /(*- y)g(y)diiy).

It is easy to see that/ * g is the contraction to Rw of the function / * g on bR,

defined by the relation

6.2.2 /* gix) =  f   fix - y)é(y)d<y).
•J bR

A general closed ideal in this algebra is identified with an arbitrary subset X

of Rd, and consists of all/£2l such that

1    CT
6.2.3 lim - |     e~itxfix)dx = 0

(I0) Dr. E. Feiner has pointed out that this result can also be obtained by convolving/

with suitable Bochner-Fejér polynomials.

(n) It is simple to verify that/*g is actually in SI, making use of the fact that both/and g

are uniform limits of trigonometric polynomials.
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for all tCZ-X. This assertion is proved by representing 21 as (5(W?) and using

known facts about the algebra of continuous functions on a compact group

under convolution.
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