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The index [G:g] of the element g in the [finite] group G is the number of

elements conjugate to g in G. The significance of elements of prime power

index is best recognized once one remembers Wielandt's Theorem that ele-

ments whose order and index are powers of the same prime p are contained

in a normal subgroup of order a power of p and Burnside's Theorem asserting

the absence of elements of prime power index, not 1, in simple groups. From

Burnside's Theorem one deduces easily that a group without proper char-

acteristic subgroups contains an element, not 1, whose index is a power of a

prime if and only if this group is abelian. In this result it suffices to assume

the absence of proper fully invariant subgroups, since we can prove [in §2]

the rather surprising result that a [finite] group does not possess proper

fully invariant subgroups if and only if it does not possess proper character-

istic subgroups.

A deeper insight will be gained if we consider groups which contain "many"

elements of prime power index. We show [in §5] that the elements of order a

power of p form a direct factor if, and only if, their indices are powers of p

too; and nilpotency is naturally equivalent to the requirement that this prop-

erty holds for every prime p. More difficult is the determination of groups

with the property that every element of prime power order has also prime

power index [§3]. It follows from Burnside's Theorem that such groups are

soluble; and it is clear that a group has this property if it is the direct product

of groups of relatively prime orders which are either ^-groups or else have

orders divisible by only two different primes and furthermore have abelian

Sylow subgroups. But we are able to show conversely that every group with

the property under consideration may be represented in the fashion indi-

cated.

In §5 we study the so-called hypercenter. This characteristic subgroup

has been defined in various ways: as the terminal member of the ascending

central chain or as the smallest normal subgroup modulo which the center is

1. We may add here such further characterizations as the intersection of all

the normalizers of all the Sylow subgroups or as the intersection of all the

maximal nilpotent subgroups; and the connection with the index problem is

obtained by showing that a normal subgroup is part of the hypercenter if,

and only if, its elements of order a power of p have also index a power of p.

Notation. All the groups under consideration will be finite.

An element  [group] is termed primary, if its order is a prime power;
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and if this prime power is in particular a power of the prime number p, then

we shall refer to ¿»-elements and ¿-groups respectively.

{J\ is the subgroup generated by the subset J of the group G.

AC\B is the intersection of the sets A and B.

[x, y]=x~1y~1xy, and [X, Y] is the subgroup generated by the com-

mutators [x, y] with x in X and y in Y.

X Y is the totality of elements xy with x in X and y in Y.

ZiG) is the center of the group G.

Z(7<G) is the centralizer of the subset J in the group G. This is the

totality of elements z in G which commute with every element j in 7".

x~lyx — yx, and yx is the totality of elements yx with x in X.

[G'.S] is the index of the subgroup S in the group G.

The index [G'.g] of the element g in the group G is the number of elements

in the set g° of elements conjugate to g in G. We recall the important equa-

tion

[G:g\= [G:Zig<G)}.

1. Indices. For the convenience of the reader we collect in this section a

number of properties of indices of subgroups together with their proofs.

These more or less well known properties will be basic for our considerations.

Lemma 1. If S is a subgroup of G, and if N is a normal subgroup of G, then

[N:Nr\S] is a divisor of [G:S].

Proof. It is a consequence of the second isomorphism law that

NS/N~S/iNr\S).

Consequently

[G:l] = [G:^5]^V5:iV][iV:A^n5][^Pi5:l]

= [G:NS][S:Nn S][N:Nr~\ S][Nr\S:l\

= [t?:iV5][Ar:j^n5][5:l];

and this implies that

[G:S] = [C:A'5][iV:iVn5],

as we claimed.

Lemma 2. If N is a normal subgroup of G, and if g belongs to N, then

[N:g] is a divisor of [G'.g].

Proof. We note that Zig<N)=NC\Zig<G); and now Lemma 2 is an

immediate consequence of Lemma 1.

Lemma 3. If N is a normal subgroup of G, and if g is an element in G, then

[G/N:Ng] is a divisor of [G:g].
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Proof. It is clear that

NZ(g < G)/N ^ Z(Ng < G/N).

Consequently we may deduce from the first isomorphism law that

[G:NZ(g <G)]= [(G/N):(NZ(g < G)/N)]

= [(G/N):Z(Ng < G/N)][Z(Ng < G/N):NZ(g < G)/N].

Hence [G/N:Ng] is a divisor of [G:NZ(g<G)]\ and this index is a divisor of

[G:g], since

[G: Z(g <G)]= [G:NZ(g < G)][NZ(g < G): Z(g < G)].

This proves our contention.

Lemma 4. If the order of the normal subgroup N of G is divisible by the prime

number p, then N contains an element of order p whose index is prime to p.

Proof. It follows from our hypothesis and Sylow's Theorem that the

^-Sylow subgroups of N are different from 1. If 5" is some />-Sylow subgroup of

N, then 5 is contained in some ^-Sylow subgroup P of G. From S = PC\N

we deduce that S is a normal subgroup of P. Every normal subgroup, dif-

ferent from 1, of a £-group contains a center element of order p. Consequently

there exists an element / of order p in 5 which belongs to the center of P.

Clearly Z(t<G) contains P; and this implies that [G:Z(t<G)]= [G:t] is

prime to p.

The next two lemmas and their proofs are due to H. Wielandt; see also

Wielandt [l].

Lemma 5. If the index of the subgroup S in G is a power of the prime p, and

if P is a p-Sylow subgroup of G, then SC\P is a p-Sylow subgroup of S and G

~SP = PS.

Proof. If [c7:5] =pm and if the maximal power of p dividing the order of

5 is pn, then pn+m is the greatest power of p dividing the order of G so that

pn+m ¡s the order of P. Denote by pk the order of Si~\P. It is clear that pk

is a divisor of p". One verifies furthermore that every right coset of P modulo

Sr\P is contained in one and only one right coset of G modulo 5 so that

[P:Sr\P]^[G:S]. Since therefore [P:Sf\P] is a divisor of pm and [Sf\P:l]

is a divisor of p", and since p»+m= [P:l]= [P:SC\P] [SHPil], it follows

now that

[P:Sr\ P] = pm= [G:S],       [Sn P:l] = p\

Consequently Sr\P is a p-Sylow subgroup of 5. Furthermore it follows that

every right coset of G modulo 5 contains a right coset of P modulo SC\P.

Hence G = SP, and G = PS is seen likewise.
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We recall that {g°} is the smallest normal subgroup of G which contains

the element g.

Lemma 6. {gG} is a p-group if, and only if, g is a p-element and there exists

a normal subgroup N of G which contains g such that [Nig] is a power of p.

Proof. The necessity of our conditions is an obvious consequence of the

fact that {g°} is a normal subgroup of G and that [ {gG \ : g ] is a divisor of the

order of {g°}.

Assume conversely that g is a ¿»-element, that g is contained in the normal

subgroup Nof G, and that [N:g] is a power of p. Then [N:Zig<N)] = [N:g]

is a power of p too. Since the ¿»-element g is in N, there exists a ¿»-Sylow sub-

group P of N which contains g. It follows from Lemma 5 that N = Zig<N)P.

Hence gN =gp. Consequently

[gN] = {g"\ UP

so that the normal subgroup [gN\ of AT is a ¿»-group. Since every \gNx]

= {gN }z is part of N, it follows that {g°} is the product of normal subgroups

of N which are ¿»-groups. Hence [ga\ itself is a ¿»-group, as we wanted to

show.

2. Direct products of isomorphic simple groups. We recall first that a sub-

group S is fully invariant in G if S'^S for every endomorphism a of G.

Clearly every fully invariant subgroup is characteristic and consequently

normal, though the converse is not true, as we shall have occasion to point

out later on. In order to construct a fully invariant subgroup that will be of

importance to us, we need the following concepts. The normal subgroup M

of G is of minimal index in G if M<G, and if [G: M] = [G:N] whenever the

index [G:Af] of the normal subgroup N oí G is a factor not 1 of [G: M]. It is

easily seen that every normal subgroup M of minimal index is a maximal normal

subgroup of G; and this is equivalent to saying that G/M is a simple group

9^1. But the converse is not true; we shall subsequently construct examples

of maximal normal subgroups which are not of minimal index. If N is a

normal subgroup of G, then we denote by J(G, N) the intersection of all the

normal subgroups H of G which satisfy: G/N~G/H, It is clear that /(G, N) is

always a characteristic subgroup of G,

Lemma 1. // N is a normal subgroup of minimal index in G, then J(G, N)

is a fully invariant subgroup of G.

Proof. Suppose that a is an endomorphism of G. Denote by H some normal

subgroup of G which satisfies G/H~G/N; and denote by K the totality of

elements x in G such that x" belongs to H. It is clear that this inverse image

K of H is also a normal subgroup of G. One verifies furthermore that map-

ping the coset X of G/K upon the coset HX° of G/H is an isomorphism of

G/K into G/H. Now we distinguish two cases.
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Case 1. K = G.

Then J(G, N)' £G*- K'£H.
Case 2. K<G.

We have pointed out that G/K is isomorphic to a subgroup of G/77.

Consequently we find that [G:K]¿¿1 is a divisor of [G:77] = [GrA^]. Since

N is supposed to be a normal subgroup of minimal index, it follows that

[G:7C] = [G:N] = [G:77]. Since G/K is isomorphic to a subgroup of the

group G/77 of equal order, we see now that G/K and G/77 are isomorphic

groups. Consequently G/AC~G/77~G/./V; and we deduce J(G, N)^K from

the definition of J(G, N). This implies

J(G, N)' g K' g ff,

since K is the inverse image of 77.

Thus we have shown in either case that the isomorphy of G/77 and G/N

implies J(G, N)"^H. Hence J(G, N)'^J(G, N) is a consequence of the

definition of J(G, N) as the intersection of all the normal subgroups 77 with

G/H'-^G/N. Therefore J(G, N) is a fully invariant subgroup of G, as we

wanted to show.

Corollary 1. If G is a soluble group, then J(G, N) is a fully invariant sub-

group of G for every maximal normal subgroup N of G.

This is an immediate consequence of Lemma 1, since [G:M] is a prime

number for every maximal normal subgroup M of the soluble group G.

Remark 1. The indispensability of the solubility hypothesis in Corollary

1 may be seen from the following simple example. Denote by 5 a non-abelian

simple group, by p a prime divisor of the order of S, and by Z a cyclic group

of order p. Form the direct product G of 5 and Z. Then S and Z are the

only proper normal subgroups of G and thus they are the only maximal

normal subgroups of G. We note that S is normal of minimal index, but Z

clearly is not. We find furthermore Z = J(G, Z). But 5 contains a cyclic sub-

group of order p. Hence there exist endomorphisms a of G which map Z

isomorphically into S. For these endomorphisms <x we have clearly J(G, Z)"

$J(G, Z) so that J(G, Z) is not fully invariant.

It will be convenient for some of our discussions to denote by J(G) the

intersection of all the maximal normal subgroups of G. Clearly J(G) is the inter-

section of all the J(G, N) with maximal normal N. Thus J(G) will certainly

be fully invariant whenever every J(G, N) with maximal normal N is fully

invariant. The converse is not true, as may be seen from the example of Re-

mark 1 where J(G) = 1, though some of the J(G, N) with maximal normal N

are not fully invariant. However it is easy to modify the example of Remark 1

in such a way that J(G) itself ceases to be fully invariant. We just have to

substitute for Z a non-abelian ¿>-group and select the simple group 5 so that Z

is isomorphic to a subgroup of 5. Then one verifies easily that 7(G) = J(Z) ^ 1
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and that there exists an endomorphism a of G which maps Z isomorphically

into S.

Proposition 1. The following properties of the group G are equivalent.

(i) G is the direct product of isomorphic simple groups.

(ii) G does not contain proper characteristic subgroups.

(iii) G does not contain proper fully invariant subgroups.

Proof. The equivalence of (i) and (ii) is well known; see, for instance,

Zassenhaus [l, p. 77, Satz 2]. It is clear that (ii) implies (iii). Thus assume

finally the validity of (iii). There exists certainly a normal subgroup M of

minimal index in G. It follows from Lemma 1 that -7(G, M) is fully invariant.

Since J(G, M) ^M<G, we deduce JiG, M) = 1 from (iii). Consider now some

minimal normal subgroup L of G. Because of J(G, M) = 1 there exists a

normal subgroup H oí G such that G/H~G/ M and L%,H. Since L is a

minimal normal subgroup of G, this implies LC\H=1; and since H is a

maximal normal subgroup of G, this implies LII=G. Hence G is the direct

product of L and H, and L, G/H, and G/M are consequently isomorphic

simple groups. Thus we have shown that every minimal normal subgroup of

G is a direct factor of G, is a simple group, and is isomorphic to the fixed

group G/M. From these facts one deduces without difficulty that G is the

direct product of isomorphic simple groups. Thus (i) is a consequence of

(iii), completing the proof.

Proposition 2. The following properties of the group Gt^I are equivalent.

(i) G is abelian and the direct product of isomorphic simple groups.

(ii) G is abelian and G" = 1 for some prime p.

(iii) No subgroup of G contains a proper fully invariant subgroup.

(iv) G does not contain proper fully invariant subgroups, but G contains

elements, not 1, of prime power index.

Proof. The equivalence of (i) and (ii) is both well known and fairly obvi-

ous. If G has property (ii), then each of its subgroups has property (ii). But

groups with property (ii) do not contain proper fully invariant subgroups.

Hence (iii) is a consequence of (ii).

Assume now the validity of (iii). Since G^ 1, there exists a prime number p

which divides the order of G. Consider a ¿--Sylow subgroup 5 of G. Then

5^1 is a ¿»-group without proper fully invariant subgroups. Since simple

¿-groups are cyclic of order ¿>, it follows from Proposition 1 that 5 is a direct

product of cyclic groups of order p. Hence 5 is abelian and satisfies Sp = 1

[note that it would be very easy to verify this fact without any reference to

Proposition l]. Denote by T the normalizer of S in G. Then 5 is the totality

of ¿-elements in T. Hence S^l is a fully invariant subgroup of T. We apply

condition (iii) to see that S=T. The abelian group 5 is therefore contained

in the center of its normalizer. Thus we may apply a theorem of Burnside
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which asserts the existence of a normal subgroup N of G such that G = SN

and l=Sr\N; see, for instance, Zassenhaus [l, p. 133, Satz 4]. Since 5 isa

p-Sylow subgroup of G, it follows that N is the totality of elements of order

prime to p in G. Hence A is a fully invariant subgroup of G. Since 5^1, we

have N<G and it follows from (iii) that N=l. Thus G = S is an abelian

group which satisfies Gp= 1. Hence (ii) is a consequence of (iii), and we have

shown the equivalence of conditions (i) to (iii).

If the equivalent conditions (i) to (iii) are satisfied by G, then it follows

from (iii) that G does not contain proper fully invariant subgroups; and it

follows from (ii) that every element in G has index 1. Thus (iv) is certainly

a consequence of the equivalent conditions (i) to (iii). Assume conversely

the validity of condition (iv). Then we deduce from Proposition 1 that G is

the direct product of isomorphic simple groups St, • ■ • , Sn. If x^l is an

element of prime power index in G, then x = xi ■ • • x„ where X; is a uniquely

determined element in St. Since x¿¿ 1, at least one of the x, is different from 1.

One verifies without difficulty that

[G:x] = [Si:xi] • • • [S„:x„],

since every element in 5,- commutes with every element in Sj for jf¿i. It

follows that [5¿:x,] is a power of a prime too. Thus we have shown that at

least one [and hence every one] of the simple groups S, contains an element,

not 1, whose index in S, is a prime power. We apply another theorem of

Burnside which asserts that a group is not simple if it contains an element of

prime power index different from 1; see, for instance, Speiser [l, p. 190,

Satz 165]. Consequently the simple group Si contains a center element

different from 1, since elements of index 1 are necessarily center elements.

Hence every 5,- is abelian. Consequently (i) is satisfied by G; and we have

completed the proof of the equivalence of the properties (i) to (iv).

Remark 2. One verifies without difficulty that it is possible to substitute

in conditions (iii) and (iv) everywhere for "fully invariant" the word

"characteristic. "

Corollary 2. If the group G contains an element of prime power index dif

ferent from 1, then G contains a proper fully invariant subgroup.

For if G did not contain proper fully invariant subgroups, then condition

(iv) of Proposition 2 would be satisfied so that every element in G would have

index 1 which contradicts our hypothesis.

Remark 3. One verifies easily the equivalence of the following two prop-

erties of the group G.

(a) G contains an element, not 1, of prime power index.

(b) G contains a subgroup of prime power index whose center is not 1.

It is clear that (b) is a consequence of the following stronger condition.

(c) G contains a nilpotent subgroup of prime power index.
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[Note that G would be a ¿-group if the nilpotent subgroup occurring in (c)

were equal to 1.] It is not without interest to note that (c) is a consequence of

condition (ii) of Proposition 2, and that therefore the conditions (i) to (iv)

of Proposition 2 are equivalent to the following condition.

(v) G does not contain proper fully invariant subgroups, but contains a nil-

potent subgroup of prime power index.

Remark 4. If the group G contains a nilpotent subgroup of prime power

index, then the same is true of all the normal subgroups and quotient groups

of G. Applying the preceding results [Remark 3], an immediate inductive

procedure shows that such a group G is soluble. This solubility criterion is due

to Szép [l].

3. Prime power order and prime power index. One verifies without much

difficulty that a group is soluble if its elements of prime power order have also

prime power index; see Lemma (2) below. It is clear that the converse is not

true, and thus the determination of this class of groups will not be without

interest. This class of groups is completely characterized by the following

Theorem. Every element of prime power order in the group G has prime

power index in G if, and only if, G is the direct product of groups Gi, • • • , G„

with the following properties.

(a) The orders of G i and G¡ are relatively prime for i?¿j.

(b) // Gi is not of prime power order, then the order of d is divisible by

exactly two different primes and its Sylow subgroups are abelian.

Proof of sufficiency of conditions (a) and (b). If G is the direct product of

subgroups Gi satisfying conditions (a) and (b), then every primary element

belongs to one of the components Gi. It is clear that [G:x] = [G,:x] for x in

Gi. If Gi is of order a power of p, then every element in G¿ has index a power

of p. If Gi is not primary, then the primary elements ¥-1 in G¿ belong to

abelian Sylow subgroups of prime power index; and again we see that the

primary elements in Gi have prime power index in G,-.

The proof of the necessity of our conditions is much more complicated

and will be effected in a number of steps. It will be convenient to call a group

G a J-group, if

(J) elements of prime power order in G have prime power index in G.

We are now going to derive a number of properties of /-groups some of

which will be of interest beyond their immediate application.

(1) Normal subgroups and quotient groups of J-groups are J-groups.

Proof. It is a consequence of §1, Lemma 2 that normal subgroups of

J-groups are /-groups. If N is a normal subgroup of the /-group G, then

every primary element in G/N has the form Nx with x a primary element

in G; and now it follows from §1, Lemma 3 that G/N is a /-group.

(2) J-groups are soluble.

Proof. It is a consequence of §2, Proposition 2 that /-groups without fully



28 REINHOLD BAER [July

invariant subgroups are abelian. It follows from (1) that the principal factors

of a 7-group are /-groups without fully invariant subgroups. Hence J-groups

are soluble.

If G is a group and p a prime, then we may form the product P=P(p)

= P(p, G) of all the normal p-subgroups of G. Clearly P is a normal p-subgroup

of G; and P is the intersection of all p-Sylow subgroups of G.

(3) P(p, G) contains every element in G whose order and index are powers of

P-
This is an immediate consequence of §1, Lemma 6.

If p is a prime number, and if every primary element in G has index a

power of p, then we term G a J-p-group. These may be characterized as fol-

lows.

Proposition 1. G is a J-p-group if, and only if, G is the direct product of a

p-group and of an abelian group [of order prime to p].

Proof. The proof of the sufficiency of our condition is simple enough to be

left to the reader. Assume therefore that G is a /-¿"-group. It follows from (3)

[and Property ]-p] that P(p, G) contains every p-element, so that P(p)

is the p-Sylow subgroup of G too. Thus G/P is of order prime to p. It follows

from §1, Lemma 3 that G/P has Property ]-p. Thus the centralizers of pri-

mary elements in G/P have indices which are at the same time powers of

p and prime to p. Hence primary elements in G/P belong to the center of

G/P, and this shows that G/P is abelian.

Consider now an element z in the center Z(P) of P(p). Then P is con-

tained in the centralizer of z so that the index of s in G is prime to p. Since

the index of the p-element z is a power of p, it follows that z has index 1 ; and

we have shown that Z(P)^Z(G). By a fairly obvious induction procedure

we see now that G is nilpotent, since G/P is abelian; and now it is fairly

obvious that G is the direct product of the p-group P and of an abelian group

of order prime to p. This completes the proof.

(4) If the primary element g in the J-group G does not belong to Z [P(p) < G ],

then [G:g\ is a power of p, not 1.

Proof. It follows from our hypothesis that P(p) ^Z(g<G). Thus Z(g<G)

¿G so that [G:g]?^l. Furthermore Z(g<G) does not contain any p-Sylow

subgroup of G so that [G:Z(g<G)] cannot be prime to p. But [G:g] is a

power of a prime, since G is a /-group. Hence [G:g] is a power of p, not 1, as

we wanted to show.

Proposition 2. If G is a J-group, and if P(p, G) is not abelian, then P(p, G)

is a p-Sylow subgroup and a direct factor of G.

Proof. We note first that Z = Z[P(p, G) <G] is a normal subgroup of G

which does not contain P = P(p, G) and that ZC\P is the center Z(P) of P.

Suppose now that rois a p-element, not in P. Then it follows from (3)
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that [G:w] is prime to p. Consequently Ziw<G) contains a ¿-Sylow sub-

group of G. But P is part of every ¿-Sylow subgroup of G. Hence P á Ziw < G)

for every ¿-element w, not in P; and consequently w belongs to Z whenever

w is a ¿-element not in P. Assume now by way of contradiction the existence

of a ¿-element c, not in P. Then every element in Pc is a ¿-element, not in

P; and it follows from what we have shown just now that Pc is part of Z. But

then P would be part of Z, contradicting the noncommutativity of P. Thus

P contains every ¿-element so that P is the ¿-Sylow subgroup of G.

If x*¿¿l is a primary element in G* — G/Z, then there exists a primary

element x in G such that x* = Zx; and it is clear that x does not belong to Z.

But then it follows from (4) that [G:x] is a power of p; and we deduce from

§1, Lemma 3 that [G*:x*] is a power of p. Thus G* is a /-¿-group; and it

follows from Proposition 1 that G* is the direct product of a ¿»-group P* and

of an abelian group A * whose order is prime to p.

Since P has been shown to be the ¿»-Sylow subgroup of G, we have P*

— PZ/Z; and there exists a normal subgroup A of G such that Z^A and

A*=A/Z.
If x is an element in P, but not in Z, then we deduce from (4) that

[G:x] is a power of ¿>; and we have clearly Z = Z(P<G)^Zix<G). Hence

[G*:Z(x<G)/Z] = [G:Zix<G)]= [G:x] is a power of p. Since the order of

the normal subgroup A* of G* is prime to p, it follows now that

A*^Zix<G)/Z or A ^Zix<G). Consequently x belongs to ZiA <G) when-

every x is an element in P, but not in Z.

Consider now an element z in PC\Z. Since P is not abelian, there exists an

element / in P which does not belong to Z. Then t and tz are elements in P

which do not belong to Z; and it follows from what we have shown in the

preceding paragraph that t and tz belong to ZiA <G). Hence z too belongs

to ZiA <G).
Combining the results of the last two paragraphs we see that P^ZiA <G).

But then we have Z^A ¿ZiP<G) =Z or A =Z. Thus we have in particular

A* = l, G* = P*, and G = PZ.
Since P is the ¿»-Sylow subgroup of G, P!~\Z is the ¿-Sylow subgroup of

Z = ZiP<G). It is clear that PC\Z is part of the center of Z; and that the

order of PC\Z is relatively prime to [Z'.PC\Z]. Thus we may apply Schur's

Theorem; see Zassenhaus [l, p. 125, Satz 25]. Consequently Z is the direct

product of ZC\P and of a subgroup / of order prime to p. Clearly PC\T= 1

and G = PZ = PiZC\P)T = PT. Since every element in P commutes with

every element in T^Z = ZiP<G), we have shown that G is the direct product

of P and T; and this completes the proof.

Cf. in this context §5, Corollary 2.

The /-group II shall be termed a J*-group, if every Pip, II) is abelian.

Proposition 2*. Every J-group is the direct product of a nilpotent group and

a J*-group whose orders are relatively prime.
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This is an immediate consequence of Proposition 2, if we only remember

that direct products of p-groups are nilpotent.

(5) If G is a J-group, and if P(p, G) is abelian, then
(5.a) G/Z[P(p, G) <G] is a primary abelian group of order prime to p and

(5.b) every p-element in G has index prime to p.

Proof. We let P=P(p, G) and Z = Z(P<G). Since P is abelian, we have

P^Z(P<G).
Consider now a p-element g in G. If [G:g] is a power of p, then g belongs

to P and hence to Z, as follows from (3). If [G'.g] is not a power of p, then

[G:g] is prime to p. Hence [G:Z(g<G)] is prime to p so that Z(g<G) con-

tains a p-Sylow subgroup of G. This implies P^Z(g<G), since P is part of

every p-Sylow subgroup of G. Consequently g belongs to Z(P<G). Thus we

have shown that

(5.c) Z contains every p-element in G.

It follows from (5.c) that Z contains every p-Sylow subgroup of G; and

this implies that

(5.d)   [G:Z] is prime to p.

Application of (4) and §1, Lemma 3 shows that G/Z is a /-p-group. But

then it follows from (5.d) and Proposition 1 that

(5.e) G/Z is an abelian group.

Let G* = G/Z. This abelian group is clearly essentially the same as a

group of automorphisms of P; and x"* is a well determined element in P for

every x in P and g* in G*. In particular Z(x<G*)=Z(x<G)/Z is the sub-

group of automorphisms in G* which leave invariant the element x in P.

Assume now by way of contradiction that G* is not a primary group. Then G*

is the direct product of a g-group Q*, an r-group R*, and a group S* of order

prime to q r where q and r are different primes and where Q* and R* are

both different from 1. Since Q* is a group of automorphisms of P, there exists

an element x in P which is not left invariant by Q*. Hence Q* is not part of

Z(x<G*) so that [G:x]=[G:Z(x<G)]=[G*:Z(x<G*)] is divisible by q.

Since G is a /-group, it follows that [G*:Z(x<G*)] is a power of q, not 1.

Since G * is abelian, this implies R*S*^Z(x<G*); and we have consequently

xa = xa* = xQ*. Similarly there exists an element y in P which is not left in-

variant by R*; and [G*:Z(y<G*)] is a power of r, not 1, Q*S*^Z(y<G*),

and ya = yR*. Consider now the element xy in P. It is clear that S*

^Z(xy<G*) and that [G:xy] = [G*:Z(xy<G*)] is a prime power. Thus

[G:xy] is a power of g or a power of r; and we may assume without loss in

generality that [G*:Z(xy <G*)] = [G:xy] is a power of q. Since G* is abelian,

this implies that R*^Z(xy<G). But R*^Z(x<G*). Hence x and xy are

both left invariant by R* so that y too is left invariant by R*, contradicting

our choice of y. Our assumption that G* is not primary has led us to a contra-

diction; and this completes the proof of (5.a).
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Consider now a ¿-element g whose index is a power of p. It follows from

(3) that g belongs to P. Hence Z=ZiP<G)^Zix<G). Since \G:Zix<G)]

= [G:x] is a power of ¿» and a divisor of [G:ZiP<G)], and since the latter

index is prime to p [by (5.a) ], we have [G:x] = 1. Now (5.b) is a consequence

of the fact that every ¿-element has prime power index.

Proposition 3. The following properties of the J-group G and the prime ¿>

are equivalent.

(i) The p-Sylow subgroups of G are abelian.

(ii) Pip, G) is abelian.

(iii) p-elements in G have index prime to p.

Proof, (i) implies (ii), since Pip, G) is part of every ¿»-Sylow subgroup of

G; and it follows from (5) that (ii) implies (iii).

We assume finally the validity of (iii). We denote by H = Hip, G) the sub-

group of G which is generated by the ¿-elements in G. Clearly H is a char-

acteristic subgroup of G; and it follows from §1, Lemma 2 that H has prop-

erty (iii). Denote by K = Kip, G) the product of all the normal subgroups of

H whose order is prime to ¿>. Clearly K is a characteristic subgroup of H and

G whose order is prime to p. Let H* = H/K. Then it follows from [(1) and]

§1, Lemma 3 that H* is a /-group with property (iii).

It follows from (4) and (iii) that Z[Pip, H)* <H*] contains every ¿»-ele-

ment. But [H and consequently] H* is generated by its ¿»-elements. Hence

H* = Z[Pip, H*) <H*]. Consequently Pip, H*) is part of the center of H*;

and this implies in particular that P(¿», H*) is abelian.

Assume now by way of contradiction that P* = Pip, H*) <H*. Since H*

is a /-group, it follows from (2) that H* is soluble. Consequently there exists

a normal subgroup N* of H* such that P*<N* and [A7*^*] is a prime

power. If [N*:P*] were a power of p, then N* would be a normal ¿-subgroup

of H* so that N*^Pip, H*),<N*, an impossibility. Consequently [N*:P*]

is a prime power prime to p. Thus [A7*^*] and the order of P* are relatively

prime; and we may apply Schur's Theorem; see Zassenhaus [l, p. 125, Satz

25]. Since P* is part of the center of H*, and hence of the center of N*, it

follows that N* is the direct product of P* and a subgroup M*. But M * is now

the totality of elements of order prime to ¿> in the normal subgroup N* of

H*. Hence M* is a characteristic subgroup of N* and a normal subgroup of

H*. Consequently M * = M/K where M is a normal subgroup of H, K < M,

and [Af :i£] prime to ¿». But then the order of the normal subgroup M oí H

is prime to p; and it follows that M^K<M, an impossibility. Our assump-

tion that P*<H* has led us to a contradiction; and we have shown that

H* = P* is an abelian ¿»-group.

Since H/K is a ¿-group, and since the order of K is prime to p, we find

that H/K is isomorphic to the ¿»-Sylow subgroups of H. Since H/K is abelian,
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the p-Sylow subgroups of 77 are abelian; and since the p-Sylow subgroups of

77 and G are the same, we have verified the validity of (i). This completes

the proof.

It will be convenient to denote by F(G) the product of all the subgroups

P(p, G) of G. This characteristic subgroup F(G) of G has been introduced

by H. Fitting and E. Wendt. It is the most comprehensive nilpotent normal

subgroup of G.

Proposition 4. If G is a J*-group, then F(G) and G/F(G) are abelian and

F(G)=Z[F(G)<G].

Proof. Since G is a /*-group, every P(p, G) is abelian and consequently

their direct product F(G) is abelian too. This implies that F= F(G) ^Z(F<G).

Assume by way of contradiction that F<Z(F<G). Since G is a /*-group,

we deduce from (2) the solubility of G. Hence we may deduce from

F<Z(F<G) the existence of a normal subgroup W of G such that F<W

f^Z(F <G) and such that W/F is abelian. But F is part of the center of

Z(F<G) and hence part of the center of W so that W is a nilpotent normal

subgroup of G. Since F is the most comprehensive nilpotent normal subgroup

of G, we find that W^F<W, an impossibility. Thus we have shown that

F(G)=Z[F(G)<G].
Every P(p, G) is abelian. Hence it follows from (5.a) that G/Z[P(p, G)

<G] is abelian. The commutator subgroup [G, G] of G is consequently part

of every Z[P(p) <G]. Since F(G) is the product of all the P(p), Z[F(G) <G]

= F(G) is the intersection of all the Z[P(p) < G ] each of which contains [G, G].

Hence [G, G]^F(G) so that G/F(G) is abelian.

(6) If the p-Sylow subgroup S of the J*-group G is not part of F(G), then

there exists one and only one prime q^p with the following properties.

(a) SP(q, G) is a characteristic subgroup of G.

(b) S£Z[P(q)<G].
(c) S^Z[P(r) <G] for every prime r^q.

Proof. We note first that SF(G)/F(G) is the p-Sylow subgroup of the

abelian group G/F(G) [Proposition 4]. Thus SF(G) is a characteristic sub-

group of G. Next we deduce from Proposition 4 and our hypothesis that

S^F(G) =Z[F(G) <G]. Consequently there exists a primary element in

F(G) which does not commute with every element in S; and this implies

the existence of a prime number q such that S^Z[P(q) <G]. Since 5 is

abelian [by Proposition 3], and since P(p) <S, it is clear that pT^q, and that

S^Z[P(p)<G].
Consider now a prime number r which is different from p and q. Let

T = SC\Z[P(q) <G]. Then it follows from our choice of q that T<S. If the

element s in 5 does not belong to T, then P(q)^Z(s<G). The prime power

[G:s]= [G:Z(s<G)] is consequently divisible by q so that [G:s] is a power

of q, different from 1. This implies that Z(s<G) contains an r-Sylow sub-

group of G, since the index of Z(s<G) is prime to r. But P(r) is part of every
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r-Sylow subgroup of G. Hence P(r) ^Z(s <G). Consequently every element in

5 which does not belong to T belongs to Z [P(r) <G]. Consider now an element

/ in T. Since T<S, there exists an element 5 in 5 which does not belong to T.

Then s and ts are elements in S which do not belong to T. Hence both s and ts

belong to Z[P(r) <G];and this shows that t too belongs to Z[P(r) <G]. Thus

we have shown that S^Z[Pir) <G]. The prime number q^p has conse-

quently properties (b) and (c) ; and it is obvious that q is uniquely determined

by these properties.

Denote by H the product of all the P(r) with r^p and r^q. Then

SFiG)=SPiq)H. We note furthermore that H is a subgroup of the abelian

group E(G) and that therefore the order of H is prime to ¿>g. The order of

SPiq) is of the form paqb. Hence HC\SPiq) = 1. The elements in H commute

with those in Piq), since E(G) is abelian; and it follows from (c) that the

elements in H commute with those in 5. Thus we see that SFiG) is the direct

product of H and SPiq); and this implies that SPiq) is the totality of ele-

ments in SFiG) whose order is divisible by p and q only. Consequently SPiq)

is a characteristic subgroup of the characteristic subgroup SFiG) of G; and

this proves (a).

(7) If S is a Sylow subgroup of the J*-group G, then [G:ZiS<G)] is a
prime power.

Proof. Assume that 5 is a ¿»-Sylow subgroup of G. If 5 = P(¿), then it fol-

lows from (5.a) that [G:ZiS<G)] is a prime power. Assume next that

Pip)<S. Then S^E(G). We deduce from (6) the existence of a uniquely

determined prime number q^p with the following properties:

SPiq) is a characteristic subgroup of G;

5 g Z[Pir) < G] if, and only if, r * q.

Consider now some prime number h different from ¿> and q; and denote

by H an A-Sylow subgroup of G. If J/ = P(A), then S^Z[Pih)<G] so that

H = Pih) ^z[s<G). If Pih) <H, then we deduce from (6) the existence of a

prime number k^h with the following properties:

HPik) is a characteristic subgroup of G;

H£Z[Pir) <G] if, and only if, r^k.

If q = k, then neither 5 nor H would be contained in the normal subgroup

Z[Piq) <G] of G so that the index of Z[Piq) <G] would be divisible by the

two distinct primes p and h. But this is impossible by (5.a). Hence q?¿k.

Let T = Sr\Z[Piq)<G]. Then T<S, since S£Z[Piq)<G] by our choice

of q. If 5 is an element in S, but not in T, then 5 does not commute with

every element in Piq). It follows that P(g)^Z(s<G) and that therefore

Zis<G) does not contain any g-Sylow subgroups of G. Hence [G:Zis<G)]

= [G:s] is divisible by q; and this implies that [G:s]=[G:Zis<G)] is a

power of q, different from 1. It follows that Zis<G) contains at least one

Ä-Sylow subgroup H' of G. Since k^q, it follows that S^Z[Pik)<G].

Hence Pik)^ZiS<G); and thus we have shown that H'Pik) ^Zis<G).

But HPik) is a characteristic subgroup of G; and as such it contains the
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A-Sylow subgroup 77'which is conjugate to 77. Hence HP(k) =H'P(k) ; and we

have shown that H^Z(s<G). Consequently Z(H<G) contains every ele-

ment s in 5 which does not belong to T.

Consider now an element t in T. Since T<S, there exists an element s

in S which does not belong to T. Hence s and ts are elements in S which do

not belong to T. It follows that s and ts both belong to Z(H<G). Hence t

belongs to Z(H<G). Thus we have shown that S^Z(H<G); and this im-

plies 77^ Z (S <G).
Since 5 is abelian, we have S^Z(S<G). Combining this remark with

the result of the preceding paragraphs we see : If r is a prime number different

from q, then Z(S<G) contains an r-Sylow subgroup. But then [G:Z(S<G)]

is a power of q, and this completes the proof of (7).

Proof of necessity of conditions (a) and (b) of Theorem. If G is a /-group,

then it follows from Proposition 2* that G is the direct product of a nil-

potent group N and a /*-group M whose orders are relatively prime. Nat-

urally N is the direct product of its primary components.

Consider now a p-Sylow subgroup S¿¿1 of the /*-group M.

Case 1. S^Z(M).

Since the order of 5 is relatively prime to the index of 5 in M, and since

S is part of the center of M, we may apply Schur's Theorem ; see Zassenhaus

[l, p. 125, Satz 25]. It follows that M is the direct product of 5 and of a

subgroup of order prime to p.

Case 2. S$Z(M).

Since M is a /*-group, 5 is abelian [Proposition 3]. Hence S^Z(S<M)

<M; and it follows from (7) that [M:Z(S<M)] is a prime power qmj¿l

with q¥^p.
Suppose now that Q is a ç-Sylow subgroup of M. Assume by way of

contradiction that Z(Q<M) contains a p-Sylow subgroup S' of il7. Then Q

is part of Z(S' <M). Since any two p-Sylow subgroups of M are conjugate

in M, there exists an element x in il7 such that x~1S'x = S. Then x~lQx

^x-1Z(S'<M)x = Z(x-1S'x<M)=Z(S<M). But the index [M:Z(S<M)]

is a power of q, different from 1, so that Z(S<M) cannot contain any

g-Sylow subgroup of M. This contradicts the fact that x~lQx is a g-Sylow

subgroup of M; and thus we have shown that Z(Q<M) does not contain

any p-Sylow subgroup of M. We apply (7) and see that [M:Z(Q<M)]

= p"r¿l for every g-Sylow subgroup Q of M.

Since M is a /*-group, it follows from (2) that M is soluble. Conse-

quently Z(S<M) is soluble. Denote by j the greatest divisor of the order of

M which is prime to p and q. From [M:Z(S<M)]=qm it follows that j is

the greatest divisor of the order of Z(S<M) which is prime to p and q.

Applying a Theorem of Ph. Hall we see that Z(S<M) contains a subgroup A

of order/; see, for instance, Zassenhaus [l, p. 127, Aufgabe l]. Similarly it

follows that Z(Q<M) contains a subgroup B of order/.
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Since A and B are subgroups of the order j of the soluble group M, and

since by our choice of j we find that [M:A ] = [M:B] is prime to j, it follows

from a Theorem of Ph. Hall that A and B are conjugate subgroups of M;

see, for instance, Zassenhaus [l, p. 127, Aufgabe 3]. Consequently there exists

an element y in M such that y~xBy = A. Then we let Of =y~1Qy; and we find

that A =y-1By^y~lZ(Q< M)y = Z(Q' <M).

The Sylow subgroups 5 and Of are consequently both contained in

ZiA <M) so that the order of Z(A <M) is divisible by o(S)o(Q') = [M:A].

We deduce from Ph. Hall's Theorem the existence of a subgroup D of the

soluble group Z(A <M) whose order o(D) = [Af:^4], since [M:4] and o(A)

=j are relatively prime. Since every element in D commutes with every

element in A, and since o(M) = [M:A ] [A : l] =o(D)oiA), one verifies with-

out difficulty that M is the direct product of A and D. The orders of A and D

are relatively prime. Since D contains every ¿g-element of M, we have

D = SQ' and the order of D is divisible by the two primes p and q only.

Finally we deduce from Proposition 3 that the Sylow subgroups 5 and Of of

the /*-group M, and of D, are abelian.

Combining the results of Cases 1 and 2 one verifies by an obvious induc-

tive argument—using the fact that by (1) direct factors of /*-groups are

also /*-groups—that M is the direct product of groups of relatively prime

orders whose Sylow subgroups are abelian and whose orders are divisible

by no more than two prime numbers each. This completes the proof of our

theorem.

Remark. One proves without too much difficulty that a group G is nil-

potent if, and only if, every ¿-element in G has index a power of ¿>; for in-

stance, by an application of §1, Lemma 6. This criterion is also a special

case of our present theorem ; and it will appear as a special case of some later

results too.

The question may be raised as to the characterization of those groups

whose ¿-elements, for just one prime p, have prime power index. The present

discussion does not seem to throw much light on this question.

4. Hypercenter and hypercommutator. The hypercenter of the group G is

the intersection H(G) of all the normal subgroups N of G with the property:

(1) The center of G/N is 1.

It is not difficult to see that the center of G/H(G) is 1. If one defines in-

ductively the ascending center chain Z¿G) of G by the rule

(2) Zo(G) = l, Zi+1(G)/Zi(G) is the center of G/Z^G),
then this ascending chain of normal subgroups of G terminates after a finite

number of steps; and it is not difficult to see that

(3) H(G) =Zi(G) for almost every i.

It is clear that the hypercenter H(G) is a characteristic subgroup of G; and

it is not difficult to construct examples showing that H(G) need not be fully

invariant. We note finally that H(G) is nilpotent. For the elementary prop-
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erties of the hypercenter see, for instance, Baer [2, p. 20].

The hyper commutator of the group G is the intersection C(G) of all the

normal subgroups N of G with the property:

(4) G/N is nilpotent.

It is not difficult to see that G/C(G) itself is nilpotent. If one remembers

that a group is nilpotent if, and only if, it is the direct product of its primary

components, then one verifies that

(5) C(G) is the intersection of all the normal subgroups with prime power

index in G.

If we remember next that a group is nilpotent if, and only if, elements of

relatively prime order commute, then we see that

(6) C(G) is generated by the commutators x~ly~lxy where x and y are ele-

ments of relatively prime order in G.

This characterization (6) of C(G) shows that C(G) is a fully invariant

subgroup of G. If we define the descending center chain 'G of G inductively by

the rules

(7) °G = G, ^G=[G, <G],
then this descending chain of normal subgroups of G terminates after a finite

number of steps; and it is not difficult to see that

(8) C(G) = 'G for almost every i.

From this last property one deduces finally that

(9) C(G) is the product of all the normal subgroups N of G such that N
= [G,N].   '

For the various characteristic properties of nilpptent groups see Baer

[l] and Zassenhaus [l, pp. 104-109, 123]; and for the elementary properties

of the hypercommutator see, for instance, Baer [2, p. 20].

(10) [C(G),/7(G)] = 1.

Proof. It is well known that

[<£?, Zj(G)] Û Z¡-i^(G) for i + 1 = j;

see, for instance, Zassenhaus [l, p. 121, (10)]; and now (10) is an immediate

consequence of (3) and (8).

Because of this relation (10) we shall be interested in the centralizer D(G)

= Z[C(G)<G] of the hypercommutator in G. Clearly H(G)SD(G) and D(G)

is a characteristic subgroup of G.

(11) D(G) is nilpotent.

Proof. Since G/C is nilpotent, the subgroup DC/C is nilpotent too; and

it follows from the Isomorphism Theorem that D/(DP\C)~DC/C is a

nilpotent group. Since every element in D commutes with every element in

C, DC\C is part of the center of D. Hence D is nilpotent modulo its center;

and this implies clearly the nilpotency of D.
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(12) If the orders of the element d in D and the element g in G are relatively

prime, then d~lg~ldg belongs to CC\D = Z(C)C\Z(D).

Proof. Cd and Cg are elements of relatively prime order in the nilpotent

group G/C. Hence they commute so that the commutator [d, g] belongs to

C; and [d, g] belongs to D, since d is an element in the normal subgroup D

of G. Thus [d, g] belongs to CC\D. But every element in C commutes with

every element in D=Z(C<G). Hence CC\D^Z(C)C\Z(D) ^CC\D or CC\D

=z(C)r\z(D).
See also §5, Corollary 5.

(13) The following properties of the normal subgroup N of G are equivalent.

(i) CiG)ZN.
(ii) // 5 is a minimal subgroup of G with the property G = NS, then S is

nilpotent.

(iii) There exists a nilpotent subgroup S of G such that G = NS.

Proof. Assume first that C(G) ¿A7 and that 5 is a minimal subgroup of G

with the property G = NS. Then G/N is nilpotent as a quotient group of the

nilpotent group G/C(G). Consider now a ¿-Sylow subgroup P of 51. Then

NP/N is a ¿»-Sylow subgroup of the nilpotent group G/N. Consequently

NP/N is a normal subgroup of G/N so that NP is a normal subgroup of G.

Hence NPC^S is a normal subgroup of 5and we deduce from P^Sand Dede-

kind's Law that NPr\S = P(Ni\S). Denote by T the normalizer of P in 5.

Then P^T^S. Ii s is an element in S, then s~lPs is a ¿-Sylow subgroup of

NPi^S, since NPf^S is a normal subgroup of 5 which contains the Sylow

subgroup P of S. Thus P and s~1Ps are ¿»-Sylow subgroups of NPC\S and

we deduce from Sylow's Theorem the existence of an element h in NPi^S

such that s~1Ps = h~1Ph. From NPC\S = P(Ni^S) we deduce the existence of

elements u and v in P and NHiS respectively such that h = uv. Then

s~xPs = hrxPh = v~1u~1Puv = v~xPv.

Consequently sv~l belongs to the normalizer T of P in 5 and 5 belongs to

Tv^T(NC\S). Hence S£T(NC\S) and consequently

G = NS g N(N r\S)T = NT   or   G = NT.

From the minimality of 5 we infer now 5= T. Thus we have shown that

every Sylow subgroup of S is a normal subgroup of S; and this is equivalent

with the nilpotency of S. Thus (ii) is a consequence of (i).

That (ii) implies (iii) is an obvious consequence of the existence of

minimal subgroups S oí G satisfying G = NS.

If finally S is a nilpotent subgroup of G such that G = NS, then G/N

~S/(NC\S). Thus G/N is nilpotent, since it is a homomorphic image of the

nilpotent group 5. Now it follows from the definition of C(G) that C(G) g N.

Thus (i) is a consequence of (iii), completing the proof.

5. The elements and normal subgroups contained in the hypercenter.
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We begin our discussion with a proof of the following fundamental char-

acterization of the p-elements which belong to the hypercenter.

Theorem 1. The following properties of the p-element g in the group G are

equivalent.

(i) g belongs to the hypercenter 77(G) of G.

(ii) gx = xg for every x in G whose order is prime to p.

(iii)  [G:Z(ga <G)] is a power of p.

(iv)   [G:g] is a power of p and C(G) ̂ Z(g<G).

Proof. To prove that (ii) is a consequence of (i) we verify the following

proposition by complete induction with respect to n.

(n) If the p-element h belongs to Zn(G), then hx — xh for every x in G whose

order is prime to p.

This assertion is certainly true for n=0 and n = \. Thus we may assume

the validity of (n) for some positive n. Consider a p-element h in Zn+1(G)

and an element x in G whose order is prime to p. Since Zn+i(G)/Zn(G) is

the center of G/Zn(G), the element c= [x, h] belongs to Z„(G). Since Zn+i(G)

is a nilpotent characteristic subgroup of G, the p-elements in Zn+i(G) form

a characteristic p-subgroup of G; and so it follows that c is a p-element in

Zn(G). Applying the inductive hypothesis we find that xc = cx. Now

x~1hx = Ac-1

and therefore

x~khxk = hc~k for every positive k.

If in particular m is the order of x, then we find that

h = x~mhxm = hc~m    or    cm = 1.

But c is a p-element and m is prime to p. Hence c— 1 so that hx = xh as we

wanted to show. This completes the inductive proof of (n).

That (ii) is a consequence of (i) is now readily inferred from (n) if one

only remembers that 77(G) =Zt(G) for sufficiently large /.

Assume next the validity of (ii). Then every element conjugate to g has

the property (ii) too. The normal subgroup Z(ga<G) contains consequently

every element of order prime to p. Hence [G:Z(gG<G)] is a power of p.

Thus (iii) is a consequence of (ii).

Assume next the validity of (iii). Since Z(g° <G) is a normal subgroup of

prime power index, G/Z(gG<G) is a primary group and therefore nilpotent.

Hence it follows from the definition of the hypercommutator that C(G)

^Z(g°<G). We have furthermore Z(g° <G)^Z(g<G). Thus [Gig]

= [G:Z(g<G)] is a divisor of [G:Z(g°<G)]. Since the latter number is a

power of p, so is the former; and we have shown that (iv) is a consequence

of (iii).
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Assume now the validity of (iv). Since G/C(G) is nilpotent, and since

[G/C(G):Z(g<G)/C(G)]=[G:Z(g<G)]=[G:g] is a power of p, it follows
that Z(g<G)/C(G) contains all the elements of order prime to p in G/C(G);

and this implies that Z(g<G) contains every element of order prime to ¿>

in G. Thus (ii) is true. Let now G* = G/H(G) and y*=H(G)y for every y in

G. Then the ¿»-element g* in G* meets clearly requirement (ii) and the same

holds for every element conjugate to g*. Ii N*= {g*a'}, then Z(N*<G*)

contains every element of order prime to ¿»; and this implies in particular

that [G*:x*] is a power of p for every x* in N*. Since N* is generated by

¿-elements, its order is divisible by ¿» unless N* = l. But if the order of N*

were divisible by ¿>, then we would infer from §1, Lemma 4 that N* would

contain an element w* of order ¿> whose index is prime to p. Since every ele-

ment in N* has index a power of ¿», this would imply that w* would have

index 1. Thus w* would be an element, not 1, in the center of G* = G/H(G),

an impossibility [§4, (1)]. It follows that N*=l. Hence l=g* = H(G)g so

that g is in H(G). Thus (i) is a consequence of (iv). This completes the proof.

Remark 1. It should be noted that it is impossible to substitute for (iii)

or (iv) the weaker condition:

[G:g] is a power of p.

This may be seen from the following simple construction which may be gen-

eralized easily. Denote by A the direct product of ¿» cyclic groups of order

p9i2; and denote by b(l), ■ • • , b(p) some basis of A. Then every permuta-

tion of the elements b(i) is induced by one and only one automorphism of A.

Consequently we may adjoin to A the group of all permutations of the b(i).

We then obtain a group G with the following properties:

A is a normal subgroup of G;

every inner automorphism of G induces a permutation of the elements

b(l), •• ■ ,b(p);
every permutation of the elements ¿(1), • • • , b(p) is induced by an

inner automorphism of G.

It is clear then that [G:b(i)]=p, since the elements b(l), • • • , b(p) are

just the elements conjugate to b(i). On the other hand b(i) does not belong

to the hypercenter of G, since it does not commute with every element of

order prime to ¿» [Theorem 1, (ii)]; for instance, there exists an element of

order 2 in G which induces a permutation of the elements £>(1), • • • , b(p),

interchanging b(i) and b(i±l). Note that every element g^l in the ¿»-group

{&(î)| has the property [G:g]=p.

One may use Theorem 1 to characterize the ¿»-component of the hyper-

center. For a convenient enunciation of this characterization we denote by

C(G, p) the intersection of all the normal subgroups N of G such that [G:N]

is a power of p. It is clear that C(G) g C(G, p), that [G : C(G, p) ] is a power of

¿>, and that  [C(G, p) : C(G) ] is prime to ¿>. Since H(G) is nilpotent, the
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totality of p-elements in 77(G) is a characteristic subgroup of 77(G) and of G,

the soc. p-component of 77(G).

Corollary 1. The p-component of 77(G) is the totality of p-elements in

Z[C(G,p)<G].

Proof. If g is a p-element in Z[C(G, p) <G]=D(G, p), then every gx is a

p-element in D(G, p). It follows that C(G, p)^Z(gx<G) for every x in G;

and this implies C(G, p)^Z(gG<G). Consequently [G:Z(gG<G)] is a power

of p. Hence Theorem 1, (iii) is satisfied by g so that g belongs to 77(G). If

conversely the p-element g belongs to 77(G), then it follows again from

Theorem 1, (iii) that [G:Z(g°<G)] is a power of p. But Z(g°<G) is a

normal subgroup of G. Consequently C(G, p) úZ(ga <G) so that g belongs to

D(G, p). Thus the p-component of 77(G) is exactly the totality of p-elements

in D(G, p), as we wanted to show.

Theorem 2'. The normal p-subgroup P of G is part of the hypercenter

11(G) of G if, and only if, P is a direct factor of every subgroup S of G such that

P<S and [S:P] is prime to p.

Proof. Assume first that P^ 77(G) and that 5 is a subgroup of G with

the following properties: P<S and [S:P] is prime to p. Then P is a normal

subgroup of 5 such that the order of P and the index of P in 5 are relatively

prime. Hence we may deduce from Schur's Theorem the existence of a

complement C of P in S; see, for instance, Zassenhaus [l, p. 125, Satz 25].

From the isomorphy of C and S/P it follows that the orders of the elements

in C are prime to p; and now we deduce from Theorem 1 that every element

in C commutes with every element in PS77(G). Thus S is the direct product

of P and C. This proves the necessity of our condition.

Assume next the validity of our condition. Consider an element g^l in

G whose order is prime to p. Then no power of g, except 1, belongs to the

p-group P. Since P is normal, it follows now that S={P, g\=P{g] and

that S/P~\g\. This implies in particular that P<S and [S:P] is prime to

p. We apply our condition to see that S is the direct product of P and some

subgroup T. One verifies that T is the totality of elements of order prime to

p in S, since the orders of P and T are relatively prime. Hence g belongs to T

so that g commutes with every element in P. Thus we have shown that every

element in P commutes with every element in G whose order is prime to p.

Since the elements in P are p-elements, we deduce from Theorem 1 that every

element in P belongs to 77(G). Hence P^ 77(G), and this complete the proof.

Theorem 2". The p-subgroup S of G is a normal subgroup of G and part of

the hypercenter 77(G) of G if, and only if,

(a) 5 is a normal subgroup of some p-Sylow subgroup of G and

(b) [G:x] is a power of p for every element x in S.
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Proof. Assume first that 5 is a normal subgroup of G and a subgroup of

the hypercenter. As every ¿»-subgroup is contained in some ¿-Sylow subgroup,

S is clearly a normal subgroup of some ¿»-Sylow subgroup; and the necessity

of (b) may be inferred from Theorem 1, (iv).

Assume now the validity of conditions (a) and (b). Then there exists a

¿-Sylow subgroup P of G which contains S as a normal subgroup. Suppose

now that the normal subgroup A7 of G is part of S(~\H(G). If the subgroup

T of G contains N, then we let T* = T/N, and we let g* — Ng for every g in

G. Then we infer from N^H(G) that H(G*) -17(G)*. It is clear that S* isa

normal subgroup of the ¿»-Sylow subgroup P* of G*; note N^S^P. Finally

we deduce from §1, Lemma 3 that [G*:x*] isa power of p for every x* in S*.

Our proof is completed if 5* = 1; and thus we may assume that S*^l. Since

S* is a normal subgroup, not 1, of the ¿-group P*, a well known result in

the theory of ¿-groups shows that S*Í~\Z(P*) j£\. Consider now an element z*

in S*r\Z(P*). We have pointed out already that [G*:z*] = [G*:Z(z*<G*)]

is a power of p. But P*^Z(z*<G*), çince z* belongs to the center of P*.

Since P* is a ¿-Sylow subgroup of G*, it follows that [G*:Z(z* <G*)] is

prime to p. Thus we have [G*:2*] = 1, since 1 is the only power of ¿» which is

prime to p. In others words: z* belongs to the center of G*. Thus we have

shown that

s*r\z(p*) ^z(g*).

If now M is the uniquely determined subgroup of G which contains N and

satisfies M/N = S*r\Z(P*), then we infer N<M from S*C\Z(P*)^1. Since

M* is part of the center of G*, it is a normal subgroup of G*. Hence M is a

normal subgroup of G. Since N^H(G) and M* 5= Z(G*), we conclude finally

that M^H(G) too.

Using the result just obtained one proves now by an obvious inductive

argument that S itself is a normal subgroup of G and is part of the hyper-

center H(G). This completes the proof.

Corollary 2. The following properties of the p-Sylow subgroup S of G are

equivalent."  (i) SZHiG).

(ii) S is a direct factor of G.

(iii)   [G:x] is a power of p for every x in S.

Proof. Assume first that the ¿-Sylow subgroup 5 of G is part of the hyper-

center H(G). Clearly 5 is a Sylow subgroup of H(G). But H(G) is nilpotent,

and so 5 is a characteristic subgroup of H(G) and therefore of G. Since order

and index of 5 in G are relatively prime, we may apply Theorem 2'. Hence S

is a direct factor of G and we have shown that (ii) is a consequence of (i).

If next G is the direct product of S and T, then T^Z(s<G) for every 5

in S; and this implies that [G:s] is a power of p, since [G:E] is a power of

¿». Thus (iii) is a consequence of (ii).
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If finally (iii) is satisfied by S, then it is clear that 5 satisfies conditions

(a) and (b) of Theorem 2", since S is itself a Sylow subgroup. It follows

from Theorem 2" that S S 77(G). Thus (i) is a consequence of (iii); and this

completes the proof.

Theorem 3. The following properties of the normal subgroup N of the group

G are equivalent.

(i) N = 77(G).
(ii) Z(A)=77(G) and N^Z[C(G)<G].
(iii) If x is in N and y is in G, and if the orders of x and y are relatively prime,

then xy = yx.

(iv) If U is a nilpotent subgroup of G, then NU is nilpotent.

(v) N is part of the normalizer of every Sylow subgroup of G.

(vi) If x is a p-element in N, then [G'.x] is a power of p.

(vii) There exists a nilpotent subgroup V of G such that N?¿V and G
= VZ(N<G).

Proof. It is a consequence of §4, (10) that [77(G), C(G)] = 1, and this

shows that (ii) is an immediate consequence of (i).

Assume now the validity of (ii). If x is a p-element in N^Z[(C(G) <G]

= D(G), and if the order of the element y in G is prime to p, then we deduce

from §4, (12) that [x, y] belongs to C(G)C\D(G). Since N is normal and x is

in N, the commutator [x, y] belongs to N too. Consequently [x, y] is an

element in

C(G) r\ D(G) H N = C(G) r\N £ Z(N <G)f\ N = Z(N) g T7(G).

Thus x commutes with [x, y] and it follows from x_1yx = y[x, y]~l that

x-iyXi — y[Xi y]-¡ for every positive i.

But x is a p-element so that the order of x has the form pm. Hence

y = x~p yxv   = y[x, y\v      or    [x, y\p   = 1.

Thus [x, y] is a p-element in Z(N)^H(G). It follows from Theorem 1, (ii)

that [x, y] commutes with every element of order prime to p. Hence in

particular [x, y] and y are commuting elements. Consequently it follows

from y~1xy = x[x, y] that

y~ixyi = x[x, y]{ for every positive i.

If n is the order of y, then we have therefore

x = y~nxy" = x[x, y]n    or    [x, y]n = 1.

But [x, y] has been shown to be a p-element and n is prime to p. It follows

that [x, y] = 1 or xy = yx. Consider now an element m in A and an element
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v in G such that the orders of u and v are relatively prime. Then u is the

product of commuting primary elements u{ in N whose orders are divisors of

the order of u. Thus the orders of m, and v are relatively prime; and it follows

from what we have shown just now that u,v = vUi. But this implies clearly

uv = vu. Thus (iii) is a consequence of (ii).

Assume next the validity of (iii). Then elements of relatively prime order

in N commute; and it is well known that this implies the nilpotency of N.

In particular N is the direct product of its primary components N(p) ; and

N(p), as the totality of ¿-elements in N, is a characteristic subgroup of N

and a normal subgroup of G. Consider now some nilpotent subgroup U of G.

Then U is the direct product of its primary components U(p) and it is clear

that N(p) U(p) is a ¿-Sylow subgroup of the subgroup NU of G. If u is an

element in U, then u transforms both N(p) and U(p) into themselves, since

N(p) is a normal subgroup of G and U(p) is a normal subgroup of U. Con-

sider next a primary element t in N. If t is a ¿»-element, then t belongs to

N(p) and it is clear that t transforms N(p) U(p) into itself. If / is a g-element

with pT^q, then it follows from (iii) that t commutes with every ¿-element in

G. Consequently t commutes with every element in N(p) U(p) and again it is

clear that N(p) U(p) is transformed into itself by /. Thus N(p) U(p) is trans-

formed into itself by every element in U and by every primary element in

N; and this implies clearly that N(p)U(p) is a normal subgroup of NU.

Hence every Sylow subgroup of NU is a normal subgroup of NU. Conse-

quently NU is nilpotent and we have shown that (iv) is a consequence of

(iii).
If (iv) is satisfied by N, and if 5 is a ¿-Sylow subgroup of G, then NS is

nilpotent. But 5 is a ¿»-Sylow subgroup of NS too; and it follows from the

nilpotency of NS that 5 is a normal subgroup of NS. But then N is part of

the normalizer of S. Hence (v) is a consequence of (iv).

Assume next the validity of (v). If x is a ¿-element in N and if 5 is a

¿-Sylow subgroup of G, then 5 = x_15x. Thus \S, x\ is a ¿»-group, proving

that x belongs to 5. The totality N(p) of ¿»-elements in N is therefore con-

tained in the ¿»-group 5. Hence N(p) is a ¿-group [for every p] so that N is

nilpotent. Since N is a. normal subgroup of G, N(p) too is a normal subgroup

of G. Consider again a ¿-element x in N and a primary element y in G whose

order is prime to ¿>. Then y belongs to some Sylow subgroup Y oí G. It fol-

lows from (v) that x~lYx= Y. Hence [x, y] belongs to Y. But x is an element

in the normal subgroup N(p) of G so that [x, y] belongs to N(p) too. Thus

[x, y] belongs to YP\N(p) = l, since the orders of the primary groups N(p)

and Fare relatively prime. Consequently [x, y] = 1 or xy = yx. It follows that

Z(x<G) contains all the primary elements of order prime to ¿; and this shows

that [G:x] = [G:Z(x<G)] is a power of p. Hence (vi) is a consequence of (v).

Assume now the validity of (vi). If x is a ¿-element in N, then [G:x] is

a power of p; and it follows from §1, Lemma 6 that {x0} is a ¿-group. Thus
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every p-element in N belongs to some normal p-subgroup of N; and this

implies clearly that the totality N(p) of p-elements in A is a p-subgroup of

N. As a characteristic subgroup of the normal subgroup N the subgroup

N(p) is normal in G. Consequently A(p) is a normal subgroup of every

p-Sylow subgroup of G. Thus conditions (a) and (b) of Theorem 2" are

satisfied by A(p) so that N(p)SH(G). Since therefore all the primary ele-

ments in N belong to 77(G) we find that N S77(G). Thus (i) is a consequence

of (vi) and we have completed the proof of the equivalence of the first six

conditions.

Assume now the validity of the equivalent conditions (i) to (vi). Then

N^Z[C(G)<G] so that C(G)SZ(N<G). Consequently G/Z(N<G) is
nilpotent and we deduce from §4, (13) the existence of a nilpotent subgroup

U of G such that G= UZ(N<G). It follows from (iv) that V=NU is nil-

potent. We have clearly NS V and G= UZ(N<G) = VZ(N<G). Thus (vii)

is a consequence of (i) to (vi).

Assume finally the validity of (vii). If x is a p-element in N, then we have

certainly Z(N<G)SZ(x<G). Denote by V some nilpotent subgroup of G

such that NS.V and G= VZ(N<G). Then x is an element in the nilpotent

group V and commutes with every element in V whose order is prime to p.

If V*(p) is the totality of elements of order prime to p in V, then we have

shown now that V*(p)Z(N<G) SZ(x<G). From G=VZ(N<G) it follows

that V*(p)Z(N<G)/Z(N<G) is the totality of elements of order prime to p

in G/Z(A<G) = FZ(A<G)/Z(A<G). Hence [G:x]= [G:Z(x<G)] is a
power of p; and we have shown that (vi) is a consequence of (vii). This com-

pletes the proof of our theorem.

Corollary 3. The hypercenter is the intersection of the normalizers of all

the Sylow subgroups.

This is an immediate consequence of Theorem 3, (v).

Corollary 4. The hypercenter is the intersection of all the maximal nil-

potent subgroups.

Proof. If If is a maximal nilpotent subgroup of G, then MH(G) is nil-

potent by Theorem 3, (iv) and M= 1777(G) is a consequence of the maximal-

ly of M. Hence 77(G) S M so that 77(G) is part of the intersection / of all

the maximal nilpotent subgroups of G. It is clear that / is a characteristic

subgroup of G. If U is a nilpotent subgroup of G, then U is part of some

maximal nilpotent subgroup W of G. Clearly JSW. Hence JUS W and JU

is nilpotent as a subgroup of a nilpotent group. Thus Theorem 3, (iv) is

satisfied by the normal subgroup / so that /g77(G) SJ or / = 77(G) as we

wanted to show.

Corollary 5. If the normal subgroup N of G is contained in Z[C(G) <G],

then [N, N] = 77(G).
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Proof. It follows from §4, (11) that Z[C(G) <G] is nilpotent. The sub-

group N of Z[C(G) <G] is therefore nilpotent too. Hence N is the direct

product of its primary components which are normal subgroups of G and

[N, N] is the direct product of the commutator subgroups of these primary

components of N. Consequently we may assume without loss in generality

that

A is a ¿-group.

Consider now an element g in G whose order is prime to p. If x is an ele-

ment in N, then x is a ¿-element and it follows from §4, (12) that [x, g] be-

longs to the center Z(N) of N. If x and y are any two elements in N, then

[x, g], [y, g], and [xy, g] belong to Z(A) and satisfy therefore

[xy, g\ = y^x^g^xyg = y_1[*> g]g^yg = [x, gh^g^yg

= [x, g][y, jfj.

Mapping x in N upon [x, g] in Z(N) [for any fixed g] constitutes therefore a

homomorphism of N into the abelian group Z(N). But such a homo-

morphism maps [N, N] upon 1; and thus we have found that [c, g] = l for

every c in [N, N] and every g of order prime to p. Thus condition (iii) of

Theorem 3 is satisfied by [N, N]. Hence [N, N]^H(G), as we wanted to

show.

Remark 2. If we let in Theorem 3 in particular N = G, then we obtain

some more or less well known criteria for the nilpotency of G. Conditions

(ii), (iv), and (vii) do not give interesting results; but using the remainder of

Theorem 3 we obtain the following criterion.

The following properties of the group G are equivalent.

(a) G is nilpotent.

(b) Elements of relatively prime order in G commute.

(c) Sylow subgroups are normal subgroups.

(d) p-elements have p-power index.

Properties (b) and (c) are, of course, well known; actually property (c)

is often used as definition of nilpotency; and property (d) is also a conse-

quence of Corollary 2.

Theorem 4. The following properties of the minimal normal subgroup M of

G are equivalent.

(i) M^ZiG).
(ii) M^HiG).
(iii) G/MZiM<G) is soluble; M contains an element t^l of prime power

index [G'.t]; and to every prime p there exists an element xj^l in M whose

index [G:x] is prime to p.

(iv) G/ZiM<G) is soluble and to every prime p there exists an element

xj^l in M whose index [G'.x] is prime to p.
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Proof. It is clear that (i) implies (ii). If MSH(G), and if p is a prime

divisor of the order of M, then we infer from §1, Lemma 4 the existence of an

element x of order pin M whose index [G:x] is prime to p. But p-elements in

the hypercenter have index a power of p [by Theorem l]. Hence [G:x] = l

so that x belongs to the center of G. But then it follows from the minimality

of M that 17 ="Z(G) ; and thus we have shown the equivalence of (i) and (ii).

It is obvious that (iii) is a consequence of the equivalent conditions (i)

and (ii). Assume now the validity of (iii). As a minimal normal subgroup,

M is free of proper characteristic subgroups. But M contains an element

¿5= 1 such that [G:t] is a prime power. We infer from §1, Lemma 2 that

[Af:¿] is a prime power too. Thus §2, Proposition 2, (iv) is satisfied by M.

Hence M is commutative. Consequently MSZ(M<G) or Z(M<G)

= MZ(M<G); and now it is clear that (iv) is a consequence of (iii).

Assume now the validity of (iv). Because of the minimality of M we

have MC\Z(M<G) = \ or M. If MC\Z(M<G) = l, then M would be iso-
morphic to a subgroup of the soluble group G/Z(M<G). Thus M would be a

soluble group without proper characteristic subgroup. But such a group is

clearly abelian; and this implies MSZ(M<G), a contradiction. Hence

J7nZ(il7<G)=il7or M^Z(M<G) so that M is abelian.

Assume next by way of contradiction that Z(M<G) t¿G. Then we deduce

from the solubility of G/Z(M<G) the existence of a normal subgroup N of

G with the following properties:

Z(M < G) < N   and    N/Z(M < G) is a p-group.

Since A is a normal subgroup of G, so is Z(N<G). Hence it follows from the

minimality of M that MC\Z(N<G) = l or M. In the latter case we would

have MSZ(N<G) so that NSZ(M<G)<N, an impossibility. Conse-

quently

M r\Z(N <G) = 1.

It follows from (iv) that there exists an element U5¿1 in M whose index

[G:u] is prime to p. From MSZ(M<G) <N and §1, Lemma 2 we deduce

that [A:m] is prime to p. But clearly

Z(M <G) = N r\ Z(M < G) = Z(M < N) S Z(u < N) ú N.

Thus the number [N\u] = [A:Z(w<A)] which is prime to p is a divisor of

the number [N:Z(M<G)] which is a power of p. It follows that [N:u] = l

so that u belongs to the center of N. Thus Z(N)C\M^l, contradicting

MnZ(N<G) = l. Consequently Z(M<G)=G so that M^Z(G). Hence (i)

is a consequence of (iii). This completes the proof.

Corollary 6. The socle of G is part of Z [77(G) <G].

Here we define, following Remak, the socle as the product of all the
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minimal normal subgroups. That every minimal normal subgroup M oí G

is part of the centralizer of the hypercenter is easily seen. For if M is part of

the hypercenter, then it follows from Theorem 4 that M is part of the center;

and if M is not part of the hypercenter, then MC\HiG) = 1 and it is evident

again that MSZ[HiG)<G].
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