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1. Introduction. Given a power series (2)

(1.1) f(z) = X anzn = (1 - 2) L s„zn

with radius of convergence 1, we wish to study the relations between the

sequence (s) and its associated function f(z) which may be considered as a

transformation T(s). Direct (or Abelian) theorems conclude from the se-

quence (s) to the transformation T(s), while Tauberian theorems infer con-

clusions from the behavior of T(s) to the behavior of (s) under specified addi-

tional conditions (Tauberian conditions).

For the special transformation T which transforms (s) into f(z) according

to (1.1) we distinguish two types of Tauberian theorems. Tauberian theo-

rems of real character use assumptions about/(z) where z is on the real axis,

and have real Tauberian conditions ; for example

lim f(z) = s    and   an ^ 0    implies    lim s„ = s.
z-»l-0 n->»

In this paper we are concerned with Tauberian theorems of complex char-

acter in which the assumptions on/(z) are essentially complex.

One of these complex Tauberian theorems was given first by Fatou [3,

p. 389]:

Theorem A. If the function f(z) defined by (1.1) is regular at z = \ and

a„—>0 (n—><*>), then ^an converges.

Another theorem of this type is due to M. Riesz (see, e.g. [9, p. 64]) :

Theorem B. If the function f(z) defined by (I.I) is regular in the region

( I z I < R, R > 1,
S •    <

11 arc (z - 1) | > e0, 0 <60 < x/2,

and continuous in Si (the closure of S{), then ^an converges.

After recalling some well known facts in summability theory we shall re-

lax the assumptions on f(z) in the Theorems A and B and prove a theorem

which contains both as special cases. The condition about the behavior of
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f(z) in Si is thereby localized to a smaller region S2 in the neighborhood of

2=1 which is the smallest possible in a certain sense. In §4 other regions are

taken instead of S2.

In §§5 and 6 we assume that/(z) = ¿lanzn has a positive radius of con-

vergence and that z = 1 lies on the boundary of the region of F-summability

associated with/(z). In analogy to the above theorems we infer conclusions

from the behavior of /(z) in the neighborhood of z = 1 to the behavior of

Vis). In an extended sense these theorems are also complex Tauberian theo-

rems. For F the methods of Euler-Knopp, Borel, and Meyer-König are taken

and thus extensions of results of Karamata, Meyer-König, and Obrechkoff are

obtained.

2. The methods Ep, B, Sa. The methods of Euler-Knopp, Borel, and

Meyer-König are useful for the analytic continuation of power series. As-

sume that a series ^,a„ with partial sums s„= ^"_0 a, is given and that the

associated power series/(z) = 22anzn has a positive radius of convergence.

a. The method Ep (Euler-Knopp) with fixed parameter ¿» (0<¿< oo) is

defined by the triangular matrix (Ep) with elements

(2.1) «w'--^(*W-l/W in,v = Q, 1,2,- ■■ ;vSn).

The Ep-transformation of the sequence s„ is therefore the new sequence

Ep(n;sr) =-¿( n )(2"- 1)"-%        (n = 0, 1, • • • )
2P" 3 \v /

and we say that E^-lim s„ = s (or Ep- ^2an = s) if ïim„^x Ep(n; s„) =s.

For our purposes another definition of the E,,-transformation of the se-

quence sn is more suitable. Letting

w
(2.2) z = fa(w) =

2p - (2v - \)w

and developing f(z) into powers of w we obtain a power series

F(w) = X) a»f"

which is convergent in the neighborhood of w = 0. It is easy to prove that

A   , (a'„ = 2~
(2.3)    Ep(n; sy) = ¿_, a*   where      <   ,

«-0 \0-o — 00

"Ep(n — 1; a„+i)  (n = 1, 2, • • • ),

Hence Ep-^a„ exists if and only if ^2a„ converges, and E^-lim a„ = 0 is

necessary for the existence of Ep-^a„. (Here we use the fact that Ep(n; a„+i)

—»0 («—>«>) is equivalent to Ep(n; av)—>0 («—»«>).)

If the method Ep is applied to X)a„zn for different values of z, one obtains
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a region ®Ep in the z-plane in the interior of which the power series is £p-sum-

mable to the value/(z), whereas it is certainly not summable for any z which

lies outside of &ep. On the boundary of &ep no general statement can be

made and the situation is somewhat similar to the situation on the boundary

of the circle of convergence of a power series. &ep can be constructed from

the singularities of f(z) ; we shall use that f(z) is necessarily regular in $ep

= S((2í,-1)/(2¡,+1-1)) if z=l is on the boundary of &Ep. (We denote by

®(a) the region \z — a\ <1— a for 0<a<l.) $Er is the map of \w\ <1 under

the transformation z=<pp(w).

b. Two methods of Borel are known.  In the case of the  "exponential

method" we let

B(x;sy) = g-J\ — (xäO)
ni

where the sum exists for x^O since ^anzn has a positive radius of con-

vergence; we say that B-\\m s„ = s (or B- ^lan = s) if limx^M B(x; s„) =s.

The second method is called Borel's "integral method" and is often more

suitable to power series. With the given series ^a„ we associate the function

<t>(t) = Xa.'"/«! for ¿ = 0 and let

B'(x;sy) =   f   e-'<t>(l)dl (x =■ 0);
J o

we say that B'-\im sn = s (or B'- ^2an = s) if lim^«, B'(x; sf) =s.

Concerning the relations between these two methods it is known that

(2.4) 5-lim s„ = s   implies    ¿î'-lim s„ = s,

but not conversely. However, since

(2.5) B(x; Sy) = B(x; a,) + B'(x; s„),

the converse of (2.4) is true if and only if B(x; a,)—->0(x—>°o). The relations

(2.4) and (2.5) also imply that P-lim an — 0 is necessary for the existence of

B- ¿an.

The region ®B of Borel-summability of the power series ^anzn is defined

analogously to ®ep in a, and is the same for both methods B and B'. If z= 1

lies on the boundary of ®s, then/(z) is necessarily regular in $b = $(1/2).

C. The succession of the methods Ep and B is continued in a certain sense

by the method of Meyer-König [10, p. 272]). This method depends on a

parameter a(0<a<l) and is defined by the matrix (Sa) with elements

(n + v\
)c? (n, v = 0, 1, • • • ).

The 5a-transformation of the sequence sn
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~ (n + v\
Sa(n; s,) = (1 - «)*« Z ( j «'«.        in = 0, 1, • • • )

exists if and only if 5„ = O(v~nor") for v—»» and all fixed n = 0, 1, ■ • • ; one

then says that (Sa) is applicable to the sequence s„. This obviously implies the

regularity of/(z) in \z\ <a, and the regularity of/(z) in \z\ ^a is sufficient

for the applicability of (Sa) to the sequence sn.

Later we use an alternative definition of the Sa-transformation. Assume

that (Sa) is applicable to the sequence sn so that /(z) is regular in \z\ <a;

assume in addition that/(z) is regular at z = a. Letting

(2.6) z =
1 — (1 — a)w

and developing /(z) into powers of w we obtain a power series

Fiw) = XI W"

which is convergent in the neighborhood of w = 0. One finds that

(2.7)      Sain; s?) = 2^ aK   where

a„ =

a0 = a0 +

■Sain; ar+i)     in = 1,2, ■ ■ ■),

Sa(0; a,+i).
1 -

Hence Sa- ^a„ exists if and only if  5Za»   converges, and 5a-lim a„ = 0 is

necessary for the existence of Sa- /.a„.

In the application to power series the situation here is slightly more com-

plicated than in a and b. The region of 5„-summability has not been in-

vestigated in full but it is known that the regularity of f(z) in §tSa

= S(l/(2— a)) is necessary for the existence of Sa-^,a„ (again assuming

the regularity of f(z) at z = a).

3. On two theorems of Fatou and M. Riesz. The starting point for our

investigations on the circle of convergence of the power series

(3.1) /w X anzn ilimsup | an\lln = 1 J

is the Theorems A and B of the introduction. Szász showed [l, pp. 485-486]

that in Theorem B the region Si can be replaced by another region which has

a finite number of corners on \z\ =1 instead of one as in the case of Si(').

We show in Theorem 1 that the assumptions on f(z) can be localized com-

pletely to a neighborhood of z= 1 if the condition a„—»0 (»—+oo) is added.

Let 52 be the region

(3) Such a region can be expressed by Hi izn'5ij with |a«| =1 (<t = l, 2, • • • , n).
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52 = S2(8o, 60) '•-{
z - 11 < 80,

arc (z — 1) I >

5o > 0,

0 < 0O < t/2.

Theorem 1. Let (3.1) be regular and bounded in S2, and an—>0 («—>»).

Then ^a„ = s if A- XIa» = s, i.e. if linw^o f(z) — s.

Remarks, a. Theorem 1 contains the Theorems A and B and also Szász's

extension of Theorem B. The conditions an—>0 (»—>») and ^4-^a„ = s are

both necessary for ^an = s, together they are sufficient for 2^a„ = s if f(z)

fulfills the above conditions.

b. Let 7í=(ei*o, er**») be a closed subarc of \z\ =1 within \z—1| <50.

Under the assumptions of Theorem 1 the series ^a„zn converges for z=\

and Theorem A assures its convergence for every other z on K. We extend

Theorem 1 by proving the uniform convergence of (3.1) on K.

Theorem 2. Under the assumptions of Theorem 1 the series (3.1) converges

uniformly on K.

Fig. 1

Proof. By a theorem on bounded functions (see for example [13, p. 65])

one obtains first that/(z) is continuous in S2 where Sí = £2(81, 0i) for every

5i, 0i with 0<ôi<50 and 0o<0i<t/2. We may assume that lim/(z)=0 for

z—>1 in S{ and that Si is chosen such that

(3.2) I/(a) I < e-(TCOS01)/8

for zÇlSI and a given e>0. Draw the path C=Ci + C2 as indicated in Fig. 1.

(C2 is the part of C in \z\ <1.)
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To prove the uniform convergence of X^ß«ein* f°r \4>\ úfa>, take first all

<p with \<j>\ ̂0i = (1/2) arc Zi. If a„ifa are the arithmetic means of sn(fa

= XXo a'ei"*» then

1       JL 1     1   1    I  • t  f(z)dz

i | ¿TCI   \ „=l •/ C]

**(<£) - <r„(0) [ =
n+ 1

X a,veir*
v-l n +

+

Ci    zv+l

C2 ,-1   z"+1       I

2tt(w + 1)
A™U>) + A™ if)

Estimation of A^': For v = l, 2,

I/"i «/ i7(a)*
<  €

7T   COS   0
1   f ¿T
Jo     I 1 + re^l*

x cos Oi  rx dr

8       Jo     (l + rcosöi)"

and similarly for the other parts of C\. Hence

iS. 3)
(i)      i       n7r

An  i<t>)\ <— e

8k

(» = 1, 2, • • • ),

uniformly for \fa ^fa.
Estimation of Af: Evaluating first the finite sum occurring in the expres-

sion for A^ we obtain

An\fa   =   6»   f    M
Jc2

In this integral we have first

zn+l _   (w _[_  1)Z6¡»* -L. wei*(n+l)

zn+liz - e'*)2
dz.

I
and we shall prove that also

(3.4) n f   —
J c. zn

Ji*)dz

c, (z - e**)2
o(»),

= o(«),
c2 z"(z - e**)2

always uniformly for | fa\ ^fa. Assume for the moment that (3.4) is true. Then

(3.5) \A„'ifa\<—-e in>m),

uniformly for   \fa\ ^fa, and  therefore   \snifa—a„ifa\ <e/2  for n>n\ and
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\<p\ S<Pi- Using now the fact [15, pp. 94-95] that on(<p) converges uniformly

tof(e'*) for \<p\ S4>i, we get

I s„(4>) - /(«*) I S I sM - <r„(0) I + I <r„(</>) - fie**) \ < e

for n>n2 and all <p in \<p\ S<t>i- Since for </> with </>i = \(f>\ S4>o the uniform con-

vergence of ^2anein't' follows from an extension of Theorem A due to M. Riesz

[15, p. 90], the proof of Theorem 2 is completed provided (3.4) is true.

For the proof of (3.4) we apply a method of M. Riesz [15], choosing the

numbers bi = b\(<p) and b2 = b2(4>) such that 77(zi) =H(z2) =0 for

77(z) = Z7(z, <t>) =-— + h + b2z.
(z — e1*)2

One finds that bi(<j>) and b2(<p) are bounded for \<j>\ S<bi. Therefore using (3.3)

and an—>0 («—►<») we obtain

Ç  f(z)H(z)dz _    Ç       f(z)dz Ç  f(z)dz Ç A*)**

J c¡       z" Jc, z"(z - e^)2 Jc     z" Jc   z"-1

. 0 c ttz)dz _ b ç ü^ía.
Jd    z" Jc,  zn_1

Jc.zHz- e1*)2

so that it remains now to show that

r f(z)H(z)dz
(3.6) lim   j    -LLL-IjL^ = 0)

n->»  / a Z"

uniformly for \<p\ S4>i- But by Theorem A the series ^,a„zn converges for zt

and Z2 and therefore uniformly on C2 so that

r f(z)H(z)dz r
I    - =  ¿_ a> I    z"-"H(z)dz

J C, 3" p J C,

f(z)H(z)dz
=  2-, Up 1

Ci

which is a matrix transformation of the zero-sequence a,. We have to show

(3.7) lim cny = 0 (v = 0, 1, • • • , fixed),
n—x»

(3.8) lim sup Jj I c»» I < °° 1

uniformly for |</>| á^ii where

c„y = c„,(0) =  I    z"-nH(z, <j>)dz.
J Ci
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Integrating twice by parts we get for v9án — l,V9ín — 2

1 {    z"-"+2      dHiz)  * 1 r d*H(z)     )
c„„ =-\-I     z'~n+2-dz\ .

v — n+l(v— n + 2     dz      2l     v — n + 2J cz dz2        )

Since Hiz)=Hiz, fa is regular in the finite z-plane except for z = e{* where

\fa\ ^fa, we can replace the path C2 by the arc: \<f>\ ̂arc Zi of the unit circle.

For z on this arc the function Hiz) and its first and second derivatives with

respect to z are bounded, uniformly for \fa\ ^fa, by a constant L\, say.

Therefore

2 + 2t
\ c„,\ S Li- iv j¿ n — 1; v 9e n — 2),

(c — n + 1)(»» — n + 2)

uniformly for \fa\ ^fa, which proves (3.7). But obviously c»,„_i and c„,„_2

are uniformly bounded for \fa\ ^fa, by a constant L2, say, so that

v» i i   i v- 2 + 2*-
EC   ^ 2/2 + Ll

v v*n-\,v*n-î   iv  —   n  +   l)(i»   —   M  +   2)

^ 2£2 + 2Li(2 + 2tt)

which proves (3.8) and therefore completes the proof of Theorems 1 and 2.

4. Weaker assumptions on/(z). Until now our assumptions on /(z) con-

cerned its behavior in the regions S\ and S2, whose boundaries have an

osculation of first order with \z\ =1 at z = l. The question arises what can

be said in the case that S\ and S2 are substituted by the regions S3 and Si,

whose boundaries have an osculation of second order with \z\ =1 at z= 1 :

(\z\ < R, R > 1 11 z - 1 ! < 5o,     So > 0 .
Ss:   i ;     S4:   <     ,       ' (a -   s   -e^).

{I z I < 1 + Co<f>2,    Co > 0 ( I z I < 1 + co<i»2, Co > 0

In the neighborhood of z = 1 the boundaries of S3 and Si behave like a circle

which touches \z\ =1 exteriorly at z = l.

First we remark that it is impossible to substitute Si by S3 in Theorem B

or S2 by Si in Theorem 1. For there exist power series which define a function

/(z) regular in S3 and continuous in S3 and which are not even F-summable

for z= 1 [5, p. 331]; by V we denote in this paragraph any of the methods

Ep (0<¿<<x>), B, Sa (0<a<l). We shall show, however, that the following

modifications of Theorems B and 1 are true.

Theorem 3. // (3.1) is regular in S3 and continuous in S3, then ^,a„ con-

verges provided that V- "%2an exists i4).

This is a V—»Ä%Theorem i"K" standing for "convergence") under com-

plex Tauberian conditions.

(4) Theorem 3 and its proof also hold if "continuous in S3" is replaced by "bounded in S3."
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Proof. The assumptions on/(z) imply an = 0(l/n112) [5, p. 327], which is

a Tauberian condition for F-summability.

We now prove the localization of Theorem 3.

Theorem 4. Let (3.1) be regular and bounded in S4, and an—>0 («—»00).

Then ^an = sif V-^an = s(b).

Proof. It is sufficient to show

n+[«„nl/2]

(4.1) lim     ^  a, = 0 for any positive zero-sequence e„,

because this is a Tauberian condition for F-summability. (For Ep and B see

for example [6, p. 312]; for Sa see [4, p. 36].) To prove (4.1) we construct a

path similar to the one in Fig. 1, except that the part (z{, l,z[) of Ci is sub-

stituted by a segment of \z\ =1 -\-Ci<f>2 (0<Ci<Co); the parts (z2, z% ) and (z1} z{)

remain rectilinear as in Fig. 1. Then with k= [e„w1/2] we have

„+* !    r ÇJ  ç   f{z)dz ç n+k -n

,=„ ¿TIL y=nJ Ci     Z""1"1 ./ C2 *=n J

As proved in [5], fcj(z)dz/z',+l = 0(l/v112) (j»—>»), and the second integral

equals

r    f(z)dz r       /(g) &

Jc2z"(z- 1)       Jci S»+»+*(g - 1) '

Both of these integrals tend to zero for n—> «3, which is shown in the same

way as (3.4) for 0 = 0. Hence

n+k / n+k       I   \ / J   V

2>, = OÍ £ —) + »(1) = Oí k»1"]- —) + 0(1) = o(l)   (#-*•),

which proves (4.1) and therefore Theorem 4.

5. Tauberian theorems asserting Ep- and 5a-summability. Consider now

a power series

(5.1) /(z) = 5>«z"

with positive radius of convergence on the boundary of its region of Ep- and

.Sa-summability. We investigate the question from what assumptions about

f(z) in the neighborhood of z = 1 we can derive the summability of 2Za„ by

means of the methods Ep and Sa. The following assumptions will be frequently

used:

(6) Comparing Theorem 4 with Theorem 1 it is noted that the assumptions on f(z) are

relaxed in Theorem 4; but since V-2~Lan = s implies A- ¿Jin = s if lim sup |a„|1'" = l, the as-

sumptions on £^a„ are strengthened.
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/  2" - 1 \
(*) /(z) is regular in $Ep = $ Í —-) for ¿ > 0;

(**)       /(z) is regular in \ z\ < a and in $sa = $ (-)        for 0 < a < 1.
\2 — a/

As to the necessity of these assumptions for the Ep- and S„-summability of

y,aM see §2, a and c.

Corresponding to Theorem 1 we have

Theorem 5. Assume that (5.1) fulfills the condition (*) [or (**)] and is

regular and bounded in S2, furthermore Ep-lim a„ = Q [or 5a-lim a„ = 0]. Then

Ep^an = s [or Sa^,a„ = s] if limz,!_o/(z) =s.

Proof. We restrict ourselves to the proof of the case of Ep-summability.

According to §2, a the question is whether the series ^añwn representing

Fiw) =fifa,iw)) with fa,iw) =w/i2p — (2P — l)w) converges for w=l. We shall

show that for Fiw) = ^añ wn all the assumptions of Theorem 1 are fulfilled.

(a) The image of the region S2 in the z-plane under w = faliz) is a region

in the w-plane whose boundary has an exterior osculation of order one with

|w| =1 at w=l. Hence Fiw) (which by (*) is regular in \w\ <1) is regular

and bounded in some region S2 in the w-plane.

(b) We have a„'—>0 (»—»») since Ep-lim a„ = 0 (§2, a).

(c) Finally lim w.i_0 E(w)=limf^i_0/(z) =J.

Hence, by Theorem 1,  ¿£a„' =s, i.e. Ep-^an = s.

If/(z) is regular at the point 3=1 on the boundary of the region of sum-

mability, Theorem 5 yields analogues to Theorem A of the introduction.

The proof of Theorem 5 is based upon the following idea. Suppose that

certain assumptions on Fiw) = ^,a„wn allow one to draw conclusions about

X^a„' , and we "transform" these assumptions on/(z) by z = fa,iw). Then from

the "transformed" assumptions on /(z) we can conclude to X)a>>' and there-

fore to Ep- ^a„, since Ep- ~^2,an behaves like ^a„'. Following are two more

examples of this general principle.

Theorem 6. Assume that (5.1) fulfills the condition (*) [or (**)] and is

continuous in $ep [or ítsj- Then CtEp-^,a„ [or CtSa- Sa»] exists for every

€>0.

Remark. The case where /(z) is regular in \z\ <1 and continuous in

$£„ [or $sj was treated by Meyer-König [il, p. 352]. He proved that then

EpCt-^2a„ [or SaCt-^2an] exists for e = l, 2, • • • . These results are con-

tained in Theorem 6, for since the matrices (Ep) and (Ce) are Hausdorff

matrices, (Ce£p) = iEpCt) ; on the other hand it is proved that for e = 1, 2, • • •

the methods C(S„ and SaCt are equivalent [12, p. 450].

Proof of Theorem 6. We restrict ourselves to the case of Ep-summability.
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The assumptions on/(z) imply that F(w) = ¿^a¿wn is regular in | w| <1 and

continuous in |w| =T whence by a known result of M. Riesz [15, pp. 94—

95] we obtain that Ct- ^a„' exists for every e>0, i.e. CtEp-^an exists for

every e>0.

If in Theorem 6 the continuity of /(z) for z—>1 is sufficiently strong,

we can derive the Ep- [or Sa-] summability of ^an.

Theorem 7. Assume that f(z) fulfills the condition (*)  [or (**)] and that

(5.2) f(z) = s + o((l - »)») (v>0),

uniformly for z—>1 in $ep [or Msa]- Then Ep-^an = s [or Sa-^,an = s] if

Ep-lim an = 0 [or 5„-lim a„ = 0].

The last condition is certainly fulfilled under the stronger assumption that

f(z) is continuous in $E [or $Sa], since this means that F(w) is continuous

in \w\ =1, so that a„'—>0, i.e. £p-lim a„ = 0 [or 5a-lim <zn = 0].

Proof. For the function F(w) = ^añ w" we have

F(w) = f(<pv(w)) = s + o((l - <pP(w)y) = s + o((l - wY) (v > 0),

uniformly for w—>\ in |w|<l since 1 — <f>p(w) = (2P/(2P— (2P— l)w))(l — w)

~(1 — w) for w—>1 ; furthermore a„' —»0 since £p-lim a„ = 0. Hence by a known

theorem [17, p. 220] the series 5Za„' converges, i.e. Ep- ¿^an exists, and its

value is s. The proof for the S«-case is similar.

Assuming that there exists an analogue to Theorem 7 for B-summability

(see Theorem 7', §6) we obtain the following

Corollary. Letf(z)= ^anzn be regular in \z\ <1 and

f(z) = s + o((l - z)<) (, > 0),

uniformly for z—>1 in $ep [or $b, or Ssa]. Then Ep-^Táan = s [or B- y^gn = s

or Sa-^an = s].

For the proof one notes that £p-lim on = 0 [or 5a-lim a„ = 0] since a„'—K)

is implied by the boundedness of f(z) in ®ep [or $sa]. We shall prove in

Theorem 9 that B-lim an = 0 is a consequence of the boundedness of f(z) in $b-

The above corollary has some relationship to a theorem which Hardy and

Littlewood have stated without proof

Let f(z) = ~^2,anzn be regular in  \ z

7, p. 53]:
<1  and /(z)=s+o((l-z)')   (i?>0),

uniformly for z—»1 in some circle touching  | z | = 1 interiorly at z = 1.   TTîew

Obviously this result and the corollary overlap, i.e. neither one is included

in the other (6).

We can combine the above corollary with Theorem 3 :

(6) For a series ¿^an with lim sup |a„|1'" = l we have Ep—>B—*Sa.
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Let $1 and S2 be two circular regions whose bounding circles touch \z\ =1 at

z=l exteriorly and interiorly, respectively. Assume that /(z) = ^anzn is regular

in Si, continuous in Si and strongly continuous for z—>1 in S2 {i.e., /(z)=s

+o((l— z)') (»7>0), uniformly for z—+1 ¿m S2). EAera ^a„ = 5.

For the proof note that S2 is one of the regions of the set $tEp, ®b, Ss„.

6. Tauberian theorems asserting 5-summability. In this last section we

shall deal with a power series

(6.1) /(*) = X>»*"
with positive radius of convergence, for which z= 1 lies on the boundary of its

Fig. 2

region of J3-summability. This implies the regularity of /(z) in SB. The sec-

tion will be divided into three parts. In part A we prove the analogue to

Theorem 1, deriving the 5-summability of ^a„ from assumptions on/(z) in

the neighborhood of z=l. Also given are sufficient conditions on /(z) which

imply B-\\m a„ = 0. Part B contains a necessary and sufficient condition for

the existence of B- ^a„ and analogues to Theorems 6 and 7 are derived.

Finally in part C a theorem of Obrechkoff is discussed.

Part A.

Theorem 8. Let (6.1) be regular and bounded in S2, and 5-lim a„ = 0.

Then B- ^a„ = s if limz_i_0/(z) =s.

Proof. Since z = l lies on the boundary of the region of .B'-summability,

B'-^2a„zn exists for 0<z<l, and we have for these values of z
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/'w a (tz) " 1   c °°
e-'E dt = ~ I    e-«*<b(t)di

o «! z •/o

= (r +1) J °°e-«t(t)dt = (r + i)7(r)  fr* — -1),

where we let i/<(¿) = e-'<p(t) =e~' £>„ (tn/n\)=B(t; an) for ¿^0. The integral

7(f) exists for f >0 and has the limit s for f—»0, so that by a Tauberian

theorem for Laplace-integrals (see for example [6, p. 164]) it is sufficient to

show that f^^dt is a slowly oscillating function. We shall show that

/x+e(x)x

fQjdt = 0
x

for any positive function e(x) tending to zero as x—>». For (6.2) implies that

7(0) =s, i.e. that B'- ^,an = s, which is equivalent to B- XIa« = s since 5-lim an

= 0.

We now prove (6.2). Denote by C= 2^<_i Ct the path as indicated in

Fig. 2, and let |/(z)/z| <M for z on C. (Let/(l)=s; the points z2 and z3

should be chosen such that/(z) is regular on C— C\, thereafter they are fixed.)

Then for t>0

(6.3)

so that

1 ^/  r  f(z)dz   ln\
B(t; an) = HD = — r* Z (        ii¿- -)

2tî \Jc   zn+1    w!/

1 f  /(z)        (0,)" 1    /•  /(z)

2tí       Jc    z ni 2tíJc    z

/<X+t(x)X                             1        /»x+e(x)x    /» /Yz)

^(/)rf/ =-: I — e-'U-V'idzdt
x 2-KlJ x J c¡+-- -+c6     z

= ~[li(x) + --- +/.(*)].

Divide Ci into its four rectilinear segments. Then we have for instance

l+he^l /(z) Mr1+öie l f(z) r°° M
I — e-'^-U^dz   < M I    e-"*dy = —

IJ i z Jo irl

since for z on (1, l + Ôie*1) we have 3Î(1 — 1/z) ^<r| 1 —z| for a constant <r>0.

With similar estimations for the other parts of Ci we obtain

(6.4)

and hence

f   — e-'^-v^dz = o(—) (¿'-♦"coi.
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Iiix) =   I Ol — \dt = OÍ— J   e(x)x = oil)      (*-»«).

For the estimation of ^(x) and /s(x) note that for instance on C3 we have

9Î(1 — 1/z) 2:r | z2 —z| for a constant t>0, so that by similar computations as

in the case of Ji(x) we obtain | 73(x) | + | 76(x)| =o(l) (x—> <*> ). For z on C4 we

have 9Î(1-1/z) ^??>0, so that

I    — - e-«i-iM<fe   < 2xMe-" = 0( — J (<->°°),
I •/ c4   z \ Í /

whence by the same reasoning as above .T4(x) =o(l) (x—>»).

Finally we estimate 72(x) and ieO*)-

/"*•<■>« /»  /(z) c     r*+<^x Uz)
|    JJLle-tn-MZ)dzdl =   I —e-'V-V'dtdz

x J c-     Z J Ci  J x Z

=     I g-xd-1/z)^   _     I       ju^^-.d^WKl-l/:^

J C,Z — 1 J Ciz —  1

and similarly for 76(x). Hence it is sufficient to show that

(6.5) lim   I -^-~e-x^1i^dz = 0.
Z-.M    J C2+C6     1    —   Z

For this purpose we choose the constants b\, b2, b3, &4 such that

1 bi      b2 b3 bi
zHiz) =-1-1-e(»-w«) -|-e2(i-i/2) _j-e3(i-i/2)

1 — z       z        z z z

vanishes at Zi, z2, Z3, z4. Then we get

f       zH(z)/(z)e-«-1'z>¿z

=  j -^— *-»»-»/*>& + 61 I    — «r*«1-1''^* + • • •
J ct+ct 1 — z J c    z

(6.6) + h I    — e-c*-*><i-i/«)¿g
•/c    z

-7

z

Using (6.4) and the corresponding estimations for the paths C3, C4, and C5,

c    z

' Ci+Cj+C4+Ct z

-   ¿4   I 11^ ¿,-(,-3) (1-1/*)^

J d+Cs+C+C- Z
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>
we see that the last four terms in (6.6) tend to zero for x—>oo, while 73-lim an

= 0 implies by (6.3) that the second to fifth terms tend to zero for x—>».

Hence it remains to show that

(6.7) lim   f       zH(z)f(z)e-x^-llzHz = 0.
I— »   J c2+C(s

Now the function f(z) has the representation

f(z) = — f   e-'i'iWdt (z E ab),
Z   J 0

where the Laplace-integral converges also at the regular points Zi, z2, z3, z*

(see [16, pp. 18—19](7)) and therefore uniformly on C2 + C6 by a familiar

Abelian theorem on Laplace-integrals. The integral in (6.7) becomes there-

fore

I H(z)e<-t'x)^llz)e-t<i>(t)dzdt        =   |     f(t)  I H(z)e!-t-x^x-1i')dzdt,
0    "J c3+cn Jo J C2+C6

which is an integral-transformation of the function \p(t) which tends to zero

for t—>oo. This transform tends to zero for x—><» if for any fixed t%, ¿2>0

I c(x, 2) | ¿/ = 0    and    lim sup | c(x, t)\dt < <x>,
Í a:—.»       */ 0

where

c(x, 0 - f       H(z)e^t-x^1-llzHz (t è 0, x =■ 0).
* Ca+Ce

Finally the relations (6.8) are proved in the same manner as (3.7) and (3.8)

in §3, first integrating twice by parts and then estimating c(x, t). This con-

cludes the proof of Theorem 8.

It should be noted that Theorem 8 combines two theorems analogous to

the Theorems A and B of the introduction. We mention the following case.

Corollary. Assume that z = \ lies on the boundary of the region of B-sum-

mability of f(z) = ^2anzn and that f(z) is regular at z= 1. Then B- ^2an exists if

B-lim an = 0.

Sometimes it is useful to have "5-lim a„ = 0" substituted by an assump-

tion on/(z).

(7) This theorem of M. Riesz states: In J(w)=f0e-'"'4>{t)dt letf^<t,(t)dt = o(e") (c>0) (*-»»)

so that J{w) is regular for SR(tü) >c. If J{w) is regular at w0 with 3}(w0) =c, then f^e~""o<¡>(t)dt

converges. Here we put w = 1/z, c = 1, and w¡¡ = 1 ; the assumption e~'f'0<t>(t)dt—fl (x—> =0 ) is clearly

fulfilled since .B-lim a„=0 and therefore <j>(t) =o(e') (/—»»).
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Theorem 9. Let /(z) = ^2a„zn be regular in \z\ <r(r>0) and in 2b and

assume that /(z) belongs to the class Hl of the circle Sb, i.e. that

(6.9) C\Ki+xn\
+'1/1 \l 1

+ Re* ) \d0 < K for 0 < R < —
2 / 2

Then 5-lim a„ = 0.

Proof. Again we have

r /co
27ri£(x; an) =  I    — r-"1-1'«»* (C - Ci + • ■ • + C4).

./c    z

Fig. 3

Given an €>0, we choose C2 and C4 so short that

/,

l/CO
c2+e41   z

¿z   <

Then we have

\l fis)

c2+c4    z I       J d+d I   z/.

1/(2)
dz    < —1       3

Furthermore

1//(0c3   z
0(e-*»>) < —

3

(x ^ 0).

(x ^  Xi),
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since for z on C3 we have 9f(l — 1/z) ^r)>0. Finally we estimate

(6.10) iix) = r
J a

e-x(l-l/2)¿2.

Let x be fixed for the moment and put z(0) = l/2+Rea, f (0) = 1/2+ (1/2)6*,

Zi = zia). Then linifi<i/2/(z(ö)) exists for almost all 6 in ( — ir, +ir) and repre-

sents there a Lebesgue-integrable function/(f(0)) such that

(6.11) j"*\f(z{g))-me))\dd->0

(see for example [18, p. 162]). Therefore in

1
for R -> —

2

r.,    r+a fi*io)) - Sim)   n... m,. ,Ä . r+a Jim)   n .. „„. ,„
Z(x) =  I        -e-^1-1/2«9»^^) + I        -e-*v-il'Wdzie)

J-a zie) J_a       z(0)

(/>/„>
^¿Wg-U-l/»^

the first and third terms tend to zero as 7?—>l/2, while the second term tends

to

/(f)

r/

for R—>l/2,  the integral being taken as Lebesgue-integral over the arc:

(z2, 1, Zi) of |f —1/21 =1/2. Substituting w=l/f— 1, we get therefore

f*iw)ewxdw
-w0

where w is purely imaginary and /*(w) is Lebesgue-integrable on the finite

section (—w0, +w0)of the imaginary axis. By the Riemann-Lebesgue theorem,

I Iix) I < i/3 (x ^ x2),

which completes the proof of Theorem 9.

It is a well known fact that a power series /(z) = ^a„z" with radius of

convergence 1 is -B-summable at z= 1 if/(z) is regular at z= 1. If we combine

Theorems 8 and 9 we obtain the following sharper result:

A power series /(z) = ~^2,anzn with radius of convergence 1 is B-summable

at z= 1 iffiz) is regular and bounded in S2 and limz..i_o/(z) exists.

The result of the author [5, p. 331] mentioned previously in §3 shows

furthermore that herein the region S2 cannot be replaced by a region whose

boundary has an osculation of second order with \z\ =1 at z=l.

Part B. We give first a necessary and sufficient condition for TJ-sum-

mability.
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Theorem 10. Let f(z) = X)a«2" oe regular in \z\ <r (r>0) and in $b and

assume that f(z) belongs to the class H1 of the circle $b, i.e. that (6.9) is fulfilled.

Then B- ^an = s if and only if

1   r **   sin xt     /     1     \
(6.12) lim— I-/(-)dt = s

z—»   T  J -T t V 1 + U /

for every fixed t>0, the integral being taken as Lebesgue-integral.

Remark. Karamata has proved this theorem in the case r = 1 and under

the assumption that/(z) is bounded in $£ [8, pp. 156-157], but his method is

not applicable under the more general assumptions of Theorem 10.

Proof. We have

2*iB(x; sn) =  f Z       e-'0-U»dz = h(x) + • • • + I<(x),
J d+.-.+Ct   z(l — z)

where C= ^¡=1 C< is again the path of Fig. 3. As in the proof to Theorem 9

one finds that for a given e>0

(6.13) | It(x) | + | /»(*) | + | 74(x) | < e/2 (x = Xl).

Consider the auxiliary function

r      /(*)
H(x) =        ——— e*(i-i/.)d2.

J c¡ z(l - z)

On the segments (zt, Zi) and (z2, z3) oí Ci we have 9Î(1 — 1/z) =0 and therefore

a+ f 3\-l^l—e»<t-i/.>d¡,
Zi      J,Jz(\-z)

<— (x è 0)
8

if only |z4 —Zi| <ô = 5(e), and since on the remaining part of Ci the estima-

tion 91(1 - 1/z) =: -7j <0 holds,

(6.14) | H(x)\ < e/4 (x ^ x2).

We now estimate

f(z) ff-iO-if*) — e*U-i/z)
7i(x) =   |    -^-I dz + H(x) = I(x) + H(x)

Ç    f(z) p-z<l-l/*>  -  ex(l-l/,)-j

J Ci   z   L 1 — z J

by a method similar to the one used in the proof of Theorem 9. The bracketed

term is regular for all z;¿0 and therefore 7(x) can be treated as 7(x) in (6.10).

Hence

/(*>-m——t—j*
the integral being taken as Lebesgue-integral along the arc: (z2,  1, Zi) of
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(x è xt),

|f-l/2| =1/2. Letting f = l/(l+ií)(í real), we get

/+T sin xt     /     1     \

where z2 = 1/(1+îT). By the Riemann-Lebesgue theorem,

(6-i5) I <£>£")h i
and hence from (6.13)-(6.15) it follows that for x^max (xi, x2, x3)

C+T   sin xt     /     1     \     I
2iviBix;sn) - 2» I        —-— /(-)dt\ < t,

J -r t \1 + it /

which proves Theorem 10.

We prove now the analogues to Theorems 6 and 7 in the case of ¿3-sum-

mability.

Theorem 6'. Assume that (6.1) is continuous in $B. Then CtB-^,an

exists for every e>0.

Remark. Since C<B and BCt are equivalent methods [2, p. 45], Theorem

6' contains the result of Karamata [8, p. 157] who proved the ¿?Ce-sum-

mability of ^a„ under the assumption that/(z) is regular in \z\ <1 and

continuous in $B.

Proof. For z in ®B we have /(z) = (i/z)f0°e~th(b(t)dt, and by a theorem of

Riesz [16, p. 20] the integral is Ce-summable for z=l, i.e. CtB'- ^an = s,

provided that

ß—x    n X

(6.16) lim- I    (x - tyfal)dt = 0.
l^«=   x'  Jo

But by Theorem 9 we have 5-lim an = 0, i.e. fat) =e(/)-e', where e(i)—»0

(t—tk>). It is easily shown that the integral transformation with the generat-

ing function c(x, t) =e'~xx~l(x — t)' (0<t^x, e>0) transforms every function

tending to zero for t—>oo into one tending to zero for x—»°o, so that (6.16)

holds. Now the relation B(x; sn)=B(x; an)+B'(x; s„) implies CtB(x; sn)

= CeB(x; an) + CtB'(x; sn), and the last two terms tend to zero and to s re-

spectively. This proves Theorem 6'.

If the continuity of f(z) for z—>1 in $B is sufficiently strong, we obtain

Theorem V. Assume that (6.1) belongs to the class Hl of the circle ®B, i.e.

that (6.9) is fulfilled,

/CO = s + o((l - z)<) (v > 0),

uniformly for z—>1 in ÊB. Then B-^2a„ = s.
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Proof. Without loss of generality we may assume s = 0, so that for the

limit function /(f) existing almost everywhere on f —1/21 =1/2 we have

I/(f)I =1/(1/(1+*'))| á^M" for \t\ <t0 where i>Oisa constant. Given
an e>0, we may choose r<t0 in (6.12) so small that f0rt,l~1dt<ew/2A. (If

(6.12) holds for some t>0 it holds for all r>0 by the Riemann-Lebesgue

theorem.) For this r we obtain

1 , f ■**  sin xt    /     1     \    I       2A  rr dt
— I       - /(-)*   =-       -<«
T J _r t \ 1 + Ü /        | T    J 0    t1-"

for all x^O, so that (6.12) is fulfilled.

Part C. This section is concluded with the discussion of a theorem of

Obrechkoff [14, p. 1813].
Suppose we have given a power series f(z) = ^2anzn with positive radius

of convergence. Let z = 1 be a singular point of f(z) lying in the interior of

L where L is a rectilinear part of the Borel-polygon associated with /(z)(8).

Assume that the singularity of f(z) at z = 1 is such that in the region 52

= 52(o0, 0o) the function/(z) is regular and 11 — z\ s|/(z) | is bounded for some

8(0<8<1).
The theorem of Obrechkoff states that under these assumptions the series

^a„zS is 5-summable for every regular point z0 = i?oei*° in the interior of L.

Obrechkoff's proof of this theorem is valid only under restricted condi-

tions. If the circle K: \z — z0/2| = Ri(Ri>R0/2) is drawn and i4i=l+öieie°

and ^42 = l+a2e~i90 are the two points lying on K with |arc (z—1)| =0o, his

proof depends on the fact that #i and a2 tend to zero if Ri approaches i?0/2.

This, however, is true if and only if the circle |z —z0/2| <Ra/2 is contained

in the region | arc (z— 1) | >0o, i.e. if and only if

(6.17) | arczol + 0o ̂  ff/2.

Therefore the theorem of Obrechkoff remains valid if either z0 is close enough

to z=l, or if 0o may be chosen small enough such that (6.17) holds. (Note

that arc (z0— 1) = ±t/2 since z= 1 is in the interior of L; therefore |arc z0|

<t/2.)
But if (6.17) holds, the region \z — «#/2| <Ro/2 is contained in the region

|arc (z—1)| >0O. Therefore

lim sup | z — 1 |s | f(z) | =? A/"    for   z —► 1   in

whilst/(z) remains bounded for the other part of \z — Zo/2\ <Ro/2; this is

because z0 is an interior point of L and therefore z = 1 is the only singularity

of /(z) on \z — zo/21 =Ro/2. Theorem 9 assures now that 75-lim a„zj| = 0 and

hence by Theorem 8 or its corollary the existence of B- ^anzn follows. This

zo       Ro
—   < — (0 < 5 < 1),
2 2

(8)By "interior of L" we mean that z = 1 is not a corner of the Borel-polygon.



68 DIETER GAIER

is a new proof of Obrechkoff's theorem in its modified form.

Added January 28, 1953. It has been investigated by Garten and Kara-

mata [Math. Zeit. vol. 40 (1936) pp. 756-759 and vol. 45 (1939) pp. 635-641]
under what conditions on an

(6.18) B— 2Zßn = s implies B— ^a„ = s
(«o = Go + Ci, a„ = c„+i, n = l, 2, ■ ■ ■ ).

Their restrictions on the series [a„ = o(nk) (w—>oo, k fixed) and c„ = o(c"p)

(w—»oo, p<l/3), respectively] are such that the associated function f(z)

= ~22anzn is necessarily regular in \z\ <1. It should be noted that if/(z) does

not fulfill this condition, Theorem 9 may be applicable, since B-lim an+i = 0

is necessary and sufficient for the validity of (6.18) (see [6, p. 183]).
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