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1. Introduction and definitions. In [5](2) R. H. Bing introduced the

concept of partitioning a set. This concept has been applied by him and

others as a means of obtaining many notable results [l; 2; 3; 4; 5; 6; 7; 8; 9].

In this paper an extension of this concept to the case of two sets is considered.

We shall consider only subsets of a metric space, particularly continuous

curves and similar sets. A set M is partitionable if for each e>0, there exists

a finite collection G= \gi, ■ • • , gk\ of disjoint open connected subsets of

M, such that y.Li gi is dense in M and o(gî) <e for each i. The mesh of G

equals max o(g¿), l^i^k. Each g¿ is an element of G, written g¿£G. G is

called an «-partitioning of M. If each element of G has property S, G is called

an S, e-partitioning of M. {G¿} is a decreasing sequence of 5-partitionings of

Ai if (1) for each i, G i is an 5-partitioning of M and each element of G¿ is

contained in an element of G,_i (that is, G¿ is a refinement of G,_i), and

(2) the limit, as i increases without limit, of the mesh of Gi is 0. Suppose

H and G are two partitionings of a set M, G a refinement of H. Let

hÇiH and let gi, g2, ■ ■ ■ , gk be all the elements of G which are contained

in h. gi is called an interior element of G if gidh. Otherwise gi is

a border element of G. G is a core refinement of H if for each h(EH the

sum of the closures of all interior elements of G contained in h is connected

and intersects the closure of each border element of G contained in h.

Let M and N be two partitionable sets such that NCM. If G

= {gi, gi, • • ■ , gk} is a partitioning of M such that G' = {giN, g2N, ■ ■ ■ , gkN}

constitutes a partitioning of N, then G is called a simultaneous partitioning

of M and N. If gi and gtN both have property S for each i, G is a simultaneous

¿■-partitioning of M and N. If d(gi) <e for each i, G is a simultaneous S, e-par-

titioning of M and N. {G,} is a decreasing sequence of simultaneous core

partitionings of M and N if the following conditions are satisfied. (1) {G¿}

is a decreasing sequence of 5-partitionings of M, and if g<E.Gi then gN has

property S. (2) G¿ is a core refinement of G,_i for each i. (3) Let g(EGt_i and

let gi, g2, ■ ■ ■ , gk, gk+i, gk+2, • • ■ , gk+„ be the elements of G< which are con-

tained in g and which intersect N where g.Cg if i^k and £¿<£g if i>k. Then

]C<=i Cl(g,A) is connected and intersects CligiN) for each i from k + 1 to
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k+n. The question arises, what results regarding partitionings have analogies

in the case of simultaneous partitionings?

2. Preliminary results. First let us recall some facts which have been

previously established. An important one which characterizes partitionable

sets is: Theorem A. A set M is partitionable if and only if it has property S.

This means that if we wish to partition a set M into elements which them-

selves can be further partitioned, then these elements must have property S.

Thus a fundamental result (Theorem B) is that if M is a partitionable set

and e is an arbitrary positive number, then there exists an S, «-partitioning

of M. A consequence of this is that if M is partitionable, then there exists a

decreasing sequence of 5-partitionings of M (Theorem C). Of course many

other results have been obtained concerning partitionings, and many applica-

tions of this concept have been found.

Lemma 1. Let M be a continuous curve, U an open partitionable connected

subset of M, and Hi, H2, • • • , 77* a finite number of connected disjoint closed

subsets of U with property S. Then there exists a finite collection { W\, W2, • • • ,

Wk} of disjoint connected open subsets of U with property S, whose sum is dense

in U, with WiZDHifor each i.

Proof. Let Gy. be an S, 1-partitioning of U. Let D= X)*-i #»■ Let {pi}'

i= 1, 2, • • • , n, be a collection of points obtained by selecting a point from

each element of Gi. Let Ai, A2, • • • , An be n arcs in U such that A/Z)pi for

each i, each Ai intersects exactly one component of D, and AiAj = 0 if Ai and

A j intersect different components of D. For each i from 1 to k, let 5i(77.)

equal 77, plus all the above arcs which intersect 77¿.

Let S{ (Hi) = [x\ x(ESi(77i) and p(x, bdy U) = 1}. There exists a positive

number disuch thatp(5i(77i), Si (H,))>di if ii*j. About each point of Sí (77¿)

there exists an open connected set with property S containing p of diameter

less than min (1, di/3). The closure of each such set thus is contained in U. A

finite number of these sets cover Si (Hi). Let Tí (77;) equal the sum of their

closures. Let 7,1(77¡) = Ti (77¿) +5i(77¿). Do this for each i from 1 to k. Then

each Ti(Hi) is a closed connected partitionable subset of Í7and 7\(77t) • 7^ (77,)

= 0 if i-tj.
Let G2 be an S, 1/2-partitioning of U which is a refinement of GV Let

Di= X)*-i Ti(Hi). Proceed in a manner exactly similar to that described in

the above two paragraphs with only the added condition that each new arc

must be contained in an element of Gi. Thus sets J,2(77¿), i = 1, 2, • • • , k are

obtained which are each closed partitionable connected subjects of U and such

that .T2(Hi) ■ T2(Hj) = 0 if *>j.

Proceed similarly to obtain sets Tn(Hi), i=l, 2, • • • , k; n = 3, 4, • • • ,

using S-partitionings G„ of mesh less than 1/2"-1. Define Wi= ^2ñ-i Tn(Hi)

lor each i. All the conclusions are clearly satisfied except possibly that each

Wi has property S. To prove this, recall  Wi= 5Z"-i  7„(77¿).  Tn+i(Hi) is
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obtained from TniHi) by adding a finite number of arcs, each of diameter

less than l/2"~2 and a finite number of connected sets with property S each

of diameter less than l/(2"-2). Hence any point in T„+iiHi) can be joined

to TniHi) by a connected set in T„+iiHî) of diameter less than 1/(2B_S).

Given €>0 take e/3. Since X)"=i 1/2"= 1, there exists a positive integer N

such that each point of Wi can be joined to TnÍHí) by a connected set in Wi

of diameter less than e/3. Since 7V(-ff») has property S it is the sum of a finite

number of connected sets each of diameter less than e/3, say Ci, C2, • • ■ , Cm.

Let Ci equal C¿ plus all points of Wi which can be joined to it by a connected

set of diameter less than e/3 which lies in Wi. Then the diameter of CÍ is

less than e and ]>^?L i Ct = Wi, thus proving that Wi has property S.

Lemma 2. Let U be an open partitionable connected subset of a continuous

curve M, and V a closed partitionable connected subset of U. Let H and K be

two sets in U such that piH, K)>0. Then H and K can be expanded into larger

closed subsets of U, H', and K', such that piH', K') > 0, and H', K', H' V, K' V

all have property S.

Proof. Let piH, K)=e>0. Let G (G') be an 5, e/6-partitioning of U (F).

Let H' equal H plus the closures (relative to U) of all elements of G whose

closures intersect H. Define K' similarly. Let H" equal H' plus the closures

(relative to V) of all elements of G' whose closures intersect H'. Define K"

similarly. Then piH", K") > 0 and H", K", H" V, and K" V all have property

S.

Theorem 1. Let U be an open connected partitionable subset of a continuous

curve M, V a closed partitionable subset of U, and H and K two subsets of U

such that piH, K)>0. Then there exists a collection { Wi, W2, • ■ ■ , W„} of

open disjoint connected subsets of U with property S whose sum is dense in U,

such that no Wi intersects both H and K but each Wi intersects either H or K, and

such that each Wi V is either void or an open connected subset of V with property

S, and J2"= i WiV is dense in V.

Proof. We may clearly suppose that H and K are closed subsets of U.

It is also no loss in generality to assume that iH+K) intersects each com-

ponent of V. To prove this, let C be a component of V which contains no

point of iH+K). Then there exists an arc A in U intersecting C and one of

the sets H and K but lying at a positive distance from the other set. A may

be added to the set which it intersects. This procedure may be repeated until

each component of V contains a point of iH+K). Also by Lemma 2 we may

assume that H and K are closed subsets of U such that that H, K, HV, and

KV all have property S. Let {Hi}, i=l, 2, ■ ■ ■ , n, {K(}, i=l, 2, ■ ■ ■ ,

m, {Ai}, i=l, 2, ■ ■ ■ , r, {Bt}, i=l, 2, • • ■ , s, be the components of H, K,

IIV, and K V respectively.

Let Gi be an S, 1-partitioning of V. Let {pi}, i=l, 2, ■ • • , nu be a col-
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lection of points obtained by selecting a point from each element of G\. Let

{Zi\, i—l, 2, • • • , «!, be a collection of arcs in V such that Zi contains pi

for each i, each Z, intersects exactly one component of (HV-\-KV), and

ZiZj = 0 if Zi and Zy intersect different components of (HV-\-KV). Let

Ai (or Bl or 77/ or A/) equal Ai (or 23 ¿ or 77, or K/) plus all the arcs Z¿

which intersect A{ (or 75, or 77¿ or Kt). Let 77'= ¿?_i 77/ and K' = ¿SU A/.

Let Gi be an ,S, 1-partitioning of U. Let [qi\, i=l, 2, • • • , wi, be the

set of points obtained by selecting a point from each of the elements of

Gi which does not intersect V. Join c¿ to some component of (H'-\-K') by

an arc entirely in U— V except possibly for an end point if this is possible.

If not, join qi to V by an arc intersecting V at only one point, say y, and

then join y by an arc in V to some component of (XXi Ai + XXi B!).

This can be done in such a way that we have a finite family of arcs

Ai, N2, • ■ • , Amj, such that A,- contains g,- for each i, each A¿ intersects

exactly one component of (H'-\-K') and at most one component of ( 5Zí—i ̂ »

+ XXi £/)> and such that A¿Ay = 0 if A¿ and Ay intersect different com-

ponents of (H'-\-K') or different components of (JXi Ai + XXi 73/).

For each i from 1 to r let Si(A¡) equal .4/ plus the intersection of V with all

the above arcs which intersect A'. Similarly define Si(B/) lor each i from 1 to

s. For each i from 1 to« (m) let Si(H/) (Si(K/)) equal 77/ (K¡) plus all the

above arcs which intersect 77/ (K{).

Let £!={x|xG(Eî=i $Mi)+12i-i Si(Bi)) and p(x, bdy C/) = l}.
This is a compact set. Let {7)¿}, i=\, 2, • • • , r+s, be the components of

(XXi •S'i(j4,-)+ XX i Si(Bi)). Let ¿i be a positive number such that
p(EiDi, Dj)>di if if&j. Around each point p of Ei there exists an open con-

nected subset of V containing p with property S, of diameter less than

min (1/2, di/3). The closure of each such set thus lies in V. A finite number

of such sets cover E\. Let 7"i(^4,-) equal Si(A¡) plus the closures of all these

finite number of sets which intersect Si(Ai), for each i from 1 to r. Define

Ti(Bi) similarly for each i from 1 to s. Then each Ti(At) and each Ti(Bt) is

a connected partitionable closed subset of V, and no two of these sets inter-

sect.

Let Fi- {*|*€( XXi Stim+JXi Si(Ki)) and p(x, bdy Z7) = l}.
Again 7"i is compact. Let {7>/ }, i=l, 2, • • • , n+m, be the components of

( X"-i 5i(77i)+ E™ i Si(Ki)). Let rf? be a positive number such that
p(FiDi , D'j ) >dí if i?*j. About each point p of Ti there exists an open parti-

tionable connected subset of U containing p of diameter less than

min (1/2, dí/3), whose closure lies in U and does not intersect

V—( yXi Ti(Ai)-\- y"Xi Ti(Bi)). A finite number of such sets cover 7\. For

each i from 1 to n let Ti(H{) equal 5i(77¿) plus the closures of all these finite

number of sets which intersect 5i(77t), plus all components of ( XXi T\(A¿)

+ XXi Ti(Bi)) which intersect Si(H/). Define Ti(Ki) similarly for each i

from 1 to m. Note that each Ti(Hi) and each Ti(Ki) is a closed connected
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partitionable subset of U and no two of these sets intersect.

Let G2 be an S, 1/2-partitioning of V which is a refinement of Gi. Proceed

in exactly the same manner as in the second paragraph of this proof to obtain

sets Tl iAi), * = 1, 2, ■ ■ • , r, Tí (JB<),*«1, 2, • • • , s, T[ (H{),i=l, 2, • • • , n,
and TiiKi), i=l, 2, ■ ■ ■ , m, with only the added restriction that each arc

concerned must be contained in some element of Gi and hence be of diameter

less than 1.

Let G2 be an S, 1/2-partitioning of U which is a refinement of GI. Pro-

ceed in a manner similar to that described in the third paragraph of this proof

to obtain sets S2(A¡), S2(B¡), S2(H¡), S2(Kî), with only the added condition

that if Mi is one of the arcs concerned then Mi V is contained in the closure

of some element of Gi and M¿ — V is contained in some element of G{.

Let E2={x\xEiETi=i SiC4.)+£î-i S2iBi)) and p(x, bdy t/)èl/2}.
Let {Xi}, i=l, 2, • ■ • , r+s, be the components of (XXi S2(Ai)

+ ¿L«=i S2iB¡)). Let d2 be a positive number such that d2<piX{, X¡ E2) if

iy^j. Leti72=min (1/4, d2/3). About each pointy of E2 there exists an open

connected partitionable subset of V of diameter less than r\2 containing p. A

finite number of these sets cover E2. Let T2iA¡) equal S2iA¡) plus the closures

of all these finite number of sets which intersect S2iA¡), for each i from 1 to r.

Define T2iBi) similarly for each i from 1 to 5.

Let {Yi}, i=l, 2, • • • , n+m, be the components of (^?_i S2iHi)

+ 2™ i S2(Ki)) and let d2 be a positive number such that d{ <p(Yit Y j F2)

if ifájwhere F2={x\xE( £?=i S2(Hi) + J£l S2(K{)) andp(x, bdy U) è 1/2}.
Let r\2 =min (1/4, d{ /3). About each point p of F2 there exists an open con-

nected partitionable subset of U which contains p and is of diameter less

than i)l, whose closure lies in U and does not intersect V— ( 5Zt-i TziAi)

+ S*=i T2(Bi)). A finite number of these sets cover F2. For each i from 1 to n,

let T2(Hi) equal S2(Hi) plus the closures of all these finite number of sets

which intersect S2(H¿) plus all components of (22<-i T2iA{) + Xi-i ^(-B,-))

which intersect S2(Hi). Define T2(K~) similarly for each i from 1 to m.

Thus we obtain sets T2(A%), i=l, 2, • • • , r, T2(Bi), i = l, 2, • • ■ , s,

T2(H¡), i=l, 2, ■ • • , n, T2(Ki), i=l, 2, • • • , m, all of which are closed

partitionable connected subsets of U. Moreover each T2(A{) is a component

of ( Li=i T2(At)+ YH-i T2(Bi)) as is each T2(Bt). Also each T2(HJ is a com-

ponent of ( tXi T,iHi) + ¿r_i T2(Ki)), as is each T2(Kt).
This procedure is repeated using S-partitionings G3, Gt, ■ ■ ■ ,G3 , G4 , ■ • -,

each G i (or G' ) being a refinement of G¿_i (or G('_i), and each G¿ (or G' ) being

of mesh less than 1/2*-1. Define i?¿= ¿"_i Tj(Hi), i=l, 2, ■ ■ ■ , n, S{

= Z;=i T,{Ki), i=l, 2, • . • ,m, <2¿= Z;.i T,(Ai), i=l, 2, ■ ■ ■ , r, Li
= X)"=i Tj(B¡), i-1, 2, ■ ■ • , s.

Then the sets R{ and 5¿ are each open subsets of U since each point of

Ri for example is an interior point of some T„(Hi). Also each of these sets is

connected and their sum Y is dense in U and has property S for the same
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reasons that each Wi in Lemma 1 has property 5. Each Ri and each 5,- is a

component of Y and hence has property S also. Similarly each Qt and each

Li is an open connected subset of F with property S. Also ( Xi=i (?>+ XX i -^»)

is dense in V and actually XXi Qf* ( XXi Ri) V and ¿Xi¿<-( XXi $<) V
so that each Q¿ (7,-) is a closed subset of some R¡ (S¡).

By Lemma 1, there exist sets Wi, W2, • • • , Wri, ri^r, in ^?=1 Ri such

that WiV=Qi lor 1 £i£r and WiV = Q\li>r, XX i Wi is dense in XXi Ri
and each JF¿ is an open connected subset of U with property S. Similarly

there exist sets Wri+i, • • • , Wn+Si, Si^s, such that Wri+i- V=Li lor l^i^s

and WTl+i- V = 0 if i>s, JXi Wn+i is dense in JXi St and each Wri+i is

an open connected subset of U with property S.

3. The fundamental theorems.

Theorem 2. Let M be a compact partitionable set and N a closed partition-

able subset. Then for every e > 0 there exists a simultaneous S, ^-partitioning of

M and N.

Proof. It may easily be shown that it is sufficient to prove the theorem for

the case when M and A are both connected (and hence continuous curves).

Given e>0 take 6/4. Pick a finite set of points, {pi}, i=i, 2, • ■ • , n,

such that if pÇiM then D(p, pi) <e/4 for some i. Define Ai— {x\ x£JI7 and

7>(x, pi)^e/4-}, and Bi= \x\x£.M and 7>(x, p{)^e/2}. Then the sets Ai

and Bi are at positive distance apart for each i. In particular p(Ai, 73i)>0.

By Theorem 1 there exist disjoint open connected subsets of M, say

Vi, V2, • • • , Vm, such that no F¿ intersects both^4i and 73ibut each F; inter-

sects (Ai+Bi), ][Xi Vi is dense in M and has property S, each F¿A is

either void or an open connected subset of N with property S and XX i FiA

is dense in A. Clearly if F^i^O, ô(F,-) <e. Let Xi (Yi) be the sum of those

Vi which intersect Ai (Bi).

Let F„ be an arbitrary component of Yt. Then Fn^4i = 0. Consider F„^42

and V„B2. If F„A is not void these two sets satisfy the conditions of Theorem 1

for 77 and A with U= F„and F= F„Aand so we can apply the theorem again.

If F„A = 0, itcanbeS, e-partitioned (Theorem 4, p. 1104 of [5]). The procedure

can be repeated until the components of Yi are exhausted. This gives us a

simultaneous 5-partitioning G of Yi and FiA. Let X2 equal the sum of all

elements of G which are of diameter less than e. Let F2 equal the sum of the

remaining elements of G. Proceeding similarly we obtain sets X3, Y3, • ■ ■ ,

Xn-i, Yn-i- Then the components of (F„_i+ ^?l} Xi) are the elements of a

simultaneous S, e-partitioning of M and A.

The following results may be obtained in the same manner and will be

used several times.

Theorem 3. Let M and N be two continuous curves such that NdM and

let U be an open partitionable connected subset of M such that UN is connected
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and partitionable. Then for every e > 0 there exists a simultaneous S, e-partition-

ing of U and UN.

Theorem 4. Let M be a compact partitionable set and N a closed partition-

able subset. Then there exists a sequence {G i} of simultaneous S-partitionings of

M and N such that d is a refinement of G¿_i of mesh less than 1/i.

4. Remarks and examples. Theorem 2 would follow immediately (using

Lemma 1) from Theorem B if for every S, «-partitioning G oí M and every

element g oí G which intersects N, gN had property S. However this is not the

case. Very simple examples can be found where G is an 5-partitioning of M,

g (EG, and gN does not have property S. These and other examples show that

it is not possible to prove Theorem 2 by working with M only or with N only

at first, but rather the sets N and M must be considered simultaneously as

was done. These examples can easily be constructed and so are not included.

A counter example. One might wonder if the restriction that N must

be contained in M could be removed. That is, consider the following theorem.

False statement D. Let M and N be two arbitrary continuous curves, e

an arbitrary positive number, and U an open connected partitionable subset of

iM+N) such that UM and UN are both connected and partitionable. Then

there exists an S, e-partitioning G= {gi, g2, • • • , gk} of U such that {giM},

¿=1, 2, • • • , k, and {giN}, i=l, 2, • ■ ■ , k, are S-partitionings of UM and

UN respectively.

It can easily be shown that a consequence of this theorem is that if p is

an arbitrary point of iM+N) and e an arbitrary positive number, there

exists an open connected set U such that pGU, S(C) <€, and UM and UN

are both connected and partitionable. However consider a straight line L

in euclidean 3-space and points p and pi on L. Let p2 be the mid-point of

[p, pi] and in general pi be the mid-point of [p, pi~i]. Consider a sequence

{qi} of points defined as follows. Points Ci, q2, • • • , q% are the points,

pok, pM-3, pu+2, p6k-u pek+i, pu+i, respectively, with k=l. The points q7 to

ffi2 are the points p%k, pok-%, pik+i, pu-i, ptk+i, pu+i, respectively, with k = 2,

and so on. Let {Ai} be a sequence of arcs such that (1) the end points of A{

are c¿ and g,+i, (2) each pair of these arcs are disjoint except possibly for a

common end point, and (3) p(x, [g¿, g¿+i]) <l/2{ if x£j4¿. Let N = p+ ^4"=i Ai

and let M= [p, pi}. Then there do not exist arbitrarily small open subsets U

of iM+N) containing p such that UM and UN are both connected. The

proof is omitted. This shows that Theorem D is indeed a false theorem and

thus that the results of this paper are not valid for two arbitrary continuous

curves.

5. Some additional theorems.

Theorem 5. Let p be an arbitrary point of a compact partitionable set M

and let N be a closed partitionable subset of M and let e be an arbitrary positive
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number. Then there exists in M an open partitionable connected set U such that

pÇLU, 8(U) <e, and UN is either void or connected and partitionable.

Proof, (a) If PEl(M-N) the proof is left to the reader, (b) Suppose

/>£A. Given e, take e/2. By Theorem 2 there exists a simultaneous S, e/2-

partitioning G of M and A. If p belongs to an element of G, that element

serves as the set U. Otherwise let {gi}, i=l, 2, ■ • ■ , k, be the elements of

G such that p<ECl (gi). Let V be the interior of XXi Cl (gi). If FA is con-
nected we are done. If not FA has a finite number of components and we may

apply Lemma 1.

Theorem 6. Let M be a compact partitionable set, N a closed partitionable

subset, p an arbitrary point of M, and 8 and e any two positive numbers such

that §<€. Then there exists an open set U such that U and UN both have prop-

erty S and A<ZUandp(U, B) >0, where A = {x|x£Af and D(x, p) ^8/2} and

73= {x|x(EJ7 and D(x, p)^e/2}. (If B is void omit the conclusion p(U, 73)

>0.)

Proof. If 73=0, let U=M. Otherwise let y = (e-8)/2. Let G be a simul-

taneous ¿'-partitioning of Af and A of mesh less than y/3. Let U equal the

interior of the sum of the closures of all elements of G whose closures inter-

sect A. This set is of the required type. U clearly has property S. UN also

has property 5 because it is the sum of sets gN where gA ^0, plus a subset of

the limit points of this sum. The other conclusions of Theorem 6 are clearly

satisfied.

Theorem 7. Let M be a compact partitionable set and N a closed partition-

able subset of M. Then there exists a decreasing sequence {G i} of simultaneous

S-partitionings of M and N such that if g and h are two elements of G i for which

gN^O, hN^O, and p(gN, hN)>0, then p(g, h)>0.

Proof. We prove the theorem by showing that if partitionings Gi, G2, • • • ,

Gn-i have been chosen so that the conclusions of Theorem 7 are satisfied for

them, then G„ can be chosen of the required type.

Let 77 be any simultaneous S, 1/w-partitioning of M and A which is a

refinement of G„_i. Let {hi}, i-*l, 2, • • • , k, be the elements of 77 which

intersect A and {hi}, i = k + l, • • • , k+ti, be the remaining elements. Con-

sider hi. If p(h\, At-)=0 only if (a) i>k or (b) i^k and p(hiN, hiN)—0, pass

on to h2. However if, for some i^k, p(hi, hi) =0 but p(hiN, /z,-A) >0, let hm be

one such hi for which p(hiN, À.-A) is a minimum. Consider a simultaneous

5-partitioning 77' of M and A which is a refinement of 77 of mesh less than

(1/4) -p(h\N, hmN). For each * from 1 to k let hi equal the interior of the sum

of the closures of all elements of 77' whose closures intersect hiN and let

{hi}, ¿ = fe + l, • • • , k-\-t2, be the remaining elements of 77'. Then if i^k,

p(hi , hi ) > 0 unless p(hi A, h¡ N) = 0.
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Now omitting h{ and considering only the remaining elements of H"

= {hi }, 4 = 1, 2, • • • , k+t2, treat h2 in a similar manner to the way in which

hi was treated. After at most k — 1 steps a partitioning is obtained which

satisfies the conditions on G„.

In fact this theorem may be strengthened so that if S equals the mini-

mum of pig, h) where g and h vary over all elements of G, which intersect N

and are such that pigN, hN)>0, then the diameter of g' is less than è/H

where H is an arbitrary positive integer, and g' is an arbitrary element of

Gi which does not intersect N.

Theorem 8 (Core partitionings). Let M be a compact partitionable set

and N a closed partitionable subset. Then there exists a decreasing sequence of

simultaneous core partitionings {G¿} of M and N.

Proof. Let Gi be a simultaneous S, 1-partitioning of M and N, let gGGi

and let G{ be the partitioning of g consisting of the single element g. If

gN = 0, it has previously been shown [7 and 8, Theorem 3, p. 1119] that

there exists a core refinement of GI of mesh less than 1/2. Thus suppose

gN^O.
Let H be a simultaneous S, 1/2-partitioning of g and gN. Let T be a con-

nected set in g such that TN¿¿0, T intersects every element of H, and

piM—g, T)>0. If TN is not a connected set in gN which intersects each

element h oí H for which hN¿¿0, a set 5 may be obtained from T by adding

a finite number of dendrons in gN chosen in such a way that SN is a con-

nected set in gN which intersects each element h of II for which hN^O.

Note that piM-g, S) = 5 > 0.
Let H' be a simultaneous 5-partitioning of g and gN which is a refinement

of H oí mesh less than 5/3 and which satisfies the following condition. If

h'GH', h'N^O, and p(A', S)=0, then pih'N, S)=0 also. To show that H'
exists we may consider an arbitrary simultaneous 5-partitioning K oí g and

gN which is a refinement of H of mesh less than 5/3. If there exists an element

k of K such that kN^O, pik, S) =0, and pikN, S) = 7>0, it is merely neces-

sary to consider a simultaneous 5-partitioning of k and kN of mesh less than

7/3. If this procedure is repeated for all elements of K similar to k, then the

collection of all sets thus obtained plus all the unchanged elements of K

constitutes a partitioning satisfying the conditions on H'.

Let C equal the sum of the closures of all elements of H' whose closures

intersect 5, say C= £ti CI (*/) and let D= £î_, C1 WN). Then C and

D are both connected sets in g. C is connected because for each i from 1 to

k, hi has a limit point in 5. D is connected because for each 4 from 1 to k

for which hi N9^0, hi N has a limit point in SN.

Consider the border elements hi, h2, ■ ■ ■ , hm of H which are contained in

g. Consider an arbitrary component K of ( ^2T=i hi) — C. Thus K will be con-

tained in some element of H. If KN = 0, leave K alone. If KN^O, KN has a
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finite number of components, Xu X2, • • • , X„, and K may be partitioned

into open disjoint connected partitionable subsets W\, W2, ■ ■ ■ , Wn such

that WiZ)Xi lor each i (Lemma 1). Treat each component of ( XXi hi) — C

in this manner. Let {Ri}, i=l, 2, ■ ■ ■ ,r, and {Si}, i — l, 2, • • • , s, be the

sets thus obtained which have a boundary point in common with bdy g,

where i?¿A = 0 and 5,A is nonvoid and connected. These sets plus all the sets

obtained by the same process whose closures lie in g, plus all elements of 77'

which are contained in (C-\-(g— XXi hi)), constitute a simultaneous S, 1/2-

partitioning G of g and gN. The border elements of G are {Ri, • ■ • , Rr,

Si, • • • , St} and all the remaining elements are interior elements (border

and interior elements with respect to Gi).

Suppose E equals the sum of the closures of all the interior elements of G,

defined above, say E= XX i Cl (gi) and let F= ^|_i Cl (g,A). Then E and
F are both connected, as we shall now prove. Suppose E is not connected.

Let E' be a component of E which does not intersect C. Suppose E' contains an

element g' of G which is contained in a border element h of 77. If g'N = 0, g'

is a component ol h—C and hence g' has a limit point in C, since h is con-

nected. If g'Ny^O, g'N is a component of (h—C)N and hence has a limit

point in CN because hN is connected. In each case E' intersects C, contrary

to assumption. E' cannot contain an element of 77' which is contained in an

interior element h ol H lor in this case E' would contain h and hence again

intersect C, a contradiction. Hence E is connected. We may proceed in

exactly the same manner to prove that F is connected. The same arguments

show that if g" is an arbitrary border element of G, then E contains a limit

point of g" and F contains a limit point of g"N unless the latter set is void.

Once G has been defined, this shows how the other elements of Gi may be

treated. By dealing with each of them in the same manner, we obtain a simul-

taneous S, 1/2-partitioning G2 of M and A of the required type. The method

is general and so the proof is complete.

6. Unanswered questions. Consider the following two theorems which

may possibly be true, and if so, might lead to further results.

Conjecture E. Let M and N be two continuous curves such that AC M, U a

connected, uniformly locally connected (ulc), open subset of M such that UN is

ulc and connected, and e an arbitrary positive number. Then there exists a simul-

taneous e-partitioning G of U and UN, such that if gÇîG then g and gN both are

ulc.

This is a stronger result than Theorem 2 since for subsets of a compact

metric space ulc implies property S but not conversely.

Conjecture F. Let M and N be two continuous curves such that NC.M,

and e an arbitrary positive number. Then there exists a simultaneous S, e-parti-

tioning G of M and N such that if g£zG then gN = Cl (gN).
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