
COMPOUND GROUP EXTENSIONS.
I. CONTINUATIONS OF NORMAL HOMOMORPHISMS(1)

ROBERT L. TAYLOR

1. Introduction. A normal homomorphism is a homomorphism <p: K—>G

of a group K into a group G, such that <p(K) is a normal subgroup of G. We

shall denote <j>~l(0) by X, <j)(K) by A, and G/N by Q; then the normal

homomorphism can be displayed as an exact sequence

(1.1) 0->A-
4>     M

A->G->£ 0,

where p denotes the natural homomorphism. In fact one could consider, as

the object of study, an arbitrary exact sequence of "length 4," as in (1.1);

one would then need a symbol for the given isomorphism of X into K. It will

not matter, even notationally, whether or not the elements of Q are actual

cosets in G, so long as p. is a given homomorphism of G onto Q with kernel

N = 4>(K).
None of the groups involved is assumed to be abelian; but we adopt the

following convention: all groups will be written additively, whether abelian or

not, except the group A (L) of all automorphisms of any group L, and subgroups

of A(L). Factor groups of A(L) will be written additively. The "sum" of two

functions with values in a group will mean the function obtained by adding

values, or by multiplying values in the case of mappings into A (L) ; the "prod-

uct" of two functions will always mean their composition.

By a continuation of <j>: K—*G we mean a group E, containing A as a sub-

group, together with a homomorphism <j>: E—*G such that the top row in the

diagram

(1.2)

Presented to the Society, December 29, 1950, under the title The extendibilily of a crossed

module; received by the editors April 7, 1952 and, in revised form, August 19, 1952.

(') This is the first of several papers devoted to an exposition of the contents of [13], com-

bined with related results discovered subsequently. [13] was written under the supervision of

Prof. J. H. C. Whitehead, to whom the author is indebted for many valuable suggestions. Some

of the subsequent work included in this paper was partially supported by the Office of Scientific

Research (ARDC). Numbers in brackets refer to the list of references at the end of the paper.

106



COMPOUND GROUP EXTENSIONS 107

is exact, and such that the left-hand rectangle is commutative(2). Unlabelled

arrows represent identity injections, except those of the form —»0.

Equivalently, one may demand that the bottom row be exact, and the

right-hand rectangle commutative, in the diagram(2)

0-> X

(1.3)

0-> X

in either case, the conditions required of <p~: E—>G are

(1.4) 4> | K = <p,       <?(£) = G,       ¿-l(0) = X.

In the presence of (1.4a), condition (1.4c) is equivalent to each of the

following :

(1.5) $-i(0) C X;       $-\N) C K;       jr^N) = K.

Diagram (1.2) corresponds to regarding E primarily as an extension of Q

by K, together with a homomorphism <j5: E—>G which induces a given homo-

morphism (namely q>) of K into G and which also induces a given homo-

morphism (namely the identity mapping) of Q = E/K into Q — G/N. In (1.3),

we regard E primarily as an extension of G by X, which "continues" the

given extension K of N by X. The point of view suggested by (1.2) will be

generalized in [9], and underlies the approach used in the present paper;

that suggested by (1.3) will be generalized in [l].

Two continuations (£, #) and (E', #') of </>: K—*G will be called isomorphic

if there exists an isomorphism W: E'^E such that

(1.6) W | K = identity;       $W = $'.

A continuation (E, $) of </>: K^G determines in a natural way a homo-

morphism 0: G^>AxiK)/ciX) of G into the group AxiK)/ciX) of all auto-

morphisms of K which map X onto itself, modulo those automorphisms which

arise from conjugation of K by elements of X. Any homomorphism 9: G

—>AxiK)/ciX) satisfying appropriate commutativity conditions is called a

modular structure on </>: A"—>G; the pair (<£, 6) is called a pseudo-module. By an

extension of the pseudo-module i<j>, 8) we mean a continuation of <f>: K—*G

which gives rise to the given modular structure 6. The study of continuations

of a normal homomorphism thus reduces to the study of extensions of a pseudo-

module.

A pseudo-module in which XQZk, where Zk denotes the center of K,

(2) In (1.2), the right-hand rectangle is automatically commutative, and the bottom row

is automatically exact. In (1.3), the left-hand rectangle is automatically commutative, and the

top row is automatically exact.
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is the same thing as a crossed module, in the sense of J. H. C. Whitehead [14].

Our first main result is that the extension problem for pseudo-modules re-

duces to the extension problem for crossed modules, in the following way.

With every pseudo-module we associate a certain crossed module, in a

natural fashion ; we then show that the extensions of a given pseudo-module

are in a natural 1-1 correspondence with the extensions of the associated

crossed module. In particular, a pseudo-module is extendible if and only if its

associated crossed module is extendible.

The obstruction of a crossed module has been defined by MacLane and

Whitehead [6; 7] ; it is an element of H3(Q, X), with Q operating on X in the

manner induced by 8: Q^>Ax(K). We show:

(a) a crossed module is extendible if and only if its obstruction vanishes;

(b) H2(Q, X) operates in a natural way as a simply transitive transforma-

tion group on the set of all isomorphism-classes of extensions of the given

crossed module.

Since the empty set is never regarded as an equivalence class, the set of all

isomorphism-classes of extensions of a crossed module is nonempty if and

only if the crossed module is extendible. However, since every group operates

as a simply transitive transformation group on the empty set, result (b) holds

whether the crossed module is extendible or not. In the extendible case, any

choice of a particular isomorphism-class of extensions as "base point" in-

duces a 1-1 correspondence between H2(Q, X) and the set of all isomorphism-

classes of extensions.

Now let (<j>, 8) be a pseudo-module, and let (0', 8') be its associated crossed

module. The construction is such that K = K' and Q = Q'; however, </>'_1(0)

= 0_"1(O)P\Za-. Hence, if we denote </>_1(0) by X, the obstruction of (</>', 8') is an

element of H3(Q, XC\Zk), where the operation of Q on XC\Zk is induced

by 8: G^Ax(K)/c(X). We call this element of 773(<2, XC\ZK) the obstruction

of (<t>, 8). Then results (a) and (b) automatically imply their own generaliza-

tions, as follows:

(c) a pseudo-module is extendible if and only if its obstruction vanishes;

(d) H2(Q, XC\Zk) operates in a natural way as a simply transitive trans-

formation group on the set of all isomorphism-classes of extensions of the

given pseudo-module.

These results are clearly exact analogues of the theorems of Eilenberg and

MacLane [5] on group extensions with a nonabelian kernel(3). In fact, a

Q-kernel 8: Q^A(K)/I(K) can be made into a pseudo-module in at least two

different ways. On the one hand, MacLane has shown [6] that the concept

of a Ç-kernel is equivalent to that of a crossed module in which X = Zk\ in

this construction, "G" is a certain subgroup of the direct sum Q-\-A(K), and

"<p: A—>G" is the natural homomorphism of K into A(K) defined by conjuga-

tion, followed by the natural injection of A(K) into Q-\-A(K). On the other

hand, if we define G = Q, <p(K) =0, then X = K, and (</>, 8) is a pseudo-module.'

(3) See also [2; 8].
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Whether we regard a Ç-kernel as a crossed module in the manner of MacLane,

or as a pseudo-module by taking $ = 0, the results on extensions of a Ç-kernel

follow immediately as special cases of the above. Moreover, if 0: Q

-^AiK)/IiK) is a Ç-kernel, G = Ç, <£ = 0, and (<£', 0') is the crossed module

associated with the pseudo-module (<£, 0) in the sense of this paper, then

i4>', 6') is the same as the crossed module constructed from 0: Q-^AiK)/IiK)

by MacLane (4).

The generalization from Ç-kernels to pseudo-modules has been accom-

panied by a certain amount of reorganization. Since the results on group

extensions are needed in the revised form for this and later work [l ; 10],

they are summarized (as revised) in §5.

In §14, we return to the concept of the crossed module associated with a

given pseudo-module, and prove that the concept of a pseudo-module is in

fact equivalent to that of a crossed module together with a subgroup F of A

satisfying certain conditions; F becomes the <£_1(0) of the corresponding

pseudo-module.

If G is a topological group, N is the arcwise component of the identity,

and 4>: K—*N is a universal covering group of N, then <f>: K—*G is a normal

homomorphism which satisfies X(ZZK and which admits one and only one

modular structure 0: G—>AxiK) such that 0(G) is contained in the group of

all topological automorphisms of K. The extensions of the crossed module

i4>, 0) can be identified with the universal covering groups of G. Hence the

results of this paper provide a classification of the universal covering groups

of a nonconnected topological group whose arcwise components admit uni-

versal covering spaces; this leads to a classification of the non-universal cover-

ing groups as well [ll]. In [12], it is shown that, for certain purposes, the

local restrictions on N involved in the assumption that N admits a universal

covering space can be eliminated.

The results on covering groups play a role in the classification of fiber

bundles over a compact 2-manifold [13] and, in that connection, formed the

original motivation for the present work.

2. Notation; some preliminary identities. If P denotes a group, the sym-

bols AiP), JT(P), and ZP will denote, respectively, the group of all auto-

morphisms of P, the group of all inner automorphisms of P, and the center

of P. cp: P—>7(P) will denote the natural homomorphism defined by

(2.1) icPp)ip') = P + P' - P.

If M denotes a subgroup of P, AmÍP) will denote the group of all auto-

morphisms of P which map M onto itself. If M is a normal subgroup of

P, Cm'- P—*AiM) will denote the natural homomorphism defined by

(2.2) iCMp)im) = p + m- p.

(4) This last assertion will become self-evident to the reader; it will not be discussed in the

text.
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The subscripts will frequently be omitted from the symbols cp and Cm.

Throughout most of this paper, attention will be confined to a single

fixed normal homomorphism (1.1). The letters introduced in this and the

previous section to denote various groups and homomorphisms derived from

(1.1) will be used in the same sense throughout.

The symbol Ck(X) denotes the image of X in 7(A) under the natural

homomorphism Cr: A—»7(A) ; it will generally be denoted c(X), although it is

a group of automorphisms of K, not of X. Both c(X) and 7(A) are normal

subgroups of Ax(K), although c(X) is not, in general, a normal subgroup of

A(K).
The following will denote the natural homomorphisms:

\:Ax(K)~+Ax(K)/c(X),

w:Ax(K)/c(X)->Ax(K)/I(K),

v:Ax(K)^Ax(K)/I(K),

v:A(N)^A(N)/I(N),

r.Ax(K)->A(xnZK).

Clearly 77 [which is defined by restricting each element of Ax(K) to

XC\ZK] maps 7(A), and a fortiori c(X), to the identity element of A(Xr\ZK).

Hence 77 induces homomorphisms

7,,: Ax(K)/c(X) ->A(xr\ ZK),       ^:AX(K)/I(K) -» A(X f\ ZK).

The formula

(2.3) (<t>fa)(<t>k) = <p[a(k)] [for all a G AX(K) and all k G K]

defines a single-valued homomorphism

<t>t:Ax(K)->A(N)

which satisfies

(2.4) <t>fK = cN<¡>;       4>f[c(X)] = I;       <t>f[l(K)\ = I(N)

and which therefore induces homomorphisms

^:Ax(K)/c(X)^A(N),       fr: AX(K)/I(K) -» A(N)/I(N).

The homomorphism cK: K—»7(A) induces a homomorphism of K/X onto

I(K)/c(X), which, by virtue of <p: K—»A, may be regarded as a homo-

morphism of A onto I(K)/c(X). As such, we denote it by

*:N-+I(K)/c(X);

it is characterized by the condition

(2.5) H = Xcx.
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The homomorphism Cn'- G—*AiN) maps N onto IiN), and hence induces

a homomorphism

iCN)f.Q-+AiN)/IiN).

It is easy to verify commutativity relations everywhere in the diagram

<t>

(2.6)

KJ/IiK)

V*

Aixr\zK).

The only maps not explicitly included in (2.6) are the compositions

(2.7) t)t = i7*aj;        r¡ = r¡f\ = fj¡ir¡        <bf = </>*X.

It can be verified that the horizontal sequences in the commutative dia-

gram

->X nZK-

(2.8)

0 ->XnZK-

ZK N-

ZK
<t>

4

* ZN

-£-» Ax(K)/c(X) -Ï-* AX{K)/I(K) -* 0

■A(N)-

<t>0

A(N)/I(N) ->0>I(K)/c(X) —

are exact. In particular,

(2.9) ^iO)=d>iZK),

(2.10) *(A) = «-'(0) = HK)/dX),

(2.11) /(A)A(A) H <?C (1) = iK-Zjv) = \cK[<t>-\ZN)} = cK[<b-'iZN)]/ciX)

(2.12) <b* UiK)/ciX) ] = jr\0) = /(A).

Formula (2.11) is established with the help of

(2.13) I{K) O ^(1) = cx \4t1ÍZn) }.

It can be shown that for every aÇEiAxiK) and every nÇHN,

(2.14) *[(<M»J = X(a) + *(») - X(«)-

It follows that for every wG^4x(A)/c(A") and every nÇ£N,

(2.15) ^[i<t>*iv)n] = w + ypin) — w.

Formulae (2.15) and
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(2.16) <b*\[/ = Cn,

which is included in the commutativity of (2.6), show that the homo-

morphisms \p: N—>AxiK)/ciX), 0* : AxiK)/c(X)-+AiN) constitute a crossed

module.

3. Pseudo-modules. Let (E, #) be a continuation of <p: K—>G. The

homomorphism Ck'- E—*AxiK) induces a homomorphism of E/X into

AxiK)/ciX), which, by virtue of the isomorphism E/X^G induced by

$: E^>G, may be regarded as a homomorphism of G into AxiK)/ciX). As

such, we denote it 0: G—>AxiK)/ciX); it is characterized by the condition

(3.1) 6$ = \CK.

We observe

(3.2) 4>íCk = Cn$,       «¿>*XCk = Cn$

[(3.2a) is an obvious generalization of (2.4a);  (3.2b) follows from (3.2a)

and (2.7c)].

Consider now the diagram

i3.3)

AiN)

Commutativity holds around the outer perimeter by (3.2b), and in the

rectangle by (3.1). Since <¡>iE)=G, it follows that commutativity holds also

in the triangle.

In (3.3), if we restrict $ and Ck to K, we obtain commutativity in the

diagram

K
4> ->G

(3.4)

AxiK)

ck

-*Ax(K)/c(X) AiN).

By (2.5), commutativity in the rectangle of (3.4) is equivalent to

(3.5) 'd\N = f.

Definition. A modular structure on the normal homorphism c¡>: K—+G is

a homomorphism 0: G—>AxiK)/ciX) such that (3.4) is commutative. A

pseudo-module is a normal homomorphism together with a modular structure;

a pseudo-module will generally be denoted (0, 0).

Remark. Commutativity in the triangle of (3.4) no longer follows auto-
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matically from commutativity in the rectangle and around the perimeter,

because, in general, <p(K) j^G. Hence a modular structure is required to satisfy

two independent commutativity relations. These relations represent the least

we can demand of 6 in order that it might possibly have arisen from a con-

tinuation in the above manner. Moreover, they are exactly the relations

needed to insure commutativity throughout (2.6) when 8: G—+Ax(K)/c(X)

is adjoined to the diagram.

An extension of a pseudo-module (<p, 8) is a continuation (E, 4>) ol<p: K—>G

satisfying (3.1). Here, (3.1) is regarded not as the definition of 8 but as a re-

striction imposed on the desired $ in terms of the given 8.

It follows from the above discussion that for every continuation (E, <$>)

of <j>: K—*G, there exists one and only one modular structure 8 on <p such that

(E, $) is an extension of the pseudo-module (4>, 8). Thus the continuations

divide into classes according to the pseudo-modules of which they are exten-

sions. In particular, a necessary condition for the continuability of a normal

homomorphism is that it admit a modular structure.

Example. Let A be the nonabelian group of order 6, let G be the cyclic

group of order 4 generated by the symbol go, and let <p: K—>G be the non-

trivial homomorphism. That is, if k^Q, then <JJ(£)=2go or 0 according as k

is of order 2 or 3. In this case Ck is an isomorphism of A onto 7(A) =Ax(K)

= A(K); hence Ax(K)/c(X) is of order 2. Suppose 8:G-^Ax(K)/c(X) is a

modular structure. Since Ax(K)/c(X) is of order 2, we have 8(2g0) = 28(g0) =0.

But choose a nonzero element k of A of order 2. Since k(¡.X, we have c(k)

(Ec(X), and ~Kc(k)¿¿0. But <j>(k) = 2g0. Therefore by commutativity in the

rectangle of (3.4), 8(2g0) =8<p(k) =\c(k) ?=0. The contradiction shows that

this normal homomorphism admits no modular structure and hence is not

continuable; in fact it admits no homomorphism 8: G—>.4x(K)/c(X) satisfying

(3.5). _
This paper is mainly devoted to a classification of the extensions of a given

pseudo-module. Some information on the complementary problem—the

classification of the possible modular structures on a given normal homo-

morphism—will be given in §11; more will be found in [10].

A crossed module has been defined by J. H. C. Whitehead [14] as a system

consisting of two groups A and G, together with two homomorphisms <j>: K

->G and 8: G->A(K), such that

(3.6) 6<p = ck,

(3.1) <t>[(dg)k] = g + <p(k) - g (for all g GG and all k (= K).

It follows from (3.7) that (f>: A—>G is a normal homomorphism. If we grant

the normality of N = <p(K), so that CN: G—>-A(N) is well defined, (3.7) may

be written

(3.8) <t>[(8g)k] = (CNg)(<j>k).
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It also follows from (3.7) that 6iG)CAxiK), where, as usual, A'=0-1(O).

If we grant this condition, in addition to the normality of N, then by (2.3),

formula (3.8) is equivalent to

(3.9) — Civ.

Hence a crossed module may be defined as a normal homomorphism

0: A—>G together with a homomorphism 0: G—*AxiK) satisfying (3.6) and

(3.9). From (3.6) we obtain XCZZk. Now, in the definition of a pseudo-

module, if we assume XCZZk, we have c(A") = 1, and X becomes the identity

mapping of AxiK) onto itself. Hence 0: G—>AxiK)/ciX) becomes 0: G

—>AxiK), and (3.4) collapses to conditions (3.6) and (3.9). Therefore a crossed

module is the same thing as a pseudo-module in which XCZZk-

As a special case of the concept of an extension of a pseudo-module, we

obtain a definition of an extension [13] oí a crossed module (0, 0), as a con-

tinuation (E, $) of 0: K—>G satisfying

(3.10) 6$ = CK.

In the special case 0 = 0 (not necessarily assuming XCZZk), we have

AxiK)/ciX)=AiK)/IiK); both commutativity relations in (3.4) reduce to

the requirement that 0=0. Hence a modular structure on a normal homo-

morphism of this type is simply an arbitrary homomorphism of Ç ( = G)

into AiK)/IiK). It follows that a Ç-kernel [5] is the same thing as a pseudo-

module in which 0 = 0. Since we now have X =v, an extension of such a pseudo-

module may be regarded as a group £, containing ifasa subgroup, together

with a homomorphism pi=p<j>) of £ onto Ç, with kernel K, satisfying

(3.11) = vCk.

Such an extension is the same thing as an extension of the Ç-kernel 0: Ç

-+AiK)/IiK) in the sense of [5].

The intersection of our two special cases is that in which 0 = 0 and K is

abelian. This leads to the theory of extensions of an arbitrary group Ç by

an abelian group K [4]; a modular structure is now an arbitrary homo-

morphism 0: Ç—*AiK), i.e., an operation of Ç on A" as a group of operators.

We remark that every extension (E, <J) of a pseudo-module (0, 0) can it-

self be made into a pseudo-module in one and only one way. That is, there

exists one and only one homomorphism 0: G—>AxÍE)/ceÍX) giving com-

mutativity in

(3.12)

AxiE) AxÍE)/ceÍX) AiG),
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where X: Ax(E)—*Ax(E)/cE(X) is the natural homomorphism, and $*:

Ax(E)/ce(X)—+A(G) is defined analogously with </>* (§2). In fact, in exact

analogy with the definition of \p: N—*I(K)/ck(X) in §2, there exists one and

only one homomorphism 6: G—+Ax(E)/ce(X) giving commutativity in the

rectangle of (3.12); commutativity in the triangle follows automatically.

Moreover, let Ax.k(E) denote the group of all automorphisms of E which

map X onto itself and A onto itself; let f: Ax,k(E)—>Ax(K) denote the

natural homomorphism defined by restricting each element of Ax,k(E) to A;

and let f#: Ax,k(E)/ce(X)—->Ax(K)/ck(X) denote the homomorphism in-

duced by f. Then 0 is an "extension" of 8 in the sense that 8(G)

CAx,k(E)/cb(X) and

(3.13) f#0 = 0.

However, the pseudo-module which arises in this way from an extension

of a crossed module is not necessarily a crossed module, because the central

subgroup A of A is not necessarily a central subgroup of E.

4. Cochains. Let P and M be arbitrary groups. By an n-cochain on P in

M we mean a function / defined on Pn with values in M, such that

f(pi, • • • . pn)=0 lor every «-tuple (pi, ■ • ■ , pn) which has at least one

coordinate zero(6). By addition of values in M, the set of all «-cochains on

P in M forms an additive group C"(P, M).

If m is a 1-cochain on P in M, its deviation [4] will be denoted dev u; it is

a 2-cochain on P in M, and is defined by

(4.1) (dev u)(p, p') = u(p) + u(p') ~ u(p + p').

UP, M, L are arbitrary groups, u is a 1-cochain on P in M, and ß: M—*L

is a homomorphism, then

(4.2) dev (ßu) = ßdev u.

In particular, suppose u is a 1-cochain on P in M, and A is a normal sub-

group of M. Let ß: M—>M/R denote the natural homomorphism. Then, by

(4.2), dev (ßu)=0 if and only if ß dev m = 0. Hence, ßu is a homomorphism

if and only if(6) dev uC_R.
In this paper no mappings of one group into another will be considered

which are not 1-cochains. That is, every mapping must carry 0 to 0; but a

mapping need not be a homomorphism unless specified. In particular, by a

right inverse of a homomorphism ß: P—>M we mean a 1-cochain u on M in P

such that the composition ßu is the identity mapping of il7 on itself. Thus a

homomorphism admits a "right inverse" if and only if it is onto.

Let/ be a 2-cochain on P in M, t a 1-cochain on P in A(M), and h a 1-co-

(6) Our use of the term n-cochain differs slightly from that in [4], in that our cochains are

always normalized, and may have values in any group, not necessarily abelian.

(6) Given a mapping/ of A into B and a subset C of B,fÇ/_C means f(A) GC.
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chain on P in M. We define a 2-cochain ht-f on P in M by the formula(')

(4.3) ihrfKp, p') = hip) + itp)ihp') +fip, p') - hip + p').

Lemma (4.4). Let P and M be arbitrary groups; let L and Y be normal sub-

groups of M, with YCZZv, let t\: AY(L)-*A(Y), CL: M-+AY(L), CY: M->A(Y)
be the natural homomorphisms. Let f be a 2-cochain on P in L, h a 1-cochain

on P in L, u a 1-cochain on P in M such that dev uCZL, and t a 1-cochain on

P in AyiL) such that dev tCZIiL). Then

(4.5) hcLu-dev u = dev (h + u).

If h C F and 5: C1iP, F)—>C2(P, F) is the coboundary homomorphism [4]

associated with the homomorphism r¡t : P—*A ( F), then

(4.6) hvf=hh+f.

If hCZ Y, and 6: C1(P, Y)~^C2(P, Y) is the coboundary homomorphism asso-

ciated with the homomorphism CYu: P—>A(Y), then

(4.7) dev ih + u) = 5h + dev u.

Proof. (4.5) is easily verified by direct calculation. (4.6), under the

hypotheses hCZYCZZi, follows from a comparison of (4.3) with the (non-

homogeneous) coboundary formula of [4].

Since Cy = t]Cl, the coboundary homomorphism considered in (4.7) is

associated with vClu: P—vl(F). But dev ÍClu) = Cl dev u = cl dev uCZIiL).

Therefore by (4.6), with Clu in the role of / and dev u in the role of/, we

have hcLu-dev u = dh + dev u. Combining this with (4.5), we obtain (4.7).

Q.E.D.
Let/ and g be 2-cochains on P in M, and let t be a 1-cochain on P in

AiM). If gCZZu, then clearly

(4.8) ht-ig+f) = g+hrf.

It follows that if/ and/' are 2-cochains on P in M, such that/'— fCZZia,

then

(4.9) hrf - ht-f = /' - /

Given a 2-cochain/ on P in M and a 1-cochain t on P in AiM), we de-

fine a 3-cochain btf on P in M by the formula(8)

(Stf)iP, P', P") = (tp)fip', P") + fiP, P' + P")
(4.10)

- fiP + P', P") - ÄP, P')-

For fixed t, the mapping 5¡ is a 1-cochain on C2(P, M) in Ci(P, M). In

(') Cf. [5, formula (7.3)]; also [8].

(8) Cf. [5, formula (7.2)]. Also, compare our formula (5.4a) with formula (7.1) of [5].

See, in fact, [8].
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general, 5¡ is not a homomorphism. However, if /and/' are 2-cochains on P

in M, and fÇLZtt, then, just as in the abelian case, .

(4.11) St(f + f')=8tf+8tf.

It follows that if/ and/' are 2-cochains on P in M such that/'—/G^m,

then

(4.12) 8t(f - f) = 8tf - 8tf.

Let F be a subgroup of Zu', let / be a 1-cochain on P in Ay(M), such that

dev tCZI(M); let 77: Ay(M)—*A(Y) denote the natural homomorphism, and

let 5: C2(P, Y)—>C3(P, Y) denote the coboundary homomorphism [4] asso-

ciated with the homomorphism 77/: P—>A(Y). If / is a 2-cochain on P in Ü7

such that /C F, then clearly 5¡/=5/. Hence (4.11) and (4.12) can be stated

as follows:

Lemma (4.13). Let P and M be arbitrary groups; let Y, t, 77, S be as in the

preceding paragraph ; let f and f be 2-cochains on P in M. If /C Y, then

Sí(/+/') = 8f+8tf. On the other hand, iff'-fC Y, then 8(f'-f)=8,f'-8tf.

Further elementary facts on cochains with nonabelian coefficients will be

incorporated in §5. For abelian coefficients, we shall follow [4], using normal-

ized nonhomogeneous cochains throughout. The symbol 5/ will be used only

when the values of/ lie in an abelian group, on which P operates in a self-

evident fashion.

5. The case 0 = 0. In this section we review, in a form convenient for

later reference in this and subsequent papers, the results of [5] on group

extensions by a non-abelian kernel; see also [2, 8]. We shall omit proofs,

since they can be extracted from [5]; see remark following Corollary 5.18.

Let Q and A be arbitrary groups. An extension of Q by A is a group E,

containing A as a subgroup, together with a homomorphism p: E—>Q such

that the sequence

(5.1) 0->A->E-^O;->0

is exact.

Lemma (5.2). Let (E, p) be an extension of Q by A. Let d be a right inverse

of p : A—>Q. Define

(5.3) / = dev¿,        t = CKd.

Then fCK, and

(5.4) cKf=devt,       5,/=0.

Definition. A structural cocycle on Q in A is an ordered pair (/, /), where

/ is a 2-cochain on Q in A, and t is a 1-cochain on Q in A (A), satisfying (5.4).



118 ROBERT L. TAYLOR [July

Let (J, i) be a structural cocycle on Ç in K, and let (E, p) be an extension of

Ç by K. We say that if, t) represents (E, p) if there exists a right inverse d

of p: E—>Q satisfying (5.3). By Lemma 5.2, every extension is represented by

at least one structural cocycle. Conversely,

Lemma (5.5). Every structural cocycle on Q in K represents at least one ex-

tension of Q by K.

Lemma (5.6). If if, t) and if, t') are structural cocycles representing the same

extension (£, p), then there exists a 1-cochain h on Q in K such that

(5.7) /' = hff,        t' = ch + t.

Specifically, if d' and d are right inverses of p: E—»Ç satisfying (5.3) with

and without primes, respectively, then h = d' —d satisfies (5.7).

Two structural cocycles (/, /) and (/', t') will be called equivalent if there

exists a 1-cochain h on Ç in K satisfying (5.7). This relation is reflexive, sym-

metric, and transitive. The set of all equivalence classes of structural cocycles

on Ç in K will be denoted H2iQ, K) ; no "addition" is defined in this set.

Theorem (5.8). The relation "if, t) represents (E, p)" induces a 1-1 cor-

respondence between #2(Ç, K) and the set of all isomorphism-classes of exten-

sions of Q by K.

In Theorem 5.8, two extensions (E, p) and (E', p') are considered iso-

morphic if there exists an isomorphism W: E'~E which maps K identically

onto itself and satisfies pW = p'.

If (E, p) is an extension of Ç by K, then there exists one and only one

homomorphism 0: Ç—>^4(if)//(A) satisfying (3.11). Any homomorphism of

the form 0: Ç—>.<4(A)//(A) is called a Q-kernel. By an extension of a Ç-kernel

0: Ç—>AiK)/IiK) we mean an extension of Ç by K satisfying (3.11). Hence-

forth we restrict attention mainly to a fixed Ç-kernel 0: Ç—*A(K)/I(K).

The natural homomorphism -q: A(K)^>A(Zk) carries IiK) to the identity

element of AiZK) and hence induces a homomorphism 17*: AiK)/IiK)

-^A(Zk). The cohomology groupsHniQ, ZK) are defined relative to the opera-

tion rç* 0 : Ç—>A iZK) of Ç on Zk-

By a structural cocycle in 0: Q^>A(K)/I(K) we mean a structural cocycle

if, t) on Ç in A such that vt=d. Every structural cocycle on Ç in AT is a

structural cocycle in one and only one Ç-kernel; equivalent structural co-

cycles on Ç in A" lie in the same Ç-kernel. The set of all equivalence classes

of structural cocycles in 0: Q^A(K)/I(K) is denoted 772(Ç, K, 0); this set

may be empty.

Lemma (5.9). Let (J, t) be a structural cocycle on Q in K representing an ex-

tension (E, p) of Q by K. Then the Q-kernel of which (E, p) is an extension is

the same as the Q-kernel to which if, t) belongs.
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Combining Lemma 5.9 with Theorem 5.8, we have

Theorem (5.10). The relation "(/, t) represents (E, p)" induces a 1-1 cor-

respondence between H2(Q, K, 8) and the set of all isomorphism-classes of ex-

tensions of 8: Q^A(K)/I(K).

Given any structural cocycle (/, t) in 8: Q—>A(K)/I(K), and any g

ÇlZ2(Q, Zk), we define

(5.11) g + (f,t) = (g+f, t).

Then g + (f, t) is a structural cocycle in 8: Q^>A(K)/I(K).

Theorem (5.12). Formula (5.11) induces an operation of H2(Q, ZK) as a

simply transitive transformation group on H2(Q, K, 8), and hence, via Theorem

5.10, on the set of all isomorphism-classes of extensions of 8: Q-^A (K)/I(K).

Corollary (5.13). If 8: Q-^-A(K)/I(K) is extendible, there exists a 1-1

correspondence (not "natural," in general) between the cohomology group

H2(Q, Zk) and the set of all isomorphism-classes of extensions of 8: Q

^4 (A)/7(A).

Definition. A structural cochain in 8: Q-+A(K)/I(K) is an ordered pair

(f, t), where/ is a 2-cochain on Q in A, and t is a 1-cochain on Q in .4(A)

satisfying c/ = dev t and vt = 8, but not necessarily Si/ = 0. A Q-kernel need not

admit a structural cocycle, but it always admits a structural cochain.

We define the coboundary 8(f, t) of a structural cochain (f, t) by

(5.14) 8(f,t) = 8tf£C\Q,K).

We say that two structural cochains (/, t) and (/', t') are equivalent if there

exists a 1-cochain h on Q in A satisfying (5.7).

Lemma (5.15). If (/, t) and (/', t') are structural cochains in 6: Q

—+A(K)/I(K), then there exists a 2-cochain f" on Q in K such that (/", t) is a

structural cochain equivalent to (/', /').

Lemma (5.16). Any two equivalent structural cochains have the same co-

boundary.

Lemma 5.16 may be thought of as the generalization to non-abelian coeffi-

cients of the proposition that the double coboundary of a 1-cochain is zero.

Theorem (5.17). Let C2(Q, A, 8) denote the set of all structural cochains in

8: Q^A(K)/I(K). The mapping 8: C2(Q, A, 0)->C3((?, A) defined by (5.14)
maps C2(Q, K, 8) into, and onto, a single coset(9) of B3(Q, Zk) in Z3(Q, Zk).

The cohomology class S[C2(Q, K,8)], regarded as an element of H3(Q, ZK),

(") If A is a normal subgroup of B, we speak of the "cosets of A in B," meaning the classes

which form the elements of B/A; some would call these the "cosets of B mod A."
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is called the obstruction^0) oí the Ç-kernel 0: Q-*A(K)/I(K).

By Lemmas 5.2, 5.5, and 5.9, 0: Q—*A(K)/I(K) is extendible if and only

if it admits a structural cocycle. But by Theorem 5.17 and the definition of

the obstruction, 0: Q—*A(K)/I(K) admits a structural cocycle if and only if

its obstruction vanishes. Hence

Corollary (5.18). A Q-kernel is extendible if and only if its obstruction

vanishes.

Remark on proofs. The proof of Lemma 5.5 consists mainly of defining

addition in the set AXÇ by the formula (k, q) + (k', q') = [k + (tq)k'+f(q, q'),
q+q'] and showing that conditions (5.4) imply the associative law; this is in-

cluded in the proof of Theorem 8.1 of [5], and is also indicated in [8]. Lemma

5.16 is not explicitly stated in [5]; in fact the notion of "equivalence" is not

brought into the open. However, our formula (4.3) is given as formula (7.3)

of [5], and the calculation which proves Lemma 5.16 is included in the proof

of Lemma 7.3 in [5]. Our lemmas 4.13, 5.15, and 5.16 are all used in the proof

of Theorem 5.17.

We append here some technical lemmas on homomorphisms of one group

extension into another.

Lemma (5.19). Let (E, p) be an extension of Q by K. Let E' be a group, and

0: K—>E' a homomorphism. Let d be a right inverse of p: £—>Ç, and v a 1-co-

chain on Q in £'. There exists at most one homomorphism 0": E—>£' satisfying

(5.20) $\K = <t>,       U = v.

Moreover, there exists such a homomorphism if and only if 0(A) is a normal

subgroup of the group spanned by itself and v(Q), and

(5.21) 0 dev d = dev v,        4>fiKd = Ck'V,

where K'=<p(K), and 0#: .4^-1(0)(A)—>A(K') is the homomorphism induced by

0: K^-K' in the manner of §2.

Proof. Suppose conditions (5.21) [and by implication, the assertion about

the normality of 0(A)] are satisfied. Every element of E is uniquely ex-

pressible in the form k+d(q), where kC£-K and qCZQ. We define <fi[k+d(q)]

=4>(k)+v(q). Then

$[k + d(q) + k' + d(q')]

= 0[¿ + (CKdq)k' + (dev d)(q, q') + d(q + q')]

= 0(A) + (<t>fiKdq)(<¡>k') + (q> dev d)(q, q') + v(q + q')

= <t>(k) + (CK.vq)(<bk') + (dev v)(q, q') + v(q + q')

= 0(¿) + v(q) + <p(k') +v(q') =$[k + d(q)] + $[k' + d(q')},

(10) Sometimes called characteristic cohomology class.
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showing that # is a homomorphism. We leave the remainder of the proof to the

reader.

Lemma (5.22). Let E, p, Q, A, E', <j>, d, v be as in Lemma 5.19, satisfying

(5.21). Let d', v' satisfy similar properties to those of d, v. Let #: £—>■£' be

the homomorphism satisfying (5.20). Let <j>': E—>E' be the homomorphism

satisfying $' | A =(p, $'d' = v'. Then $ = $' if and only if

(5.23) v' - v = <b(d' - d).

Proof. If <£ = <£', then v'-v = $d'-$d = $(d'-d) =cb(d'-d). If v'-v

= <p(d'-d), then $'d'-$d=<b(d'-d)=$(d'-d)=$d'-$d. Hence

$'d' = $d', and $\d'(Q)=$'\d'(Q).

Since also #| A = $'|A, we have $ = <}>'■ Q.E.D.

Lemma (5.24). Let (/, t) be a structural cocycle on Q in A, representing an

extension (E, p) of Q by A; let d be a right inverse of p: E—+Q satisfying (5.3).

Letf, t', Q', A', E', p', d' be similar. Let </>: A-*-A' and 0; Q->Q' be homo-
morphisms, with <p(K) = A'. Let r be a l-cochain on Q in A'. Then there exists

at most one homomorphism <ß: E—>E' satisfying

(5.25) <?1 K = <p,        8p = p'$,        $d = r + d'd.

Moreover, there exists such a homomorphism if and only if

(5.26) 0/ = r,., ■ (f'd),        <l>ft = cK>r + t'0,

where 8(qi, Ç2) = (8qi, 8q2) in the right-hand side of (5.26a), and <p§ is defined as

usual. If <j>: E-^E' is a homomorphism satisfying (5.25a) and (5.25c), then

(5.25b) holds automatically.

This follows easily from Lemma 5.19, on setting v = r-\-d'd.

6. Reduction of pseudo-modules to crossed modules. Let L, M, P be

groups; let t: P—*L and ß: M^L be homomorphisms, with ß(M) =L. Under

these circumstances, we define the graph of t rel. ß as the quartet (r, e, tti, 7t2),

where

(a) T is the subgroup of the direct sum P+Ü7 consisting of those ordered

pairs (p, m) which satisfy

(6.1) r(p) = ß(m);

(b) e: j3-1(0)—>r, n: T—»P, 7r2: r—>m are the homomorphisms defined by

(6.2) t(m) = (0, m);        tti(P, m) = p;        tt2(P, m) = m.

This definition is based on Baer's concept of the "graph" of a Ç-kernel(n) ;

it will be further developed in [9].

(") [2]; see also [5, §12], and [6, §3].
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Now let (0, 0) be an arbitrary pseudo-module; let (r, e, tti, it2) be the

graph of 0: G-+Ax(K)/c(X) rel. X: Ax(K)-^Ax(K)/c(X). By commutativity

in the rectangle of (3.4), the homomorphism

<t>':K^G + Ax(K)

defined by

(6.3) <j>'(k) = [<t>(k),cK(k)}

maps K into Y.

Lemma (6.4). The sequence

0 M""l
(6.5) 0—>xnzK-> K->T->Q->0

45 exact.

Proof. <¡>'-l(0)=<p-\0)r\ci\l)=Xr\ZK. From \[Ax(K)]=Ax(K)/c(X)

it follows that 7Ti(r) =G, and hence that p.7Ti(r) —Q.

The assertion*0'(A) = (/i7Ti)_1(0) means that given nCZ-N and aCZAx(K),

the relation \¡/(n) =\(a) holds if and only if there exists kCZK such that

<j>(k)=n and CKÍk)=a. If a€£/(A), both propositions whose equivalence is

asserted are false. For aCZ-IiK), the desired result follows easily from a con-

sideration of the following commutative diagram, in which the horizontal

sequences are exact and the vertical homomorphisms are onto:

0
0-> X-> K --->2V->0

(6.6) Ck ck *

0-> c(X)-> I(K)-► I(K)/c(X)-> 0        Q.E.D.

Theorem (6.7). The homomorphisms

0': A->r, tt2: T^Ax(K)

constitute a crossed module [note that Ax(K)CZAxnzK(K)]. The extensions of

(0, 0) are in a natural 1-1 correspondence with the extensions of (0', ir2).

Proof. Condition (3.6) becomes, in the present notation, tt2<j>' = Ck, which

follows immediately from the definitions.

Consider any (g, a) £r and any k G A. Then 4>(ak) = (<p#a)(4>k) = (0*Xa)(0^)
= (4>*6g)(d)k) = (CNg)(d)k), and cK(ak) =a(cRk)a~l. Therefore 0'[7r2(g, a) ■ k]

= qj'(ak)=[(f>(ak), cK(ak)]=[(CNg)(<t>k), a(cKk)a-1] = (g, a)+d>'(k) - (g, a),

establishing the appropriate version of (3.7), and proving that (0', 7r2) is a

crossed module.

Let (£, $') be an extension of (0', tt2) ; let N' denote (jwri)^^) =7rr1(A0 CX

Then, from a consideration of the commutative diagram
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-* A

(6.8)

0'

->A'- -» r

piTl<j>'
->

i        AlTTl

TTl

0 -> A-

7Tl

^G

6

e

->0

^0

■+o,

in which the rows are exact, we see that (E, 7Ti<?') is a continuation of <j>: K-

Moreover, 8wi<j>' =\tt2<!>' =\Ck; hence (E, TTif) is an extension of (<p, 8).

Conversely, let (E, <f) be an extension of (<p, 8). Define 4>': 7£—>r by

(6.9) *'(e) = [$(e),CK(e)].

Condition (3.1) guarantees $'(e)ÇzT. Comparing (6.9) with (6.3), and

using (1.4a), we obtain 0'|A=0'. Hence commutativity holds throughout

(6.8). By (6.9), 7n#' = c/3. Therefore (htti$')-1(0)=$-1(N)=K; hence hori-

zontal exactness holds throughout (6.8). Therefore (E, <}>') is a continuation

of ob': K—*T. By (6.9), T2^' = Ck; therefore (E, $') is an extension of (<j>', 7r2).

It is easily verified that these two constructions are inverses of each other.

Q.E.D.

Corollary (6.10). The isomorphism-classes of extensions of the pseudo-

module (4>, 8) are in a natural 1-1 correspondence with the isomorphism-classes

of extensions of the crossed module (</>', ir2).

Corollary (6.11). The pseudo-module (<j>, 8) is extendible if and only

if the crossed module (<p', ir2) is extendible.

7. Extensions of crossed modules: H2(<j>, 8). Throughout §§7-9, we shall

consider a fixed crossed module (<j>,8); that is, a pseudo-module in which X(ZZk-

Lemma (7.1). Let (E, $) bean extension of (<f>, 8), and let dbe a right inverse of

//$: E—rQ. Define

(7.2) / = dev d,       u = <j>d.

Then /CA; u is a right inverse of p.: G—>Q; and

(7.3) <bf=devu,       Stuf = 0.

Proof. Since d is a right inverse of p.<i>, 4>d = u is a right inverse of p. There-

fore dev u(Zß-1(0)=N. $f = <j> dev o' = dev ($d)=dev uCN; therefore, by

( 1.5b), /CA. </>/ = <£/ = dev u.
Clearly (E, u<j>) is an extension of Q by A. By (3.10), CKd = 8<bd=8u.

Therefore by (5.4b) of Lemma 5.2, 59li/ = 0. Q.E.D.
A structural cocycle in (</>, 8) is an ordered pair (/, u), where / is a 2-cochain
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on Ç in A, and m is a right inverse of p.: G—>Ç, satisfying (7.3). Let (J, u) be a

structural cocycle in (0, 0), and let (£, 0) be an extension of (0, 0). We say

that (J, u) represents (E, 0) if there exists a right inverse d of p.0: E—»Ç satis-

fying(7.2).

By Lemma 7.1, every extension is represented by at least one structural

cocycle. Conversely,

Lemma (7.4). Every structural cocycle in (0, 0) represents at least one exten-

sion of (0, 0).

Proof. Let (/, u) be a structural cocycle in (0, 0). Then dev ißu) =0 dev u

= 00/=cjf/, and oeu/=0. Therefore (/, du) is a structural cocycle on Ç in K.

Hence, by Lemma 5.5, (/, 04t) represents an extension (£, p) of Ç by A.

Choose a right inverse d of p: E—>Q such that (dev ¿, Cx¿) = (/, 04í). Then

0 dev d = 0/ = dev m, and 0#Ca-¿=0#0w = Cvm. Therefore, by Lemma (5.19),

there exists one and only one homomorphism 0: £—>G satisfying (1.4a) and

(7.2b). The remaining parts of (1.4) are easily verified. By (7.2b), d4>d=du

= CKd; hence e$\diQ) = CK\diQ). But also 001 K=6<j> = cK = CK\K. Therefore
00 =C*. Q.E.D.

Corollary (7.5). A crossed module is extendible if and only if it admits a

structural cocycle.

Lemma (7.6). If (/, u) and if, u') are structural cocycles representing the

same extension (£, 0) of (0, 0), then there exists a 1-cochain h on Q in K such

that

(7.7) /' = *,„•/,        u' = <t>h + u.

Specifically, if d' and d are right inverses of p.0: E—>Ç satisfying (7.2) with

and without primes, respectively, then h = d' — d satisfies (7.7).

Proof. Choose d', d, and h = d' — d as in the last part of the lemma. Then

du =00d = CK¿; similarly, 0m' = Cx¿'. Therefore (/, du) and (/', du') are struc-

tural cocycles on Ç in K representing the extension (£, p.0) of Ç by A, via d

and d' respectively. Therefore, by (5.7a), f = heu-f. u' — u = 4>id' — d) = $h

= <ph. Q.E.D.
Two structural cocycles (/, u) and (/', u') in (0, 0) will be called equivalent

if there exists a 1-cochain h on Ç in K satisfying (7.7). It is easily verified

that this relation is reflexive, symmetric, and transitive. The set of all

equivalence classes of structural cocycles in (0, 0) will be denoted 772(0, 0).

Since we never regard the empty set as an equivalence class, the set 7/2(0, 0)

is non-empty if and only if (0, 0) admits a structural cocycle: i.e. (by Corollary

7.5), if and only if (0, 0) is extendible.

Lemma (7.8). If (J, u) is a structural cocycle in (0, 0) representing an exten-

sion (£, 0) of (0, 0), and (£', 0') is an extension isomorphic to (£, 0), then
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(/, u) represents (£', <b').

Proof. Choose a right inverse d of p.<fi: E—+Q satisfying (7.2), and an iso-

morphism W: £«£' such that W\ A = identity and $'W=$. Define d' = Wd.

Then $'d'= $'Wd = $d = u; p$'d'=p,u = l; devd' =dev (lFd) = TFdev d=IF/

=/• Q.E.D.

Lemma (7.9). Let (f, u) and (/', u') be structural cocycles in (<p, 8). Let

(£, $) and (£', $') be extensions of (<f>, 8). Consider the propositions

(A) (/, u) represents (£, $),

(B) (/', u') represents (£', <£'),

(C) (/, u) is equivalent to (/', u'),

(D) (£, #) î's isomorphic to (£', $').

IFe asseri that any three of these together imply the fourth.

Proof. First suppose (A), (B), (C) hold. Choose right inverses d' and d

of p<¡>': E'—fQ and p4>: E-+Q, respectively, satisfying (7.2) with and without

primes, respectively; choose a 1-cochain h on Q in A satisfying (7.7). Trans-

form the notation of Lemma 5.24 as follows: (/, t, Q, A, £, p, d, /', í', Q', A',

£', p', d', 0, 8, r, *)—(/', 0«', (2, A, £', «$', d',f, 0«, Q, K, E, pal,, d, 1, 1, h, W).
Requirement (5.26a) then becomes (7.7a); requirement (5.26b) becomes

8u' = ch-\-8u, which follows from (7.7b). Therefore, by Lemma 5.24, there

exists one and only one homorphism W: E'—>E satisfying (1.6a) and

(7.10) Wd' = h + d.

It is easily verified that W is 1-1 onto; its inverse W~l: E—>E' is char-

acterized by IF_1|A = identity and

(7.11) W-H = - h + d'.

4>W\K = qT> K=<p = $'\K; $Wd'= $h + $d=4>h + u = u'= $'d', hence
$W\d'(Q)=$' d'(Q). It follows that <?W=<£', completing the proof of (D).

Next suppose (A), (B), (D) hold. It follows from (B), (D), and Lemma

7.8 that (/', u') represents (£, $). This, (A), and Lemma 7.6 imply (C).

Finally(12), suppose (A), (C), and (D) hold. By Lemma (7.4), (/', «')

represents some extension (£", 4>"). By the established fact that (A), (B),

(C) together imply (D), (£, $) is isomorphic to (£", #"). Hence, by (D),

(£", $") is isomorphic to (£', $'). Therefore by Lemma 7.8, (/', u') represents

(£', $'). Q.E.D.
Combining Lemmas 7.1, 7.4, and 7.9, we obtain

Theorem (7.12).  The relation "(/, u) represents (£, $)" induces a 1-1

(12) The assertion that (B), (C), (D) imply (A) is the same as that (A), (C), (D) .imply

(B), except for a change of notation. In any case, only the two parts of the lemma which have

already been proved are needed for Theorem 7.12; but the third (=fourth) part is technically

useful, particularly in the special case (E, $) = (E', <j>').
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correspondence between 7/2(0, 0) and the set of all isomorphism-classes of exten-

sions of (0, 0).

8. Extensions of crossed modules: H2iQ, X). We continue the discus-

sion of a fixed crossed module (0, 0). 0: G—>AxiK) maps A^ onto /(A) and

hence induces a homomorphism df. Q—>AxiK)/IiK), which is characterized

by the relation d§p = vd. Since XCZZk, the natural homomorphism r/*:

AxiK)/IiK)-*AiXr\ZK) introduced in §2 may be written v*: AxiK)/IiK)

—hi4(A). We consider the cohomology groups HniQ, X) as defined relative

to the operation rj^df. Q-^AiX) of Ç on X.

Lemma (8.1). If u is a right inverse of p.: G—»Ç, then

(8.2) vdu = 0#,        r¡6u = TitBf.

Proof. vdu=dfpu=df. Therefore r¡du = r¡^vdu = ri*df. Q.E.D.

Formula (8.2b) justifies various tacit applications of Lemmas 4.4 and 4.13.

Lemma (8.3). If if, u) is a structural cocycle in (0, 0), and u' is a right in-

verse of p: G—*Q, then there exists a 2-cochain f on Q in K such that if, u') is a

structural cocycle in (0, 0) equivalent to if, u).

Proof. Clearly u'— uCZN. Therefore we may choose a 1-cochain h on Ç

in A satisfying (7.7b). Define/' by (7.7a). Then it is easily verified by direct

calculation that (/', u') is a structural cocycle in (0, 0). By construction,

(/', u') is equivalent to (/, u). Q.E.D.

Given any structural cocycle (/, u) in (0, 0), and any g£Z2(Ç, X), we

define

(8.4) g+if,u) = ig+f,u).

4>ig+f)=4>g+<l>f=4>f=devu;deu;ig+f)=ôg + 8euf = O.Thereioreg+if,u) is a
structural cocycle in (0, 0).

Theorem (8.5). Formula (8.4) induces an operation of H2iQ, X) as a simply

transitive transformation group on ff2(0, 0), and hence, via Theorem 7.12, on

the set of all isomorphism-classes of extensions of (0, 0).

Proof. If (/, u) is a structural cocycle, [/, u] will denote the element of

ff2(0, 0) of which (/, u) is a member. If gC£Z\Q, X), [g] will denote the

cohomology class containing g.

Given gCZZ\Q, X) and [f, 4i]e#2(0, 0), we define

(8-6) g+ [/,«]= [g +/,«].

To show that this is independent of the choice of (/, u), let (/', u') be any

structural cocycle equivalent to (/, u). Choose a 1-cochain h on Ç in A satis-

fying (7.7). Using (4.8), we have ig+f, u') = ig+hu-f, 4>h+u) = ihtu-ig+f),

<j>h+u) which is equivalent to ig+f, u).

Clearly g + ig'+ [f, «]) = ig+g') + [f, «], and 0+ [/, u] = [f, u]. Therefore
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we have defined an operation of Z2(Q, X) as a transformation group on

H2(<j>, 8).

Let [f, u] and [/', u'] be any two elements of H2(<p, 8). By Lemma 8.3,

there exists a 2-cochain/" on Q in A such that (/", u') is a structural cocycle in

(<f>,8) equivalent to (/, u). Let g =/'-/".Then </>g = <£/'-</>/" =dev w'-devw' = 0;

therefore gdX. Furthermore 8g = 8euf — 8euf" = 0. Therefore gG-Z2((?, A).

Now g+[f, u}=g+[f', u'] = [g+f", u']=[f', u'}. Therefore Z\Q, X) oper-
ates transitively on H2(<f>, 8).

Given g(E.B2(Q, X), choose a 1-cochain h on Q in X such that 8h = g. Let

(/, u) be any structural cocycle in (4>, 8). Then (g+/, u) = (8h-\-f, u)

= (h«u-f, </>A+m) which is equivalent to (/, u). It follows that B2(Q, X)

operates trivially on H2(<f>, 8). Consequently the operation of Z2(Q, X) on

H2(<p, 8) induces an operation of 772(Ç, X) on 772(0, 8), by

(8.7) [g]+ [f,u] = g+ [/,«]= k+/,«];

the induced operation is still transitive.

Now suppose [g] G772(Q, X) and [/, m] EH2(<p, 8) are such that [g] + [f, u]

= [f, «]. This means that (g+/, u) is equivalent to (/, u). Choose a 1-cochain

A on Q in A such that g+f=heu-f and u=<ph-\-u. Then <f>h = 0, and AC A;
therefore g+/=5A+/; therefore g = 5A; therefore [g]=0. This proves that

the operation of H2(Q, X) on A2(<7J, 0) is simply transitive. Q.E.D.

Corollary (8.8). If (<f>, 8) is extendible, there exists a 1-1 correspondence

(not "natural," in general) between H2(Q, X) and the set of all isomorphism-

classes of extensions of (<f>, 8).

9. The obstruction of a crossed module. The obstruction of a crossed

module has been defined in [7], and before that was mentioned in [6]. Con-

sequently this section, like §5, is in the nature of a review, except for Corol-

lary 9.5, which was first given in [13] and has not previously been published.

A structural cochain in the crossed module (<p, 8) is an ordered pair (/, u),

where/is a 2-cochain on Q in A, and u is a right inverse of p: G—>Q, satisfying

<jj/=dev u but not necessarily 5«u/=0. We define the coboundary 8(f, u) of a

structural cochain (f, u) by

(9.1) «(/,«) = «.,/•

We say that two structural cochains (/, u) and (/', «') are equivalent if there

exists a 1-cochain h on Q in A satisfying (7.7).

If u is any right inverse of p: G—+Q, then dev uCZN, and there exists a

2-cochain/ on Q in A such that <£/ = dev u. Thus, although a pseudo-module

need not admit a structural cocycle, every pseudo-module admits a structural

cochain.

Lemma (9.2). If (f, u) is a structural cochain in (<j>, 8), and u' is a right

/
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inverse of p.: G—>Ç, then there exists a 2-cochain f on Q in K such that if, u')

is a structural cochain equivalent to if, u).

The proof goes exactly as in Lemma 8.3, except of course that we do not

conclude 8eu>f — 0.

Lemma (9.3). Any two equivalent structural cochains in (0, 0) have the same

coboundary.

Proof. Let (/, u) and (/', u') be equivalent structural cochains; choose a

1-cochain h on Ç in K satisfying (7.7). Then du' =d<bh+du = cKh+du; hence

(/, du) and (/', 04i') are equivalent structural cochains in the Ç-kernel 0#: Ç

-+AX(K)I(K). Therefore by Lemma 5.16, 5*,/= W- Q.E.D.

Theorem (9.4). Let C2(0, 0) denote the set of all structural cochains in (0, 0).

The mapping 5: C2(0,0)—>C3(Ç, A) defined by (9.1) maps C2(0,0) into, and onto,

a single coseti») of B3(Q, X) in Z3(Q, X).

We omit the proof, since the result has been established in [7].

The cohomology class o[C2(0, 0)], regarded as an element of Hl(Q, X),

is called the obstruction of (0, 0).

By Corollary 7.5, (0, 0) is extendible if and only if it admits a structural

cocycle. But by Theorem 9.4 and the definition of the obstruction, (0, 0)

admits a structural cocycle if and only if its obstruction vanishes. Hence

Corollary (9.5). A crossed module is extendible if and only if its obstruc-

tion vanishes.

10. Extensions of pseudo-modules. Let (0, 0) be an arbitrary pseudo-

module; let (r, e, 7Ti, 7T2) be the graph of 0: G^Ax(K)/c(X) rel. X: AX(K)

-^Ax(K)/c(X), as in §6, and let A'=0'(A) = tT1(N).

0: G^>Ax(K)/c(X) induces a homomorphism 0#: Q^>AX(K)/I(K), char-

acterized by dfp=wd. The operation of Ç on XC\ZK which we should naturally

consider is T7*0#: Q-^A(X(~\Zk). However, if we wish to combine Theorem 8.5

with Corollary 6.10 to obtain a classification of the extensions of (0, 0), we

have to consider the operation t¡*(t2)§: Q-+A(XC\Zk), where (ir2)f. Q

-*AX(K)/I(K) is defined by (ir2)#piri=vTr2. We note that 77* : AX(K)/I(K)

—*A(Xr\ZK) in the sense of §2 is the restriction to AX(K)/I(K) of the nat-

ural homomorphism 77* : Axc\zK(K)/I(K)—*A(XC\Zk) in the sense of §8,

as applied to the crossed module (0', tt2).

Lemma (10.1). (ir2)§ = d§.

Proof. 0#p7ri = w07Ti=coX-r2 = ^7r2 = (7r2)#p7ri. Since Ç=p.7Ti(r), this proves the

lemma.

Consequently there is no ambiguity in the definition of the cohomology

groups Hn(Q, XC\Zk). Combining Theorem 8.5 with Corollary 6.10, we ob-

tain
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Theorem (10.2). H2(Q, X(~\ZK) operates in a natural way as a simply

transitive transformation group on the set of all isomorphism-classes of extensions

of (<t>, 8).

We define the obstruction of the pseudo-module (<£, 8) to be the obstruc-

tion of the crossed module (<j>', tt2); it is an element of H}(Q, XC\Zk). Com-

bining Corollary 9.5 with Corollary 6.11, we have

Corollary (10.3). A pseudo-module is extendible if and only if its obstruc-

tion vanishes.

With Theorem 10.2 and Corollary 10.3 our main objectives have been

accomplished. The remainder of this section is devoted to machinery, with

the object of casting the results on extensions of pseudo-modules in more

explicit form.

We naturally define a structural cochain in (<p, 8) as a structural cochain in

the crossed module (</>', ir2). We say that a structural cocycle in (<p, 8) repre-

sents an extension of (<p, 8) if it represents the corresponding^3) extension of

W, 7T2).

If we regard a single map u into T as a pair of maps (v, t) into G and

Ax(K), respectively, satisfying the condition 8v=\t, then a structural co-

chain in (<f>, 8) can be regarded as an ordered triple (f, v, t), where/ is a 2-co-

chain on Q in A, v is a right inverse of p.: G—>Q, and / is a 1-cochain on Q in

Ax(K), satisfying the conditions

(10.4) 6v = \t,       <t>f = dev v,       cKf = dev t.

In this sense, the coboundary of a structural cochain (/, v, t) is given by

(10.5) 8(f,v,t)=8tf.

Two structural cochains (f, v, t) and (/', v', t') are equivalent if and only

if there exists a 1-cochain h on Q in A satisfying

(10.6) /' = hff,       v' = <j>h + v,       t' = ch + t.

A structural cocycle (/, v, t) represents an extension (£, $), in the sense

defined above, if and only if there exists a right inverse d of p$: E—>Q satis-

fying

(10.7) / = dev d,       v = $d,       t = CKd.

If we take formulae (10.4)-(10.7) as the definitions of "structural co-

chain," "coboundary," "equivalent," and "represents," the formal analogues

of the propositions of §§7-9 all go through, with X replaced by XC\ZK; this

assertion follows from what we have already proved. The obstruction of the

pseudo-module (<f>, 8) is the set of all coboundaries of all structural cochains

(13) Via Theorem 6.7.
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in (0, 0), in the sense of formulae (10.4) and (10.5). The operation of

H2(Q, XC~\Zk) on the set H2(4>, 0) of all equivalence classes of structural co-

cycles in (0, 0) is induced by the formula

(10.8) g + (f,v,t) = (g+f, v,t)

for gC£Z2(Q, XC\ZK), and (/, v, t) a structural cocycle in (0, 0).

11. Frames. Throughout this section and the next we shall consider a

fixed normal homomorphism 0: A—>G.

Let 0: G—fAx(K)/c(X) be a modular structure on 0: K—>G; let m be a

right inverse of p: G—>Ç. Define

(11.1) s = du.

Then the following are easily verified :

(11.2; 0*5 = Ct¡u,       dev s = \p dev u.

Let 0: G—>Ax(K)/c(X) be a fixed modular structure, and let u and u' be

right inverses of p.: G—>Ç. Define s = 9u, s' =du'. Then

(11.3) s'- s = ip(u'- u).

A frame in 0: K-+G is an ordered pair (u, s), where u is a right inverse

of p: G—»Ç, and s is a 1-cochain on Ç in ^4x(A)/c(A"), satisfying (11.2). Two

frames (u, s) and (u', s') are equivalent if they satisfy (11.3); this relation is

reflexive, symmetric, and transitive.

Let (u, s) be a frame in 0: K—>G, and 0: G—*^4x(A)/c(Ar) a modular struc-

ture on 0: A—>G. We say that (m, s) is associated with 0 if (11.1) holds.

Theorem (11.4). The relation of "association" induces a 1-1 correspondence

between the set of all modular structures on <f> : K—^G and the set of all equivalence

classes of frames in 0 : K—>G. That is : every modular structure is associated with

at least one frame; every frame is associated with one and only one modular struc-

ture ; two frames are associated with the same modular structure if and only if

they are equivalent.

Proof. We have already indicated that every modular structure is asso-

ciated with at least one frame.

Transform the notation of Lemma 5.19 as follows: (£, p, Ç, A, £', 0, d, v, 0)

-^(G, p., Q, N, Ax(K)/c(X), 0, u, s, 0). Then conditions (5.20) become (3.5)

and (11.1). Conditions (5.21) become (11.2b) and ip[(Cxuq)n] =s(q)+\j/(n)

-5(g). But by (2.15), 5(g) +0(«) -s(q) =0[(0*5g)«]. Hence (5.21b) may be
written \{/[(CNuq)n] =0[(0*5g)w], which is implied by (11.2a). Now it is

easily seen that if 0: G—>Ax(K)/c(X) is a homomorphism, then conditions

(3.5), (11.1), and (11.2a) together imply commutativity throughout (3.4).

It therefore follows from Lemma 5.19 that every frame is associated with one

and only one modular structure. The last part of the theorem follows from

Lemma 5.22. Q.E.D.
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12. Classification of continuations: H2(<p). We continue the discussion of

a fixed normal homomorphism <j>: K—»G.

Lemma (12.1). Let f be a 2-cochain on Q in K,v a right inverse of p: G—>Q,

and t a l-cochain on Q in Ax(K), satisfying (10.4b) and (10.4c). Then there

exists at most one modular structure 8: G—*Ax(K)/c(X) on 4>: K^-G such that

(/, v, t) isa structural cochain in the pseudo-module (<p, 8). Moreover, there exists

such a modular structure if and only if

(12.2) <ptt = CNv.

Proof. If there exists such a modular structure 8, then by (10.4a), <pft

= <¡)*\t=<t>*8v = CNV. Conversely, if (12.2) holds, then cj>*\t = Cnv, and dev (\t)

=X dev / =\cf = \p<t>f = \p dev v; hence (v, \t) is a frame. Therefore, by Theorem

11.4, there exists one and only one modular structure 8: G-^Ax(K)/c(X)

such that (10.4) holds. Q.E.D.

Definition. A structural cochain in <p: K^G is an ordered triple (f, v, t),

where / is a 2-cochain on Q in K, v is a. right inverse of p: G—>Q, and t is a

1-cochain on Q in ^4x(A), satisfying (10.4b), (10.4c), and (12.2). We define

"coboundary" and "equivalence" of structural cochains by formulae (10.5)

and (10.6). A structural cocycle (/, v, t) in <f>: A—>G represents a continuation

(£, </>) of 4>: A—>G if there exists a right inverse d of p$: E—+Q satisfying (10.7).

The set of all equivalence classes of all structural cocycles in <j>: A—>G will

be denoted H2(4>). If two structural cocycles (/, v, t) and (/', v', t') are equiva-

lent, then their frames (v, \t) and (v', \t') are equivalent, and hence (/, v, t)

and (/', v', t') are structural cocycles in the same pseudo-module. Conse-

quently H2(4>) is the disjoint union of all sets of the form H2(<p, 8), where 8

ranges through all modular structures on </>: A—>G. Moreover, if a structural

cocycle in </>: A—>G represents a continuation of </>: A—>G, then the modular

structure determined by the continuation is the same as the modular struc-

ture associated with the frame of the structural cocycle. Therefore

Theorem (12.3). The relation "(/, v, t) represents (£, <j5)" induces a 1-1

correspondence between H2(<p) and the set of all isomorphism-classes of continua-

tions of <j> : A—>G.

In fact, Lemma 7.9 holds, with "(<f>, 8)n replaced by "</>: A-^-G," and "ex-

tensions" replaced by "continuations;" the notation "(/, «)" must be ex-

panded to "(/, v, /)•"

Remark. Theorem 12.3 cannot be derived from the special case of itself

in which X(ZZk—at least, not in the manner of §10—because in the normal

homomorphism <j>': K-+T defined in §6, the group V depends on the given

modular structure. In other words, we have no way of associating with a

given normal homomorphism another one whose continuation theory is

equivalent to that of the first, and which satisfies XÇ_Zk- Moreover, when we
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are dealing with a normal homomorphism in which XCZZk, and wish to con-

sider structural cochains irrespective of any particular modular structure,

we must regard them as triples (/, v, t) ; they cannot be abbreviated to if, v)

[or "if, u)"] until a particular modular structure has been specified. A struc-

tural cochain in the sense of §7 is a structural cochain in every modular struc-

ture on 0: K—>G ÍXCZZk), and may even be a structural cocycle in several

different ones.

13. Splitting extensions. Let P and M be arbitrary groups; let A be a

1-cochain on P in M, and t a 1-cochain on P in A iM). We say that A is a

crossed homomorphism rel. t if ht0 = 0; that is, if

(13.1) hip + p') = hip) + ilq)ihp')

for all p, p'CZP.
Let M be a normal subgroup of P, and let p: P~^P/M be the natural

homomorphism. We say that P splits over M if p admits a right inverse homo-

morphism.

A splitting continuation of a normal homomorphism 0 : AT—>G is a continua-

tion (E, 0) such that E splits over K. Clearly this is the case if and only if

p0 admits a right inverse homomorphism. A splitting extension of a pseudo-

module (0, 0) is an extension of (0, 0) which is a splitting continuation of

0: A->G.
The following is self-evident:

Lemma (13.2). An extension of a crossed module is a splitting extension if

and only if it can be represented by a structural cocycle (/, u) in which f=0.

Lemma 13.2 remains true under the following transformations: [crossed

module, (/, m)]—>[pseudo-module, (/, v, t)]; [crossed module, u]—»[Ç-kernel,

t}; [a crossed module, u]—>[Ç by K, t]; [extension, crossed module, (/, «)]

—>[continuation, normal homomorphism, (/, v, t)].

By a splitting cocycle in a crossed module (0, 0) we mean a right inverse

homomorphism u: Q—+G of p: G—>Ç. Two splitting cocycles u and u' are

equivalent if there exists a crossed homomorphism h: Q—*K rel. 04i such that

u' =<f>h+u. The splitting cocycle u represents the splitting extension (£, 0)

if there exists a right inverse homomorphism d: Ç—»E of p0: £—»Ç such that

0¿ = m. The set of all equivalence classes of splitting cocycles in (0, 0) will be

denoted 775(0, 0). The passage from u to (0, u) induces a 1-1 mapping of

TP0i<¡>, 0) into 772(0, 0). From Theorem 7.12, we obtain

Theorem (13.3). The relation "u represents (£, 0)" induces a 1-1 corre-

spondence between 7^(0, 0) and the set of all isomorphism-classes of splitting

extensions of (0, 0).

Corollary (13.4). A crossed module admits a splitting extension if and

only if G splits over N.
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If A is abelian, and H2(Q, A) =0 (with Q operating on A by Of), then, by

[4], every extension of the "Q-kernel" 8§: Q-^A(K) splits over A. Hence every

extension of (<b, 8) is a splitting extension. Combining this with Corollary 13.4,

we have

Corollary (13.5). Let (<j3, 8) be a crossed module in which A is abelian and

H2(Q, K) = 0. Then (<p, 8) is extendible if and only if G splits over N.

A splitting cocycle in the normal homomorphism <f>: K—*G is an ordered

pair (v, t), where v: Q—>G is a right inverse homomorphism of p.: G—»(? and

/: Q-yAx(K) is a homomorphism, satisfying (12.2). Two splitting cocycles

(v, t) and (v', t') are equivalent if there exists a crossed homomorphism

h: Q-^K rel. t satisfying (10.6b) and (10.6c). The splitting cocycle (v, t)

represents the continuation (£, $) if there exists a right inverse homo-

morphism d: Q—>E of p<j>: E—>Q satisfying (10.7b) and (10.7c). The set of all

equivalence classes of all splitting cocycles in </>: A—»G is denoted 77¡j(</>);

the passage from (v, t) to (0, v, t) induces a 1-1 mapping of /7o(<£) into H2(<f>).

A splitting cocycle (v, t) belongs to a particular modular structure 8: G

—>-Ax(K)/c(X) if (and only if) formula (10.4a) holds. The set of all equivalence

classes of all splitting cocycles in the pseudo-module (qt>, 8) is denoted

Hl(<p, 8); the natural imbedding of H^(<¡>) in H2(cj>) carries Hl(<t>, 8) into

H2(4>, 8). The analogue of Theorem 13.3 carries through. Corollary 13.4,

however, does not apply verbatim to arbitrary pseudo-modules. Given a

pseudo-module (4>, 8), let the groups Y and A' be defined as in §6. Then (<f>, 8)

admits a splitting extension if and only if T splits over A'.

A splitting cocycle on Q in A is simply an arbitrary homomorphism

/: Q—>A(K). Two splitting cocycles t and t' are equivalent if there exists a

crossed homomorphism h: Q—>K rel. / such that t' = ch-\-t. The splitting co-

cycle t represents the extension (£, p) of Q by A if there exists a right inverse

homomorphism d: Q-+E of p: E—*Q such that CKd = t. Each splitting cocycle t

lies in the Ç-kernel vt: Q—*A(K)/I(K). The analogues of Theorem 13.3 go

through; the analogue of Corollary 13.4 is that a Ç-kernel 8: Q—».4 (A)/7(A)

admits a splitting extension if and only if 8 can be "lifted" to a homomorphism

of Q into A (K).
Remark. In a crossed module (<t>, 8), if u and u' are splitting cocycles, then

there always exists a 1-cochain h on Q in A such that u' =(f>h-r-u. Moreover,

for every such h, (ph is a crossed homomorphism rel. Cnu; for 0 = dev u'

= dev (4>h+u) = (4>h)cNu-(dev u) = (<f>h)cNu-0. However, this does not by any

means imply that h itself can be so chosen as to be a crossed homomorphism

rel. 8u. We show this by an example in a Q-kernel (see [6] on the equivalence

between "Q-kernel" and "crossed module in which X = Zk"):

Let A be the additive (non-abelian) group of order 8 generated by sym-

bols a and b with the relations 4a = 2è = 2(è+a) =0; let Q be the additive

group of order 2 generated by q0. Define homomorphisms /, t': Q-^A(K) by
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/(go) = 1, i'(ço) =Ca-(ö). Then t and /' represent splitting extensions of the same

"trivial" Ç-kernel, with 0(C) =0, and it'-t): Ç->/(A) is a crossed homo-

morphism rel. Cit, where Cj: .4(A)—>A [7(A)] is the natural homomorphism.

But /' and t are not equivalent, and they represent non-isomorphic exten-

sions. For if h : Q—>K is a crossed homomorphism rel. / such that ch = t' —t, then

hiqo) is an element of K such that 2A(g0)=0 and Cic[A(go)] =Cx(a). It hap-

pens that no such element hiqo) of K exists. /, of course, represents the

"direct sum" extension K + Q; t' does not.

14. Classification of pseudo-modules in terms of crossed modules. We

shall call two pseudo-modules (0, 0) and (0', 0') strictly isomorphic [3] if

K = K' and there exists an isomorphism W: G~G' satisfying

(14.1) W<b = 0',       B'W = 6.

A modular pair is an ordered pair (Af, Y), where M is a crossed module

with all the usual notation, and F is a subgroup of A satisfying

(14.2) YnZK = X,       AriJK) D 9(0).     .

It follows from (14.2b) that F is a normal subgroup of K.

Two modular pairs (Af, Y) and (Af, F') are strictly isomorphic if M and

M' are strictly isomorphic, and F= F'.

If (0, 0) is a pseudo-module, the crossed module (0', 7r2) constructed in

§6 will be called the crossed module associated with (0, 0). The modular pair

[(0', 7T2), X] will be called the modular pair associated with (0, 0). Here, X

denotes 0-x(O), not 0'~1(O).

Let [(0, 0), Y] be a modular pair. From (14.2b) and the condition 0¿¡0 = Cn

it follows that 0(F) is a normal subgroup of G. Define G' = G/<f>iY), and let

ß: G—>G' denote the natural homomorphism. 0: G—>AYiK) maps 0(F) onto

ckÍY) and hence induces a homomorphism 0': G'—->.4y(A)/c(F). It is easily

verified that the homomorphisms ßd>: K—*G', 0': G'—vlrCA)/c(F) constitute

a pseudo-module; ((30)_1(O) = Y. The pseudo-module (/30, 0') will be called the

pseudo-module associated with the modular pair [(0, 0), Y].

Theorem (14.3). The concept of a pseudo-module is equivalent, via the above

constructions, to the concept of a modular pair.

Proof. First let (0, 0) be a pseudo-module, with the usual notation, and

let [(0', T2), X] be its associated modular pair, with the notation of §6. Let

ß: V—>r/0'(A) denote the natural homomorphism. The homomorphism

t2: V—k4x(A) maps <b'iX) onto c(A") and therefore induces a homomorphism

7T2#: r/0'(X)—>.4x(A)/c(A0, characterized by 7r2#/3=Xir2. Then (j30', 7r2#) is

the pseudo-module associated with the modular pair [(0', 7r2), X]; we must

prove that iß<p', t2§) is strictly isomorphic to (0, 0).

It is easily verified that the sequence

(14.4) o->znzK->x-> r-^G-^o
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is exact. Hence i^: T—>G induces an isomorphism ira: T/<f>'(X) «G, character-

ized by irifß = tti. Then 07Ti#/3=07ri=X7r2 = 7r2#|S. Therefore 8wif = 7t2í. Moreover,

TTitß<j>' =Tr1<f>'=(j>. Thus 7Tif is the desired strict isomorphism between the two

pseudo-modules.

Conversely, let [(<f>, 0), Y] be a modular pair, and let (ß<f>, 8') be its asso-

ciated pseudo-module, with the notation introduced just before the state-

ment of the theorem; we use all our standard notation for the given crossed

module (<j>, 8). Let T denote the subgroup of G'+.4r(A) characterized by

8'iri=\iï2\ define </>'-. K-+T by <p'(k) = [ß<p(k), cK(k)]. Since (/30)-1(O) = Y, the

modular pair associated with (ß <f>, 8') is precisely [(<£', 7r2), Y]. Therefore our

task is to prove that the crossed modules (<p, 8) and (<p', 7r2) are strictly

isomorphic.

Define W: G—>T by W(g) = [ß(g), 8(g)]. Such an ordered pair lies in Y by

the relation d'ß=\8, which characterizes 8': G'-*Ay(K)/c(X). It is easily

verified that W is the desired strict isomorphism between the two crossed

modules; the proof that W(G) =T involves an argument similar to the proof of

Lemma 6.4.

For a classification of crossed modules and pseudo-modules in terms of

Q-kernels, see [3; 10].
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