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DIFFERENCE EQUATIONS

BY
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1. Introduction. We intend in this paper to discuss the solutions of linear

functional equations of the form

d
(1.1) — uit + 1) = c(/)«W + bil)uit + 1)

dt

and nonlinear equations of the form

d
(1.2) — «(/ + 1) = ö(0«(0 + b(t)uit +1) + !>(«(/), uit + 1)),

dt

where

(1.3) Diuit), uit + 1)) =   E  biii^uitYuit + l)* (» è«,/ à 0),
t+jë2

where o(/), o(0> and the &,■/(/) are given real functions of the real variable t.

We seek to find real functions uit) which satisfy (1.1) or (1.2) for t>to (¿o>0),

and which satisfy the boundary condition uit) =git) for to ^t ^¿o + l, where

git) is a given real continuous function. The principal aim of this paper is to

characterize such solutions for large positive values of the independent

variable.

Consider, for the moment, the more general linear equation

yjn n—1     n .Vfe

— *(0 + IZ Cikit) — uit - U) = 0,
dln k=o ¿-i dtk

where 0</i</2< • • •</„. As observed by Bellman [2], this equation is a

special case of the system which, in vector-matrix notation, is

d
— uit) = Aoit)uil) + Aiit)uit - h) + ■ ■ ■ + A„it)uit - t„),
dt

where u is an «-dimensional column vector and Ak is a square matrix with n
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columns. The boundary condition is u = g(t) for 0 ¿t^tn, where g(t) is a given

vector function. The methods to be employed below could be extended to

provide information concerning this general equation and an associated non-

linear equation. However, in order to avoid extraneous complications, the

discussion will be restricted to the first order equations (1.1) and (1.2).

Functional equations of the above type occur in several branches of

mathematical physics. For references, see Hoheisel [8], Hilb [7], and Wright

[17]. Very complete information on the solutions of equations with constant

coefficients has been obtained by Schmidt [ll], Hilb [7], Titchmarsh [12],

Pitt [10], Wright [14; 15; 17; 18], and Brownell [4], but much less is known

if the coefficients are not constant. However, Bellman [2] and Wright [16]

have obtained important results concerning differential-difference equations

in which the coefficients, while not constants, have constant limits as / tends

to +°°. In this paper, we suppose that a(t) and b(t) have asymptotic expan-

sions

ai      a2 bi      b2
(1.4) a(0~ a0 + — + — +••• ,     b(t) ~ bo + — + — +••• ,

t        I2 t        t2

as /—>+oo, and we seek to determine the behavior of the solutions of (1.1)

and (1.2) as /—»+<». This subject is suggested by the discussion of the

analogous problem for differential equations and for difference equations

carried out by various authors. See, for example, Hukuhara [9] and Trjitzin-

sky [13], where references to related papers are given.

Before beginning the detailed study of (1.1) and (1.2), we shall briefly

indicate the method to be used and the conclusions reached. Throughout this

article, the equation

(1.5) se3 — b0e" - a0 = 0

is called the characteristic equation, and its roots are called the characteristic

roots. The first step in studying (1.1) or (1.2), where a(t) and b(t) have the

asymptotic expansions (1.4), is to investigate the equation of first approxima-

tion

(1.6) Jtu{t+ l) = («<> + —)«(/) +(*o + y) «(* + 1),

subject to the prescribed boundary condition. By use of the Laplace trans-

form, we may express the solution of (1.6) as a contour integral. The asymp-

totic behavior of the solution can then be determined by a familiar method.

The principal conclusions may be stated as follows.

Theorem 1.1. There is a unique function u(t) which satisfies the equation

(1.6) above for t>to and which satisfies the boundary condition

(1.7) «(0 = g(t) (toè t S to + 1),
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where git) is an arbitrary real continuous function and c0, at, b0, and bi are any

real constants. If ao5¿ — exp (b0—l), there is one particular characteristic root S2,

which depends on c0, Ci, bo, bi, and git), and there are constants c0, Ci, c2, ■ ■ ■ ,

Co 5^0, such that, given any positive integer m,

(1.8)   »(f + i) - Re it^eSi'(co + ~ + ■ ■ ■ + ^~\\ + 0(/Re &»*»+*&* **><)

as t—*+ «j, where 52 is the residue of

aie~" + b\
(1-9) ■-Ü-~.

s — bo — aoe '

at S2.

Theorem 1.1 is basic in the discussion of the more general equations (1.1)

and (1.2), and is, perhaps, of some intrinsic interest. §2 of this essay is de-

voted to the proof of Theorem 1.1. In §3, we consider the nonhomogeneous

equation

(1.10)       j uit + 1) = (ao + —) uit) + (bo + —) uit +1) + wit).

By applying the Laplace transform again, we are able to prove that, under

certain conditions on wit), the solution uit) oí (1.10) which satisfies the

boundary condition (1.7) is of the form

uit) = Uoil) + Uiit),

where Uoit) is the solution of (1.6) and (1.7), and where Ui(t) may be written

in the form

Uiit + 1) =  |    w(h)k(t, h)dh.

kit, ti) is defined below.

In §4, we discuss the general linear equation (1.1), where c(/) and bit)

have the asymptotic expansions (1.4). We note that (1.1) is of the same

form as (1.10), if wit) is appropriately chosen. The results of §3 therefore sug-

gest the consideration of the linear integral equation

(1.11)    uit + 1) = uo(t + 1) + (   {A(ti)u(h) + B(h)u(h + 1)} k(t, h)dti,f ' {A(h)u(

where A(t) =a(t)— aa — ax/t and B(t)=b(t)—bo — bi/t. The solution of (1.11)

and (1.7) may readily be constructed by the method of successive approxima-

tions, and may be shown to be the solution of (1.1). We can then ascertain its

asymptotic character with the aid of Theorem 1.1 and the known form of

k(t, h).
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We use a similar procedure in §5 in studying (1.2). Our principal results

are as follows:

Theorem 1.2. There is a unique function u(t) which satisfies the boundary

condition (1.7) and which satisfies the equation (1.1) for t>to, if a(t) and b(t)

have the asymptotic expansions (1.4) as t—*-\- ». Let Si be the characteristic root

of largest real part(2), and let 8i be the residue of (1.9) at Si. Ifao^ —exp (o0 — 1),

(1.12) u(t) = Q(fl» <»*>«■• «»>*)

as t—>+ oo (3).

Corollary. 7/ Re (5X) <0(4), or t/ Re (Si) =0 and Re (ôi) <0, all solutions

of (1.1) approach zero as t—»+ ».

Theorem 1.3. Consider the nonlinear equation (1.2) wÂere a(¿) a«¿ o(¿)

Âaz;e ¿Äe asymptotic expansions (1.4) as /—»+ », a«á where (1.3) holds for cer-

tain real functions 6,-,-(/). Suppose that the following conditions are satisfied:

(a) Re (5i)<0;
(b) Ibj/jt) | ^o¿y, where the bi¡ are independent of t;

(c) ¿2i+fè2 b i jz\zl converges for \zi\ and \z2\ sufficiently small.

Then there is a constant C, depending on the particular equation (1.2) under

consideration, such that if

(d) max      | g(t) | =" C,

then the following conclusions are valid: There is a unique function u(t) which

satisfies (1.2) for t>t0 and which satisfies the boundary condition (1.7). u(t) has

the form (1.12) as /-»+»(*).

2. Proof of Theorem 1.1. Consider the equation

(2.1) — u(t + 1) = (ao + —\ u(t) + (bo + —j u(t + 1),

in which ao, ai, £>o, ¿i, and t are all real. We shall, in this section, indicate the

method by which Theorem 1.1 may be proved. Since the proof is obtained

by standard techniques, we shall omit some of the details. In the first place,

it is clear that there is a unique real function u(t) which satisfies (2.1) for

t>t0 and which satisfies the boundary condition

(2.2) u(t) = g(t) (¿o = ¿ á ¿o + 1),

(!) The existence of 5i is proved below.

(3) The methods herein given can be extended so as to yield an asymptotic series repre-

sentation. /

(4) Hayes [6] has derived a necessary and sufficient condition in order that all character-

istic roots have negative real parts.

(6) The methods herein given can be extended so as to yield an asymptotic series repre-

sentation.
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where g(t) is a given real continuous function. We shall find the Laplace

transform of this solution, and then apply a standard inversion theorem in

order to obtain a suitable representation of the solution. An examination of

the singularities of the transform will yield the asymptotic results stated in

Theorem 1.1.

First of all, it is easily shown by integrating (2.1) and then using a lemma

employed extensively by other authors—cf. Bellman [l]—that

| u(t + 1) | < Ci1"11-1-161^'1"»14-16»1",

and hence that the transform

u(t)e-'ldl

h

exists and is an analytic function of 5 in a certain half-plane. From (2.1), we

find that U satisfies the differential equation

(se' — b0es — a0)U'(s, to)

(2.4) Vd 1
+   — (ses - he* - Co) + «i + bifi' \U(s, /„) = Gis, to)

within the half-plane of convergence, where

/fo+l
tgil)e-stdl

/>   Í0+1

git)e-"dl.
h

Before solving (2.4), we must make a few preliminary remarks, the first of

which concern the characteristic roots, the roots of

(2.6) ses - b0es - a0 = 0.

Wright [14] proved that in any vertical strip Xi^Re is) ^x2, there are but

a finite number of characteristic roots. It is also easily established that if

aoJ^— exp (£>o— 1), all the characteristic roots are simple, and that on any

vertical line Re (s)=x, either there is a single root, and it is x, or there

are two conjugate complex roots, or there are no roots. Finally, all the roots

5 are such that Re (5) ^ |c0|+| &o| • Thus there is a characteristic root

Si = Xi+iYi with the property that all the characteristic roots lie on the line

Re is) =Xi, or to the left of it.

Let Xo be an arbitrary real number for which x0>A"i, and let s be any

complex number which is not a characteristic root. Define the function
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where Li is a contour of the following description. L\ starts at x0 and ends

at s, and Re (si) ^ Re (s) all along Li. Li does not pass through any char-

acteristic root. Furthermore, if Im (s)=-0, Li passes above all characteristic

roots s' for which Re (s')>Re (s). If Im (s)<0, Li passes below all char-

acteristic roots s' for which Re (s') >Re (s). The function h(s) is thus defined

and single-valued except at the characteristic roots. It is not difficult to see

that h(s) will, in general, have branch points at the characteristic roots. If s'

is any characteristic root and if 8' is the residue of h'(s) at s',

(2.8) exp { h(s)} = (s - s'yZdn(s- s') "
n-0

for s "near s'." If 8' is a non-negative integer, (2.8) is valid in a circle | s — s'\

í£ C, but if 5' is a negative integer an expansion of the above form holds only

in an annulus 0 < | s — s'\ i£ C. If 5' is not an integer, exp {h(s)} has a branch

point at s', and (2.8) is valid in an annulus 0<|s —s'| = C, cut along the

real axis if s' is real, but along the line joining s' and s' if s' is not real. Also,

the expansion

(2.9) -^—- = (s - s')-s'-'Í hn(s - s')"
s — bo — aoe " n=o

is valid in an appropriate neighborhood of s'.

The following inequalities, which may be proved without great difficulty,

will be needed below. First, given any a>X\, there are constants G, C2, and

p such that

(2.10) | s - bo - aQe~a \ à G,| í |,   | exp h(s) | á C21 s |",

and

| exp {-h(s)} | =C2|s|*

for Re (s) =<r. Given any real a, there are real numbers p and C, depending

on a, for which

(2.11) | exp {h(x2 + iœ) - h(xi -+ ¿co)} | =S exp {(C + Ce-^)(x2 - Xi)}

for all Xi, x2, and u such that x2>Xi='<r and |w| >p. Finally, from (2.5) we

find that

(2.12) \G(s,lo)\ rgCe^-W,

for x = Re (s) =o\

The solution of (2.4) which we require is one which approaches zero as s

tends to infinity along the positive real axis. The only such solution is

(2.13) U(s, to) =- f G(si, to)eh^dsu
se" — boe' — aoJ +x+io,Lt
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where L2 denotes any contour from + co +i0 to s = x+4y which lies on or to

the right of the line of abscissa x. In order to show that this solution does

approach zero as 5 tends to infinity along the real axis, we use the above in-

equalities. It is necessary to suppose that to is sufficiently large. This is no

loss of generality, since we may successively compute the solution in the

intervals ih, h + 1), • • • , it0+m, t0+m + l), using (2.1) and (2.2), and take

as a new initial condition the functional values found for the interval

ito+m, to+m + 1).

From (2.13) we can immediately obtain a representation of the solution

uit) of (2.1), using the inversion theorem stated in Doetsch [5, p. 107]. It is

necessary to prove only that, if L is the vertical line from x — i<x> to x+i&>,

f,e"Uis, lo)ds
t

is uniformly convergent in the interval T^t^T2 for any T>t0+1 and any

finite T2>T, provided x is sufficiently large. This may be accomplished by

integrating by parts and using the inequalities given above. Thus we find

that

(2.14) uit) = —- I  e"Uis, t0)ds it > k + 1).
2ffiJ L

The formula (2.13) may be used to continue Uis, to) analytically into

the whole s-plane, cut along the lines of discontinuity of exp his), if we re-

quire L2 to be a contour of the same type as L%. Let s' be any characteristic

root, let S' be the residue of h'is) at s', and suppose that 5' is not a negative

integer. Then by integrating by parts n times and using (2.8) and (2.9), we

find from (2.13) that

Uis, to) =-V- £ (-l)'Ga)is, h)HJ+1is)
s — bo — aoe * ¡=o

(—l)ne-*e-hM C'

(2.15) +--\    G<»>(ji, lo)Hnisi)dsi
s — bo — aoe * J ,■

oo

+ Jne-is - s')-*''1 £ Kis - s')\
n-0

This equation is valid in an annulus 0<|s — s'\ ^ C, or in an annulus cut

along a certain line segment, according to the value of 5'. In this formula

i?o(s)=exp his) and H„+iis) is an indefinite integral of H„is) for n

= 0, 1, 2, • • • . Also, each H ¡is) has an expansion

■ d.(s _ s')k
(2.16) H sis) = is - s'){'+,'E -■-'

to i5'+k +!)••• id'+k+j)
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valid in an appropriate neighborhood of s'. /„ is defined by

(2.17) 7„ = 7„(s', to) = (-1)" f        G^(si, t0)Hn(si)dsi,
J +«j+iO

where the path is of the same type as 7,2- This integral converges if n + Re (5')

> — 1, according to (2.16), as does the integral in (2.15).

A formula similar to (2.15) holds for s near s', s', 7„, 8', and the h¡ must be

replaced by their conjugates, and the functions 77y(s) must be replaced by

functions H*(s) with expansions

.      - dk(s - s')k
H?(s) = (s - sY+'Yl ----3-

to (8' + k + 1) ■ • • (8' + k + j)

near s'.

We now let S2 = X2-\-iY2 denote the characteristic root of largest real part

at which U has a singularity. We shall define certain functions whose trans-

forms comprise the "principal part" of U at 52 and S2. Let 82 be the residue

of h'(s) at S2. We shall first suppose that 82 is not an integer, and shall con-

sider two cases.

Case 1. Re (82)>— 1, §2 not an integer. Let any positive integer n be

chosen such that ra + Re (ô2)>l. Let v denote the greatest integer less than

Re (82). Define

¿Ss-jgSai

(2.18) rj(t) =- (/ = 0;/ = 0, 1, • • • , v + 1),
r(¿¡2 + 1 - j)

0 (0 =■ / < 1)

ts*-ies** (j = v + 2, • • • , v + n + 2).(2.19)      ry(0 =

lr(52+l-/)

All the functions r¡(t) are defined as zero for — 1 =^<0. Define

H-n+2

(2.20) r(t) =  £  »/¿O
3=0

and define 2?(s) to be the transform of r(t). The transform will converge for

Re (s) > X2, and it is well known that

p+n+2

(2.21) R(s) = (s - 52)-*2-1 X)   M* - -S^)' + entire function.
y-o

This equation provides a continuation of R(s) into the whole s-plane, cut

along certain lines. Also, if Rc(s) denotes the transform of f(t), Rc(s) is given

by an expression of the form of (2.21), but with S2, 82, h0, h, ■ ■ ■ replaced by

their conjugates. Finally, define
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(2.22)  /(*- 1) =f(l- l,to) =■

0 (OgKl),

J„r(l - 1) - J„f(t - 1) (Kt< to),

[uit) - J„rit - 1) - 7„fit - 1) ito á t).

The Laplace transform of this function exists for sufficiently large x, and is

/I   00

Jit - l)e-"dt
0

(2.24) Uis, to) - J„e~sRis) - Jne-°Rcis).

(2.24) may be taken as the definition of Fis, t0) over the whole s-plane, cut

along the lines of discontinuity of U.

Case 2. Re (S2) á — 1, S2 not an integer. In this case we define r//) by (2.19)

for/ = 0, 1, • • • , n, and take the sums in (2.20) and (2.21) from j = 0 to j = n,

but otherwise the discussion is unaltered.

We shall now apply a slightly extended form of a theorem stated in

Doetsch [5, p. 269, Satz 4]. We note the following facts:

(a) Fis, to) is analytic for Re is)>X2 and for Re is)=X2, Im (s) > Y2.

As Re is)—>X2 from the right, Fis, to) possesses boundary values, denoted by

FiX2+iy, to) or FiX2+iy), in the sense that the function Fis, to) completed

in the half-plane Re is)^X2 by these values is a continuous function.

FiX2+iy) is n times differentiate with respect to y, and the nth derivative

is continuous for all y. This may be deduced from the expansions (2.15) and

(2.21).
(b) The integral

J, euUis, to)ds (x > X2;t> to)
X^+ica

approaches zero as |w|—>=o. This follows from (2.13) and the inequalities

(2.10), (2.11), and (2.12).
(c) UiX2+iy) and its first n — 1 derivatives with respect to y approach

zero as \y\ —►«>. The proof of this fact is obtained by computing the deriva-

tives of Uis, to) and utilizing the following facts.

it

where

ds>

faiX2 + iy) I S X2+ iy\

C

a 1, 2, • • • ),

U = o),

and
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¿i   / e-h(s) s.

— (-    —-) = e-^^Às),
ds> \sea — b0es — a0/

where

| UXi + iy) | á ■       ,   .   ■ (/ = 1, 2, • • • ).
| X2 + ly |

From (a), (b), and (c), we may deduce, as in Doetsch, that

(2.25) /(/-1)=--eity)       F{x2+iy)\dy
2t    ln J_M        \dyn )

for t>¿o + l. Finally, we observe that the integrals

/-'        ( dn ) /"»       ( d" )
eil« <— t/(Z2 + iy) > dy   and     I     e1'" <—- U(X2 + iy) V dy,

where r¡ is a fixed number greater than Y2, are uniformly convergent for t

= 7" (7>0). This is readily proved. Consequently, we find, by arguing as in

Doetsch, that

lim t»e-x*'[u(t) - Jnr(t - 1) - lnf(t - 1)] = 0.

This result is valid for any positive integer n for which re + Re (52)>1, pro-

vided 82 is not an integer. Using the definitions of r(l), we obtain the asymp-

totic formula (1.8) of Theorem 1.1.

It is still necessary to consider the case in which S2 is an integer. If 52 is a

non-negative integer, we may obtain equation (1.8) by abandoning the above

method and using the residue theorem. If S2 is a negative integer, equations

(2.13) and (2.14) are still valid, but instead of (2.15) we have

oo oo

U(s, to) = Je->(s - S2)-H~l log (s - 50 E hj(s - 52)' + £ Cy(s - S2)>,
j=0 j=0

where J is the residue of G(s) exp (h(s)) at 52. By defining

m-.{        ° <-'s<<».
\(-l)"+>(q- l)\r<>es*' (t =■ 1)

for/ = 0, 1, • • • , » + 1— q, where q= —82, and proceeding as before, we again

find that equation (1.8) holds. This completes the proof of Theorem 1.1.

3. The nonhomogeneous equation. In this section, we shall consider the

equation

(3.1)        j u(t + 1) = (a0 + j\ u(t) + (bo + j\ u(t + 1) + w(l)
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where wit) is a given continuous function, subject to the boundary condition

(3.2) uit) = git) ih£tZh+l).

The principal results relating to equation (3.1) are stated in Theorem 3.1

at the end of this section. They form a necessary preliminary to the discus-

sions in §§4 and 5.

We first observe that there is clearly a unique solution of (3.1) and (3.2).

Let us apply the Laplace transform formally to (3.1), as in §2 of this paper,

solve the resulting differential equation, and employ the customary inver-

sion. The function

(3.3) uit) = uoit) + uiit)

is thus suggested as a possible solution of (3.1), where m0(¿) is the solution of

the homogeneous equation discussed in the preceding section and where

1       i" etse-hU)

uiit) =-; I    -
2riJ L se" — boe' — oo

(3.4)

)  I e*<">(   J     liwiti)e-'ltidli\dsi>ds.
\J +»+iO,L2 \Jl0 f        )

Before showing that Í3.3) actually gives the desired solution, we observe

that, if wit) is continuous for t>to and if

I    tiwit^e-'^dh
J 'o

is absolutely convergent for Re (s)>Xi, the integrals

/eh(,o(  I    tiwih)e-lilidti\dsi,
+oo+i0 \J t0 /

and

/liwih)(  j ehí,l)er,ll¡dsi\ dti
«0 \J +oo+>'0 /

exist for x= Re (s) > X\, and are equal. This follows from standard theorems

on interchange of order. Moreover,

/.
- dy

-oo x + iy — bo — a0e~

is uniformly convergent in every finite interval ti ¿r ¿t2, where t\ > 0 [t2 < 0 ],

and boundedly convergent for r > 0 [r < 0 ], provided x > X\. We can also show

that
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/'             gtse-h(,) /   c " \
-—I   I          eh<-'l)e-'ltldsi)ds = 0,

L s — bo — aoe ' \ J +O0+,o /

if /i>/ = /0—1, by integrating the inner integral by parts and shifting the

contour L arbitrarily far to the right. It therefore follows from standard

theorems that

- 2iriui(t + 1)

/■            et,e-hU) r   p oo /    /. \        \

-{ |     tiw(ti)[   I     e^h-^'idsAdtùds
L s — bo — aoe~' \ J t„              \J Lt /     )

/gi.g-M«) in /   f °° \      )-<  I    e*Csi)(   |     tiw(ti)e-sltidh]dsi> ds
l s- bo-aoe-'\JLi         \Jlo )     )

hw(ti)<  I    -1   I     eh<-Si)e-,llidsi)ds> dh
t„ \J L s — bo — a0e"'\J Li /   )

/'                   (   Ç            et»e-hU) /   c \     \
tiw(h)<  I    -1   f     eh<-súe-sltldsi)ds} dh,

t„               \J L s — bo — a0e~' \J l2 /    J

where each integral exists for t>t0 and x> Xx. The path L is the straight line

from x —too tox+î'co.

We shall now prove that the function u(t) defined by (3.3) is the unique

solution of (3.1) and (3.2). In order to prove that u(t) satisfies the boundary

condition, we must demonstrate that Ui(t)=Q for toíkt^to+l. This follows,

for toút<to-\-\, from the third equation of (3.6) by shifting L to the right.

Mi(¿o + l) may be defined to be zero.

It must still be proved that w(¿ + l) is a solution of (3.1) for t>to- Since

Uo(t) is a solution of the homogeneous equation discussed in §2, it will be

enough to show that Ui(t) is a particular solution of (3.1). It seems to be

difficult to do this directly. Instead, we adopt the following device. Let

Ui(ti)
dti/' '                    r ' ui(iUi(li)dti — ai I     -

«o                         J h      li

r' r' «i(/i + i)        /■' ,
— ¿o I    Ui(ti + l)dti — bi I     -dti —  I    w(h

J t0 J <o ti J <0

We shall now show that 7i(/) is identically zero for t>t0. The required result

will then follow by differentiation. For convenience, define

(3.8) k(t,h)=-I    -4   I     e^e-'^dsAds
2iri J L s — bo — aae~' \J L» /

lor t and h greater than t0— 1. As shown above, k(t, ti) is independent of x as

long as x> Xh and k(t, <i) = 0 for /i >/ = /0 — 1 ■ By bounded convergence of the



92 K. L. COOKE [July

integral, kit, h) is a continuous function of / and ti as long as t>ti}±to — 1, and

therefore 4«i(¿) is continuous. From (3.6),

(3.9) «i(/+l)=l    wih)kit,ti)dti.
J h

Now if qih, t2) is any function that is continuous in ti and t2 for t^ti>t2^to,

it is easy to see that

dh I    qih, t2)dl2 =1    dt2 I    ?(/i, l2)dh.
H       J h J h       J u

By using this equation and (3.9) we can show that

/• t                           1    C        ¿e—i)»g—*(»)
uiih)dh =-j    -

i0                              2triJ L sis — b0 — aoe *)

•<|    e»(«o í   I     <2w(<2)e^'i"¿/2Jííí,Wj.

Formulas for the other integrals appearing in (3.7) may be deduced directly

from (3.4). Combining these results yields the   equation

r   e"e-hM t r ( C°° \     )
Iviliit) = -  I    -<  I    e*<">f   I    tiwil^e-'^'dhJdsiVds

C'dti   r
+ j    - I   e'"h'is)e-h^

(3.11) Jh   h Jl

■ <  I    eh(-*ú(  I    hwil^e-'^^dlA dsX ds

- 2wi I     wih)dti it ^ to).
J   f„

We now integrate the integral over L2 by parts, use Doetsch [5, p. 107, Theo-

rem 5], and change the order of integration, obtaining

/' '                r   eue~h(-s) / C \
wQ2)dt2 I    -(   I    eh^h'isi)e-s^dsi)ds

t„                        J L            S \J ¿, /

/' ' dh  r "■ r
■— I    t2wit2)dt2 I   e'^'(i)e-»'"

l0     h   J t0 J L

■(  j     eh<-ai)e-Si'2dsAds.

We now let I2(h, t2) denote the integral over L appearing in the second term

above. Using integration by parts, we find that
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72 =-I     e'1"^— (e-h(-s) |    e*('>)Ä'(si)c-,1(2ds1)Ws

= — I   e'1'erhW[   j     ehl-'l)ereit'ldsi)ds.

hJi \J l2 /

By using this result in the second term of (3.12), then using (3.10), and finally

interchanging the order of integration, we find that Ii(t) =0 for t>t0, as we set

out to prove. Therefore u(t) is the solution of (3.1) and (3.2).

The results of this section are summarized in the theorem below.

Theorem 3.1. If w(t) is continuous for t>t0 and if

/> 00

tiw(ti)e-stidti

h

is absolutely convergent for Re (s) >Xi, the unique function which satisfies (3.1)

for t>to and which satisfies (3.2) for t0^t =/o + l is

u(l)   =  Uo(t)  + Ui(t).

Here u0(t) is the function discussed in §2, and for t>ta

ui(l+ 1) =  |     w(li)k(l, ti)dti,\    w(ti)k(t,
J h

where k(t, ti) is defined by (3.8).

4. The general linear equation. We now come to the proof of the principal

results of this article as stated in Theorems 1.2 and 1.3. We shall construct a

function u(t) which, for t>t0, satisfies the equation

d
(4.1) — u(t + 1) = a(t)u(t) + b(t)u(t + 1),

dt

where a(t) and b(t) have asymptotic expansions

ai      a2 bi      b2
(4.2) a(t) ~ a0 + — + — +••• ,     b(t) ~ ¿>„ + — + — +•■• ,

t       p t       r

as t—»+°°, and which satisfies the condition

(4.3) u(t) = g(t)

for /oáí^ío + l. It is clear that such a function exists, and is unique. Since

equation (4.1) may be written in the form of equation (3.1), where w(t)

= A(t)u(t)+B(t)u(t + l) and

a2      as b2      b3
(4.4) A(t)~7 + -+...,     /3W~7 + 7+...,
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the results of the preceding section suggest the consideration of the integral

equation

(4.5)    u(t + 1) = uo(t + 1) + f   {A(h)u(h) + B(h)u(ti + l)}k(t, ti)dh.
J <0

Uo(t) and k(t, h) are defined above.

We shall construct the unique solution of (4.5) by the method of succes-

sive approximations, and deduce Theorem 1.2 from the results. Before we

can do this, however, we must obtain some further information concerning

k(t, h). This will be done by a method similar to that employed in §2. First we

observe that the Laplace transform

k(t, h)e-"dt =  I     k(l, li)e-"dl
o J H

exists for Re (s) >X\, and by (3.8) and an extended form of Cauchy's Integral

Formula,

(4.7) K(s, h) =- | eh<->l)er»^dsi.
s — bo — a0e 'J +oo+io,L,

(4.7) provides an analytic continuation of K(s, h) into the whole s-plane, cut

along various lines. Let s' be any characteristic root, let 5' be the residue of

h'(s) at s', and define

H„(si)e-»»dsi.
+00+10

Exactly as in §2, we find that for any s in a certain annulus 0<|s — s'\ ^C,

cut along the line of discontinuity of K, if any,

K(s, h)           *-»<•)<-•*!       » ,_,
-=-:-— L SÁs)h

h s — bo — aae * J=i

(4.9) +- I    H„(si)e-'^dsi
s — bo — aoe * J »>

+ J„(li)(s - s')-5'-lÍ2 hj(s - s')',
3-0

provided 5' is not a negative integer. In the cut annulus 0 < 15 — s' | g C, a

similar formula is valid; the H„(s) must be replaced by related functions and

s', J„, 5', and the h¡ must be replaced by their conjugates. The path of integra-

tion in (4.9) is the line joining s' and s.

As in §2, the cases in which 5' is an integer will be treated separately later.

Let Si be the characteristic root of largest real part, and let 5i be the



1953] DIFFERENTIAL-DIFFERENCE EQUATIONS 95

residue of h'(s) at Si. We shall show later that K(s, ti) has a singularity at 5i

for every value of tx, save possibly for a sequence of values of h with sole limit

point at infinity. Moreover, whether the singularity is a pole or a branch

point depends only on 81. For the time being, we assume this to be so. We re-

mark that the possibility of the exceptional values of h is of no importance in

characterizing k(t, ti), since we have noted previously that k is a continuous

function.

We now define auxiliary functions as in §2.

Case 1. Re (5i)>—1, 81 not an integer. Let any positive integer n be

chosen such that w + Re (Si) > 1, and let v be the integer such that Re (5i) — 1

=V<Re (Si). Define functions r¡(t, Si) (j = 0, 1, • • -, v-\-n-\-2) as in equations

(2.18) and (2.19), but with 52 replaced by Si and S2 by iv Define r(t, Si) by
an equation analogous to (2.20), and let R(s, Si) be the transform of r(t, Si),

and Rc(s, Si) the transform of f(t, Si). We obtain an analogue of equation

(2.21). Finally, define

/-  Jn(tl)r(l, Si)   -  Jn(ll)f(t, Si) (0^t<   to)

(4.10) f(t,ti) = <     k(t,h)
j-'   -  Jn(ti)r(t, Si)   -  Jn(tl)f(l, Si) (h  =   to,  t  =   to)
\ tl

and define F(s, ti) to be the transform of/(¿, ti). We see that for íi^ío

(4.11) F(s, ti) =-— - Jn(ti)R(s, Si) - Jn(ti)Rc(s, Si).
ti

Case 2. Re (Si) = — 1, Si not an integer. Our procedure is similar, and we

.omit the details.

The procedure of §2 yields, in place of equation (2.25),

(4.12) /(/, ti)=--eit"\~-F(Xi+iy,ti)\dy,
2ir    t"   J-„       \dyn )

where the boundary values of F(s, ti) are denoted by F(Xx-\-iy, ti). This

formula holds for all ti>to.

At this point, we must alter the procedure of §2. Our next step is to

prove the following lemma.

Lemma 4.1. If Si is not an integer, if n is any positive integer for which

w + Re (Si) > 1, and if ti>t0, there are positive numbers C and G, which do not

depend on h or t, such that \ Jn(Su ti) \ g Ctr** <-s^-cie-Xltl.

Jn(Si, ti) is defined by (4.8) above. We suppose first that Re (5i)^0. If

A is the positive integer such that A<« + Re (5i)^A+l, integration by

parts yields



96 K. L. COOKE [July

„_N_i r s'

Jn(Sl,  II)   =   h Ä„_JV_i(5l)e-sl"if5l.
J +00+10

Clearly the path may be deformed into the line from 4-oo4-4'Fi to Si. If

Re (Si) is not an integer, |iin_jv_i(xi-|-4'Fi)| SC|xi-(-4'Fi|c, as may be de-

duced from (2.10) and the definition of Hj(s), and the result follows at once.

If Re (5i) is an integer, (2.16) implies that \ Hn-N-i(xi+iYi)\ ¿C for Xi near

Xi. If we split the integral into two parts, in one of which this bound may

be employed, the stated result follows easily.

If Re (Si) >0, we have, instead,

J„(Si, h)=ti{ I ——- {«»CD}e->^dsi,
J+oo+,0 ¿5f-"+1

since the first N — n derivatives of exp {h(s)} approach zero as s approaches

Si. We can now complete the proof just as before.

We shall also need the following result: If r¡2> Fi^O, there is a constant

C, depending on r\2 but not on t, such that

(4.13)
1/: dy

Xi + iy — bo — aotrXi-iy

/► 00                                    çiry- dy   g C
„    Xi + iy -bo- floe-*1-'»

for any t>0, or for any t<0. To prove this, it is clearly enough to consider

/ —1)2  giry                   /» 00    giry

-dy+ -dy.
y            J..     yn    y

By integration by parts, we see that each of these integrals is uniformly con-

vergent if t is bounded away from zero, and approaches zero as t—> ». It will

therefore suffice to show that I3(t) is bounded as r—>+0 and as r—> — 0.

Suppose that r>0, and consider the integral of e'/z over the contour in the

2-plane which follows the imaginary axis from —Ri to +Ri, except for an

indentation on the semicircle \z\ =tt]2, Re (z) gO, then follows the horizontal

straight segment from Ri to —a+Ri, then the vertical segment to —c — Ri,

and finally the horizontal segment back to — Ri. Since the value of this inte-

gral is zero, the stated result follows upon letting R—>+ » and then letting

a—>+ =0.

We shall now obtain a bound on [/(/, ti)\, using (4.12). Define

r»       tdn \

u(a, ß) = j «»» xj-Jí*1 + k* lin dy-

First we shall show that, given e>0, we may choose »71 = r¡i(e) and t]2 = r]2(e),
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with 0<7ji<Fi<772, such that | 74(tji, r}2) \ <etfe-Xlil and |74( —»72, -»7i)|

<ei[e~Xltl for all ¿>¿i=70. It will be enough to consider 74(171, 772), and to re-

strict ourselves to the case in which Re (81) > — 1 and Si is not an integer.

What we must prove is that for y in some fixed interval about Ft,

(4.14)
a«

— F(Xi + iy, ti)
dyn

= Chi*1'1,

where C does not depend on to, t, t\, or y. By (4.9) and (4.11),

(4.15) F(s, ti) m Vn(s, ti) + Qn(s, ti) - Jn(h)Rc(s, Si) - J„(ti) -entire function

in the vicinity of 5i, where

Vn(s, ti) =-1-        [V8" ¿ Hj(s)tÍ~1+ h f   Hn(si)e->^dsi\
s — bo — a0e ' L y_i J Si J

and

00

Qn(s, h) = 7„(/i)(s - 51)-5'-1   £    hj(s - Si)'.
j=y+n+3

Since M + Re (Si) > 1, and since Rc(s, Si) is analytic near 5i, Lemma 4.1 shows

that the contribution of the last two terms in (4.15) satisfies (4.14). The term

arising from Q is bounded as required by choice of v. Finally, F„ may be

handled by a calculation using the series representations (2.8), (2.9), and

(2.16).
Next we shall prove that \li(-tfu Vi)\ ^Ct"~le-Xitl if 0<^<Fi, where

C depends on 771 but not on /, t%, or to. It will be enough to show that the

derivative in the integrand is so bounded for \y\ ^771. Since the boundary

functions of K, R, and Rc exist separately over this range, we see from

Lemma 4.1 that we need only consider the nth derivative of — K(Xi-r-iy, ti)/ti.

From equation (4.7) we obtain

(4.16)

dn

ds

1  (       K(s, ti))        f / e~h\  r
-{-> =-(-J I    eh<-"l)e-'ltldsi

h  )    dsn\ r / jl2

^=1 V p / ds"-" V f / v_o \    v    / ds"-1-'

where f(s) =s — bo—a0e~3. Since all the functions of s in (4.16) are bounded for

s = Xi-\-iy, \y\ ^771, the desired result is clear.

Finally we shall prove that if 772 > Fi^O, there is a constant C, depending

on 772 but not on t, ti, or t0, such that

(4.17) j 74(- », -772) + 74(772, ») I á ClVe~Xlh

for />/i = i0. To do this, we first consider
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r-^       fil   K(Xi+iy,h)\              /•"        (i*   K(Xi + iy,ti)\
h=   I       e""<->dy+  \     «"*<->dy.

J_oo       Uy        -h      )        Jn      Uy        -h      j

The wth derivative of K(s, h)/h is given by equation (4.16). The portion of

It due to the term for which p. = n, v = n — l, has the desired bound by virtue

of (4.13). For the other terms, we proceed in a manner analogous to that used

in §2 to prove that U(X2+iy) and its first n — 1 derivatives approach zero as

|y| —»oo. The proof of (4.17) may then be completed with the aid of Lemma

4.1.
By combining the above results, we find that, given e>0,

| /4(— °°, °°) | =S C(«)/i   e        + the        ,   for i > h ¿¡ lo,

where C(e) does not depend on /0, t, or h. This inequality, in combination

with (4.12), provides a useful bound on f(t, h). By proceeding somewhat as in

§2, we can obtain a similar result in case ¿¡i is an integer. We omit the details.

The final conclusions are summarized in the theorem which follows.

Theorem 4.1. Let Si be the characteristic root of largest real part and let

5 = 5i be the residue of h'(s) at Si.

(1) If S is a non-negative integer,

kit, h)
(4.18) - —- = Jih)rit, Si) + fit, h)

where

/> Si

ehMe-°ihdsu

+ 00 + ÍO

(4.20)
/ Ci CA

rit, Si) = lse^'\Co + — + •••+ —J,

(4.21) | /(/, h) | ^ Cex(-t~M ix < Xi).

(2) // 5 is a negative integer,

(4.22) - i^H = J(h)r(l, Si) + 7(h)f(t, Si) + fit, h)
h

where

(4.23) rit, Si) = w(co + - + ■•■+ -~^\,
\ t ¿S+n-l /

and where
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(4.24) /(íi) =- f e^e-'^ds = *>«-4r-*"( C0 + • • • + —— J,
2xz'J \ tr*~1/

the integral being taken around a small circle surrounding Si. Also, given e>0,

there exists C(e) such that

n-l

(4.25) \f(t, h) | S-•»»<*-*>fcf» + tíi]

/or ti>t^tQ and any positive integer n for which n + Re (Si) > 1.

(3) 7/ S î's wo/ a« integer, the results are as in (2), except that J(ti) = J„(Si, h)

is defined by (4.8) and

(4.26)     r(/,5i)   =

Co +- + ••• + ■—-) if   Re (5) > - 1,

/      Ci c„\
/V>MC„+-h ■ • • + TJ if   Re (S) = - 1.

The above theorem was derived under the assumption that K(s, ti) has

a singularity at 5i for every value of h, save possibly for a sequence of values

of h with sole limit pointât infinity. We shall now prove that this is true. We

first observe from the above discussion that a necessary and sufficient condi-

tion in order that K(s, ti) should have a singularity at 5i and 5i, for a fixed

h, is that J(ti)^0. Let us now consider the function

'Si

(Si, h) =   \ Hn(e)e-"*d<r,
+ K+Í0

which, for the moment, we regard as a function of the complex variable h-

Since the integral is uniformly convergent for Re (h) bounded away from zero-

76 is an analytic function of ti for Re (¿i)>0. Consequently 76, as a function

of the real variable h, can be zero only for a sequence of values of ¿i>0 with

sole limit point at infinity, unless it is identically zero. If Si is an integer, the

same argument may be applied to the corresponding integral in the definition

of J. Thus in order to complete the proof we need only show that the appro-

priate integral cannot be zero for all /i>0. Let us suppose that Si is not an

integer and that 76(5i, /i)=0 for all /i>0. Then, regarding h as a complex

variable,

/I 00

Hn(x + iYi)e-xt>dx
x

is zero for Re (¿i)>0. Let
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/>  00

<t>(x)e~xíídx
o

where

(Re {Hn(x+iYi)} if    x> Xi,
<t>(x) =  <

I 0 if   0 < x < Xi.

If Io is identically zero, then $ih) is zero for Re (h) >0. But í>(¿i) is the trans-

form of q>(x). It follows from Doetsch [5, p. 135, Theorem 2], that <j>(x) is

identically zero. This is a contradiction. Hence ^6 is not identically zero. A

similar argument may be used if 5¡ is an integer. The proof of Theorem 4.1 is

therefore complete.

We can now prove Theorem 1.2. We shall construct a solution of the

integral equation (4.5), using the classical method of successive approxima-

tions. Define

um+i(t) = uo(t) = git) it* g t $ h + 1;*» - 0, 1, 2, • • - ),

«m+lit + 1)  = U0(t + 1)

+ f   {A(h)um(h) + B(h)um(h + I)} kit, h)dh
J u

il > h; m = 0, 1, 2, ■ • ■ ).

Uoit) is the solution of the equation of first approximation. Note that the

boundary condition (4.3) is satisfied by each iterate.

According to the results of §2,

(4.28) | uoit + 1) | ¿ ClRe Mex*' é ai¿Re (äl)ex"

for t^to— 1. We shall now prove by induction that for t>t0

(4.29) | «m(/ + 1)| S 5a,/Re (*¿e**,

from which it will follow, since wm(0=«o(¿) for t0^t^t0+l, that there is a

constant a2 such that

(4.30) | «m(0 | ^ 5aia2/Re <MeXit

for t^to. As just observed, (4.29) is true for w = 0, and hence so is (4.30). We

suppose that they have been proved for m = 0, 1, ■ ■ ■ , p, and attempt to

prove (4.29) for m = p + l. By substituting for kit, h) in (4.27), using (4.18) or

(4.22), and by observing from (4.4) that

(4.31) \Ait)f*j, \BH)\^j2,

we obtain
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| up+i(t + 1) I =- I Uo(t + 1) | + 2A | r(t, Si) \\    tT\ J(h) | | w,(/i) | ¿<i

+ 2B | /•(/, 5i) \ f   tT\ J(h) | | up(ti + 1) | (Ö!

(4.32)

/-i i i i i
»i   I /(<, ii) | I «p(/l) | *i

to

+  Ti   I       Í!     I /(<,  ti) I  I  «„(*! +   1) |  dti.
J h

Each term in (4.32) may be shown to be bounded by ai/Re(Sl)eXl< by using the

following inequalities:

(4.33) | r(l, Si) | S Ct** ̂ ex» (t > 1),

(4.34) | J(ti) ¡ = Ctr°-** (äOg-Jsriii ^ > io)_

The first comes from Theorem 4.1 and the second from Lemma 4.1 and

Theorem 4.1. In treating the last two integrals in (4.32) when Si is not an

integer, or when Si is a negative integer, we use the bound (4.25), with

e = l/l0Ac¿2, and the fact that « + Re (5,)>1. Thus (4.29) and (4.30) are

proved.

The successive approximations defined by (4.27) obviously converge to

g(t) for tolkttkto-T-l. We shall now prove that they converge for t>t0 + l by

proving that the series

00

(4.35) £ {um+i(t + 1) - um(t + 1)}
m=0

converges for t>to. We can prove by induction, in much the same way (4.29)

was established, that
m m

(4.36) j um+i(t + 1) - un(t + 1) [ /-Re <«i>e-*i' = 10 "3
ml

lor t>to, m — 0, 1, 2, •••. a3 is a constant which does not depend on m.

(4.36) shows immediately that (4.35) is uniformly convergent in any finite

interval in which t>to. Thus the sequence Uo(t-{-l), Ui(t-\-l), • • • , of ap-

proximations converges uniformly in every finite interval to a certain func-

tion w(/ + l).

It is clear that w(/ + l) is continuous for t>to, and, by (4.30), that

(4.37) | u(t)\ =: C¿Re <«i>e*K.

By reason of the definitions (4.27) and the uniformity of convergence, u(t)

satisfies the boundary condition (4.3) and for t>t0 it satisfies the integral

equation (4.5). Finally, because of (4.37), the integral
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/' 00

h{Aih)uih) + Bih)uih + l)}e->*dh
¡0

is absolutely convergent for Re (s)>Xi. We can therefore prove that u(t)

satisfies the differential-difference equation (4.1) for t>t0 by retracing the

discussion in §3. This completes the proof of Theorem 1.2.

5. The nonlinear equation. We shall now discuss the nonlinear equation

d
(5.1) — uit + 1) = ait)uit) + bit)uit +1) + Diuit), u(t + 1)),

dt

under the conditions stated in Theorem 1.3. We wish to examine the be-

havior, as t—>+ oo, of a function u(t) which satisfies (5.1) for t>t0 and which

satisfies

(5.2) «it) = git)

for to^t^to + 1. Since (5.1) may be written in the form of equation (3.1), with

w(t)=A(t)u(t)+B(t)u(t + l)+D(u(t), u(t + l)) and

a2      a3 b2       b3
(5.3) A(t)~- + 7+...,    B(t)~J + J+...,

as t—>+ oo, the results of §3 suggest the consideration of the integral equation

,„    %    uit + 1) = uoit + 1) + f   {AihMh) + B(h)u(h + 1)
(5.4) J ,,

+ Diuih), uih + l))}kit,h)dh.

We shall now construct a solution of (5.4) by the method of successive

approximations. Define

Um+iit) - uoit) = git) ilo^t^t0+l;m = 0,l,2,---),

um+iit + 1) = uoit + I) + (    {Aih)umih) + Bih)umih + 1)
(5.5) J t„

+ D(um(h), um(h + l))}k(t, h)dh

(t > t0; m = 0, 1, 2, • • • ).

As in §4, our first aim is to establish a uniform bound on the iterates. We shall

prove by induction that

(5.6) | um(t + 1) | oS 7ai/Re <5l'eXli

for t>t0, m = 0, 1, 2, • • • , and that

(5.7) |«»W| á 7oWRe (íl,eXlí

for t^to, m = 0, 1, 2, • • • . «i and a2 are the constants in equations (4.29)
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and (4.30). The proof is just like the corresponding proof in §4 except that

we must establish a suitable bound on \DP\ = \D(up(t), up(t-\-l))\. (5.6) and

(5.7) certainly hold for m = 0. Assume that they hold for m = 0, 1, • • • , p.

Then, from the definition of D,

(5.8) | ¿Ví¡£   Z    MW2¿Re(íl)eXl0i(7<^Re(5l)eXlí)''.

We wish, first of all, to show that this series converges for t^to, provided

max     | g(t) |
io£!S<o+i

is sufficiently small. Now from equation (2.5) and the definition of 7(52, to)

we see that | J(S2, to) | á C, where C can be made as small as desired by taking

max \g(t)\ sufficiently small. Furthermore, by re-examining §2, we see that

\f(t- l,to)\ = t-»e-x*>e(t),

where the maximum of \e(t)\ lor t^t0 is small if max \g(t)\ is small. It follows

that in equation (4.29) «i is as small as desired if max \g(t)\ is sufficiently

small.

It follows that the series (5.8) is convergent for all ¿ = /o if max \g(t)\ is

small enough. In fact,

(5.9) \DP\ ^ aia6(/Re ({i'e^03/2

for t = ¿o, where a6 is small if max | g(t) \ is small. Using (5.9) and the fact that

a6 may be taken as small as is required, we can complete the inductive proof

of (5.6) and (5.7) just as in §4.

We show next that (5.5) defines a convergent sequence. The method is

the same as that used in the preceding section. We shall first prove by induc-

tion that for t>to, m = 0, 1, 2, • • • ,

m 2m

i i 14aia6 t
(5.10) | um+i(l + 1) - um(l + 1) | *-*• («»>«-'>« =•-

ml

for a certain constant cto. (5.10) is certainly true for m = 0. Suppose that it

has been proved for m = 0, 1, 2, ■ • • , p— 1. We consider the quantity

| Dp - TVi | = | D(up(t), up(t + 1)) - D(up-i(t), up_i(t + 1)) |.

Note that because of the uniform bound on the approximations just estab-

lished, the series Dp and 7>p_i converge absolutely for ¿ = ¿o, provided

max | g(t) | is sufficiently small. Now by the mean value theorem and the

inequalities (5.6) and (5.7), we see that

| Dp - TVi | ^ C/Re ̂ ex^{ | up(t) - u^i(t) | + | up(t + 1) - up.i(t + 1) | }.

By the assumption that (5.10) holds for m = p—\,
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.       14Cctia6P '
| Dp - TVi I  á-— t** <«l)+2j-2eil«.

(P — 1)!

The induction may now be completed as before.

Just as in §4, the inequality (5.10) shows that the sequence of approxima-

tions Uo(t-\-l), Ui(t-\-\), ■ ■ • converges to a limit function u(t + l) for t>t0,

and the convergence is uniform in any finite interval in which t>t0. u(t-\-l)

is continuous for t>t0, satisfies (5.4) for t>t0, satisfies (5.2), and

(5.11) | u(l+ 1)| g 7ai/R<! <«i>e*K.

Finally, (5.11) enables us to prove, by the method used in proving (5.9), that

| D(u(t), u(t + 1)) | = C(¿Re (Mexltyn

Consequently the integral

/,
ti{A(ti)u(li) + B(ti)u(h + 1) + D(u(ti), u(h + l))}e-"idh

<0

is absolutely convergent for Re (s)>A\. We can therefore prove that u(t)

satisfies equation (5.1) for t>to by retracing the steps of §3.

Next we shall prove that the function u(t) constructed above by successive

approximations is the unique solution of (5.1) and (5.2). Suppose that v(t)

is another solution, and that v(t) =u(t) for t0^t^T0 (To^to + l), but that v

and u are not equal in any larger interval. From (5.11), \u(t)\ £& for tout

STo-\-l, where G is as small as desired if max \g(t)\ is sufficiently small.

Since u(t) and v(t) are continuous, there is an e, 0<e<l, such that \v(t)\ ^2G

for ¿o=^ = r0+e. Hence D(u(t), w(/ + l)) and D(v(t), v(t + l)) are absolutely

convergent for /0 = ¿g T0-1 +e, and \D(u(t), u(t + \))-D(v(t), v(t + \))\

^C2| u(t + l) — v(t + l)\ for to^t^To — 1+e. Now from equation (5.1) we see

that m and v are both solutions of the integral equation

u(t + 1) = g(to + 1) + f   {a(ti)u(ti) + b(ti)u(h + 1)
J h

+ D(u(ti), u(h+ l))}dh.

Consequently

(5.12)     [ u(t + 1) - v(l + 1) | = C3 f      | u(h + 1) - v(h + 1) | dh
J T„-l

lor r0-l=igr0-l+e. But  |u(ti)-v(ti)\ ^4G for To^ti^T0+e. It fol-

lows from iteration in (5.12) that u(t)=v(t) for T0^t¿ J"o+e. This contra-

dicts our original assumption. Therefore the solution u(t) is unique.

The proof of Theorem 1.3 is now complete.
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