REPRESENTATIONS OF A SEMISIMPLE LIE GROUP
ON A BANACH SPACE. I.

BY
HARISH-CHANDRA

1. Introduction. During the past few years several authors have studied
unitary representations of a Lie group or, more generally, of a locally compact
group on a Hilbert space. In the present paper we approach this problem
from a somewhat different point of view and do not require that the repre-
sentation be necessarily unitary. In fact, following a suggestion of Chevalley,
we allow the representation space to be a Banach space. But on the other
hand we restrict ourselves to the case when the given group is a connected
semisimple Lie group and attack the problem by means of a closer study of
the corresponding representations of the Lie algebra. Roughly speaking, our
plan of investigation can be divided into two separate parts. The first con-
sists in a careful study of infinite-dimensional representations of a semi-
simple Lie algebra from a purely algebraic point of view. The second step is
then to establish a sufficiently close relationship between the representations
of the group and those of the algebra so that the information obtained about
the latter can be put to use.

This paper is divided into three parts. Part I contains a purely algebraic
theorem (Theorem 1) about infinite-dimensional representations of a semi-
simple Lie algebra. In the special case of a complex semisimple algebra this
result had been obtained in a previous paper [8(e)]. Part II is concerned
with the second step of the program mentioned above. It has been shown by
Garding [5] that every representation of a Lie group G gives rise in a natural
way to a representation of its Lie algebra. However, it turns out that this
correspondence between the representations of the group and of its algebra,
as it stands, is not very satisfactory for our purpose. This is due to the fact
that the Taylor series of an indefinitely differentiable function on G does not
necessarily converge to this function. In order to remedy this defect we re-
place such functions by suitable analytic functions in Girding’s construction
and thus obtain what we call well-behaved vectors in the representation space.
The remainder of Part II is then devoted to the problem of approximating
an arbitrary vector by well-behaved vectors. Theorem 3 deals with this
question in a special case which is of particular importance for us.

In Part III we combine the results of Part I with those of Part IT and
this enables us to derive information about representations of a semisimple
group G. We introduce the notion of infinitesimal equivalence of two repre-
sentations and show that in the case of irreducible unitary representations
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this coincides with the usual notion of equivalence. It follows from Theorem
7 that any factor arising from a unitary representation of G is necessarily of
type I in the terminology of Murray and von Neumann [14]. (This fact had
been conjectured by Mautner [12].) Theorem 9 gives a purely infinitesimal
criterion for the existence of a unitary representation which is infinitesimally
equivalent to a given irreducible representation. In the last section we give a
method for obtaining a large class of representations of G.

All the results of this paper, except Theorem 9, were obtained before the
end of 1950. Due to various circumstances their full publication has been de-
layed although these results were announced, along with some others, in a
short note [8(c)]. In the mean time Godement has obtained alternative
proofs for some of them. However the present paper contains only a small
proportion of the results which have appeared in a series of notes in the Pro-
ceedings of the National Academy [8(d)]. Their proofs will be published in
subsequent papers.

I am greatly indebted to Professor Chevalley for reading the original draft
of this paper and suggesting a large number of valuable improvements. In
fact Part I was almost entirely rewritten by him and in Part II the whole
treatment of well-behaved vectors has been very much simplified due to his
suggestions. In particular the method of constructing well-behaved functions
on a “quasi-nilpotent” group, as given in this paper, is due to Chevalley.
My original construction was more complicated.

PART I. REPRESENTATIONS OF A SEMISIMPLE LIE ALGEBRA

2. Preliminary lemmas. Let % be a field of characteristic zero and I a
Lie algebra over k. Let f be a subalgebra of [ and ¢ the representation of ¥
onl given by ¢(X) V= [X, Y] (X EY, YE). Following Koszul [11] we say that
f is reductive in [ if ¢ is a semisimple() representation. Moreover [ is called
reductive if it is reductive in itself. It is obvious that if f is reductive in [,
then ¥ is reductive.

LEMMA 1. Suppose | is reductive. Then [=c+I', ¢\'={0} where ¢ is
the center of | and U'= (I, 1] the derived algebra. Moreover U is semisimple. A
finite-dimensional representation p of | is semisimple if and only if p(I") is semi-
simple for every I' &c.

Since the adjoint representation of [ is semisimple, [ can be written as a
direct sum »_;<j<n I;of simple ideals [;. Then [;is either semisimple or abelian.
Suppose [; is abelian if 1<j<m;, and semisimple if j>m; (0=m;=m).
Put I'= > jom ljand ¢= D j<m I Then I is semisimple and it is clear that
¢ is the kernel of the adjoint representation. Hence ¢ is the center and

(1) We use here the terminology of Chevalley [4, Chap. VI]. A linear transformation of a
vector space V (of finite dimension) is called semisimple if V is fully reducible under 4.
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Lil= X [LLl=2X1L=1
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This proves the first part. Now p(I) =p(c) +p(I'). Since I’ is semisimple the
same holds for the linear Lie algebra p(I’). So the center of p(I') is {0} and
therefore p(c) is the center of p(I). Our second assertion now follows from a
result of Jacobson [10].

LEMMA 2. Suppose ¥ is reductive in | and p is a finite-dimensional semi-
simple representation of 1. Then p induces a semisimple representation of ¥.

Let D be the center of f. Since { is reductive, p(D) is the center of p(f).
Put Li=p(1), fi=p(f), and D;=p(D). Since I is reductive in I, it is clear that
f; is reductive in [;. Moreover since p is semisimple, |, is reductive (see Jacob-
son [10]). Let ¢; be the center and I{ the derived algebra of ;. Let o denote
the adjoint representation of ;. Then we know from the above lemma that
a(D) is semisimple for any DED,. Choose an abelian subalgebra b, of I; such
that §; DD, o (H) is semisimple for all HEWy, and b, is not contained in a larger
such algebra. Then §; D¢y, and it is clear that If M, is a Cartan subalgebra of
the semisimple algebra If. Now if ¢ is a semisimple representation of I; it
follows from the above lemma that ¢(I') is semisimple for all I' &¢;. Moreover
¢(H) is semisimple for every HE My, since I{ MY, is a Cartan subalgebra of
the semisimple algebra I{ . Hence ¢(H) is semisimple for all HEY, and there-
fore in particular for HED;. Therefore, again by the above lemma, the repre-
sentation of f; defined by ¢ is semisimple. In particular if we take for ¢ the
representation ¢: p(X)—p(X) (X EI), we get the required result.

Let R and C be the fields of real and complex numbers respectively and
(=1)V2 a fixed square root of —1 in C. Let go be a semisimple Lie algebra
over R and g its complexification. Let X—ad X (X &g) denote the adjoint
representation of g. Put B(X, ¥)=sp (ad X ad Y). A real form g; of g is called
compact if B(X, X) <0 for all X &g, (X#0). It is well known (see Cartan
[3] and also Mostow [13]) that there exists a compact real form g and an
automorphism 0 of order 2 of g with the following properties: 6goCgo, 0g: Ca:
and

g0 = fo + Do, ar = To 4+ (=1,

where {, is the set of all X &g, such that X =X and p, the set of all YE&Eg,
such that Y= —Y. Let f and p be the subspaces of g spanned by £, and p,
respectively over C. Since 6 is an automorphism, 8([X, Y])=[0X, Y]
(X, YEg) and from this it follows immediately that

LelCe  [EvlCe  DnplCE
Hence in particular ! is a subalgebra of g.

LeMmMA 3. T is reductive in g.
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Let G be the component of identity of the adjoint group of go and K the
analytic subgroup of G corresponding to ¥y. Then it is known (see Mostow [13])
that K is compact. From this it follows immediately that ¥, is reductive in
8o and therefore Fin g.

Let by, be an abelian subalgebra of go contained in po and having the
maximal possible dimension. Extend J,, to a maximal abelian subalgebra
Bo of go. Let X Eho. Then if YEby,, [0X, Y]=—[6X,0Y]=—6([X, Y])=0.
Hence X —0X commutes with all elements in by, But X —0X &p, and there-
fore in view of our choice of By,, X —0X Ehy,. This proves that 0h,=h, and
therefore bo="by,+bp, where bhr,=Bho . Since gr=Fo+(—1)"2p, is compact,
ad X is semisimple for every X €8,\Up,. Therefore if § is the subspace of g
spanned by b, § is a Cartan subalgebra of g. Put hp=pNp, hr=EfNh. Let
H,, - - -, H; be a base for %), (over R) such that Hy, - - -, H, is a base for
By, and Hpya, * + +, Hy is a base for br,. Put H¥=H; or (—1)V2H,; according
as 1<m or :>m and let h* =h,,4(—1)"2hy,. For any linear function XA on §
let H) denote the unique element in § such that

B(H), H) = \(H) (H €).

We say that \ is real if HFaEh*. Now let H= D i, e;H¥ (c;ER) be any ele-
ment in h*. We say that H>0 if H>0 and ¢;>0 where j is the least index
such that ¢;0. If N\ and u are two linear functions on § such that A—u is
real, then we write A>pu or u <\ if Hy_,=H)\—H,>0. Moreover we denote
by O\ the linear function H—A(0H) (HEY).

It is known that every root o« of g with respect to § is a real linear
function and if « is a root fa is also a root. For every root a choose
an element X,Eg such that X,»0 and [H, X.]=a(H)X, for all HE}.
Let P be the set of all roots @>0. Define the subsets P, and P_ of P as fol-
lows. A root a &P belongs to P, or P_ according as fas“a or fa=a. It can
be shown (see Iwasawa [9]) that a <0 for « € P, and HgEhrand Xp, X _sCt
for BEP_. Moreover a>p for any a &P, and BEP_. Let n be the subspace
of g spanned by X, (¢ €P,) and m the subspace spanned by b, Xs and
X_s (BEP_). Then n is a nilpotent subalgebra of g. Put no=gon. Iwasawa
[9] has proved that g, is the direct sum of fo, by,, and n,.

LeEMMA 4. The centraliser of by in g is hy+m and so m is the centraliser of by
in §. Moreover there exists an element HEY, whose centraliser (in g) 1s exactly
bp+m. Finally m ¢s a subalgebra of ¥ and

dim ! — dim m = dim p — dim §, = dim n.
Let X =Ho+ D acp (caXatc—aX—a) (HiEY; Ca, c—aEC). Then
[H, X] =3 _(caa(H) X0 — c_a(H) X_a) (H € ).

«EP

Therefore if X commutes with b, c.=c_, =0 unless « is identically zero on
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by. But « is zero on b, if and only if @ =0c. This proves that hy-+m is the cen-
traliser of b, in g. Choose HEY, such that a(H)#0 for a EP,. Then it is
clear from the above argument that the centraliser of H is hy+m.

If a€EP,, 0a<0 and so —0a>0. Hence —fas% —a and this shows that
—0a&P,. The mapping a— —0a (« EP,) therefore defines a permutation
of order 2 on P,. Thus when « runs through P,, fa runs through the set
{ —a;aEP,}. Since 6X, and X, differ only by a nonzero constant factor, it
follows that X,, 60X, (a&EP,) are linearly independent modulo §y+m.
The same therefore holds for X,—0X, X.+0X., (@€EP,). Let q
=D acp, C(Xa—0X.) and [= D .cp, C(Xut+0X.). Then qCp and ICE
and q+1+h+m=g=p+* Hence q+by=p, [+m=¥, and if ¢ is the number
of roots in P,, it is clear that dim n=q=dim ¢=dim p—dim §y. Similarly
g=dim [=dim f—dim m.

Since m is the centraliser of §y in f, m is a subalgebra of f.

LEMMA 5. m s reductive both in t and in g and [m, n]Cn. Furthermore if o
is the adjoint representation of the algebra by—+n, then sp o(H) = Eaep a(H)
(HEby).

Put me=mMg, and define G and K as in the proof of Lemma 3. Let M
be the set of all x©K such that xH=H (HEW,,). Clearly M is a closed sub-
group of K and so it is compact. Moreover from Lemma 4 m, is the subalgebra
of ¥, corresponding to the component of identity of M. Hence m, is reductive
in fo and go and therefore the same is true of m in f and g.

Let a€P, and BEP_. Then o+ and a—f are both greater than 0.
Moreover 0(a+B) =0a+B#a-+p since a#0a. Similarly (e —pB) #a—pB. This
shows that [X,., Xs] and [X., X_s] are both in n. Since [§, n]Cn, we con-
clude that [m, n]Cn.

It is clear that sp o(H) = D .cr, a(H) (HED,). Since a is zero on by if
aEP_, it follows that sp o(H) = Eaep a(H).

Let p be a representation of f on a vector space V whose dimension need
not be finite. A subspace W of V will be called p-stable if p(X)WCW for
all X&t. Let pw denote the representation of finduced on a p-stable sub-
space W. We shall call pw simple (semisimple) if dim W< « and pw is simple
(semisimple) in the usual sense (see Chevalley [4, Chap VI]). Also we then
say that W is a simple (semisimple) subspace of V.

Let Q denote the set of all (equivalence) classes of simple representations
of £. For any D EQ we denote by Vo the sum of all p-stable subspaces Wof V
such that pg €D. (Vo= {0} if no such W exists.)

LEMMA 6. If W is any p-stable subspace of V, then
Wﬂ(}‘, V:D) = > WN Vp.
DEQ D @
Moreover the sum in Z’Deﬂ Vo s direct.
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For any x& den Vo let V, be the smallest p-stable subspace containing
x. It is clear that V, is contained in the sum of a finite number of simple
spaces. Hence V, is semisimple (see Chevalley [4, Chap. VI]) and therefore
V.= ZfD V.M Vo. Applying this result to the elements of WN\( deg Vo)
we get the first statement of the lemma. Let &; be a subset of Q. Then for any
x& Eﬁeﬂx Vo, V. is contained in the sum of a finite number of simple
spaces W’ such that the class of pw lies in ©;. Hence it follows (see Chevalley
loc. cit.) that every simple component of py, belongs to a class in €; and
therefore V.N\Vp= {0} if DEQ. This proves the directness of the sum
2oca Vo

An element x& V will be said to transform (under p) according to D if
x&E Vp and we shall say that the representation p is quasi-semisimple if
V= Efﬁeﬂ Vo. In order that this be the case it is necessary and sufficient
that every element x € V should belong to some semisimple subspace W of V.
The following lemma is well known (see Godement [7(b), p. 102]).

LEMMA 7. Assume that p is quasi-semisimple. Let V., be the space of all x EV
such that p(X)x =0 for all X &t and let V1 be the space spanned by all elements
p(X)x (XEE, x& V). Then V is the direct sum of Vo and V1.

Let ©, be the class of the simple zero representation of degree 1 of f.
Then Vo= Vg, and it is clear that V;C Y o.p, Vo which shows that the
sum Vo+ V; is direct. In order to prove that Vo+ V=V it is sufficient to
show that if W is a p-stable subspace of V such that py ED (D#D,), then
W C V1. The subspace W’ of W spanned by the elements p(X)x (X EE, xEW)
is clearly p-stable and not equal to {0} since pw is simple and not in ®,. Hence
W =W’ which proves our assertion.

Let V and V’ be the spaces of the representations p and p’ of {. Then the
tensor product VX V' is the space of a representation p<4p’ (the tensor sum
of p and p’) which is defined as follows: if X&¥f, x&EV, and ¥’ €V, then
((o4p") (X)) (xXx") = (p(X)x) X' +2x X (p(X")x").

LeEMMA 8. Assume that the representations p and p’ are quasi-semisimple.
Then p4p’ is also quasi-semisimple.

Every element of VX V” is contained in a space of the form WX W’ where
W and W’ are semisimple subspaces of V and V’ respectively. Let ¢ be the
center of f. Since pw is semisimple, it follows from Lemma 1 that we can
choose a base (x1, - * +, xn) in W such that the matrix representing pw(I")
(T'Ec) relative to this base is diagonal. A similar base (x{, - - -, xj,/) can be
found for W’ with respect to py-. But then it is clear that (p4p")w4w- (')
(I'&c) is represented by a diagonal matrix relative to the base x;Xx/,
1=51Sm; 1255w/, for WX W’. In view of Lemma 1 this shows that WX W’
is semisimple under p<4p’. Hence every element of VXV’ is contained in a
semisimple subspace and this proves the lemma.
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Let B be the universal enveloping(?) algebra of g and ¥ the subalgebra of
B generated by (1, ). Then X is the universal enveloping algebra of I (see
[8(e)]) and there is a natural 1-1 correspondence between representations of
f and their unique extensions(®) on ¥X. It is convenient to identify the repre-
sentations of ¥ and ¥ under this correspondence. Let 7w be a representation of
B on V. Then the restriction of 7 on f is a representation of f. For any D&EQ
we define Vp as the set of all elements of V which transform under #(f) ac-
cording to D.

LEMMA 9. The subspace ) oca Vo is invariant under w(B).

Let Vo= D oo Vo. Since (1, g) generates B it would be sufficient to
show that w(g) VoC Vo. But g=Ff+4p and V, is obviously invariant under = (f).
Hence we have only to show that w(p) VoC V,. Let o be the representation
of £on p defined by ¢(X) Y= [X, Y] (XE¥, YCp) and let p be the representa-
tion of f on V,. Consider pX V, and the representation o-p induced on it.
Since { is reductive in g, o is semisimple. Moreover for any given x &V, we
can find a p-stable semisimple subspace W of V, such that x©&W. Then
pX W is semisimple under the representation » induced on it under o<4p
(Lemma 8). Let A be the linear mapping of p X W into V defined by A( ¥ Xw)
=7(Y)w (YEp, w&W). Then it is easy to verify that 7#(X)N=M(X). This
means that A is a homomorphism of the f-module p X W into the f-module V.
Since pX W is semisimple the same holds for N(p X W) (see Chevalley [4,
Chap. VI]). Since 7(p)x CA(p X W) it follows that 7(p)x is contained in a semi-
simple f-submodule of ¥ and therefore w(p)x C V. This proves the lemma.

Let V be a vector space over C of finite dimension. Then V may be con-
sidered as an abelian Lie algebra and the universal enveloping algebra of this
Lie algebra is called the symmetric algebra over V. We shall denote it by S(V).
If {xl, <., x,.} is a base for V, the monomials, x{1x2 - - - xi* (;,20;1=<:=<n)
form a base for S(V) and so S(V) may be regarded as the algebra of poly-
nomials in xj, - - -, x,. For any integer d=0 we denote by S4(V) the sub-
space of S(V) consisting of all formsin (xi, - - +, x.) of degree d. Itisclear that
S4(V) is independent of the particular choice of the base (xi, - - -, x,). We
call an element FES(V) homogeneous of degree d if FES (V).

Let T be an endomorphism of V. Then it follows from the structure of
S(V) as an algebra of polynomials that T" may be extended uniquely to a
derivation dr of S(V). If fEP(xy, + - +, x,.) where P is a polynomial, then
drf= D 1gign OP(xy, - - -, %,)/0%:)(Tx;). Hence dr maps Sa(V) into itself.
Moreover the mapping T—dr is linear and(*) dir,,ry = [dr,, dr,].

(2) For a definition of the universal enveloping algebra see [8(a) ].

(3) Let % be an associative algebra with a unit element 1 and = a representation of . We
shall always assume that 7(1) is the identity mapping of the representation space and this con-
dition will be included in the definition of a representation.

(4) Throughout this paper we write [a, b] =ab—ba whenever a, b lie in an associative algebra
or are endomorphisms of a vector space.
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Now consider in particular the algebra S(g). The product of elements of
g do not have the same meaning in S(g) as in ¥B. In order to avoid confusion
we shall represent by X an element X &g when we want to consider it as an
element of S(g) (this is less cumbersome than introducing different notations
for multiplications in S(g) and in 8B). Let (X4, - - -, X,) be a base for g.
Define a linear mapping A of S(g) into B as follows:

—_—rty

AMEL X)) = (Ym) X XX, - Xy 0L e;< w0, 1<iZn)

where m=e,+ - - - +e, and the summation is over all sequences (71, * - *, %m)
which have exactly e¢; terms equal toj (1 £j<#). Itisclear thatif V3, - - -, ¥}
are any elements of g, then

MY Ty Vo) = (1/k) 2 YVuay* + * Youy

where the summation is over all permutations w of {1, 2,k } . This shows
that the definition of \ is independent of the choice of the base (X1, « - -, Xn).
We know from theorems of [8(a)] that A is a 1-1 linear mapping of S(g) onto
B. We shall call it the canonical mapping of S(g) onto B.

Let (X) (X Eg) be the derivation of S(g) which coincides with ad X on g.
Then ¢: X—0¢(X) is a representation of g on S(g). Let g be the restriction of
gtol.

LeEmMA 10. o1 is a quasi-semisimple representation of ¥.

Let 04(X) (X &g) denote the restriction of ¢(X) on Sa(g). Then o4 is a
finite-dimensional representation of g. Since g is semisimple and f is reductive
in g, o4 induces a semisimple representation of ! on Si(g). But
S(g) = X420 Sa(g) and so the lemma follows.

LEMMA 11. Let o be the representation of g on S(g) as defined above. Then if
FES(g) and X g,

Me(X)F) = [X, \(F)] = X\(F) — \(F)X.

It is clearly sufficient to prove this formula when F is of the form
Y.V, -V, ¥y, - -+, Yibeingin g. Set Y =[X, ¥;] (1=<i=<k);since o(X)
is a derivation, ¢(X)F is the sum of the f products obtained from ¥; - - - ¥,
by replacing successively each one of the factors ¥; by ¥/. On the other hand
the mapping b—[X, 5] (bEB) is a derivation of B. It follows that for any
permutation w of (1,2, - - -, k), [X, YuyYue - - - Yuwy] is the sum of the
products obtained from Y,q Yue - - - Yumwy by replacing successively each
one of the factors Y. by its transform [X, Y,u]=Y.s. The formula
Mo (X)F)=[X, N\(F)] now follows immediately.

COROLLARY. The center of the algebra B 1s the image under N of the set of
elements F in S(g) such that o(X)F=0 for all X &g.

This is an immediate consequence of Lemma 11.
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If a vector space V (of finite dimension) is the direct sum of two subspaces
V' and V", we may obviously identify S(V’) and S(V”’) with subalgebras
of S(V) and the bilinear mapping (F’, F")—F'F" defines an isomorphism of
the tensor product S(V’) X.S(V’’) with S(V) as is easily seen by making use of
a base of V which is composed of a base of V’ and a base of V"',

LEMMA 12. Let g be the direct sum of two subspaces §' and ¢”. The bilinear
mapping (F', F'")->NFINF") (FF&S(g"), F'&S(g")) defines a linear iso-
morphism of S(g")XS(g"") with B. If d is an integer =0, denote by Sa(g),
Sa(g’), and Sa(g'’) the spaces of homogeneous elements of degree d in S(g),
S(g"), and S(g’’) respectively. Then

2AS) = O MS+@))NMSar (™).

eSd d'+d’'Sd

In this lemma, as in the rest of this paper, we make the following con-
vention: if A and B are linear subspaces of an associative algebra, we denote
by A B the vector space spanned by all elements ab (a €4, bEB).

Consider a base {Xi, - -+, X.} of g which is composed of a base
{Xl, e, X,.,} of ¢’ and a base {an+1, cee, X,.:+,,u} of ¢ (m=n'+n"").
We denote by M the set of all monomials in X, - - -, X,, by M’ the set of
monomials in Xy, + - -, Xar, by M’ the set of monomials in Xn4y, « - -,
X 4nrry by Mg the set of monomials of degree d in M, by M/ the set M'MNM,,
and by M} the set M”"NM,. The space Y .<a N(Ss(g)) is spanned by the
elements A(u), uE€U.<qs M,. We shall prove by induction on d that it is also
spanned by A(w)A(u’’) where u'E M., u'’' E M}, and d’'+d’’ £d. This is ob-
viously true for d=0. Assume that it is true for d. It is proved in [8(a)] that if
FESi(g), F'ESi(g) then

(1) NENE') = NFF)mod D NSm(g)).
m<k+k’

It follows immediately that the condition d'4d”"=<d+41 implies
N(Se (8)N(Ser(§")) C Tesars N(Se(@). On the other hand every u€Ma,y
may be written in the form u’u’’ where u’'€E M}, p’ EMY:, and d'+d"' =d+1.
Hence it follows from the above formula and our inductive assumption that
M) E X ararzasa NSa(g))N(Sa(g")) and this proves our assertion for d4-1. -
Since every element u& M can be written in exactly one way in the form
W' (WEM, weEM"), we see that for every d the elements A(u")A(u'")
(W EMy, w’' EMY, d'+d" £d) form a base of D _.<a\(S.(g)). This being true
for every d, the lemma follows.

It is clear that N(S(f)) =X. We shall denote by B the set N(S(p)) and by Ba
the set N(Sa(p)).

LEMMA 13. We have \(Sa()S(E)) C D esa BaX and N(Sap) SE)IN(Sa(p)S(E)
C Desara Bk
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The first formula follows immediately from Lemma 12. In order to prove
the second formula, it will be sufficient to show that

(BX)(Ba®) C 2 BA
eS d+ d’
Let p? denote the space spanned by the products of d elements in p. First we
prove that X¥p?Cp%%. This is true for d=0. Let X’ be the set of all u&B
such that #pCpX. Then ¥’ is a subalgebra of B and 1E€¥’. Moreover if
XEf and YEp, then XY =YVX+[X, V]EpX since [X, Y]Ep. Hence ¥
and therefore ¥ is contained in ¥’ which shows that X¥p CpX. Now assume that
our assumption is true for some d. Then Xp¢ti=(¥p%)pCp?Xp Cp*+'¥. This
proves it for d+1. But it is clear that B,Cp? and therefore

(BaX)(ParX) C pi%p?X C pHX.

Hence it would be sufficient to prove that p¢XC D_.<a B.X. This is true for
d=0, 1. Assume that it is true for d. Then

pIEC 2 pBX.
eSd
But pB.CA(Si(g))N(S.(g)) and therefore from formula (1) above pP,
C D erzer1 M(S.(g)) and this is contained in D eger1 BerX in virtue of Lemma
12. Since this proves our formula for d+41 the lemma follows.

Let g* be the space dual to g, i.e., the space of linear functions on g. Then
the fundamental bilinear form B(X, Y) of g defines an isomorphism I of
g with g* which assigns to every X &g the linear function Y—B(X, Y) on
g. (This is an isomorphism since B is nondegenerate.) I may be extended
uniquely to an isomorphism of S(g) with the symmetric algebra S(g*) on g*.
We denote this extension again by I. Let {xl*, ceey, x,,*} be a base for g*
and F any element in S(g*). Then F=P(xf*, - - -, x.*) where P is a poly-
nomial. Since x*, + - -, x,* are linear functions on g, P(xf*, - - -, x.*) repre-
sents a function on g, namely the function F/': X—>P(x#(X), « - -, x.5(X))
(X &g). It is clear that the mapping F—F’ is isomorphic and does not de-
pend on the choice of the base {x{*, - - -, x*}. The functions F’ are called
the polynomial functions on g. Henceforth we shall identify S(g) with S(g*)
and the algebra of polynomial functions on ¢ under the mappings F—I(F)
—(I(F)) (FES(g)). Since B(X, Y)=0, X, and Yy, is identified with
the space of linear functions on g which are zero on . We may therefore iden-
tify S(p) with the algebra of polynomial functions on the subspace p of g.

Let {xy, + + -, %p, %p41, - = =, %} be a base for g such that {x;, - - -, x,} and
{%p11, - - -, x,,} are bases for p and f respectively. Then if P is a polynomial
in n variables, the restriction of the polynomial function F=P(xy, « « +, %n)
onypis P(xy, - -+, %50, ---,0).

3. Proof of Theorem 1. Let ¥ be an associative algebra with a unit element
1 and M a left ideal in A. Then the space A*=A/M is an A-module and if
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we assign to every x €Y the mapping m(x): a*—xa* of A* into itself we obtain
a representation w of A, which we call the natural representation of % on A/IM.
Let [ be a finite-dimensional subspace of ¥ which is a Lie algebra under the
bracket operation [X, Y]=XY—YX (X, YEI). Then r defines a representa-
tion of this Lie algebra which will also be called the natural representation of

[ on A/IN.

THEOREM 1. Let ) be a left ideal in X. Assume that X/ is finite-dimensional
and the natural representation of ¥ on X/9) is semisimple. Then the natural repre-
sentation of ¥ on B/BY is quasi-semisimple. Let D be any equivalence class of
finite-dimensional simple representations of ¥ and let BE be the set of all elements
of B* =B/BY whick transform according to D under the natural representation
m of ¥ on B*. Then BY is a finite module over the center 3 of B.

In order to clarify the last assertion we first observe that 8% is actually a
module over 3. Let x be an element of B3 and let W be the smallest w-stable
subspace of B* containing x. Let 7w(X) (X EF) denote the restriction of
m(X) on W. Then mw is semisimple and every simple component of 7w is
contained in D. Let 2& 3; then the mapping y—zy (yE W) maps W upon a
space zW. If X€&f, Xzy=zXyCzW; thus zW is w-stable and w(X)zy
=z(m(X)y). It follows immediately (see Chevalley [4, Chap. VI]) that the
representation of f induced on zW is semisimple and all its simple components
are in D. Hence szx EB$ and this shows that 8% is a 8-module.

The proof of Theorem 1 will be divided into several parts.

1. Proof of the first assertion. We have defined above the canonical map-
ping N of S(g) onto B. We consider now the tensor product S(p) X(%/9).
Since PCBY, there is a natural mapping f—f* (FEX/PY) of X/9 into B*
=B/BY. Define a linear mapping I' of S(p) X (X/9) into B* as follows:

L(F X f) = ME)f* FeSm, feX/9).

(We recall that 8* is a 8-module and so A(F) operates on B*.) We shall
prove that I' is a linear isomorphism of S(p) X (¥/9) with B*. Select a base
(s:)ier for S(p) and a base (¢;) ;s for S(f). We may suppose that one of the
elements s;, say so, is equal to 1. The mapping N induces an isomorphism of
S(f) with X. Hence we may assume that the base (¢;) ;e is so chosen that for
a suitable subset J’ of J the elements (\(¢,));cs- form a base for 9. From
Lemma 12 the elements A (s;)A(¢;) ({€1, jEJ) form a base for B and, if jEJ’,
A(s:)N(t;) €EBY. Conversely every element of B is in the space spanned by
the elements A(s)A(EHN(Ey) (CEL, FET, 7ET’). But since 9 is a left ideal in
X, At)N() €Y and so A(¢)N(¢;) lies in the space spanned by A(¢j0) (G E€J").
This proves that the elements N(s;)A(t;) (:E€1, j&J’) form a base for 8Y.
Since ¥ is spanned by the elements A(so)A(¢;) (FEJ), it follows that BPNE
=9). We may therefore identify %/9) with its image in B*. Let J” be the com-
plement of J’ in J. Let A*(¢;) (jEJ"') denote the residue class of A(£;) modulo
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9 (or BY). Then the elements N(s;) AN*(¢;) (EI, jEJT"') form a base for B*.
On the other hand the elements A*(¢;) (JEJ”) form a base of %/9
and T'(siXAN*(t)) =N(s)N*(t;) (€1, jEJT'). This proves that T' is a linear
isomorphism of S(p) X (¥/9) with B*.

For any X &F let ¢(X) denote the derivation of S(g) which coincides with
ad X on g. Then we have seen in Lemma 10 that ¢ is a quasi-semisimple
representation of . On the other hand ad X maps p into itself and therefore
o(X) maps S(p) into itself. Let p(X) denote the restriction of o(X) on S(p).
The representation p is quasi-semisimple (Lemma 6). Let u be the natural
representation of f on X/9). Then u is of finite degree and semisimple. From
Lemma 8, the representation p4u on S(p) X (%X/9) is quasi-semisimple. The
first assertion of Theorem 1 will therefore be proved if we show that = is
equivalent to p4u. Now if FES(p), fEX/Y, and X EF,

((o+ w(X)F X f) = p(X)F X [+ F X Xf.
But from Lemma 11,
Me(X)F) = [X, M®)].
Hence
T(o(X)F X f) + T(F X Xf) = ([X, ME)])f + ME) XS
= XNF)f = =(X)(TF X f)).

Since T is an isomorphism, 7 is equivalent to p4pu.

2.1. Proof of the second assertion. First reduction. Let » be a simple
representation of f which is contragredient to the representations of the class
D and let V be the space of the representation ». Consider the representation
w=» of f on the tensor product B*X V. An element ¢ EB* X V will be called
an snvariant if ((r4v)(X))$=0 for all XEL. Let & be the set of these invari-
ants. Suppose {oy, - - -, v,,.} is a base for Vand ¢= D 1, b*Xv; (b*EDB*)
is in §. Then the elements b belong to B3. For, if XE&t, > m, n(X)b¥*Xv;
=— > 7, b¥Xv(X)v; from which it follows immediately that the elements
w(X)b¥ lie in the space V* spanned by bf, - - -, b and therefore V* is
w-stable. Let my*(X) denote the restriction of 7(X) on V*. Now ¢EV*XV
and ((my*4»)(X))p=0 for all XEL. If $0 this means that wy* contains a
simple representation contragredient to ». Since dim V* <m, it follows that
wy+ itself is contragredient to » and so lies in D. Therefore bF*EBH (1 <i<m).
On the other hand if ¢=0, b¥=0 (1=<7=m) and so our assertion is true
trivially. Conversely let U be a w-stable subspace of 8* such that the repre-
sentation my induced on U lies in . Then ny is contragredient to » and so
there exists a base {b, - - -, b,’,",} for U such that D>, b*Xuv; is an invariant
of .

Since B* is a B-module we may also regard B*X V as a B-module as
follows: :
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a(d* X 1) = (ab*) Xv (aE€B,*&B*v&V).

If 2& 3, the operator z on B*X V commutes with (74»)(X) (X EF). Hence
it follows immediately that & is a 8-module. If this 8-module is finite, then
B is a finite 3-module. For let ¢ (1 <k =¢) be a finite set of elements in §
such that 3= D £, B¢ Letdp = > m, bl Xv; (b ©B*). Then it follows im-
mediately from what we said above that %= > ¢_, > ™ 3bk.

We have defined above an isomorphism I' of S(p) X (¥/9) with B*. Now
consider the linear isomorphism

FXfXvo>TEXf) X FeSh), f€¥/9veV)

of SP)X(X/Y)XV with B*X V. This we shall denote again by I'. Put
W=(X/P)XV and E=p+u+dv, ' =u+4v, #'=n4v. Then if XEF and 4
ESEXW, I'¢((X)A)=n"(X)T'(4). Let & be the set of elements 4 ES(p)
X W such that £(X)A =0 for all X&{. Thus I induces an isomorphism of &’
with &.

We now regard S(p) X W as a module over S(p) by the rule Fi(FoXw)
=(F1F) Xw (Fy, F,&€58(), weEW). lf XEL, FES(p), A ES(p) X W, we have
EX)VFA=(p(X)F)A+F(E(X)A). Let Q denote the set of elements FES(p) such
that p(X)F=0 for all XE¥L. Then ' is clearly an Q-module.

On the other hand for any Z&g the operation ad Z may be extended to a
derivation 7(Z) of the algebra S(g). If ZE&T, then the operation ¢(Z) consid-
ered above is identical with 7(Z). We shall denote by J the set of elements
JES(g) such that 7(Z)J =0 for all ZE&g; this is a subalgebra of S(g). We now
regard the elements of S(g) as polynomial functions on g in the manner ex-
plained above and denote by 3, the set of restrictions to p of all functions J
in 3. Then 3, CQ. For, let JEJ and let J’ be its restriction to p. Then J’ is the
unique element of S(p) such that J— J’ belongs to the ideal { generated by
in S(g). Let X be an element of f. Then ¢(X)J=0. On the other hand since
ad X maps the spaces f and p into themselves, ¢(X) maps & and S(p) into
themselves and so p(X)J' =7(X)J'ERNS(p) = {0 } Hence J'E€Q. It is
clear that Jy is a algebra of Q. We shall see that in order to prove that & is
a finite 3-module 1t 1s sufficient to show that ' is a finite 3,-module.

Assume that 3’ is a finite Jy-module. For any integer d=0 let Sai(p) de-
note the space of homogeneous elements of degree d of S(p). Then Sai(p) X W
is mapped into itself by the operations of £(f). Therefore we can find a finite
number of elements 4;EJ’ (1 <7=7) each of which lies in some Sa(p) X W,
say Sa,(p) X W, such that &' = > ;_, Jpd;. The space Fo= D 5=1 3(4,) is
contained in §. We now intend to prove that §,=8. Put

S5 = 3'ﬂ< > Sy X W) Sa = I(S0).

0SeSd

The set of those A4; for which d;=0 obviously generates the space 'MW
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(W being identified in the usual manner to the subspace 1 X W of S(p) X W).
It follows that §¢CJ.. It will therefore be sufficient to prove that for every
dz0, 3a11CJa+Jw.

Let AES'N(Sara(p) X W) and let A= Y 5., FiA; with FES,. It is clear
that the homogeneous components of any element of 3, also belong to 3.
We may therefore assume that F;ESay_a,(p) (Se(p)={0} if e<0). Let
{'wl, <y, 'w,,} be a base for W and let 4;= Z}'_l A Xw; with 4;;ES4,(p).
Then T'(4) = X 7.1 D 91 M(Fidij)w;. Each F; is the restriction to p of an ele-
ment J; of 3 and we may assume that J; is homogeneous of degree d+1—d;
which is the degree of Fi It follows that Fi—J;E X ecapi—a; Se(p)S(E).
Hence

Py = T4 € TS0,
Therefore from Lemma 13,
-3 gwm,owj € X @AW
where B.=NA(S:(p)). On the other hand we know (see [8(a)]) that
ANJidi;) = MJ)M4:;) mod ,szi NS <(9))

where S.(g) is the space of homogeneous elements of degree e in S(g). Since
N(S.(8)) C X er<e BorX from Lemma 12, it follows that

I) - XM € T BAW.

Since W is the subspace ((X+39)/B9) X Vof B*X V, it is clear that XWCW
and therefore

X @ C r((ézds.(p)) X W).

On the other hand
2 NI wi = 2 NITIT(4)).
i=1 j=1 =1

The elements A\(J;) are in B in virtue of the corollary to Lemma 11. Hence
>t MJI)T(4:) ES and therefore

I(4) = Y AUITU) €SN r( 3 5.0 X W) _ g

i=1 eSd

This proves that I'(4) €ESa+ Fo and therefore Fa1C Fa+ Fo. Hence F = Fe.
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2.2. Second reduction. We shall now establish that the ring @ intro-
duced above is a finite module over its subring 3,. This will reduce the problem
of proving that &' is a finite J,-module to that of proving that it is finite
Q-module.

Let ) be the Cartan subalgebra of g as defined in Lemma 4. Let p=dim p
and A=dim (hMp). We shall first show that Q cannot contain more than &
algebraically independent elements. Let (Y3, - - -+, ¥,) be a base of p. We
have identified every element Y of g to the linear function Z—B(Y, Z) on g.
Let ¥4, «+ - -, ¥p be the elements V3, - - -, ¥, regarded as linear functions on
g. These functions are zero on f. An element of 2 may be written as a poly-
nomial F(y1, - + -, 3p) in g1, -+ -, ypand D221 8F(y, - - -, ¥)/3y: (p(X)y2)
=0 for all XE&!. The function p(X)y; is the function Z—B([X, Y:], Z)
= —B(Y; [X, Z]) on g. Let Z be any element of p. Put {;=9:(2) (1=i<p).
Then

P

oF
2 —Gi L (X, Z]) =0

=1 0Y;

Let {Xl, Sy, Xk} be a base for f. Then the rank 7(Z) of the matrix
(vi([Xj Z]))igizpisisk is the dimension of the space spanned by the ele-
ments [X, Z] for all XEF. Let r =maxzgy 7(Z). Then there exists a poly-
nomial function G#0 on p such that »(Z)=r if G(Z)#0 (ZEp). It follows
from the above relation that if Fy, - - -, Fgare in Q, the rank of the Jacobian
more than p—r algebraically independent elements among Fy, - - -, F,. Now
it is clear that 7(Z) is equal to the difference between the dimension of
and that of the space of elements X &f which commute with Z. Making use
of Lemma 4, we see that there exists an element Z&p such that r(Z) =p—h.
Hence r=p—#h and therefore there cannot be more than % algebraically in-
dependent elements among Fy, - - -, F,. This proves our assertion.

The bilinear form B is nondegenerate on . Since h=h,+hr and f and p
are mutually orthogonal under B, it follows that B is nondegenerate on by.
We may therefore assume that the base { V3, - - -, ¥,} for p is so chosen
that Yy, - - -, Y, form a base for h=9Mp and B(V;, ¥;)=0if 1=k <j. The
restrictions of y;, - - -, y, to Yy are then linearly independent and the ring
generated by ¥, + + -, y» may be identified with the algebra S(b,) of poly-
nomial functions on b, (i.e., those functions on Y, which may be written as
polynomials in linear functions). The restriction of an element F(y, * « -, ¥5)
of S(p) tobpis F(yy, + + +, ¥4,0, - - -, 0). Let Jp, be the algebra of restrictions
to by of elements of 3. We shall prove 3y, contains algebraically independent
elements and S(b,) is a finite module over Js,. Let 35 be the ring of restric-
tions to h of elements of 7. Then Jy, coincides with ring of restrictions to by
of elements of Fy. Let v be the Weyl group of g with respect to § and S(h)
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the algebra of polynomial functions on §. Then Chevalley(®) has proved that
every element of S(h) which is invariant under w lies in J. It follows that
every element ¢ ©S(h) is integral over Jy since it is a root of the polynomial
H'EW (T —s¢) whose coefficients are in J5. Moreover since v is a finite group
it follows from the theory of invariants that the ring of invariants of W
(in S(9)) is finitely generated. Hence Jyis a Noetherian ring. Now the opera-
tion of restriction from ) to by is a homomorphism of S(§) onto S(bh,) which
maps Jp onto Jp,. Hence Jp, is a Noetherian ring and every element of S(fy)
is integral over Jg,. This shows that 3y, contains & algebraically independent
elements. Furthermore since S(by) may be obtained from 3y, by the adjunc-
tion of a finite number of elements which are integral over it, S(b,) is a finite
module over Jg,. Let (O, be the set of restrictions of elements of Q to by.
Then this restriction is a homomorphism of @ onto ,. The ring 2 does not
contain more than % algebraically independent elements and contains 3,
which does contain & algebraically independent elements. Since @ and Q,
are integral domains. this implies that the operation of restriction to b, in-
duces an isomorphism of 2 onto Qg,. But since 35, CQ, CS(hy) and since Jg,
is Noetherian and S(by) is a finite J5,-module, it follows (see van der Waerden
[16, vol. II, §99]) that Q, is also a finite Jp,-module. Therefore in view of the
above isomorphism  is a finite Jy-module.

2.3. The last step. We have now to prove that 3’ is a finite Q-module.
For this we shall use the classical argument of Hilbert. Let A be the S(p)-
module generated by 3’ (i.e. the set of linear combinations of elements of &’
with coefficients in S(p)). Since the ring S(p) is Noetherian and S(p) X W is a
finite module over S(p), A is a finite S(p)-module and therefore ¥
=D 1.1S(p)A4; (4:ES’). We shall prove that 3’ = D> i_, Q4 ;. From Lemma 7,
S(p) X W is the direct sum of 3’ and the space I spanned by the elements
EX)A (XEL and 4 €S(p) X W). Similarly S(p) may be written on the direct
sum of  and the space M spanned by the elements p(X) F(XEf, FES(p)).
Let A= Y ., FiA; (F:ES(p)) be an element of &'. Then F;=F! +N; when
F! €Q and N;ERN. If GES(p), E(X)(GA:)=(p(X)G)A: (X &) since £(X)4;
=0. Hence (p(X)G)4:EM and therefore N;A;EM (1=:=r). Now F!A;: €Y
and A= D5, FI/A;+ > iy N:A;. The sum 3’+9% being direct, it follows
that A= Y 5., F!A; and this proves our assertion. Theorem 1 is now com-
pletely proved.

PArT II. WELL-BEHAVED FUNCTIONS ON A LIE GROUP

4. Preliminary remarks. Let G be a connected Lie group and $ a (com-
plex) Banach space. For any bounded linear operator A on § we write
IAI =Ssup|=1 |A¢| W E D). Let I denote the unit operator on §. Then by
a representation of G on § we mean a mapping = which assigns to every

(5) Chevalley’s results are not yet published. I am thankful to Professor Chevalley for
being good enough to let me use them.
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% &G a bounded linear operator w(x) on $ such that the following two condi-
tions hold:

1) w(xy)=m(x)w(y) (x, yEG) and 7(1) =1 where 1 is the unit element of
G.

(2) The mapping(®) (x, ¥)—>r(x)¥ (xEG, ¢y EP) is a continuous mapping
of GX P into P.

It follows from the second condition that |7 (x)| is bounded on every com-
pact set in G. Conversely assuming that (1) is fulfilled, it is easy to prove
that if the mapping x—nw(x)¢ (xEG) is continuous at x=1 for every y &9
and |7r(x)| is bounded on some neighbourhood of 1 in G, then 7 is a repre-
sentation.

Let C;°(G) denote the set of all (complex-valued) functions on G which
are indefinitely differentiable everywhere and which vanish outside a com-
pact set. Let V be the subspace of  spanned by all elements ¢ of the form

6= f (s (fECTG), ¥ E9)

where dx is the element of the left invariant Haar measure on G. Let g, be
the Lie algebra of G and g its complexification. We denote by 8B the universal
enveloping algebra of g. Girding [5] has shown that for any X Egoand ¢ SV
the limit

1
lim — {r(exp tX)¢ — ¢} (tER)
—0 ¢

exists and lies in V and if we denote this limit by 7v(X)¢ we get a representa-
tion 7y of g (and therefore of B) on V. We shall call V the Girding subspace
of © and wy the Garding representation of g (or B). Unfortunately this
representation has one serious shortcoming. If U is a wy-stable linear subspace
of V, then its closure U is not necessarily invariant under 7(G). Thus one of
the main links which connect representations of G with those of g, in the
finite-dimensional case is absent in the relationship between 7 and my. Our
principal objective now will be to restore this link by replacing the Garding
subspace by the space of all “well-behaved” elements in .

5. Power series in a Banach space. Let {{.}a.cs be an indexed set of
elements in . For any finite subset F of J let sr denote the sum Zae F¥a
We say that the series Zaej ¥ converges if there exists an element ¢ €9
such that for any >0 we can find a finite subset Fy of J with the property
that |s;a—¢| =e whenever F is a finite subset of J containing Fy. ¢ is then
called the sum of the series and we write ¢ = Zaej Ya. (It is clear that ¢ if
it exists is unique.) Moreover we say that the series converges absolutely if

(%) It can be shown that condition (2) can be replaced by the apparently weaker require-
ment that the mapping x—=(x)¢ (x <G) be continuous for every ¢y & $.
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D et |¢a| <. It is obvious that an absolutely convergent series is con-
vergent.

Let ch."'.aéo Ve, - -+, ettt - - -5 (Yo, - - -, €.) €9) be a power
series which converges for ti=ay, - - -, t,=a. (@a;EC). Then it follows from
the usual arguments that it converges absolutely for all ¢, - - -, £, such that
|t;| <|a.~]. We shall say that the series(?) Y. ¥(e1, - - -, €,) £ - - - £ con-
verges near the origin if it converges when |4, - - -, |t.| are all sufficiently
small. It is clear that convergence near the origin implies absolute conver-
gence for sufficiently small values of |ti|, - - -, |t.|. Moreover a power
series converges to zero near the origin if and only if all its coefficients are
zero. Since the field of complex numbers is a Banach space, the above ter-
minology is also applicable to ordinary power series with complex coefficients.

LeEMMA 14. Let D opeeerezo Yle1, - -+, €0) £2- - - be a power series
with coefficients in © which converges near the origin. Let g1, - - -, g be n
power series in m variables uy, + - -, Um With complex coefficients which are all
convergent mear the origin and which take the values 0 at the origin (i.e. al
Mm=us= -+ =u,=0). Let

dm

Z 0(81, oty 6ny dl’ Tty dm)ul‘.il ccc Um (a(e, d) E C)
()

be the power series expansion of gt - - - gir. Then the series

d d.
E Yley, - -+, en)alen, -+, en dy, - vy dn)uf e
(&) (d)

converges absolutely near the origin.

Choose €>0 such that the series Y . ¥(e1, - -+, €,) £2 - - - £ and the
series g1, - - - , ga all converge absolutely if | ;| <e¢, |u;| Se(1<i<n, 1<j<m).
Let gi= D) bi(dy, - + -, dm)u® - - - 4% (bs(d) EC, 1<i<m). Since the con-
stant term of g; is zero, it is possible to choose §>0 (6§ <€) such that

dm

Z b,-(dl,“-,dm)ufl-'-um <e
I

(d)

if |u;] <8 (1<j<m). Then it is clear that

d; d
> |vI/(81,~' ,enaley, - - -, en, d1,~~-,dm)u11--~u,,.m|
(e),(d)
erterten

§Z|¢(€1,°"yen)|€ < o

(o)
provided |u,| <4. This proves the lemma.

(") We shall often abbreviate (e, - - -, es) to (¢) and y(ey, * * *, €s) to ¥(e). Similarly for
other symbols.
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LEMMA 15. Let Y .20 Y(e)t* (Y(e) ED) be a power series which converges
to f(¢) of ]t[ <r (r>0). Then the power series Y _o>1y(€)et*=" is convergent for Itl
<r and its sum 1is equal to the limat

. S+ h) =)
lim ————

0 k

(rec, |t <.

It is clear that .o |¢(e)t°] converges if |t| <r and from this it follows
that the same is true of the series Y .21 ltl/(e)et"‘ll . Therefore if g(¢) is the
sum of the series Y .>1 ¥(e)et*! (| t| <r), we have

J@+ k) — @) (t+ ) — 1o
h h

Choose § so small (§>0) that || +25<r. Then if | x| <8/2,

t+ h)e — ¢ e 4r
il hf : dziélh‘ S (r—=0)°
h (z— 0%z —t—h) 8?
where # denotes complex integration on the circle |z—¢| =8. Hence

+h) - ‘
fa ;'M—w>

Since Y .0 lt[/(e)| (r—98)e< = it follows that
S+ B =10

- ete—l

—wﬂégwwl

—_ ete—l

4
é;MIZN@waM
e20

8() = lim P
Put
d o ) =)
PR
Then
d
fT(:)— = Zz:ley’/(e)t""‘ ' (| ¢] <.

COROLLARY. Let D oy Y(er, - -+, ) 12« -8 (Y(es, - -+, ) ED) be a
power series which converges to f(t, - - -, ta) =f(t) of |t,~| <r; (r;>0, 1=<71=n).
Then the series Y o Y(er, - - -, €n) (2 - - - 12)/t; comverges in the same
region to

af(t) . f(tly"'ytt"*'hx"':tn)_f(th"'ytn)
— = lim .
6t.~ h—0 h

We know that Y. ¥(ey, - - -, €a) £ - - -t converges absolutely for
|t;| <7, Hence the series obtained by collecting together the coefficients of
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I is also absolutely convergent. Let ¥/(e;) denote its sum. Then

JO = 2 (et
;20
and our assertion now follows from the above lemma.

Let M be a real (complex) analytic manifold. A mapping f of M into a
Banach space 9 is called analytic (holomorphic) at a point x, & M if for every
coordinate system (¢, + + «, £,) at %o such that ¢;(xo) =0, there exists a neigh-
bourhood V of xy in M (on which our coordinates are valid) and a power
series Do, ... ez0¥(en, s c 0, e)TR 7P Wl - -+, €) EP) in n vari-
ables 71, + + -, 7o such that this series converges to f(x) at 7,=t(x),
1=i=n (x&V). It follows easily from Lemma 14 that if the above condition
is fulfilled for one coordinate system (¢, - - -, £,), then it necessarily holds
for all coordinate systems (ui, * * -, %,) at %o such that #;(x) =0, 1S<=<n.

LEMMA 16. Let M and M’ be real analytic manifolds and g a mapping of M’
into M which is analytic at a point x{ EM’'. Let xo=g(xd) and let f be a map-
ping of M into © which is analytic at xo. Then the mapping f o g of M’ into
s analytic at x{d .

This again is an immediate consequence of Lemma 14,

LEMMA 17. Let f be a mapping of M into O analytic at xo. Let u be a (complex-
valued) function on M which is analytic at xo. Then the mapping uf is analytic
at xo.

Choose a coordinate system (#, - « -, £,) at xo such that £;(x0) =0, 1 i <n.
Then if x lies in a suitable neighbourhood V of x,,

f@) = 2 ¥len, -+, ea)ti (@) - - - ta(x) W(e) € 9),

()
(@) = L aler, - -+ ety () - - - 17(3) (a(e) €C)
(9
both series being absolutely convergent. Hence

Z ¢(ely Tty en)a(dlv AR dn)t;”-dl

(6),(d)

@) - (@)

converges absolutely to #(x)f(x) for x€ V. From this the lemma follows.

LeEMMA 18. Let f be a mapping of M into © which is analytic at x, and let
A be a continuous linear mapping of © into a Banach space O'. Then the
mapping A o f of M into ©' is analytic at x,.

Let ¢ be the sum of a convergent series Z,e; Yo in . Since 4 is linear
and continuous, the series Zaej Ay . is convergent in ' and its sum is A¢.
The assertion in the lemma is an immediate consequence of this fact.
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Let f be a mapping of M into § which is analytic at xo and let X, be a
vector(3) in the tangent space of M at xo. Let (¢, - « -, £.) be a coordinate
system at xo such that #;(xp) =0 and let

J@) = 2 ¥en, -, et (@)« - o (%) Wley -+, ) €ED)

(e)

for x sufficiently near x,. Then we put

Xof = 20 il(Xots)
1SiSn
where {; is the value of ¥(ey, - - -, e,) for e;=1 and ¢;=0, j=1. It is easy
to verify that the value of Xf does not depend on the particular choice of
the coordinate system (¢, - - «, £,) used in its definition.

LeEMMA 19. Let f and X, be as above and ¢ a continuous linear function on
9. Then the function ¢(f(x)) is analytic at xo and Xo(p(f)) = (Xof).

¢ is a continuous linear mapping of § into C. Hence from Lemma 18,

¢(f(x)) is analytic at xo. Moreover ¢(f(x)) = D dW(er, « - -, €x))E2(x) - - -
i (x) if x is sufficiently near x,. Hence

Xo@(f) = 2 o) (Xot) = ¢(Xof).

1SiSa

LeMMA 20. Suppose M’ and M are real analytic manifolds and g is a map-
ping of M’ into M which is analytic at x{ EM'. Put xo=g(xJ) and let f be a
mapping of M into © whick is analytic at xo. Then if X{ is a vector in the
tangent space of M’ at x4,

Xo'(fog) = (dg Xo)f
where dg is the differential of g.

This follows without difficult from Lemmas 16 and 14.

We regard the field R of real numbers as a real analytic manifold in the
usual way. For a given {,&R let T, be the vector in the tangent space of R
at to such that Tog= {dg(t) /dt} e, for any function g which is analytic at f.

LEMMA 21. Let f be a mapping of R into © which is analytic at to. Then

1 d
Tof = l{%;{f(to+ k) — f(t)} = (é) .

Put k(t) =t—to ((€R). Then k(ty) =0 and & can be chosen as a coordinate
on R. Since f is analytic at £, we can write

M=§MW> (W(e) € 9)

(%) We use here and in what follows the terminology of Chevalley [4, Chap. III].
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for ¢t sufficiently near f,. Hence

) = fto) H
e T S ek

and therefore

J©) — f(t)

im = YW =T

This proves the lemma.

COROLLARY. Let g be a mapping of R in M which is analytic at to and | a
mapping of M into O which is analytic at xo=g(ts). Then if Xo=dgT,,

(4 _ o J(elte + B) — f(g(to)
Xof = ( . f(g(t))> = lim

t=ty h—0 h

This follows immediately from Lemmas 20 and 21.
Let f be a mapping of a real analytic manifold M into . We say f is
analytic if it is analytic at every point of M.

LEMMA 22. Let f be an analytic mapping of M into O and X an analytic
infinitesimal transformation on M. Then the mapping Xf (i.e. x—X (x)f, xEM)
is also analytic. Moreover if Y 1is another infinitesimal transformation and
Z=[X, Y]|=XY—YX, then

Zf = X-Yf - Y-Xf.

Let xo&€ M and let (4, - + -, ¢n,) be a coordinate system at x, such that
ti(x9) =0, 1 =2 =n. Then there exists an open neighbourhood U of x, (on which
the system (4, « « -, t,) is valid) and functions %,, - - : , %, which are analytic
on U such that X = D 1<:<. #:0/0t; on U. Moreover we may choose U so
small that we have the expansion

f@) = Zlen -y )i’ @) - - () W(e) €9, x € V).
(e)
It follows from the above corollary that

1 ey Ly en
("—f)u) - lim 7{ S Wlen -y @) - W)+ B 1)

9t B0 (&)

S e @) - ) - - t:"<x>}

(e)

a e en.
= Yles, -+, en) {5 (v - tn )} mti o

(e) 1
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in view of the corollary to Lemma 15. This proves that df/d¢; is analytic at
xo. Since the functions u; are analytic at xo we conclude from Lemma 17
that Xf is analytic at x,.

Now we come to the second part. Let ¢ be a continuous linear function
on  and g an analytic mapping of M into . Then from Lemma 19 the
function ¢,: x—¢(g(x)) is an analytic function on M and X¢,=¢x, for any
analytic linear transformation X on M. From this it follows that ¢z;=¢xy;,
—¢rxs. Now put g=Zf— (X Yf— YXf). Then ¢(g(x)) =0. Since this is true
for every ¢ it follows from the Hahn-Banach Theorem that Zf=XYf— Y X{f.

6. Banach spaces of functions. Let L be a closed finite interval on the
real line and {—y; a continuous mapping of L into a Banach space $. Then
|¢¢| is a continuous function on L and [.|¢:|dt< . Therefore the integral
Syt is defined and for any bounded linear function o on 9, a(fry¥dt)
= [ra(Y:)dt. Let D be a domain (i.e. an open connected set) in the complex
plane and 2—4, a continuous mapping of D into §. Let I be a rectifiable curve
in D. Then it is clear that the complex integral [1y.dz exists and a(/1y¥.dz2)
= fraf,)ds.

Let E be a locally compact Hausdorff space with a (regular) positive
measure p given on it. Let  denote the Banach space of all u-summable
functions on E.

LEMMA 23. Let D be a domain in C* and (21, + - + , %a, X)—f (21, * * *, 2n; X)
a continuous function on DX E which satisfies the following two conditions:

(a) there exists a p-summable function g on E such that | flz, * -+, 2a3 x)l
<|g@)| for all (z, - - - , 2, ) EDXE;

(b) for each xEE the function (21, - -+, 3.)—=f(21, * + *, 2a; %) is holo-
morphic on D.

Let Y(21, - -+, 2.) be the element of O represented by the function
x—f(21, + + +, 2y x). Then the mapping (21, - - -, 2.) (21, * * , 2,) 15 @
holomorphic mapping of D into .

Let (2, - - -, 2,)ED. Given ¢>0 and a compact set K in E we can
find >0 such that if max; | k| <8, then (z1+h, - - -, 2.+ha) ED and

[fr 4 by oyt by 2) — f(B1, -+ 8as2) | S €

for x in K. Since I gl is u-summable we can choose K such that [z g Igl du<e.
Hence

|¢’(Zl+h1,"',zn+hn)—"I’(Zl;"’yzn)l
=f lf(31+h],'°°,Zn+hn;x)_f(ZI,"‘,Zn;x)ld/“

sef et 2 lelus @ + 2
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if lh.-l <4. This shows that the mapping (21, - * -, 2.)—¥(21, - - -, 2.) is a
continuous mapping of D into .

Now let (ay, - « +, @) be any point of D. Choose positive real numbers
r1, + + +, ra such that the polycylinder P defined by the conditions |z;—a,~|
<r;(1=i=n) liesin D. Let (2, : - -, 2,) be any interior point of P. Put

Blow o) = (m—l)m)f f (r_'p(:; .'(’m—zn)“"”d‘“"

where # 'k denotes complex integration on the circle |§‘k—ak| =r;. For any
measurable set X in E and a p-summable function F on E put

ax(F) = f Fip.

Then ax may clearly be regarded as a bounded linear function on §. More-
over ax(F)=0 for all X implies F=0 u-almost everywhere. Therefore if
ax(Y)=0 YEP) for all X then ¢y =0. Now

ax(¢(zly Sty z”))

(27r(— 1)1/2) }{ f (ﬁai(':g - ( : r:))z”) &1 deu,

But ax@($y, -+« , &) =Sxf(§1, -+, Ea; x)dp and therefore

IaX('I/(g'l,"’ vg'n))l éf |g|dﬂ.

Hence it is clear that

ax(¢(z1, *  + , 2a))

(27"(" 1)”2) f f f (g-ljjg':l). — f”’ i)z”) Sy - - - din

= ff(zx, Cey Za; X)dp
X

by Cauchy’s Theorem. Therefore

ax(d(z1, - - -1 2a) = ax(W(z1, - - -, 2a)).
This being true for all X we conclude that
,p(zl' cee, zn) = ¢(zh e, Zn)

Nen ‘p(g.lr ",{n) ..
= (@r(=1) f f G ) o o) 1

It follows immediately from this formula, by the classical argument, that
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there exists a power series in (z1—a,), - - -, (2.—a,) with coefficients in §
which converges in the interior of P toy(2, - - +, 2.). Therefore the mapping
(21, « -, 2a)—¥(21, - + +, 2n) is holomorphic at (a;, « - -, @a).

7. Well-behaved vectors in a representation space. Let w be a representa-
tion of a connected Lie group G on a Banach space . We shall say that an
element Yy €9 is well-behaved (under 7) if the mapping f: x—w(x)¢ is an
analytic mapping of G into . For any y&EG let ¢, denote the mapping
x—y~x (*&G). Then it is easy to verify that w(y) o f o ¢,=f. Since ¢, is
an analytic isomorphism of G with itself it follows from Lemmas 16 and 18
that if f is analytic at x=1 then f=w(y) o f 0 ¢, is analytic at y. Therefore
in order that f be analytic it is sufficient that it should be analytic at 1.

Let W be the set of all elements in § which are well-behaved under .
Clearly W is a linear subspace of §. Moreover since for a fixed yEG the
mapping x—xy is an analytic mapping of G, it follows that if Yy EW then
T(yWEW. Let go be the Lie algebra of G. For any ¢y €W and X €g, consider
the mapping t—w(exp tX)Y¥ ((ER). Clearly this mapping is analytic and
therefore from Lemma 21 the limit

1
lim — {=(exp tX)y — ¢}
-0 ¢

exists. We denote this limit by 7w (X)y. Let f be the mapping x—w(x)¥ and
g the mapping x—w(x)mw(X)y. Then it follows from Lemmas 20 and 21 that
g=Xf and so g is analytic (Lemma 22). Hence mw(X)y EW. Thus we get a
linear transformation 7w(X) of W into itself. Moreover if [X, Y]=2Z
(X, Y, Z&go) we know from Lemma 22 that Zf =X Yf— Y- Xf and therefore
aw([X, Y])=mw(X)rw(Y)—7w(¥)rw(X). This shows that the mapping
X—rw(X) is a representation of g, on W. Let go be the complexification of g
and B the universal enveloping algebra of g. We denote by ww the representa-
tion of B on W which coincides on go with this representation.

Since g is a vector space of finite dimension over R we may regard it as
a real analytic manifold in the obvious way. Then the most important prop-
erty of well-behaved elements may be expressed as follows.

THEOREM 2. Let  be an element in W. Then there exists a neighbourhood V
of zero in g such that the series D mzo (1/m)mww(X™) converges to w(exp X)¥
for XE V.

Let (4, - - -, t.) be the Cartesian coordinate system in go corresponding
toabase (X1, - - -, X,) sothat X = > o, 1:(X) X: (X Ego). Since the mapping

X—m(exp X)¢¥ is an analytic mapping of g, into 9, we can find a neighbour-
hood V of zero in g¢ such that

w(exp X)¥ = X ¥(ew, -+ -, et (X) - - - tn (X)

(e)
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Wle, - -+, ) ED, XEV), the series being absolutely convergent. We shall
now prove that

e ‘ en 1
S e, X)X = — (X (X E ).

e+t epg=m

For a fixed X &g, choose >0 so small that X € V whenever |u| =r (uER).
Then

w(exp uX)Y = § Ymth™ (I ul <7
m0
where Ym= Z,ﬁ.,_,,,,”_,.. Yiey - - -, e (X) - - - £2(X). We shall now prove

by induction on m that

dm
w(exp wX)rw(X = T b ) (|l <n.

pm
This is true for m=0. Now
(XY = mw(X)rw(X™)¢

1
= lim . {w(exp sX)rw(X™)y — 1rw(X”‘)¢}.
30
- Since w(exp #X) is a bounded operator,
. 1
w(exp #X)wrw(X™)yY = lim — [r(exp (s + #)X) — =(exp uX) ]y’
=0 § :
where ' =71 (X™)y. But
dm
w(exp uX)W' = 2, ¥ (——— u/‘) (I ul <7
p=m dum™
by our induction hypothesis. Hence

(exp uX)rw(X™ ) = 3 'I/»

B mt1

m+1
(Iu! <7

du i
from Lemma 21 and so our assertion is proved. Now if we put # =0 we get
aw(X™WY = mim =m! D Ylen, -+, )l (X) -+t (X).
ort+ ot epmm
Therefore if XEV
1
w(exp X)¥ = 2. — 7w(X™)V.
mzo m!

COROLLARY. Let  be a well-behaved element and let Cl (ww(B)Y) denote the
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closure of mw(B)YY in O. Then Cl (rw(BW) is invariant under 7(G).

Let ¢ be any element in U=nw(B)Y and consider any continuous linear
function ¢ on $ which vanishes on U. Since (& W the function x—¢ (7 (x)¥,)
(xEG) is an analytic function on G. On the other hand in view of the above
theorem there exists a neighbourhood V of zero in g¢ such that

1
w(exp X)¥o = 2, — (=)o (X EW).

mZ0 .

Therefore

1
$(r(exp X)) = 2. — ¢(rw(X™)¥o).
m=0 m!
But 7w (X™)Yo&E U and therefore ¢(mw(X™)o) =0. Hence ¢(r(exp X)yo) =0
for XE€V and therefore ¢(mw(x)¢o) vanishes on a neighbourhood of 1 in G.
But since it is an analytic function on G it follows that ¢(m(x)¥e) =0 for all
x&EG. Keeping x fixed and varying ¢ we deduce from the Hahn-Banach
theorem that 7 (x)¢oECl (U). This proves that w(x) UCCI (U) (xEG) and
therefore by continuity w(x) Cl (U)CCl (U).

8. Well-behaved functions. Let 7 be a representation of G on a Banach
space 9. Then |1r(x)| =SUpjy|s1 |1r(x)¢| WE D) is a semi-continuous func-
tion on G and therefore it is measurable (with respect to the Haar measure).
Let L(G, =) denote the space of all (complex-valued) measurable functions f
on G such that

1 = [ 15262y | 05 < =

where dx is the element of the left-invariant Haar measure on G. Then with
respect to the norm ” “, L(G, ) is a Banach space and we get a representa-
tion A of G on L(G, 7) if we define A(y)f to be the function whose value at x is
fly~x) (x, yEG, fEL(G, )). In fact,

Mol = [ 1) | 1w a5 = [ 1563|1260 [ a2 < | =)

and therefore A(y) is a bounded operator and
Nl = sup N 5 [ -

This shows that |[\(y)|| remains bounded on a compact set. Therefore, in
order to prove that A is a representation, it is sufficient to show that
limg., ”)\(x)fo—fo” =0 for any fo&L(G, 7). Let V be a compact neighbour-
hood of 1 in G and m an upper bound for ||\ (x)|| on V. Given any >0 we can
choose a continuous function g which vanishes outside a compact set such
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that ||fo—g|| <e. Since |7 (x)| remains bounded on a compact set, it is clear
that we can find a neighbourhood U of 1 (UC V) such that

IN@g — gll = [ 16t — g | [ =) | ay s e

Then

IN@)fo = fol| = [IN®)(fo — &) — (o — &) + (M(x)g — 9|
S @)+ e+ e = (m+ 2)e (x € D).

This proves that lim,., ”)\(x)fo - fo” =0 and therefore \ is indeed a representa-
tion.

Let O be the Banach space of all bounded linear operators on § with the
norm |A| =Supjy|=s1 |A¢| (4€e9, vye9). If fEL(G, =), the integral
Jef (x)7(x)dx has a well-defined meaning in O since [¢|f(x)r(x)|dx=||f]| < .
Put T;=ff(x)w(x)dx. Then the mapping T': f—T; is a continuous linear map-
ping of L(G, ) into O since |Ty| <||f|l. Now let 8, denote the set of all
elements in L(G, w) which are well-behaved under A. Then for any y €9,

@1 = [ Sy = ) Saris)n(sMdy = Tycarb

But the mapping x—X\(x)f is analytic and T is linear and continuous. Simi-
larly A—Ay (AED) is a continuous linear mapping of O into  since
|A1//| §|A| |1[/| Hence x—Thxm=7(x)Tpy is an analytic mapping of G
into  (Lemma 18). Thus we have the following result.

LEMMA 24. Let fEB, and Y EP. Then [of (x)m(x)¥dx is a well-behaved ele-
ment of O (with respect to ).

We shall now investigate the question of approximating arbitrary ele-
ments in § by well-behaved elements. Let L;(G) denote the space of all func-
tions on G which are summable with respect to the Haar measure.

DEFINITIONS. Let u(x) be any measurable function on G which is real and
non-negative and let { Jfa(x) } be a sequence of functions in Li(G). We shall call it
a Dirac p-sequence if the following conditions hold:

(1) [fax)dx=1 and lima.., [o|fa(x)|dx=1.

(2) For any measurable neighbourhood V of 1 in G,

lim | fa(®) | (1 + w(x))dx = 0.
now J gy
If u=1 we call it just a Dirac sequence.

LEMMA 25. Suppose there exists a Dirac , 1r(x)| -sequence { f,.(x)} on G such
that f,C,. Then the space W of all well-behaved elements is dense in .
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Let ¢ be an element in . Given any €>0 we can find, due to the con-
tinuity of the representation w, an open neighbourhood V of 1 in G such

that |w(x)¢ —y¢| <e|¢| for xE V. Then if Y. =T}¥,

Yo ¥ = f e = s

= [ 1@y - i+ [ p@EEw -
1 4 aq-v
Therefore

[ —¥| = e[ ¥] falfn(x)ldx+|¢l fa_vlfu(x)l(l-i-lw(x)I)dx§2e|://|

if n is sufficiently large. Hence ¢ =lim,., ¥». But since ¢, EW (Lemma 24),
it follows that W is dense in 9.
We shall now give a method for constructing such a sequence under suit-

able assumptions regarding G.

Suppose go is the direct sum of two subalgebras ¥, and 8, and K and S
are the analytic subgroups of G corresponding to ¥, and 8, respectively.
Consider the mapping ®: (%, s)—us (€K, s&S) of KXS into G. Clearly it
is analytic.

LeEMMA 26. ® is everywhere regular(®) on K X S.

Since the tangent space of a Lie group at any point may be identified
under left translation by its Lie algebra (which is the tangent space at 1), it
is clear that the tangent space of K X.S at any point is the direct sum of ¥,
and 8y and therefore it may be identified with go. Let d® be the differential
of ® and let #o&EK and s¢&.S be two fixed elements. Then we see without
difficulty that (d®)u,s,U=Ad (s5")U, (@®)up,e, Y=Y for YEL, and UES$,.
Here x—Ad (x) is the adjoint representation of G. Let s—Ad (s) (sES) de-
note the adjoint representation of S. Then it follows that

det Ads (s0)

det ((d®)ug.sp) = det Ad (so)

and so ® is regular at (uo, so).

COROLLARY. If ® is a 1-1 mapping of K XS onto G, it is an analytic 1so-
morphism of K XS with G.

For since ® is regular, the inverse mapping is analytic.

LEMMA 27. Suppose ® is a 1-1 mapping of K XS onto G. Let du, ds, and dx
denote the left-invariant Haar measure on K, S, and G respectively. Then under
suitable normalisation of these measures we have
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B det Ads (s)
"~ det Ad (s)

This follows immediately from the fact that

det ((d®)a,,) =det Adg (s)/det Ad (s).

duds (x=us,uEK,scS).

DEFINITION. Let 8 be a Lie algebra over a field of characteristic zero. We say
that 8 is quasi-nilpotent if it can be written as the direct sum of an abelian
subalgebra a and a nilpotent ideal n. A connected Lie group S is called quasi-nil-
potent if its Lie algebra is quasi-nilpotent.

From now on let .S denote a simply-connected quasi-nilpotent Lie group
and 8, its Lie algebra. Let 8o=a,41n, where ao is an abelian subalgebra and
N a nilpotent ideal in 8, and the sum is direct. It is known that there exists
a faithful matrix representation of S (see for example [8 (b)]). Therefore we
may consider S a linear group and 8, a linear Lie algebra. Since every matrix
with complex coefficients may also be regarded as a real matrix of twice the
degree, we may further assume that all matrices in S and 8, are real. Let 8
be the Lie algebra over C spanned by 8,. Then 8 is the complexification of
80. Let S, be the analytic group of matrices corresponding to 8. Then S.DS
and, since 8 is a complex algebra, S, is a complex analytic group. Thus we have
imbedded S in a complex analytic group S, whose Lie algebra 8 is the com-
plexification of 8,. We may assume that S, is simply-connected, for otherwise
we could replace it by its universal covering group and thus obtain an im-
bedding of S into a simply-connected complex group. Let a and n be the sub-
algebra of 8 spanned by @y and n, respectively, and 4., N, 4, and N the
analytic subgroups corresponding to a, n, ao, and n, respectively. All these
groups are simply-connected and (n, a)—na (nEN,, a EA,) is a topological
mapping of N.X A4, onto S.. Moreover, na ©S if and only if &N and a EA.
Since a and n are complex Euclidean spaces we may regard them as complex
analytic manifolds in the obvious way. Then the mappings H—exp H and
X—exp X (HEa, XEn) define holomorphic isomorphisms of a with 4, and
n with N, respectively.

For any x&S, and nE N, write xn=1,(n)a where 7.(n) EN, and a E4..
Then 7. isa topological mapping of N, onto itself and 7.1y = (7)1, (¢, yES.).
Let 0 denote the conjugation of 8 with respect to its real form 8, so that
X+ (—D"2Y)=X—(—1)"2Y (X, YE8Sy). We extend 0 to an automorphism
x—bx of S..

Let f be a complex-valued function on N,. We shall say that f is linear
(polynomial) if the function X—f(exp X) (X En) is a linear (polynomial)
function on 1. Similarly, we call a function f on N.X N, a polynomial function
if f(n, n') = 2isiss fi(m)fi (') (n, #' EN,) where f, fI (1Si<F) are poly-
nomial functions on N,. Let (/;, - - -, /,) be a base for linear functions on N,.
Then every polynomial function f on N, is uniquely expressible as a poly-
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nomial P(Ly, - - -, L) inl, - - -, l,. We define the degree of f to be the degree
of P. It is then clear that the polynomial functions of degree =p form a
vector space of finite dimension.

For any function f on N, we denote by f, (x€S.) the function =
—f(r4(n)) WEN,). If f is a polynomial function, then so is f.. It is clearly
sufficient to prove this when f is linear. It is then known that for any #,& N,
the function n—f(nen) is a polynomial function (see Birkhoff [2]). Now if
xl=na0 MeEN,, a0CA4,), f(r-1(n)) =f(noaomay’) =fi(ama;"') where f is a
polynomial function. On the other hand

ao(exp X)ag! = exp (Ad(ao)X) (X En

where y—Ad (y) is the adjoint representation of S.. Hence the functions
n—l(amag') (1=1<r) are all linear and this proves that the function
fz: n—fi(aomag') is a polynomial function. Moreover if [ is a linear function
on N,, the function (1o, #)—I(nsn) is a polynomial function on N, XN, (see
Birkhoff [2]) and so it follows that there exists an integer u independent of
no such that every function of the form n—l(non) (I linear) is of degree p.
This means that the vector space Q spanned by the functions (/;). (1S:=r,
xES,) is finite-dimensional. Since (f;)y=f,. for any function f on N,
(x, yEG), it follows that Q,EQ for every QELQ.

We may choose the functions ;, 1 £7=<r, in such a way that they are real
on N. Then [;(8n) =I;(n) (#EN.) where the bar denotes complex-conjugate.
From this it follows that (l.)s. coincides with (I;), on N. Hence for every
QERLQ there is a function ¢’ EQ which coincides with Q on N. This shows
that £ is spanned by functions which are real on N. Moreover I;&£Q,

1<i=r. Let (Qy, - - -, Qm) be a base for Q such that the functions Q; are
real on N and the functions /;, 1<7=r, are included among (Qi, * * -, Qm)-
Then
Q)2 = 2 a:i(%)Q; (x €S0
j=1

and the mapping x—(a;;(x)) =a(x) is a matrix representation of S.. If [ is a
linear function on N, (n, x)—l.(n) is clearly a holomorphic function on
N.XS;. Therefore the same holds for the functions (n, x)—f.(n) where f is
a polynomial function on N,. Therefore the functions a;; are holomorphic on
S.. Let Rc denote the real part of a complex number c.

LeEmMMA 28. Let ¢j;, 1=j=<m, be given complex numbers and let x!+c;
=) ", bij(xitc;) (b:;EC, x;ER). There exists a constant €>0 such that if
maxs,; Ibij—a.',’l .§e, then
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Jor all systems of real numbers %, - - - , Xm Such that Z}"_, =1,
Put ¢;;=0b;;—0:;, M =max;,; |c;,-| , and ¢=max; Ic,-| . Then
%= xi+ ; cii(x; + ¢5)
and therefore
&= Z' % + 2 E’ cijxi(x; + ¢;) + ;( ; cii(x; + 0;))2-

3

Hence
|6 -
provided D_; x2=1. Hence if M is sufficiently small

1
> (@i — ) é;fo

< m2M + 2Mc+ M1+ VT =

and therefore
m(ix.fz) 2 1y P
i=1 2 i1

Since the functions a;j(x) are continuous and a;;(1) =8;; it follows from
the above lemma that there exists a neighbourhood V’ of 1 in S, such that if

u(na) = E Q) = 0:1))! (1€ Naa€ A,
then
1 1 7. .
R(u(xona)) = 7 u(n) = E Z li(n)

for nEN, aEA, and x%,E V' provided > i, B(n) =1.

Let us call a function X on 4. linear if the function H—\(exp H) (HEqa)
is linear on a. Choose a base (A4, - - -, \,) for the space of linear functions on
A, such that \; are real on 4 and let Ao denote the constant function 1.
Then if a, a’ €4, Ni(aa’) =\i(@’) +Xi(a)o(a’), 1 ¢ Ss. Put

o(na) = 32 M) (n € N., a € 4,).

=1

Then making use of an argument similar to that of Lemma 28, we see that
there exists a compact neighbourhood V of 1 in S, (VC V') such that
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1 1 2
R(v(xona)) Z — v(na) Z — 2. N(a)
2 2
for xo€V, nE€N, and s €A. Now put F,(x) =e~"»@+e@} (xCS,) wherev isa
positive real number. Then F, is holomorphic on .S, and

| Fy(x0%) | < M, exp {— —;-( > l?(n) + > kj(a))}
=1 J=1
for xo&€V and xES (x=nae, nEN, aEA). Here M, is the supremum of
e’ e=uGm | for xy€V, and D E(n) <1 (nEN).
Now let 7 be a representation of .S on a Banach space $. We shall prove
that F,EW,. Let us say that a function f on S is of at most exponential
growth if there exist real constants My, M>;=0 such that

| f(na) | < M, exp (M max (2 |, | Ni(a) | )) (nEN,aE A).

Clearly the product of two such functions is again of the same type. Now
consider the function |7r(x)|. Let M denote an upper bound for |7r(x)| on
the compact set consisting of all points x=nae in S (nEN, a €A4) such that
max;,; { Il.-(n)l , I)\j(a)l =1. For any x &S let ¢ denote the least integer such
that ¢=max;,; { ll,-(n) , l )\j(a)l} (x=na). Then we can choose elements
n' EN and o’ €4 such that n=#n'?and a=a’? and

[w(x)| S | xm) || w(a)| | x(n)) |2]| x(a’) |2 < M2
since |Li(n')| =(1/9)|li(n)| =1 and |N\;i(@")| =(1/g)|Ni(a)| £1. Since ¢=1
+max;,; { I l;(n)| ,\j(a)}, we see that ]1r(x)| is at most of exponential growth.

Now consider the Haar measure dx on .S. Making use of Lemma 27 we find
that

dx = det (Adgs (a7Y))dnda (x = na)

when Ads is the adjoint representation of S and d#, da are the Haar measures
of N and 4 respectively. Since N is nilpotent and 4 is abelian,

dnda = dly - - - dLd\y - - - AN,

Moreover, since the function na—det Adg (a™?!) is clearly of at most exponen-
tial growth, it follows that

| (=) | dx = p(x)dly - - - dl,d\y - - - d),,

where u(x) is a function of at most exponential growth. Therefore it is clear
that

[ o=@ | dz < =,
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where
g(na) = exp {- %( S P+ > xf(a))} (nEN,aE 4).
=1 =1

We have seen above that we can choose an open connected neighbourhood
W of 0 in 8 such that

| Fu(exp (—2)x) | £ Myg(%) (ZEW,z€S)

where Z—exp Z is the exponential mapping of 8 into S.. Therefore the func-
tion x—F,(exp (—Z)x) is summable with respect to the measure |1r(x)|dx
on S. Let L(S, 7) denote the Banach space of functions corresponding to the
representation m, which was introduced in §7, and let ¥,(Z) be the element
in L(S, w) which is represented by the function x—F, (exp (—2Z)x) (ZEW).
Then all the conditions of Lemma 23 are fulfilled and therefore Z—,(Z) is
a holomorphic mapping of W into L(S, w). Let ¢ denote the representation
of S on L(S, 7) as it was defined in §7. Then a(exp X)¥, =¢,(X)(X E80)
where ¢, is the element in L(S, w) corresponding to F,. Therefore the map-
ping X—w0o (exp X)¥, (X E8y) is analytic at X =0 and so F,cB,.

Now consider J,= [F,(x)dx. If n€N and a €4, let n, and a, denote two
elements in N and A respectively such that l;(n,) =vV%;(n), 1=¢<r, and
Ni(a,)) =vV2\i(a), 1 £j=<s. Moreover if
Py

P=Z¢(Pls"')?1‘)lfl'°'lr

(p)

(C(Pb ] pr) € R)

is any polynomial function on N,, we put P*(n)= D |c(p1, cee, p,)l
lll(n)|1’: <. Il,(n)l"r. Then it is clear that v‘“IP(n)| <pV2P*(n) < P*(n,)
if P(1)=0. Hence if Q! (n) =Q:(n) —Q:(1),

F(na) = exp {— b 30 m) —v3 x?(«»}

=1 Jj=1

1%

e {= 207 ) - Eailen)

i =
On the other hand

J, = fF.(na) det (exp Adg (a1))dly - - dl.d\y - - - dNg
and we can find real numbers M;, M;>0 such that

det (exp Ads (a)) = M, exp (Mzi} | \i(a) l)

Hence
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det (exp Adg (a—l)) > M7 exp (—-M 2i [ \i(a) I)
fe=1

and
Tz M f exp {— >0 m) — X Ai(a)
il J=1
2 c
- Mzg [ Aiay) I}dll ceodhd\ - - AN = m> 0,

where ¢ is the value of the right-hand side when »=1. On the other hand,
let V; be the neighbourhood of 1 in .S consisting of all points na €S such that
|L:(m)| <8, |Ni(a)| <& (8>0). Then let us consider the integral

J,(8) = f F(x)(1 + | 7(2) | )da.
8-V
We can find positive constants M3 and M, such that
(1 + | w(na) | ) det (exp Adg (a™)) < M; exp M4( @) |+ 2| rie) l).
=1 Ju=1
Put

Pin, a) = X 1in) + 2 \Xa) and Pa(n, a) = 3| (n) | + j‘élx,-(a) .

i1 =1 t=1

Then vPy(n, a) =Pi(n,, a,) and vY2Py(n, a) = Py(n,, a,) and therefore

J,(8) < Msf exp { —vPi(n, a) + v'/2MPy(n, a)}dly - - - dld\y - - - d),

8-V,

< Mae—r(rtod?/2 f

exp {— i Pi(n, a)
FRA 2
+ v”’M4P2(n, d)} dll LI dlrd)\l s d)\.

’
< or(rtadt)e

yirte) /2

where

¢ = Maf
8-V,

1
exp ‘{“ — P10 &) + MiPa(n, a>} dly- - dldh - dh < .
]

Therefore
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!
70 < . prirattia, yrke
Ty c
and so
J.(8
lim ©®) = 0.
Yoo J,
Hence if we put f,=F,/J,, the sequence {f;, fo, ¢ ¢ - } is a |7r(x)|-Dirac-se-

quence of functions in B,. Therefore from Lemma 25 the space of well-
behaved elements is dense in . We can now prove the following theorem:

THEOREM 3. Suppose a connected Lie group G has two analytic subgroups K
and S such that the following two conditions are fulfilled: (a) K is compact and
S s quasi-nilpotent; (b) every element in G can be written uniquely in the form
us (W€K, s&€S). Let w be a representation of G on a Banach space © and let
Do denote the set of all well-behaved elements ¥ in O such that the linear space
spanned by the elements w(u)Y (W EK) is of finite dimensions. Then D, is dense
m 9.

The restriction of 7 on S defines a representation p of S on 9. Since p may
also be regarded as a representation of the simply-connected covering group
of S, it follows from the result proved above that the set of elements which are
well-behaved under p is dense in §. Hence given any ¢, €9 and €>0 we can
find an element ¥ which is well-behaved under p and such that [¢o—¢| <e.
Choose a neighborhood U of 1 in K such that |7r(u)\b —¢I <efor u€ U and
let du denote the element of Haar measure on K such that [xdu=1. Select a
continuous, real, non-negative function f on K such that f=0 outside U and

Jxfdu=1. Then if 1= [xf(u)m(u)Ydu,
[ = vl s [ sl vt - v|dus e
K

Let & be the set of all finite linear combinations (with complex coefficients)
of the coefficients of finite-dimensional matrix representations of K. Then
for any 7>0 we can find a function w ER such that ]f(u) —w(u)l <n7(uEK).
Hence

' ) (f0) — w)rCvdu| S Mn| ¥ S 3| | + 9

where M is an upper bound for |7r(u)] on the compact set K. Therefore if
2 -—~f w(w)r(u)du, | Yo — ¥a| < 2e + Mn(| Y| 4 ) < 3e
K

if g is sufficiently small. Since wCR we see easily that the elements
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7(u)Y2 (1EK) span a finite-dimensional subspace of 9. Therefore in order
to prove the theorem it is sufficient to show that the element ¥, is well-
behaved under #(G). This follows from the lemma given below.

LEMMA 29. Let w be an analytic function on K and  an element in O which
is well-behaved under p. Then [gw(u)m(u)ydu is well-behaved under = (G).

For any x ©G and ¥ €K put xu =u,s(x, u) where 4,EK and s(x, ) EK.
Then we know (see the corollary to Lemma 26) that (x, #)—u. and (x, %)
—s(x, ) are analytic mappings of GX K into K and S respectively. Now put
Vo= [kw(u)m(u)ydu. Then

m(x)Yo = f Kw(u)w(xu):l/du.

But for x fixed, the mapping #—u, (# GK) is an analytic isomorphism of
the manifold structure of K with itself. Since G is connected, this isomor-
phism is orientation preserving. From this we conclude that

du, = D(x, w)du

where D(x, #) is an analytic function of GXK which is everywhere positive.
Hence

-

(X)W = f Kw(uz-l)r(xuz-l)‘ﬁdu;l

- a(wIDG, Wr()r(G, W)

On the other hand, since ¢ is well-behaved under p, it follows from Lemmas
16 and 17 that the mapping is an analytic mapping of GXK into §. Let
by, - - -, ts be a coordinate system in G at 1 such that ¢;(1)=0 (1=j=<n).
Then for each #,&K we can find an open connected neighbourhood V., of %,
in K and a coordinate system ¢y, - - -, g& in K valid on V,, with the following
properties: (1) gi(uo) =0, 1 =2=k; (2) there exists a power series P,,(g, ) in
(q, -+, qx) and (&, - - -, tx) with coefficients in $ and an open neighbour-
hood Wy, of 1 in G such that the coordinates (4, - - -, £,) are valid on W,,
and the power series converges to ¥ (x, #) on W,,X V.,. Suppose

Pu(g,) = 2 Vule, e)q - - qiti -+ ta (Vuo(a, €) € D)
(a),(e)
and put v
Vol €) = D Vuo(a, €)gr (1) - - - gu"(u) (8 € V).

(a)

Then the mapping u—.,(«, €) is an analytic mapping of V., into §. Choose
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anumber 7(%0) > 0 such that the series P, (g, t) converges if max;, J;'(l q;l , It.-l)
=r(uo). Let U,, be a neighbourhood of %4 (in K) such that U,,C V., and max,
|q,~(u)| =r(uo) (uE U,,). Similarly we may suppose that max; |t.—(x)| =< r(uo)
for x € W,,. Since K is compact, there exists a finite set of points u,, + - -, %,
such that K=U,JU,\J - - - UU,,. Put W=W,N\W,,N - --NW,, and
r=min {r(u), - - -, r(u;) }. Then if uC U, NU,; (1 =4, j<p) and xEW,

W(x, #) = 2 b, (@) - 1 (@) = 2 buy(w, )11 (x) - - -l ()
(e (e

and therefore ¥.;(«, €) =y.;(u, €). Thus for each (e) there exists a mapping
u—Y(u, e) of K into § which coincides on U,; with x—y,,(u, €). This map-
ping is clearly analytic and

¢(x' u) = Z 'P(u, e)t;l(x) e t:"(x) (u = W).
(e)
Now if u€U,,; and xEW,
E I J/(u, e)t:l(x) T t:" (x) | = E | ¢ui(ur 6) | (f(’ui))eﬁ”“-‘-." < oo,
(e) o

Moreover since K is compact, we can find a real number M such that l1r(u)|
< M for all u&K. Then -

| wwp(u Ot (@) - - (@) | S M [ Y, )t (®) - - - 1) |
(e) (e)
and therefore the series
> w(u)yp(u, )t (2) - - -t (x)
(e)

converges uniformly to w(#)¢(x, ) on KX W. Therefore

(20 = f (s, )

=2 ( f w(u)p(u, e)du)tf'(x) e () (x€W).
(e) K

This proves that the mapping x—w(x)¢¥, is analytic at 1 and so ¥, is well-
behaved under .

PART I11. REPRESENTATIONS OF A SEMISIMPLE LIE GROUP

9. Permissible representations. We shall now apply the results of Part I1
to representations of a connected semisimple Lie group G on a Banach space
9. Since every such representation may also be regarded as a representation
of the simply-connected covering group of G, we may assume that G itself
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is simple-connected. Let go be its Lie algebra. We define ¥, b, and n, as in
Part I, §2. Let K, 4, and N be the analytic subgroups of G corresponding
to go, by and n, respectively. They are all simply-connected. Moreover,
S=A,N is a quasi-nilpotent group, and Iwasawa [9] has shown that the
mapping (%, s)—>us (uEK, s&S) is a topological mapping of KX.S onto G.
However, in general K is not compact and therefore Theorem 3 is not ap-
plicable immediately. Therefore we shall now give a method for extending
the results of this theorem to the present case.

We know that [, is reductive (Lemma 3). Let ¢y be the center of ¥, and
D the analytic subgroup of G corresponding to ¢o. Then K is the direct prod-
uct of its commutator group K’ and D. Moreover if Z is the center of G,
then K/DNZ is compact(®). We shall say that a representation w of G on 9 is
permissible if w(2) is a scalar multiple of the unit operator for :EDNZ. Assum-
ing that 7 is permissible, we can choose a complex-valued linear function
p on ¢ such that w(exp I') =¢*®x(1) whenever exp TEDNZ (TI'Ecy). Let
u—u* denote the natural mapping of K on K*=K/DNZ. Then it is easy to
verify that e *@r(u exp T') (uEK’, T E¢,) depends only on (u exp I')* and
so, if we denote it by 7*((u exp I') *), the mapping u*—n*(4*) is a representa-
tion of K* on 9. Let ¢, be a given element in P and e a positive number. Since
S is quasi-nilpotent, we can find an element Yy €9 which is well-behaved
under 7 (S) and such that |¢——¢o| <e. Moreover, since K* is compact, we
can choose a finite linear combination w of the coefficients of a finite-dimen-
sional matrix representation of K* such that

[ wtwtymta | s ¢
K* .
and therefore

< 2e.

[ e W — by

(Here du* is the element of the Haar measure on K* normalised in such a
way that [x*du*=1.) We now claim that ¢ = [gw(u*)m*(u*)Ydu* is well-
behaved under 7(G). Consider the element

m(x)p = f K‘w(u*)vr(x)w*(u*)zﬁdu* (x €G6).

For any u&€K let I'(#) denote the unique element in ¢, such that =
= (exp I'(w))v (WEK’). Moreover let xu =u,s(x, u) (xEG, u,EK, s(x, u) ES).
Then it is easy to verify that for a fixed x the elements (u,)*, I'(u,;) —I'(u),
and s(x, #) depend only on «*. Hence we may write them as u}, I'(x, «*), and

(%) This follows from the fact that the image of K into the adjoint group of G is compact
(see for example Mostow [13]).
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s(x, u*) respectively. It is clear that the mappings (x, #*)—uz, (x, u*)
—TI(x, u¥), (x, u*)—s(x, u) are all analytic and

e—#(l‘(“))ﬂ-(x)ﬂ-(u) e“ﬂ(l‘(“)),r(uz)ﬂ-(s(x' u))

= e ¥ (XY (s(x, u*)).

Therefore

r(x)p = w(u*)er @@ NT¥ (4 X)w(s(x, w*))Pdu*
K‘

and we conclude exactly as in the proof of Lemma 29 that
w(x)p = f *(u*)Y (%, u*)du*
K.

where (x, #*)—y(x, u*) is an analytic mapping of GXK* into §. Since K*
is compact we can now use the same argument as in the proof of Lemma 29
and show that the mapping x—w(x)¢ is analytic at x =1. Therefore ¢ is well-
behaved under .

Let Q be the set of all equivalence classes of finite-dimensional irreducible
representations of K. For any DEQ we denote by Do the set of all elements
YE P with the following property: there exists a finite-dimensional linear
space U containing ¢ which is invariant and semisimple under #(K) and is
such that the representation of K induced on every simple subspace of U
lies in ©. We shall say that an element y €9 transforms under K (or w(K))
according to D if Y EPo. Let W be the space of all elements in  which are
well-behaved under' w(G). We have seen above that WN\( Zfbeg o) is
dense in §. But since W is stable under #(G), it follows that W\ (> Do Do)
= Zmeﬂ Wo where Wp=WNPop (see Lemma 6). Thus we have the follow-
ing theorem:

THEOREM 4. Let m be a permissible representation of G on O and W the set
of all well-behaved elements in . Then if Wo=WNPHPp (DEQ), the space
D pce Wo is dense in 9.

For any linear subspace V of  which is invariant under 7 (K) put
Vo=TVNHop. Then we shall prove the following lemma:

LEMMA 30. Let 7 be a permissible representation of G on  and V a subspace
of © tnvariant under w(K). Then if Zfbeﬂ Vo 1s dense in O, o=Cl (Vo) (19).

We keep to the notation introduced above. For any DEQ let xp denote
the character of the class . Suppose $p7 {0}. Then it is easily seen that
xo(u)e "™ (4 CK) depends only on u*. We may therefore denote it by

() Cl denotes closure in §.
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x5 u*). Let Ep=d(D)[rxs(u*)r*(u*)du* where d(D) is the degree in D
and the bar denotes complex conjugate. Egp is a bounded linear operator such
that F5=Ep and Hp=EpP. Hence Hop as closed in H. Moreover V,
= Espen Vo is stable under w(K) and the linear space spanned by
m(u)y (uEK) for any ¢ € Vy is of finite dimension. Hence V), is stable under
Egp. Now let y E9Hp. We can choose a sequence ¥, E Vi such that Y =lim, . ¥a.
Then Y =Egpy=lim,., Ep¥.. But Egy.E ViNEpH C Vop. Therefore Vp is
dense in 9 and so Hp=Cl (Vp).

Notice that the operator Ep is bounded and Egy =y or 0 according as
YEPp or YEHp (D'#D). (We define Ep to be zero in case Hp={0}.)
Since ) _orco Do is dense in §, Ep is uniquely characterised by these prop-
erties. We shall call Ep the canonical projection of  on 9. It is clear that
EpEgp = Egp or 0 according as D' =D or D'#=D (D, D' EQ).

Let 7 be a representation of G on § and U a linear subspace of . We
shall say that U is differentiable if there exists a representation 7y of go on
U stch that my(X)¢Y =lim.o (1/8) (w(exp tX)¥ —¢) (X Ego, ¢y € U). It is clear
that the sum of two differentiable spaces is again differentiable. Hence there
exists a largest differentiable space, namely the union of all differentiable
subspaces of . We say that an element ¢ €9 is differentiable (under ) if it
lies in this union. It is obvious that the Garding subspace and the space of
well-behaved elements are both differentiable. We now state without proof
the following lemma.

LEMMA 31. Let 7 be a permissible representation of G on O and let Egp denote
the projection of O on Do. Then if Y is a differentiable element in D, the series
deg Epy converges to .

We shall not make use of this result anywhere in this paper except in the
proof of Theorem 9. A proof of this lemma will be given in a subsequent
paper.

10. Quasi-simple representations. Let = be a representation of G on $
and V the Garding subspace of . We denote by g the complexification of
80, by B the universal enveloping algebra of g, by 3 the center of 8, and by
wmy the Gérding representation of 8 on V.

DEFINITION. The representation w is called quasi-simple if (1) « is per-
missible and (2) there exists a homomorphism x of 8 into C such that wy(2)¢
=x(2)Y for all 2E 3 and Y E V. x is then called the infinitesimal character of .

Let U be the space of all elements in § which are differentiable under a
representation 7. We denote by my the representation of 8 on U such that

1
mo(X)¢ = lim — {r(exptX)¥ -y} (X Eg, v ED).

LEMMA 32. Let U, be a linear subspace of U and x a homomorphism of 3
into C such that my(a)Y =x ()Y for all 2E8 and Yy E U,. Then if Uy is dense in
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D, mv(Y=x(2)Y for all 2E8 and yEU.
If we put Up=V in the above lemma we get the following corollary.

COROLLARY. Let w be a quasi-simple representation of G on O and ww the
corresponding representation of B on the space W of all well-behaved elements.
Then ww(2)Y =x (2 (2E 8, Y S W) where x is the infinitesimal character of w.

In order to prove the above lemma, we first establish a simple result
which was pointed out to me by Mautner. Let § be the space of all bounded
linear functions @ on $ taken with the weak topology. If YES and Yy EH we
denote by (¥, ¥) the value of the linear function ¢ at Y. Let 4 be a bounded
linear operator on 9. Then the mappmg A: §—AY JES) defined by the
condition (fi'.p, Y) = (¢, AY) (W E D) is a continuous linear transformation on
$. 4 is called the adjoint of 4. Let M be a linear subspace of § and 8B a
linear transformation of M into . We put IBIM—supmgl |Bz//| YEeM).

LeMMA 33. Let M and N be linear subspaces of O such that MDON and N s
dense in O. Let A and B be linear transformations in M and N respectively
such that A coincides with B on N. Let M be a dense linear subspace of §.
Suppose there exists a linear transformation A in M such that (A¢. ¥)
=(®, AY) for all €M and YEM. Then | A|u=|B|x.

It is sufficient to prove that |A|x<|B|w and so we may assume that
|B1vl <o, Now

[, 0| =@ 4| =@ BY| =|Blx|8]|vl
if §E M, Y EN. Since N is dense in  we get by continuity

| (48, 9)| = | Blv|$[]¥] ¢ € ).
So in particular if y EM
| | @ 49) | =|ds, 0| =|Blv| ][ v] @€ M.
Since M is dense in § we conclude that
| @ 49)| = | Blv|$]]¥] @ES ve M.

But from a theorem of Banach [1, p. 55], we can choose ¢ so that (¢, A¥)
=|Ay| and |$| =1. Hence | A¢| <| B| »|¢|. This proves that | 4| <|B| x.

Now we come to the proof of Lemma 32. For any f&€C;°(G) let 4; denote
the operator [f(x~")7(x)dx and A; its adjoint. Let ¥ be the subspace of §
spanned by the elements of the form Ag (fEC;(G), ¢ €H). It is well known
that there exists a sequence {f.} of functions in C;(G) with the following
properties: (1) f[f.dx=1 and lim,.., f|f.|dx=1; (2) all but a finite number of
the functions f, are zero outside any given neighbourhood of 1. From this it
follows immediately that lim,., As,¥ =y Y E€9) and therefore lim,.,, A, ¥
=y (JE$). Hence V is dense in 9. If XEgo and fEC;(G) we denote by Xf



1953} REPRESENTATIONS OF A SEMISIMPLE LIE GROUP 227

the function x— {df(x exp tX) /dt},_o. This defines a representation of go on
C.”(G) which may be extended uniquely to a representation of 3. Let o(x)
denote the adjoint of w(x~!). Then if Y€ and Yy EPH we find that

lim %(a(exp tX)Ad — A, ¥) = lim 'lt— (¥, m(exp —tX)A — A)
=0 =0

= (‘Z’ A—XI'p) = (A.—Xfiy ‘l’)'
This shows that

1 P -~
lim — (o(exp ¢ X)App — ApY) = A_x
—o0 i
and therefore we get a representation o% of 8 on ¥ such that

- 1 - - -
o7 (XY = lir_g - (c(exptX)p —¥) (@FETV,XEq).

Hence

~ 1 ~ ~
—0 1

1 . ~
= lim — (¥, w(exp —tX)¥ — ¢¥) = (¥, w(—X)¥)
o0

ifYyEU, yEV and X Eg,. Let ¢ denote the antiautomorphism of B (over C)
such that ¢(X)=—X (X&g). Then (¥, mv(O)¥) =(e7 (@)Y, ¥) WEV,
Y&V, b&EB). Now let 2z be any element in 8 and B the restriction of the
operator my(2) on Uy Then B is x(2) times the unit operator and so is
bounded. On the other hand, ¥ is dense in § and (§, mu(2)¥) = (o7 (@ (2)¥, ¥)
(fl;E V, ¢y E€U). Since U, is dense in  we conclude from Lemma 33 that
wy(2) is also bounded. Let A denote the unique bounded extension of the
operator my(z) on . Then 4 —x(2)I is bounded and since it is zero on U, it
must be zero. Therefore wy (2)y = Ay =x(2)y for ¢y € U. This proves the lemma.

Let 7 be a representation of G on § and U any linear subspace of  which
is stable under w(X). Then for any DEQ, we denote by Usp the set of all ele-
ments in U which transform under 7(K) according to .

LeMMA 33. Let 7 be a quasi-simple representation of G on O and ww the cor-
responding representation of B on the space W of all well-behaved elements.
Suppose Yo den Wo and U=Cl (7w(B)Yo) (where Cl denotes closure in
9). Then U is invariant under (G), Tw(B)Yo= D oo Usp, and dim Up < «
(D).

We use the notation of Part I and denote by f the subspace of g spanned
by % over C. Let X be the subalgebra of ¥ generated by (1, f). Since K is
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simply-connected there is a 1-1 correspondence between finite-dimensional
irreducible representations of fy, (and therefore of f or ¥) and those of K.
Hence any ©&EQ may be looked upon as an equivalence class of finite-dimen-
sional irreducible representations of f. We shall regard it in this way whenever
it is convenient to do so.

We already know from the corollary to Theorem 2 that U is stable under
7(G). Put Up=7mw(B)Y,. It follows from Lemma 9 that U,C Zmeﬂ Wep and
therefore Uy= Zﬂ)eg Vi\Wgp (Lemma 6). Let 9 be the set of all elements
x €% such that mw(x)¥o=0. Then } is a left ideal in X which satisfies the con-
ditions of Theorem 1. Let a—a* (¢ €8B) denote the natural mapping and 7*
the natural representation of B on B*=B/BY. Put a(b*) =7w(b)Yo (bEDB).
Then b*—a(b*) is a well-defined mapping of B* into U, and a(r*(a)b*)
=7rw(a)a(b*) (a, bEYB). Now B*= Zfbeﬂ B3 in the notation of Theorem 1
and therefore a(83)=UN\Wp (DEQ). Moreover for every DEQ we can
choose a finite set of elements bf, ---, b*EBF such that BF
= > % 7*(B)b¥ Hence UNWop= D t., mw(B)a(b¥). But since 7 is quasi-
simple, it follows from the corollary to Lemma 32 that ww(2) =x(2)rw(1)
(2E€8) where x is the infinitesimal character of w. Therefore a(b¥*), 1 i<k,
span Uy"\Wg and so dim (UMW) < o. Now UNWop=UN\Pp=UN\Usp.
Since Uy= Zf{)eﬂ Ui Usp is dense in U, it follows from Lemma 30 that
Up= U\ Ugp. But the dimension of Uy \Ugp is finite and therefore Up
= U\ Usp. Hence Us= ) oo Up and dim Up< .

LeMMA 34. Let w be a permissible representation of G on O such that
dim S99 <« for every DEQ. Then every element o in den Oo s well-
behaved and ww(B)Yo= Zfben Up where U=Cl (xw(B)yo).

We know from Theorem 4 and Lemma 31 that $p=Wp. But since
dim P <, H$p=Wp and therefore Y, is well-behaved. Put V=nw(B)¥o
and Vp=VNUp. Then Y& Zmeg Vo and therefore, from Lemma 6,
V= Zmeg Vo. Since V is dense in U we conclude from Lemma 31 that Vp
is dense in Up. But dim Vp=dim $p <. Hence Up= Vo and therefore
V=2 9ca Usp.

The following theorem is of decisive significance for our purpose.

THEOREM 5. Let w be a permissible representation of G on O such that
dim $p<® for all DEQ. For any Y& Z:Den O put U =mw(B)Yo and
U=CIl (U’). Let M be the set of all closed linear subspaces of U which are in-
vartant under w(G). Similarly let M’ be the set of all linear subspaces of U’
which are invariant under ww(B). Then there exists a 1-1 mapping V-V’ of M
onto M’ such that V'=VNU', V=Cl(V’), and V'= D peca Vo.

Notice that since dim p < « it follows from Lemma 34 that ¢, is well-
behaved, U is invariant under 7 (G), and U’'= ZSDen Up. For any VEM
put V'=VNU’. Then if Y EV’ and X Egq,, :
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Tw(X)Y = lim 1 {rlexptX)W —¢} €EVNU =V
-0 1

since V is closed. Hence V is stable under m#(8) and therefore, from Lemma
6, V=2 oce V'NUp= D pca Vo. Moreover ) pca Vo is dense in V
(Theorem 4). Hence V=CI(V’).

Conversely let V& M’. Then, again from Lemma 6, V' = deg V'N\Usp.
Since every element in V' is well-behaved V=Cl (V') is invariant under
7(G). But then, Vp=Cl (V'N\Up) (Lemma 30). Since dim (V'NUp)
<dim $p <, Vp=V'NUp and so V'= Y _pca Vp. Moreover since VEM
we know from the earlier part of the proof that VNU’' = den Vo. There-
fore VMU’ =V’ and the theorem is proved.

Let $1, 92 be two closed subspaces of § both invariant under 7(G).
We say that 9, is maximal in §; (with respect to 7) if(11) $;> 9. and there
exists no closed subspace §; invariant under m(G) such that ;> 93> D..
Then we get the following corollary from Theorem 5.

COROLLARY 1. If U {0} there exists an element VEM such that V is
maximal in U.

Let M, be the left ideal in B consisting of all elements b&PB such that
Tw(b)Yo=0. Since U5 {0}, Y070 and therefore 1&EMy. Therefore by Zorn's
lemma there exists a maximal left ideal I in B containing Py, Put V’
=7w (DY Then it is clear that V’ is not properly contained in any element
of M’ other than U’. Put V=Cl (V’). We claim V is maximal in U. For let
UDSDOV (SEM). Then U'DS’DV’ and therefore S'= U’ or V’. Since the
mapping from M to M’ is 1-1 this proves that S=U or ¥V and UV and
this establishes our assertion.

COROLLARY 2. Let m be a quasi-simple representation of G on H={0}.
Then 1t 1s possible to find two closed invariant subspaces U and V in © such that
V is maximal in U.

As before let W be the space of well-behaved elements in §. Then
zmen Wg is dense in § (Theorem 4). Choose ¢, & »deg Wo, ¥0#%0, and
put U=Cl (rw(B)¥o). From Lemma 33, dim Up<o (DEQ) and so our
result follows immediately from Corollary 1 above.

Let m;, w2 be two representations of G on the Banach spaces §; and H.
respectively. We say that they are equivalent if there exists a linear mapping S
which maps §: topologically onto 9, such that m(x)S=Smi(x) for all xEG.
However in case m; and m; are both permissible we introduce the concept of a
new kind of equivalence as follows. Let W; be the space of all well-behaved
elements in 9;, and let mw; be the representation of B on W; (1=1, 2). Put

(1) 4 and B being two sets we write A>B or A <B if B_)A and 4 #B.
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Wio=W:N\($:)p and = D oca Wip. Then we know from Theorem 4
and Lemma 9 that §{ is dense in $;, and it is stable under 7w (8). Let 77
denote the representation of 8 induced on $7. We shall say that the represen-
tations my, m, are infinitesimally equivalent if there exists a 1-1 linear mapping
a of 9} onto HI such that 73(b)a() =a(rd(®)Y) for all bEB and Yy EH'. It is
clear that if m, m; are equivalent they are also infinitesimally equivalent, but
the converse is not true in general. However we shall see later (§11) that for
irreducible unitary representations on Hilbert spaces these two concepts of
equivalence actually coincide.

11. Unitary representations on a Hilbert space. In this section $ shall
stand for a Hilbert space. A representation w of G on 9 is called unitary if
the operator 7 (x) is unitary for every x €G. For any two elements ¢, ¥ in §
we denote by (¢, ¢) their scalar product.

THEOREM 6. Let w be an irreducible representation of G on a Hilbert space .
Then every element in ETDEQ O s well-behaved and dim Pp< o (DEQ).
Moreover deg Do s dense in D.

It is known that an irreducible unitary representation of G on 9 is quasi-
simple (see Mautner [12] and Segal [15]). Let W be the space of all well-
behaved elements in . Then den Wp is dense in  (Theorem 4). Choose
Yo E Efbeﬂ Wao, ¥07%0. Since 7 is irreducible it follows from Lemma 33 that
$=Cl (mw(BW0), Tw(B)Yo= D pco P9, and dim H$p < . This proves the
theorem.

THEOREM 7. Let m be a quasi-simple unitary representation of G on % {0 }.
Then there exists a minimal(*?) closed invariant subspace in 9.

From Corollary 2 of Theorem 5 we can choose two closed invariant sub-
spaces U and S such that S is maximal in U. Let V be the orthogonal comple-
ment of S in U. Since 7 is unitary it is clear that V is invariant and minimal.

The above theorem has the following significance in relation to the theory
of Murray and von Neumann [14]. Let 7 be a unitary representation of G
on $ and U the smallest weakly closed algebra of bounded operators on §
which contains 7(G). Suppose U is a factor, i.e. the center of U consists of
scalar multiples of the unit operator. Then it can be shown that = must be
quasi-simple and we conclude from Theorem 7 that there exists a closed sub-
space V% {0} which is invariant and irreducible under 7(G) and therefore
under . But then it follows from the results of Murray and von Neumann
(Lemmas 5.3.1, 5.3.8, 8.6.1) that % is of type I, or I,. Thus we have proved
that any factor arising from a unitary representation of semisimple Lie
group in a Hilbert space is necessarily of type I.

The following theorem shows that for irreducible unitary representations
infinitesimal equivalence is the same as ordinary equivalence.

(12) A closed invariant subspace V is called minimal if {0} is maximal in V.
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THEOREM 8. Let w1, 72 be two irreducible unitary representations of G on the
Hilbert spaces O, and D, respectively. Then they are infinitesimally equivalent
if and only if they are equivalent.

It follows from Theorem 6 that dim $.;p < » (DEQ), every element in
2= D oca Dip is well-behaved, and £ is dense in ; (i=1, 2). Let =}
denote the representation of B on £{. Then if 71, 7, are infinitesimally equiva-
lent there exists a 1-1 linear mapping « of § onto $3 such that a(x?(d)}Y)
=73(b)ay for all Y€ H) and bEB. It is clear that a(H1.9) =10 (DEQ)
and the representations of K induced on ;9 and $.p are unitary and
equivalent to each other. Therefore there exists a 1-1 linear mapping Sp of
@1,9 onto @2,@ such that if ¢1, %E@l,m and ¢2=Bﬂ)¢1, ¢2=ﬁsmh then
(¢1, m(u)n) = (b2, m2(u)2) for all uEK. Let B be the 1-1 linear mapping of
9 onto §3 such that B coincides with Bp on $;.9. Now it is easily seen that
for two distinct elements D, D' EQ the spaces $;.p and ;. pr are mutually
orthogonal and therefore (¢, m1(u)Y) = (B, m2(u)BY) for all ¢,y EH? and uEK.
In particular |¢| = IB\bI WE D)) and since £ is dense in ; it follows that
B can be extended uniquely to an isometric mapping of ; onto $.. Let S
denote the linear transformation of $] onto itself given by SyY=p8"lo}
WESDY). Since @ and B are isomorphisms of $} onto 7 it follows that the
inverse transformation S—1=a~18 exists. Moreover it is obvious that S and S-!
leave $1,9 invariant (DEQ). Since dim P19 < it follows immediately
that there exists a linear transformation S* of §? into itself such that

(S*6, ¥) = (¢, S¥) (¢, ¥EDY).

Furthermore the inverse transformation S*-1 exists and S*, S*-! leave
1.9 invariant for all DEQ. Put 4 =S5*S. Then we claim that

Am®)A" = m@) ® ED).
First notice that if X Ego and ¢;, ¢:EH? (1 =1, 2) then

1
(@, Ti(X)W) = lim - (95, m(exp 1X)¥: = ¥

o1
= lim — (ri(exp —1X)¢s — éi ¥3) = — (xi(X)i, ¥3)
—0 ¢
since ; is a unitary representation. Hence if ¢, ¢y €},

(¢, ATi(X)A7Y) = (¢, S"Sm(X)S™S*7'Y)
= (S¢, ST(X)S”'S"7Y)
= (8S¢, m(X)BS™Y)

since BST(X)S-1=an)(X)a"'B=73(X)B. Therefore
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(ag, T2(X)BS ) = — (ma(X)as, BS" V)
— (am(X), 8S*Y)

— (8 "am(X)$, S 7¥)

~ (Sm(X)e, S*Y)

— (M(X)$, ¥) = (6, T(X)).

Since this is true for all $E§! and since §) is dense in §; we conclude that

Amy(X)A™Y = m(X)¥ W E D), X E g0)

and from this our assertion follows immediately.

Now choose D& such that ;9,7 {0 } Since A4 leaves $1,9, invariant
and since dim $;,p,<® we can find an element YoE 1.9, Wo#0) and a
complex number ¢ such that Ay,=c},. But cl¢o|2=(ll/o, S*S%)=]S¢o|2
and Sy,7#0. Therefore ¢ is real and positive. Moreover An2(b)Yo=m3(b)AYs
=cmi(d)Yo (BEDB). Let V=nY(B)¥o. Since m is irreducible it follows from
Lemma 33 that V=9; and V=) pca H1.0=9) Therefore A¢y=c} for
all yE€@. Now |ay|2=|S¢|2=(, 4A¥)=c|¥|? WEP?) and so « is con-
tinuous. Hence it may be extended uniquely to a linear mapping of 9
into 9, such that |a\l/] =cl 2|uﬁ| Y E D). Since ¢>0, @ maps 9, topologically
into §; and therefore a;, being complete, is closed in ©,. But a9; D H? and
99 is dense in .. Hence ad; = Hs.

Now let Y €93. Then by Theorem 2 we can choose a neighbourhood V of
zero in go such that if XEV, mexp X)¢= D nzo (1/2)7(X"*)¢ and
ma(exp X)ay= D .20 (1/2)73(X™)oap. But since a is a continuous linear
mapping we find that

(6, Am(X)AY)

It

1 n 1 »
om(exp XY = 3 —am(X W = 3 — ma(X e = ma(exp X)ap
220 n! n0 n!

xenmn.

Put Y(X) =am(exp X)¥—m(exp X)o (XEgo). It is obvious that the
mapping X—¢(X) is analytic. Hence if ¢ is an element in ., (¢, ¥(X)) is
an analytic function on g, which is zero on V. This however implies that
(¢, ¥(X)) =0 for all X Eg,. This being true for every ¢ S 9, it follows that
Y(X) =0 (XEgo). Hence am (exp X)Y=m; (exp X)oy (X Ego, Y E)). But
9! is dense in i, and therefore this relation is actually true for all Y E$:.
Moreover since G is generated by the elements exp X (X Egqy), it follows
that am@x)Y=m(x)ay (xEG, YEH1) and therefore 7, 7, are equivalent.
Conversely, if 3, T2 are equivalent, it is obvious that they are infinitesimally
equivalent. Hence the theorem.

Let m be a permissible representation of G on a Banach space $ and let
W be the space of all well-behaved elements in §. Put o= Emen Wo. We
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know that §, is stable under the representation of 8 on W (Lemma 9). Let
mo denote the representation of B on . We shall say that 7 is infinitesimally
unitary if it is possible to define a scalar product (¢, ¢) (¥, pE Do) such that
under this product §, becomes a (possibly incomplete) Hilbert space and

W mo(X)$) = — (mo(X )Y, ¢) for all ¥, $E Ho and X Ego.

THEOREM 9. Let m be a quasi-simple irreducible representation of G on a
Banach space. Then if w is infinitesimally unitary, it is infinitesimally equivalent
to a unitary representation o of G on a Hilbert space. Moreover, o is unique,
apart from equivalence, and it 1s irreducible.

We keep to the above notation. Then it follows from Lemma 33 that
Ho= den Oo. Let (¢, ¥) be the scalar product in §, satisfying the above-
mentioned properties with respect to mo. We can then complete o with re-
spect to the norm I|¢||=(l[/, Y)V2 (Y& Do) and thus obtain a (complete)
Hilbert space V. We shall now define a representation ¢ of G on V.

Let y, be a fixed element in ¢ (¥05%0). Consider the mapping

T: (x, y, 2) > m(@)w ()7 ()P0 = m(xy2)¢o (x, 2 €G)

of GXGXG into . Since ¥, is well-behaved since (x, y, 2) —xyz is an analytic
mapping of GXGXG into G, T is analytic (Lemma 16). Hence we can find

an open convex neighbourhood U of zero in g¢ such that U= — U and
w(exp rX)w(exp s¥)w(exp Z)¥o = 2, Ymmp(X, ¥V, Z)rmsnt?
m,n,p20

Wman(X, ¥, Z)EP) for X, ¥, ZC U provided |7/, |s|, |¢| 1. Now from
the corollary to Lemma 15 we find that

am™ 9 9°
- exp rX)w(exp s¥Y)w(ex tZtl/}
{arm as'n atp (ﬂ'( P )W( p ) ( p ) 0) r=8=t=0

= mn!pWm (X, ¥, Z).

Moreover we know from Theorem 2 that

tP
mmm%=25nwm

P20
if [ t| is sufficiently small. Since w(exp 7X)m(exp sY) is a bounded operator,
tr
w(exp rX)w(exp sY)w(exp tZ)Yo = 2 ; w(exp rX)w(exp s¥)wo(Z7)¢o.
? D!
Hence

{i (w(exp rX)w(exp sY)w(exp tZ);I/o)} = w(exp rX)w(exp s¥)wo(Z?)o.

atr =0
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Again since 7(Z?)y, is well-behaved,
sﬂ
w(exp s¥)mo(ZP)Yo = D i mo(Y ™) mo(Z7)Y0
provided I sl is sufficiently small and so we find in the same way as above that

an
{Es—’: (w(exp rX)r(exp sY)wo(Z")vpo)} = w(exp rX)wo(Y ") mo(Z7)¥0.

80
Repeating the same argument once more we get finally

{ gmtntr

m (r(exp rX)w(exp sY)w(exp tZ)'I/o)}

re=g=t=0

= mo(X ™) mo(¥Y™)mo(Z7)¥0.

Hence

'/’mm.p(X, Y, Z) =

minlp! (X V"2 )0

and

ymsniP

w(exp rX)m(exp s¥)w(exp Z)Yo = . To(X ™Y "ZP)q

mm,pz0 Mminlp!
provided ||, |s|, |¢| £1. Let Z, - + -, Z, be a base for go over R. We can
choose €>0 such that if |tll, e, |tq| e, Zi=tZi+ - -+ +tZ, lies in U
(t:€R, 1=1=q). Hence

Mmen

(X Y Z o

w(exp rX)m(exp s¥)w(exp Z)Yo = 2
m,n,p=0 m'n'p'

But
p1,P2 Pe

Lty -t
Z =Y T 2 pa e
¢ I’Zh!pzl.“h! (p1, b2 pa)

where the sum is over all integers py, - - -, p,20 such that p1+pe+ - - -
+p,=p and

1
Z(p1 P2 * -+ 5 Do) = ;; ;Z‘wa)z*'w(z) e Z‘u(»)'
Here {il, gy * * 1',} is a set of p integers such that exactly p; of them are

equal to j (1'<j<q) and the sum is over all permutations w of the p integers
(1, 2, - - -, p). Therefore
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gt tr, ‘
{¢—— (w(exp rX)n(exp s¥Y)w(exp Zt)‘l’O)}

ti’l [ atzq timtom - - emtg=0
'ns” ‘
= (X "Y ™) wo(Z(p1, + * + 5 £2))Wo.
m,,.gov min!
Since the elements Z(p1, ps, - * -, po) all taken together span B (see [8(a)]) it
follows that , : : .
msn

(exp rX)m(exp s¥)mo(B)do = 3 (XYY m(BWe  (X,V E U)

mn min!
for any bE® and |7, |s| 1. However, since  is quasi-simple and irreduc-
ible, it follows from Lemma 33 that 7o(B)Yo= Do. Therefore if we let F=s=1
we get

. O 1 ’
m(exp X)w(exp V) = 2. —— m(X"¥")¥
m,n0 m!n!
for all Y€ 9o and X, YEU. Now put expn Z=1+Z+22/2!+ - - - +2m/m!
€SB for any Z&Eg,. Then the above equation may be written as follows:
m(exp X)w(exp V)¢ = lim (9)mo(expm X)mo(exp. Y)Y (X, Y € U, ¥ € o).
m— o ,n—>0 :

Here lim () means limit in 9.

Let Ep denote the projection of  on Do (see §8). Since Ho is a finite-
dimensional subspace of V it may itself be regarded a Hilbert space. Moreover
Po is invariant under 7 (K) and since (¢1, mo(X)P2) = — (mo(X) 1, ¢2) (X EL,
b1, P& Do) it is clear that the representation of K induced on g is unitary.
From this it follows immediately that if ©;#D,, then $9p, and Hop, are mu-
tually orthogonal subspaces of Ho (D1, D.EQ). Hence (Epdy, ¢2) = (¢1, Ends)
(¢1, p2EDo). For any finite subset F of Q put Er= dep Egp. Then Ep
is a bounded linear operator on § and therefore if Y €9,

lim + (9)Ermo(expm X)mo(exps Y)¥ = Epm(exp X)w(exp V)¢ (X, ¥ € U).
Mm—r0,n—>0
But EF9= Zmer O is a finite-dimensional subspace contained in 9,.
Hence the two topologies induced in Er9 by § and V are the same. There-
fore

lim (V)Ermo(expm X)mo(exps V)¢ = Epn(exp X)w(exp V)¢ (X, Y € U)

m—o,n—w
where lim (V) denotes limit in V. Now

|| 7o(expm X)¥||2 = (mo(expm X)¥, mo(expm X)¥)
- = (¢, mo(expm (—X) expm X)¥) (X € 00)
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since (wo(Z)¢1, P2) = — (¢1, mo(Z)P2) for all ¢1, p2E Do and ZEg,. Choose F
such that Y EEr. Then if XE& U we have

Jlim || 7o(expm X)¥l|2 = lim (9, mo(expm (—X))ma(expm X)9)

= lim (4/, Emro(expm (""X))Wo(expm X)\l’)

m—ro

= (¢, lim Epmo(expm (—X))mo(expm X)¥)

m—ro0

= (¥, Epr(exp —X)m(exp X)) = (¥, Erd) = |[¥]|2
This proves that the sequence mo(exps X)¥ is bounded in V. Moreover, for

any ¢ Eo we can choose a finite subset F of Q such that  SEr9 and there-
fore

lim (¢, mo(expm X)¥) = lim (¢, Ermo(expm X)¥) = (¢, Err(exp X)¥).

m—o m—w
Since  is dense in V, it follows that the sequence 7y (expm X)Y is weakly
convergent in V. Let A(X)y denote the weak limit of this sequence in V.
Then it is obvious that 4(X) is a linear operator with domain $,. We shall
now show that 4(X) is bounded. Let ¢ €Ho. Then .

(¢, A(X)¥) = lim (¢, mo(expa X)¥).
n—rco

Hence | (¢, A(X)W)| =||¢|| lima.. [|[7o(exp. X)¥|| =||8]/[|¢¥|| as we have seen
above. Since 9, is dense in V it follows that

| 6, 400 | = [loll vl

for all $C€V and therefore ||A(X)¥|| =|[¢||. As this is true for all € o,
A(X) is bounded and therefore it may be extended in a unique manner to a
bounded linear operator on V. We shall denote this extension again by 4(X).
Then it is clear that

40| = sup |40 =1 WE.
il=1 .

We now claim that 4 (X) is a unitary operator. For if X, YE U and ¢, ¥ S D,,
(6, A(X)A(Y W) = (4*(X)$, A(Y)Y)
where 4 *(X) is the adjoint of 4 (X). Therefore
(&, ACDATW) = lim (A*(X)4, mo(exp. P)¥)

n—o

= lim (¢, A(X)mo(exp, Y)¥)

n—o

= lim (lim (¢, mo(expm X)mo(expn Y)¥)

n—>0 mMm—o
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since o (exp, Y)E Ho. Now choose F such that ¢ CErD. Then we have seen
above that

(¢, Epm(exp X)m(exp Y)y¥) = lim (¢, mo(expm X)mo(expa Y)¥).

Therefore
(¢, A(X)A(Y)Y) = (¢, Erm(exp X)7(exp Y)¥).
In particular if we put Y= —X we get

(¢, A(X)A(—X)W) = (¢, Er¥) = (¢, ¥).
Since A(X)A(—X) is a bounded operator and since £, is dense in 9, we
conclude that A(X)A4A(—X)=1I where I is the unit operator. Replacing X
by —X we obtain A(—X)A(X)=1I. This shows that 4(X) is regular (i.e. it
has a two-sided bounded inverse). Moreover,

Il = lla(=x4@w| < |4 < ||l

since ||[4(—X)|| and ||4(X)|| are both <1. Therefore || 4(X)y|| =|¢|| and this
proves that 4 (X) is unitary.

For any DEQ let Eg denote the orthogonal projection of V on p. Since
Dois dense in V, it is clear that for any Y € V the series Zfbe o Epy converges
toy in V. For any finite subset of F of @ put Ef= ) pcr Ef. It is obvious
that the operators Ep and Ep coincide on $,. We shall now prove that if
Xy, - -+, X,€U and y EPH then

ErA(X)A(X,) - - - A(X,)¥ = Epn(exp X1)7(exp X3) - - - w(exp X)W

for any finite subset F of Q. First notice that since strong and weak con-
vergence in EpV are the same,

Erd (X)¢ = lim Epmo(exps X1)¢ = Epn(exp X1)¥

n— 0

and therefore our statement is true if r=1. So we may assume =2 and use
induction on 7. Put ¢=m(exp Xs) - - - w(exp X, )¢ and ¢'=A4(X,) - - -
A(X,)¥. Then if F; is any finite subset of Q it follows from our induction
hypothesis that

Er¢' = Erg = ¢r, (say).
Moreover ¢p,EEr, D C Do, and therefore
ErA(X1)ér, = Epn(exp X1)or..

Since ¢ is well-behaved in §, the same holds for ¢. Therefore from Lemma 31
the series den Eg¢ converges to ¢ in . On the other hand, we have seen
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above that ) pco Ep¢’ converges to ¢’ in V. Therefore, since EzA(X,) and
Epm(exp X,;) are bounded operators in V and 9 respectively and since
or,= ZSDE r, Evp= D _ocr, Epd’, it follows from the above result that

ErA(X1)¢' = Epr(exp X1)o

and this proves our assertion.
Now suppose X, - - -, X, is a finite set of elements in U such that

exp X; - - - exp X,=1. Then for any ¢, ¥ E D,

(¢, A(XDA(X2) - - - AX W) = (¢, ErA(X)) - - - A(X,)¥)
= (¢, Epm(exp X1) - - - w(exp X,)¥)
= (¢r EF#’) = (¢1 ',/)

where F is so chosen that ¢CErP. Since 9o is dense in V and since
A(X)DA(X,) - - - A(X,) is a bounded operator in V, this proves that
AXDAX) - - - AX) =1

We know that every x &G can be written in the form x =exp X;exp X, - - -
exp X, (X;€U, 1=1=7). Then if we put o(x) =A4(X,) - - - A(X,) it is clear
from what we have proved above that ¢(x) depends only on x and not on the
choice of X3, - - -, X, and o(xy) =d(x)o(y). Moreover g{x) is obviously a
unitary operator and ¢(1) =I. Hence it follows from well known arguments
(see Godement [7(a)]) that in order to show that ¢ is a representation of G
on V it is sufficient to prove that lim,.; (¢, o(x)¥) = (¢, ¥) for any two ele-
ments ¢, Y E V. First suppose ¢, Y EPo. Choose F so that ¢ SErH. Then

ErA(X)¥ = Epr(exp X)¥ (xev
and therefore
(¢, o(exp X)¥) = (¢, Erm(exp X)¥).
Now as X—0, 7 (exp X)¥— and since Er is a bounded operator on 9,
Epr(exp X)Yy—Ery. Hence
Jlrintl, (¢, o(exp X)¥) = (¢, Ery) = (¢, ¥).

Now if we take into account the fact that $, is dense in V and ¢(x) is uni-
tary, it follows immediately that lim..1 (¢, o(x)¢) = (¢, ¥) for all ¢, Yy EV.
Therefore o is a unitary representation of G on V. Moreover, it is obvious
that for any # €K the operators o(«) and 7(u) coincide on o and therefore
since w is a permissible representation and since o is dense in V, ¢ is also
permissible. Hence it follows from Lemmas 30 and 34 that Vp = 9o and every
element in $, is well-behaved under o. Let XE U and ¢, Y EHo. Then

(¢, o(exp X)¥) = (¢, Era(exp X)¥) = (¢, Ern(exp X)¥)
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where F is so chosen that ¢ CE9. Therefore

1 1
Hm — (¢, o(exp tX)¥ — ¢¥) = lim — (¢, Er(w(exp (X)¥ — ¥))
—0 ! -0 ¢

= (¢v EF""O(X)‘,’) = (¢t TO(X)\L)'

Since $, is dense in V and since ¢ is well-behaved under o this shows that
1
lim — (o(exp tX)¥ — ¢¥) = mo(X)¥.
-0 !

Therefore the representation of B on , corresponding to o coincides with
mo, and this proves that w and ¢ are infinitesimally equivalent. Since 7 is
irreducible, it follows from Theorem 5 that , is irreducible under m and
therefore ¢ is also irreducible.

Finally, if 7 is any permissible unitary representation of G on a Hilbert
space N which is infinitesimally equivalent to 7 it is clear that 7 is quasi-
simple and dim Rp=dim $p < x. Therefore, from Theorem 5, 7 is irre-
ducible. Since ¢ and 7 are irreducible unitary representations which are in-
finitesimally equivalent, it follows from Theorem 8 that they are equivalent.

12. Explicit construction of some representations. We shall now give a
method for constructing a certain class(®) of representations of G. This is a
generalisation of a method given by Gelfand and Naimark [6(a), (b)] in the
case when G is a complex semi-simple Lie group (see also [8(e), Part IV]).

First we compute the Haar measure of G in terms of the Haar measures(%)
of K, A4, and N, respectively. The group A, being simply-connected, we
denote by log & (h€A,) the unique element HE&hy, such that A=exp H.
Moreover set p=2"1 Zae p a where the notation is that of Lemma 5.

LeMMA 35. Let dx, du, dh, and dn denote the elements of Haar measures on
G, K, A,, and N respectively. Then

dx = e*UoeMdydhdn (x=uhn,u E K, h € Ay, n € N).

Let S=A4,N. Then in the notation of Lemma 27 dx=pu(s)duds (x=us,
uEK, s&S where u(s) =det Adg (s)/det Ad (s) and ds is the element of the
left-invariant measure on S). But since G is semi-simple, det Ad (x)=1
for all x&G. Hence u(s)=det Adg (s). Moreover, by applying the same
lemma to S=A4,.N we get

_ det Ady (n)

= dhdn (s =hn, hE Ay, n €N
S = det Ads () Jan (s = CannEN)

(13) It seems very likely that this method gives all irreducible quasi-simple representations
within infinitesimal equivalence (see [8(d)]).
(1) For the meaning of the various symbols see the beginning of Part III (§8).
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where #—Adx (n) is the adjoint representation of N. Since N is nilpotent,
det Ady (n) =1 and therefore

dx = det Adg (k)dudhdn = e**@ e M dydhdn = % o8 Ddydhdn

in the notation of Lemma 5.

Let u—u* denote the natural mapping of K on K*=K/DNZ and let du*
denote the element of Haar measure of K *so normalised that fg*du*=1. Let
Ly(K*) denote the Hilbert space of all square integrable functions f on K*.
We shall now define a class of representations of G on Ly(K*). For any xEG
and u €K write xu =uh(x, u)n(x,u) (u,EK, h(x, u) EA ., n(x, u) EN). More-
over, let I'(#) denote the unique element in ¢o such that % exp (—I'(%)) lies
in the commutator group K’ of K. Then it is easy to verify that (u.)*, I'(u,)
—TI'(»), and k(x, #) depend only on x and »*. Hence we may write them as
uzt, I'(x, u*), and h(x, u*) respectively. It is obvious that these elements de-
pend continuously on (x, #*). Put H(x, #*)=log h(x, u*).

LeEMMA 36. If x, yEG, then = (ur¥), and
H(yx, u*) = H(y, ut) + H(x, u*), T(yx, u*) = T'(y, u:) + I'(=, u*)..

For we have xu=u,h(x, u)n, (n,EN) and therefore
yxu = yush(x, wyn = ()yh(y, uz)neh(x, w)n (na € N)

= (u2)yh(y, u2)h(x, w)nam

where ng = (h(x, u))~'n:h(x, u) EN. Therefore
Wy = (u2)yy  h(yx, ) = h(y, uz) h(x, u)
and
T(yx, w) = T(uyz) — T(u) = T((4z),) — T(uz) + T'(us) — T'(u)

I'(y, uz) + T(x, u).

The statements of the lemma now follow immediately.

Let v and u be (complex-valued) linear functions on 9y, and ¢, respectively.
Then we define a representation m,,, of G on Ly(K*) as follows. For any
JELyK*), m,,(x)f (xEQG) is the function g glven by

g(u*) = T G—1um) = E L f(y)5, 1)

where »' =v+2p. First of all, we have to verify that g&L,(K*). Notice that
if y=uhn (W€K, h€A,, nEN) then

xy = uzh(x, w) h(h~'n(x, u)hn).

Hence if x is fixed,
e e Mdydhdn = dy = d(xy) = e?rUox BwM)dy dhdn
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since d(h(x, u)h) =dh for fixed x and # and d((h~'n(x, u)h)n) =dn for fixed
x, #, and k. This shows that du=e*»@@w)dy_ and from this it follows immedi-
ately that

* . *
du = gzﬁ(a(z.“ ))duz

since K and K* are locally isomorphic. Hence

[l bant = [ Ly bast = [ gy e
K* K* K*

Now I'(x~!, u*) = —T'(x, #*) and H(x"!, u*)= — H(x, 4*) from Lemma 36.
Therefore

B0 P EEA) = (T (") glrtn) B (2w D (3¥),

The function |e#T@Ew)et+@Ew)| being continuous is bounded on the
compact set K* and therefore if M, is a bound for it

L. | g(u*) Izdu* = M:f | F(u*) |2du* < o,

Hence g&€L(K*) and |1r,‘,.(x)| < M., so that m,,,(x) is bounded. Moreover,
it follows easily from Lemma 36 that m,.(y)m.,(x) =m.,.(yx) (x, YEG).
Therefore, it only remains to verify the continuity of m,,,. Let U be a compact
neighbourhood of 1 in G. Then

sup | o4 (riz.u))gOto) (B (2,0
sEUWEK*

=My<»

since erT=u) 0o (Hw)) {5 g continuous function on GX K*. Hence |1r,,,.(x) I
=< My for x& U. Therefore in order to show that =, is a representation, it is
sufficient to prove that lim,.; ||m,.f—f]| =0 (fEL:(K*)) where ||-|| denotes
the usual norm in Ly(K*). Given >0, choose a continuous function g on K*
such that ||[f—g|| Se. Then it is clear that we can find a neighbourhood V of 1
in G (VCU) such that [1r,,,,(x)g—g| <e (x€V). Hence

It =gl = [ Imote-ghaese  ew

and

7ur(@)f = fll = |muir(®)(F = £) = (f = &) + (mun(2)e = 8|
§|1r,,,.(x)le+e-|—e§(M,+2)e (x€ V).
This proves that = is a representation of G.

Let X be the left regular representation of K* on Ly(K*) so that A(v*)f=¢
(fELy(K*), v*€K*) where g(u*)=f(v*~'u*). Then we check easily that
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Mu*) = @), (u) (» € K).

Let $=L,(K*) and let $p (DEQ) denote the set of all elements in $ which
transform under m,,,(K) according to D. Then if $p5 {0}, it is clear that
there exists an equivalence class ©* of finite-dimensional irreducible repre-
sentations of K* such that every element of §p transforms under N according
to D*. The degrees of the representations in ® and D* are obviously the
same. Hence if d(D) denotes this degree, it follows from well known results
on compact groups that dim $p = (d(D))2 Moreover ,,, is permissible since
(%) =T, (1) if *EDNZ. Therefore from Lemma 34 every element
in Zﬂbeﬂ o is well-behaved under w,,. We have seen above that if
fEL(K*)

f. | 70,0 (2)f |2du* =f‘ | e (0w g tkp) (B (2 u®) f (%) | 20,
K K

Therefore if the linear functions u and v-+p take purely imaginary values on
¢o and by, the representation is unitary

Let M be the analytic subgroup of G corresponding to the algebra(®®) m,
=mMgo and let x—x* denote the natural mapping of G on G/DNZ=G*.
Since DCK, the mapping (#*, a, n)—>u*a*n* (W*EK*, a€A,, nEN) is a
homeomorphism of K*XA,XN onto G*. Therefore A% is closed in G*.
Since m, is the centraliser of by, in ¥y (Lemma 4), M* is the component of
identity of the centraliser of A% in K*. Therefore M* is closed and hence
compact.

Let 7 denote the right regular representation of K* so that

(r(@)N(@*) = f(*u*) (f € L(K*); w*, v* € K¥).
LeEMMA 37. Let mEM and xEG. Then 1(m*) commutes with w,,,(x).

Let u€K. Then xu=uh(x, u)n (nEN). From Lemmas 4 and 5, »'
=m~nmEN and k(x, u)m=mh(x, u). Hence xum =u,mh(x, u)n’ and there-
fore (um),=u.m, h(x, um)=h(x, u) and I'(x, um)=T'(x, u). Our assertion
follows immediately from these facts.

Let o be an irreducible representation of M on a finite-dimensional space
V. It is clear that we can choose p such that ¢ (exp ') =¢*™ o(1) if exp T
EMNZ (I'Eco). Put a*(m*) = *T™ g(m) (mEM). Then o¢* is an irre-
ducible representation of M* on V. Now it follows from well known results.
(see [17]) on compact groups that we can choose a continuous function ¢ on
K* such that the linear space spanned by the functions 7(m*)¢ (m*& M*)
is of finite dimension and the representation of M* induced on it under 7 is
irreducible and dual to o*. Let $4 be the smallest closed subspace of Ly(K*)
containing ¢ which is invariant under ,,,. Let 7, denote the representation

(15) See §2 (Lemma 4) for the definition of m.
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of G induced on $, under 7,,,. Then it can be shown that =}, is quasi-simple.
Let 6 be the equivalence class of the representation ¢. Since m is reductive in
t (Lemma 5), every class DEQ is fully reducible with respect to M. Let
(D: 8) denote the number of times 6 occurs in this reduction. Then it follows
from the Frobenius reciprocity relation (see [17, p. 83]) that dim ($s)p
=d(D) (D: 9).

We shall return to a more detailed study of these representations of G in
another paper.
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