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1. Introduction. During the past few years several authors have studied

unitary representations of a Lie group or, more generally, of a locally compact

group on a Hubert space. In the present paper we approach this problem

from a somewhat different point of view and do not require that the repre-

sentation be necessarily unitary. In fact, following a suggestion of Chevalley,

we allow the representation space to be a Banach space. But on the other

hand we restrict ourselves to the case when the given group is a connected

semisimple Lie group and attack the problem by means of a closer study of

the corresponding representations of the Lie algebra. Roughly speaking, our

plan of investigation can be divided into two separate parts. The first con-

sists in a careful study of infinite-dimensional representations of a semi-

simple Lie algebra from a purely algebraic point of view. The second step is

then to establish a sufficiently close relationship between the representations

of the group and those of the algebra so that the information obtained about

the latter can be put to use.

This paper is divided into three parts. Part I contains a purely algebraic

theorem (Theorem 1) about infinite-dimensional representations of a semi-

simple Lie algebra. In the special case of a complex semisimple algebra this

result had been obtained in a previous paper [8(e)]. Part II is concerned

with the second step of the program mentioned above. It has been shown by

Gârding [5] that every representation of a Lie group G gives rise in a natural

way to a representation of its Lie algebra. However, it turns out that this

correspondence between the representations of the group and of its algebra,

as it stands, is not very satisfactory for our purpose. This is due to the fact

that the Taylor series of an indefinitely differentiable function on G does not

necessarily converge to this function. In order to remedy this defect we re-

place such functions by suitable analytic functions in Gârding's construction

and thus obtain what we call well-behaved vectors in the representation space.

The remainder of Part II is then devoted to the problem of approximating

an arbitrary vector by well-behaved vectors. Theorem 3 deals with this

question in a special case which is of particular importance for us.

In Part III we combine the results of Part I with those of Part II and

this enables us to derive information about representations of a semisimple

group G. We introduce the notion of infinitesimal equivalence of two repre-

sentations and show that in the case of irreducible unitary representations
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this coincides with the usual notion of equivalence. It follows from Theorem

7 that any factor arising from a unitary representation of G is necessarily of

type I in the terminology of Murray and von Neumann [14]. (This fact had

been conjectured by Mautner [12].) Theorem 9 gives a purely infinitesimal

criterion for the existence of a unitary representation which is infinitesimally

equivalent to a given irreducible representation. In the last section we give a

method for obtaining a large class of representations of G.

All the results of this paper, except Theorem 9, were obtained before the

end of 1950. Due to various circumstances their full publication has been de-

layed although these results were announced, along with some others, in a

short note [8(c)]. In the mean time Godement has obtained alternative

proofs for some of them. However the present paper contains only a small

proportion of the results which have appeared in a series of notes in the Pro-

ceedings of the National Academy [8(d)]. Their proofs will be published in

subsequent papers.

I am greatly indebted to Professor Chevalley for reading the original draft

of this paper and suggesting a large number of valuable improvements. In

fact Part I was almost entirely rewritten by him and in Part II the whole

treatment of well-behaved vectors has been very much simplified due to his

suggestions. In particular the method of constructing well-behaved functions

on a "quasi-nilpotent" group, as given in this paper, is due to Chevalley.

My original construction was more complicated.

Part I. Representations of a semisimple Lie algebra

2. Preliminary lemmas. Let k be a field of characteristic zero and I a

Lie algebra over k. Let Í be a subalgebra of I and a the representation of f

onl given by o-(X) Y= [X, Y] (XGf, F£l). Following Koszul [ll] we say that

ï is reductive in I if a is a semisimple(1) representation. Moreover I is called

reductive if it is reductive in itself. It is obvious that if Ï is reductive in I,

then ï is reductive.

Lemma 1. Suppose Í is reductive. Then I=c+l', cni'={o} where c is

the center of I and I' = [I, I] the derived algebra. Moreover I' is semisimple. A

finite-dimensional representation pofl is semisimple if and only if p(T) is semi-

simple for every TGc

Since the adjoint representation of I is semisimple, I can be written as a

direct sum XliSiâm Ii °f simple ideals I/. Then \¡ is either semisimple or abelian.

Suppose I, is abelian if l^j^mi, and semisimple if j>mi (O^wii^w).

Put Ï' = ^j>mi ly and c = ^ja^i ty. Then I' is semisimple and it is clear that

c is the kernel of the adjoint representation. Hence c is the center and

(') We use here the terminology of Chevalley [4, Chap. VI]. A linear transformation of a

vector space V (of finite dimension) is called semisimple if V is fully reducible under A.
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[U] =    Z     P* h] = £ Ii = V.

This proves the first part. Now p(I) =p(c)-\-p(V). Since I' is semisimple the

same holds for the linear Lie algebra p(Y). So the center of p(I') is {o} and

therefore p(c) is the center of p(I). Our second assertion now follows from a

result of Jacobson [lO].

Lemma 2. Suppose î is reductive in I and p is a finite-dimensional semi-

simple representation of I. Then p induces a semisimple representation of î.

Let 2) be the center of f. Since î is reductive, p(35) is the center of p(f).

Put Ii=p(l), fi = p(f), and S)i = p(35). Since î is reductive in I, it is clear that

fi is reductive in U. Moreover since p is semisimple, Ii is reductive (see Jacob-

son [lO]). Let Ci be the center and Ii the derived algebra of Ii. Let a denote

the adjoint representation of It. Then we know from the above lemma that

a(D) is semisimple for any £>£3)i. Choose an abelian subalgebra fh of U such

that f)iZ)3)i, a(H) is semisimple for all H&ii, and f)i is not contained in a larger

such algebra. Then f)OCi, and it is clear that \i P\f)i is a Cartan subalgebra of

the semisimple algebra li". Now if <f> is a semisimple representation of h. it

follows from the above lemma that <b(T) is semisimple for all r£ci. Moreover

4>(H) is semisimple for every Hdi ^(h, since \i CMji is a Cartan subalgebra of

the semisimple algebra M. Hence 4>(H) is semisimple for all H£f)i and there-

fore in particular for üTG3)i. Therefore, again by the above lemma, the repre-

sentation of fi defined by <p is semisimple. In particular if we take for <j> the

representation <b: p(X)—*p(X) (X<E\), we get the required result.

Let R and C be the fields of real and complex numbers respectively and

(—1)1/2 a fixed square root of —1 in C. Let go be a semisimple Lie algebra

over R and g its complexification. Let X—»ad X (X£g) denote the adjoint

representation of g. Put B(X, Y) =sp (ad X ad Y). A real form Qk of g is called

compact if B(X, X) <0 for all X<G.$k (X#0). It is well known (see Cartan

[3] and also Mostow [13]) that there exists a compact real form g* and an

automorphism 8 of order 2 of g with the following properties: 0goCgo, 8Qk(Z%k

and

So = fo + po,        8* = fo+ (-l)1/2Po

where E0 is the set of all X£g0 such that 8X = X and p0 the set of all F£go

such that 8Y= — Y. Let î and £ be the subspaces of g spanned by f0 and p0

respectively over C. Since 8 is an automorphism, 8([X, Y])—\8X, OY]

(X, F£g) and from this it follows immediately that

[f, Î] C f,       [f, p] C p,       [p, p] C Í.

Hence in particular f is a subalgebra of g.

Lemma 3. Ï is reductive in g.
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Let G be the component of identity of the adjoint group of go and K the

analytic subgroup of G corresponding to fo- Then it is known (see Mostow [13])

that K is compact. From this it follows immediately that fo is reductive in

g0 and therefore f in g.

Let f)Po be an abelian subalgebra of go contained in pQ and having the

maximal possible dimension. Extend &„„ to a maximal abelian subalgebra

f)o of g0. Let XGW Then if FGf)p„, [dX, Y]=- [dX, dY]= -d([X, Y]) =0.
Hence X—dX commutes with all elements in bp0. But X—dXGpo and there-

fore in view of our choice of bp0, X — dXGfy\>0- This proves that 0f)o = f)o and

therefore b0 = f)r0+bp0 where br0 = bonf0. Since gt = îo+( —l)1/2po is compact,

ad X is semisimple for every XGto^Jpo- Therefore if b is the subspace of g

spanned by f)0, b is a Cartan subalgebra of g. Put bp = pnb, f)t = ïnb. Let

Hi, • ■ • , Hi be a base for b0 (over R) such that Hi, • • ■ , Hm is a base for

bPo and Hm+i, • • • , Hi is a base for br0. Put H*=Hi or ( — l)ll2Hi according

as i'^w or î>ot and let b* = bp0+( — l)1/2f)r0. For any linear function X on f)

let H\ denote the unique element in h such that

B(HX, H) = \(H) iH G b).

We say that X is real if H^GV- Now let H= J2't-i e(H* (ciGR) be any ele-
ment in b*. We say that H>0 if H^O and c;>0 where j is the least index

such that Cjt¿0. If X and p are two linear functions on b such that X— p is

real, then we write X>ju or p<\ if H\~l¡=H\ — Hl,>0. Moreover we denote

by 0X the linear function H-*K(6H) (iZGb).

It is known that every root a of g with respect to b is a real linear

function and if a is a root da is also a root. For every root a choose

an element X„Gg such that Xa9¿0 and [H, Xa]=a(H)Xa for all HGb.

Let P be the set of all roots a>0. Define the subsets P+ and P_ of P as fol-

lows. A root aGP belongs to P+ or P_ according as daj^a or da=a. It can

be shown (see Iwasawa [9]) that da<0 for aGP+ and ii^Gbrand Xß, X_sGf

for ßGP— Moreover a>ß for any aGP+ and ßGP— Let n be the subspace

of g spanned by Xa (o¿GP+) and m the subspace spanned by br, Xß and

X^ß (ßGP-)- Then n is a nilpotent subalgebra of g. Put no = go<^n. Iwasawa

[9] has proved that g0 is the direct sum of f0, bPo, and n0.

Lemma 4. The centraliser of bp in g is bp + rrt and so m is the centraliser of bp

in Î. Moreover there exists an element i/Gbp whose centraliser (in g) is exactly

bp + m. Finally m is a subalgebra of I and

dim f — dim m = dim p — dim bp = dim n.

Let X = Ho+ Z«gp (caXa+c„aX_a) (H0GÍ); ca, c„aGQ. Then

[H, X] = J2(caa(B)Xa - c_aa(ff)X_tt) (H G b).
aGP

Therefore if X commutes with bp, ca=c_a = 0 unless a is identically zero on
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hp. But a is zero on f)„ if and only if a = 0a. This proves that h„-f-m is the cen-

traliser of f)p in g. Choose H&)* such that a(H)¿¿0 lor a£-P+. Then it is

clear from the above argument that the centraliser of H is hp-(-m.

If «GP+, 8a<0 and so —8a>0. Hence —Oa^—a and this shows that

—0a£P+. The mapping a—*—6a (aG?+) therefore defines a permutation

of order 2 on P+. Thus when a runs through P+, da runs through the set

{ —a; «G-P+J • Since 8Xa and Xta differ only by a nonzero constant factor, it

follows that Xa, 8Xa (a(E.P+) are linearly independent modulo hp + m.

The same therefore holds for Xa — 8Xa, Xa-\-8Xa (aG?+). Let q

= Z«£P+ C(Xa-8Xa) and 1= £„Gp+ C(Xa+8Xa). Then qCp and ICÏ
and q+I + f)o + m = g=p-r-í- Hence q+f)p = p, I-f m = f, and if q is the number

of roots in P+, it is clear that dim n = q = dim g = dim p —dim f)». Similarly

g = dim I = dim f —dim tn.
Since m is the centraliser of hp in f, m is a subalgebra of f.

Lemma 5. tn is reductive both in î and in g and [m, njCtt. Furthermore if a

is the adjoint representation of the algebra hp+n, then sp a(H) = £«gp <x(H)

(Heth)-
Put mo = ntf^g0 and define G and K as in the proof of Lemma 3. Let M

be the set of all xCK such that xH = H (HCi)x>0). Clearly M is a closed sub-

group of K and so it is compact. Moreover from Lemma 4 m0 is the subalgebra

of fo corresponding to the component of identity of M. Hence mo is reductive

in fo and go and therefore the same is true of m in f and g.

Let a<G.P+ and /?£P_. Then a-\-ß and a— ß are both greater than 0.

Moreover 8(a-\-ß) =da-\-ß^a-\-ß since a^Oa. Similarly 0(a—ß)^a—ß. This

shows that [Xa, Xß] and [Xa, X^ß] are both in n. Since [f), n]Cn, we con-

clude that [m, n]Cn.

It is clear that sp <r(H) = ^„£f+ a(H) (ífGÍIp). Since a is zero on f)p if

a(E.P-, it follows that sp a(H) = X¡«eí a(H)-
Let p be a representation of f on a vector space V whose dimension need

not be finite. A subspace W of V will be called p-stable if p(X)WQW lor

all XGf. Let pw denote the representation of f induced on a p-stable sub-

space W. We shall call pw simple (semisimple) if dim W< «j and pw is simple

(semisimple) in the usual sense (see Chevalley [4, Chap VI]). Also we then

say that IF is a simple (semisimple) subspace of V.

Let ß denote the set of all (equivalence) classes of simple representations

of Ï. For any ¡î) £Œ we denote by F® the sum of all p-stable subspaces Wol V

such thatptr<G£). (Fd= {o} if no such IF exists.)

Lemma 6. // IF is any p-stable subspace of V, then

wr\(y. F® ) = £ wr\v<x>.
\SD6a       /        3)    Q

Moreover the sum in £ug a F© is direct.
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For any xG ]Cî>en V® let Vx be the smallest p-stable subspace containing

x. It is clear that Vx is contained in the sum of a finite number of simple

spaces. Hence Vx is semisimple (see Chevalley [4, Chap. VI ]) and therefore

Vx = 2^© Vxr\ V<s). Applying this result to the elements of WC\ ( 2^£>g a V<¿)

we get the first statement of the lemma. Let fii be a subset of £2. Then for any

XG 2Z®£Qi Fsd, Vx is contained in the sum of a finite number of simple

spaces W' such that the class of pw lies in fii. Hence it follows (see Chevalley

loc. cit.) that every simple component of pv% belongs to a class in Í2i and

therefore  Fxr^Fs)={0}   if 35Gßi- This  proves  the directness of  the sum

An element xGV will be said to transform (under p) according to 3) if

xGV<£, and we shall say that the representation p is quasi-semisimple if

V= ^jiga F®. In order that this be the case it is necessary and sufficient

that every element xG F should belong to some semisimple subspace IF of V.

The following lemma is well known (see Godement [7(b), p. 102]).

Lemma 7. Assume that p is quasi-semisimple. Let Va be the space of all x G F

such that p(X)x — Q for all XGÎ and let Vi be the space spanned by all elements

p(X)x (XGf, XG V). Then V is the direct sum of V0 and Vi.

Let ©o be the class of the simple zero representation of degree 1 of ï.

Then F0=Fsd„ and it is clear that FiC SsvSo F© which shows that the

sum Fo+Fi is direct. In order to prove that Fo+Fi= F it is sufficient to

show that if IF is a p-stable subspace of V such that pttGS) (35^3)0), then

WGVi. The subspace IF'of IF spanned by the elements p(A^)x (XGt, xGW)

is clearly p-stable and not equal to {0} since pw is simple and not in 35o- Hence

W= W', which proves our assertion.

Let F and V be the spaces of the representations p and p' of Ï. Then the

tensor product FX V is the space of a representation p+p' (the tensor sum

of p and p') which is defined as follows: if XGt, XGV, and x'GV, then

((p+p')(X))(xXx') = (p(X)x)Xx'+xX(p(X')x').

Lemma 8. Assume that the representations p and p' are quasi-semisimple.

Then p+p' is also quasi-semisimple.

Every element of FX V is contained in a space of the form IFX IF' where

IF and IF' are semisimple subspaces of F and V respectively. Let c be the

center of Î. Since pw is semisimple, it follows from Lemma 1 that we can

choose a base (xu ■ ■ ■ , xm) in IF such that the matrix representing pn^(r)

(rGc) relative to this base is diagonal. A similar base (x{, ■ ■ ■ , x'm<) can be

found for IF' with respect to p'w■ But then it is clear that (p+p')w+w (T)

(rGc) is represented by a diagonal matrix relative to the base XiXxj,

l|íám; 1 ̂ ¡j^m', for IFX IF'. In view of Lemma 1 this shows that IFX IF'

is semisimple under p+p'. Hence every element of FX V is contained in a

semisimple subspace and this proves the lemma.
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Let 33 be the universal enveloping(2) algebra of g and 26 the subalgebra of

33 generated by (1, f). Then X is the universal enveloping algebra of f (see

[8(e)]) and there is a natural 1-1 correspondence between representations of

f and their unique extensions(3) on ï. It is convenient to identify the repre-

sentations of f and X under this correspondence. Let w be a representation of

33 on V. Then the restriction of ir on Ï is a representation of f. For any SD£ß

we define V® as the set of all elements of F which transform under w(t) ac-

cording to 3).

Lemma 9. The subspace £îd£=q F® is invariant under 7r(33).

Let Fo= 2Zs)gn F®. Since (1, g) generates 33 it would be sufficient to

show that 7r(g) FoC F0. But g = f+p and F0 is obviously invariant under 7r(f).

Hence we have only to show that tt(p)FoCFo. Let a be the representation

of ï on p defined by o(X) Y= [X, Y] (XG.Î, F£p) and let p be the representa-

tion of f on Fo. Consider pX Fo and the representation a+p induced on it.

Since f is reductive in g, or is semisimple. Moreover for any given xG Fo we

can find a p-stable semisimple subspace IF of Fo such that x£IF. Then

pXlF is semisimple under the representation v induced on it under <r+p

(Lemma 8). Let X be the linear mapping of p X W into F defined by X( FXw)

= ir(Y)w (FGp, wGW). Then it is easy to verify that ir(X)\=\v(X). This

means that X is a homomorphism of the f-module p X W into the f-module F.

Since pXtF is semisimple the same holds for X(pXIF) (see Chevalley [4,

Chap. VI]). Since 7r(p)xCX(pX IF) it follows that ir(p)x is contained in a semi-

simple f-submodule of Fand therefore 7r(p)xCFo. This proves the lemma.

Let F be a vector space over C of finite dimension. Then V may be con-

sidered as an abelian Lie algebra and the universal enveloping algebra of this

Lie algebra is called the symmetric algebra over V. We shall denote it by S(V).

If {xi, • • ■ , xn} is a base for V, the monomials, x'¿xe¿ • • • s£ (e.-^O; l^i^n)

form a base for S(V) and so S(V) may be regarded as the algebra of poly-

nomials in Xi, • • • , xn. For any integer d}^0 we denote by Sd(V) the sub-

space of S( V) consisting of all forms in (xlt • • • , xn) of degree d. It is clear that

Sd(V) is independent of the particular choice of the base (xi, • • • , xn). We

call an element FÇ£S(V) homogeneous of degree d if F£Srf(F).

Let T be an endomorphism of V. Then it follows from the structure of

S(V) as an algebra of polynomials that T may be extended uniquely to a

derivation dr of 5(F). If f(E.P(xi, ■ ■ • , xn) where P is a polynomial, then

drf= £igtgn (dP(xi, ■ ■ ■ , xn)/dxi)(Txi). Hence dr maps Sd(V) into itself.

Moreover the mapping T—>dr is linear and(4) dlTlir2] = [drv ¿rs]-

(2) For a definition of the universal enveloping algebra see [8(a) ].

(3) Let 21 be an associative algebra with a unit element 1 and x a representation of 2Í. We

shall always assume that x(l) is the identity mapping of the representation space and this con-

dition will be included in the definition of a representation.

(4) Throughout this paper we write [a, b]=ab — ba whenever a, b lie in an associative algebra

or are endomorphisms of a vector space.
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Now consider in particular the algebra 5(g). The product of elements of

g do not have the same meaning in 5(g) as in S3. In order to avoid confusion

we shall represent by X an element XGç, when we want to consider it as an

element of 5(g) (this is less cumbersome than introducing different notations

for multiplications in 5(g) and in S3). Let (Xi, ■ ■ • , X„) be a base for g.

Define a linear mapping X of 5(g) into S3 as follows:

\(Xi  ■ ■ ■ X«) = (l/ml) £ XhXh ■■• Xim (0 â í¡ < », 1 á ¿ ^ «)

where m — ei+ • • ■ +e„ and the summation is over all sequences (ïj, • • • , im)

which have exactly e¡ terms equal toj (1 újíkn). It is clear that if Yi, ■ • •, Yk

are any elements of g, then

X(7iF2 • • • Yk) = (1/Ä!) £ F.-,i, • • • F.(fc,

where the summation is over all permutations w of {1, 2, • • • , k}. This shows

that the definition of X is independent of the choice of the base (Xi, • • ■ , Xm).

We know from theorems of [8(a)] that X is a 1-1 linear mapping of 5(g) onto

S3. We shall call it the canonical mapping of 5(g) onto S3.

Let <r(X) (XGg) be the derivation of 5(g) which coincides with ad X on g.

Then a: X—>o(X) is a representation of g on 5(g). Let at be the restriction of

ff to Î.

Lemma 10. trj is a quasi-semisimple representation of t.

Let Od(X) (XGq) denote the restriction of cr(X) on 5<¡(g). Then o-<j is a

finite-dimensional representation of g. Since g is semisimple and Í is reductive

in g, a i induces a semisimple representation of Î on 5d(g). But

'S'(ö) = 2¿eo 5<¡(g) and so the lemma follows.

Lemma 11. Let a be the representation of g on 5(g) as defined above. Then if

FGS(i) and XGz,

\(o-(X)F) =  [X, \(F)] = X\(F) - \(F)X.

It is clearly sufficient to prove this formula when F is of the form

FiF2 ■ • ■ Yk, Yi, ■ ■ ■ , Yk being in g. Set Y[ = [X, Yi] (l^i^k); since <x(X)

is a derivation, o(X)F is the sum of the î products obtained from Fi • • • Yk

by replacing successively each one of the factors Y i by Y[. On the other hand

the mapping b—>[X, b] (&GS3) is a derivation of S3. It follows that for any

permutation w of (1, 2, • • • , k), [X, Y^i)Yam ■ ■ ■ F„(*)] is the sum of the

products obtained from Y^m F„(2) • • • Yu(k) by replacing successively each

one of the factors F„(i) by its transform [X, F„(,-)]= FJ(t). The formula

~\(o(X)F) = [X, \(F)] now follows immediately.

Corollary. The center of the algebra S3 is the image under X of the set of

elements F in 5(g) such that o(X)F = 0 for all XG$-

This is an immediate consequence of Lemma 11.
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If a vector space F (of finite dimension) is the direct sum of two subspaces

V and V", we may obviously identify S(V') and S(V") with subalgebras

of S(V) and the bilinear mapping (F', F")-+F'F" defines an isomorphism of

the tensor product S( V) X5( V") with S( V) as is easily seen by making use of

a base of F which is composed of a base of V and a base of V".

Lemma 12. Let g be the direct sum of two subspaces g' and g". The bilinear

mapping (F', F")->X(F')X(F") (F'GS(g'), F"<GS(g")) defines a linear iso-

morphism of 5(g')X-S'(g") with 33. // d is an integer ^0, denote by Sd(Q),

Sd(i'), and 5<¡(g") the spaces of homogeneous elements of degree d in 5(g),

S(g'), and 5(g") respectively. Then

E X(5.(0)) =     y    MSd'(Q'))\(Sd„(z")).
eéd d'+d"Sd

In this lemma, as in the rest of this paper, we make the following con-

vention: if A and B are linear subspaces of an associative algebra, we denote

by AB the vector space spanned by all elements ab (a<G.A, b<G.B).

Consider a base {Xi, • • • , Xn} of g which is composed of a base

{Xi, ■ • ■ , X„>} of g' and a base {Xn>+i, ■ ■ • , Xn.+n>>}j>l g" («»»'+»")•

We denote by M the set of all monomials in Xu ■ ■ ■ , Xn, by M' the set of

monomials in Xi, • ■ ■ , Xn<, by M" the set of monomials in Xn>+i, • ■ • ,

3T»»+»», by Md the set of monomials of degree d in M, by Mi the set M'C\Md,

and by M'J the set M"r\Md. The space ~52e£d X(5e(g)) is spanned by the

elements \(u), /x£Ueg<¡ M,. We shall prove by induction on d that it is also

spanned by \(p')\(p") where p'GMd,, p"CM'J,, and d'+d"^d. This is ob-

viously true for d = 0. Assume that it is true for d. It is proved in [8(a) ] that if

FEStd), F'GS*-(g) then

(1) X(F)X(F') ■ \(FF') mod   £    X(5m(i)).

It    follows    immediately    that    the    condition    d'-\-d" ^d-\-l    implies

X(5i.(B'))X(5d»(8"))CZ.s*n M&(9))- 0n the other hand everY CÊ^i
may be written in the form p'u" where p'CM't,, p"<EM'J>, and ¿'+¿" = ¿+1.

Hence it follows from the above formula and our inductive assumption that

X(/í)G ]C<*'+<2"E<¡+iM"S'<i'(g'))M'Sí¡"(g")) and this proves our assertion lor d-\-\.

Since every element p.£M can be written in exactly one way in the form

p'p," (p'E.M', p"GM"), we see that for every d the elements X(p/)X(ju")

(p'EMi; p"CM'J., d'+d"^d) form a base of ¿,SdX(5«(e)). This being true

for every d, the lemma follows.

It is clear that X(S(I)) = X. We shall denote by <ß <Äe sei X(S(p)) area ôy $¿

the sei X(Sá(p)).

Lemma 13. Weham\(Sa^)S(ï))CT^,sd^âand\(Si(p)S{t))\(Sdr(\i)S{r))

C ¿_,e¿d+d'  "ißeSE-
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The first formula follows immediately from Lemma 12. In order to prove

the second formula, it will be sufficient to show that

(ÇdïXÇd.*) C    E    $X

Let pd denote the space spanned by the products of d elements in p. First we

prove that Xp'O^X. This is true for d = 0. Let X' be the set of all «GS3

such that MpCpX. Then X' is a subalgebra of S3 and 1GX'. SDÎoreover if

XGt and FGp, then XY = YX+ [X, F]GpX since [X, F]Gp. Hence ï
and therefore X is contained in X' which shows that XpCpX. Now assume that

our assumption is true for some d. Then Xpd+1 = (Xpd)p-Gp<iXpCp'i+1X. This

proves it for d + 1. But it is clear that ^ßdCpd and therefore

OßrfXX^X) C pdXpd'X C Pd+d'X.

Hence it would be sufficient to prove that pdXC 2Zeg¿ ^ßeX. This is true for

d = 0, 1. Assume that it is true for d. Then

pá+1X C £ P?.*.
eéd

But p^36CX(5i(g))X(5e(g)) and therefore from formula (1) above p33e

C Ee'SM-i M&'ifl)) and this is contained in Ee'á«+i ^«'^ m virtue of Lemma

12. Since this proves our formula for d + 1 the lemma follows.

Let g* be the space dual to g, i.e., the space of linear functions on g. Then

the fundamental bilinear form B(X, Y) of g defines an isomorphism / of

g with g*, which assigns to every XG& the linear function F—>B(X, Y) on

g. (This is an isomorphism since B is nondegenerate.) I may be extended

uniquely to an isomorphism of 5(g) with the symmetric algebra 5(g*) on g*.

We denote this extension again by I. Let {x*, ■ • • , x*} be a base for g*

and F any element in 5(g*). Then F = P(x*, ■ ■ ■ , x*) where P is a poly-

nomial. Since x*, ■ • • , x„ are linear functions on g, P(x*, ■ ■ ■ , x*) repre-

sents a function on g, namely the function F': X-^P(x*(X), • • ■ , x*(X))

(XGg). It is clear that the mapping F—>F' is isomorphic and does not de-

pend on the choice of the base {x*, ■ ■ ■ , x*}. The functions F' are called

the polynomial functions on g. Henceforth we shall identify 5(g) with 5(g*)

and the algebra of polynomial functions on g under the mappings F—*I(F)

-^(I(F))' (FGSio)). Since B(X, F)=0, XGt, and FGp, p is identified with
the space of linear functions on g which are zero on Ï. We may therefore iden-

tify 5(p) with the algebra of polynomial functions on the subspace p of g.

Let {xi, • ■ • , xp, Xp+i, ■ • • , x„} be a base for g such that {xi, • • • , xp} and

{xp+i, • ■ ■ , x„} are bases for p and f respectively. Then if P is a polynomial

in n variables, the restriction of the polynomial function F = P(xi, • • • , x„)

on p is P(xi, • • • , xp, 0, ■ • • , 0).

3. Proof of Theorem 1. Let 2Í be an associative algebra with a unit element

1 and SDî a left ideal in 21. Then the space 91* =21/99? is an 2l-module and if
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we assign to every xG2i the mapping 7r(x) : a*—>xa* of 21* into itself we obtain

a representation t of 21, which we call the natural representation oí 21 on 21/90?.

Let I be a finite-dimensional subspace of 21 which is a Lie algebra under the

bracket operation [X, Y] =XY— YX (X, FGI)- Then t defines a representa-

tion of this Lie algebra which will also be called the natural representation of

i on a/a».

Theorem 1. Let ty be a left ideal in X. Assume that X/§) is finite-dimensional

and the natural representation of f on X/2J is semisimple. Then the natural repre-

sentation of f on 33/332J is quasi-semisimple. Let 3) be any equivalence class of

finite-dimensional simple representations of f and let 33*) be the set of all elements

o/33* = 33/339 which transform according to 3) under the natural representation

t of t on S3*. Then 33*) is a finite module over the center ,3 of S3.

In order to clarify the last assertion we first observe that 33® is actually a

module over £,. Let x be an element of S3*) and let W be the smallest ir-stable

subspace of 33* containing x. Let tw(X) (XGt) denote the restriction of

t(X) on IF. Then tw is semisimple and every simple component of tw is

contained in 3). Let zGS; then the mapping y-^-zy (yGW) maps IF upon a

space zW. If XGt, Xzy = zXyGzW; thus zW is Tr-stable and T(X)zy

= z(T(X)y). It follows immediately (see Chevalley [4, Chap. VI]) that the

representation of f induced on zW is semisimple and all its simple components

are in 3). Hence zxG33f) and this shows that 33f) is a ,3-m°dule.

The proof of Theorem 1 will be divided into several parts.

1. Proof of the first assertion. We have defined above the canonical map-

ping X of 5(g) onto S3. We consider now the tensor product 5(p)X(X/§)).

Since DC33g), there is a natural mapping /->/* (/GX/g)) of X/g) into 33*

= S3/S3§). Define a linear mapping T of 5(p)X(X/f)) into 33* as follows:

TiF Xf)= HF)f* (F G Sip), f G ï/g)).

(We recall that 33* is a 33-module and so X(/7) operates on S3*.) We shall

prove that T is a linear isomorphism of 5(p)X(X/§)) with S3*. Select a base

(si)i£i for 5(p) and a base (tfjj^j for 5(f). We may suppose that one of the

elements s,-, say s0, is equal to 1. The mapping X induces an isomorphism of

5(f) with X. Hence we may assume that the base itj)%zj is so chosen that for

a suitable subset J' of / the elements (X(iy))yg/» form a base for §). From

Lemma 12 the elements X(s,)X(/y) (iGI,jGJ) form a base for S3 and, iijGJ',

X(s,-)X(7y)G33§). Conversely every element of 332J is in the space spanned by

the elements X(s¿)X(íy)X(£y<) (iGL jGJ, j'GJ')- But since §) is a left ideal in

X, \(tj)\(tj>) G§) and so X(/y)X(/y<) lies in the space spanned by X(/y<<) (j"GJ')-

This proves that the elements X(s,)X(iy<) (iGI, j'GJ') form a base for 33g).

Since X is spanned by the elements X(s0)X(iy) (jGJ), it follows that S3g)nX

= §). We may therefore identify X/§) with its image in S3*. Let /" be the com-

plement of J' in /. Let X*(iy) (jGJ") denote the residue class of X(¿y) modulo
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9 (or 33§)). Then the elements X(s<) X*(iy) (iEI, j<EJ") form a base for 33*.

On the other hand the elements X*(iy) (JÇ.J") form a base of 3É/2)

and r(s,XX*(i3)) =\(si)\*(tj) (i£-I, j<E.J")- This proves that T is a linear

isomorphism of S(p)X (2/20 with **•
For any X£ï let cr(JQ denote the derivation of 5(g) which coincides with

ad X on g. Then we have seen in Lemma 10 that cr is a quasi-semisimple

representation of f. On the other hand ad X maps p into itself and therefore

o(X) maps 5(p) into itself. Let p(X) denote the restriction of a(X) on 5(p).

The representation p is quasi-semisimple (Lemma 6). Let p. be the natural

representation of ï on 3C/2). Then p. is of finite degree and semisimple. From

Lemma 8, the representation p-\-p on S(p)X (£/§)) is quasi-semisimple. The

first assertion of Theorem 1 will therefore be proved if we show that ir is

equivalent to p+u. Now if FG5(p),/Gï/§), and X£-t,

((p + p)(X))(F X /) = P(X)F Xf + FXXf.

But from Lemma 11,

X(P(Z)F)= [X, \(F)].

Hence

r(P(X)F X /) + T(F XXf) = ([X, \(F)])f + \(F)Xf

= X\(F)f=v(X)(T(FXf)).

Since r is an isomorphism, ir is equivalent to p-\-p.

2.1. Proof of the second assertion. First reduction. Let v be a simple

representation of f which is contragredient to the representations of the class

35 and let V be the space of the representation v. Consider the representation

TT+p of î on the tensor product 33 *X V. An element <p£33*X F will be called

an invariant if ((tt-\-p)(X))<j> = 0 lor all X£f. Let 3 be the set of these invari-

ants. Suppose {vi, ■ • ■ , vm} is a base for F and <p= XXi bfXvi (&*£33*)

is in 3i. Then the elements &,* belong to 33!,. For, if X<=î, ¿£., Tr(X)b*Xv{

= — E<li b?Xv(X)vi from which it follows immediately that the elements

ir(X)bt lie in the space V* spanned by b*, • • • , b„ and therefore F* is

ir-stable. Let irv*(X) denote the restriction of ir(X) on F*. Now <f>GV*XV

and ((irv*-i-i>)(X))4> = 0 lor all X£f- If <j>9¿0 this means that wv' contains a

simple representation contragredient to v. Since dim V*^m, it follows that

ttv' itself is contragredient to v and so lies in £>. Therefore ô*G33|) (l^i^m).

On the other hand if <p = 0, b* = 0 (l^i^m) and so our assertion is true

trivially. Conversely let U be a x-stable subspace of 33* such that the repre-

sentation ttu induced on U lies in 2). Then wu is contragredient to v and so

there exists a base {b?, • • • , b£} for Z/such that XXi b?Xvi is an invariant

of T+V.

Since 33* is a 33-module we may also regard 33* X F as a 33-module as

follows:
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aib* X v) = (ai*) Xi    (a G S3, b* G 33*, v G V).

If zG<3, the operator z on 33*X F commutes with ít+v)ÍX) iXGt). Hence

it follows immediately that 3 is a ¿-module. If this ¿-module js finite, then

33!) is a finite ¿-module. For let ^ (1 =¿^g) be a finite set of elements in 3

such that 3= Xt-i Sfa- Lettf* = ¿«"-i &£Xtf< (¿¿CSS*). Then it follows im-
mediately from what we said above that 33*)= £ï-i £™i S°h-

We have defined above an isomorphism T of 5(p) X(X/g)) with 33*. Now

consider the linear isomorphism

FXfXv-+TiFXf)Xv iFG Sip), f G ïï/% v G V)

of 5(p)X(X/9)XF with S3*XF. This we shall denote again by T. Put
TF=(X/g))XF and £=p+p+v, p'rp+v, t' = t+v. Then if XGt and A
G5(p)XIF, ri£iX)A)=T'iX)TiA). Let 3' be the set of elements AGSip)
X IF such that l;iX)A =0 for all XGt. Thus T induces an isomorphism of 3'

with 3.
We now regard 5(p)XIF as a module over 5(p) by the rule FiiF2Xw)

= iFiF2)Xw iFi, F2G5(p), wGW). UX&, FGSip), AGSip)XW, we have
¡iiX)FA = ÍpiX)F)A + Fi¡íiX)A). Let Ö denote the set of elements FGSip) such

that piX)F=0for all XGt. Then 3' is clearly an ß-module.

On the other hand for any ZGg the operation ad Z may be extended to a

derivation riZ) of the algebra 5(g). If ZGf, then the operation o-(Z) consid-

ered above is identical with riZ). We shall denote by 3 the set of elements

/G5(g) such that t(Z)/ = 0 for all ZGg; this is a subalgebra of 5(g). We now

regard the elements of 5(g) as polynomial functions on g in the manner ex-

plained above and denote by 3P the set of restrictions to p of all functions /

in 3. Then 3pCß. For, let /G3 and let /' be its restriction to p. Then /' is the

unique element of 5(p) such that J—J' belongs to the ideal $ generated by f

in 5(g). Let X be an element of f. Then aiX)J = 0. On the other hand since

ad X maps the spaces f and p into themselves, criX) maps Ä and 5(p) into

themselves and so p(X)/' = T(X)/'GÄ/°i5(p) = {OJ. Hence J'Gfl. It is

clear that 3p is a algebra of fl. We shall see that in order to prove that 3 is

a finite ^-module it is sufficient to show that 3' is a finite ^-module.

Assume that 3' is a finite 3p-module. For any integer d = 0 let Sdip) de-

note the space of homogeneous elements of degreed of 5(p). Then 5d(p) XIF

is mapped into itself by the operations of £(f). Therefore we can find a finite

number of elements -4¿G3' (1 íá*ár) each of which lies in some 5¿(p)XIF,

say Sdiip)XW, such that 3'= Eï-i M<- The space 3=o= Ei-i ¿P(¿<) is
contained in 3- We now intend to prove that 3» = 3- Put

& = 3'n ( £ s.ip) x w), 3d = r(3á).
\ OS eS d /

The set of those Ai for which ¿, = 0 obviously generates the space $T\W
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(IF being identified in the usual manner to the subspace 1 X IF of 5(p) X IF).

It follows that 3oC3«>- It will therefore be sufficient to prove that for every

d^O, 3d+iC3d + 3«=.
Let AGS'r^(Sd+i(p)XW) and let A = £Ui FiAi with FG3„. It is clear

that the homogeneous components of any element of 3P also belong to 3p.

We may therefore assume that FjGSd+i-d,(p) (5e(p) = {o} if e<0). Let

{wi, • ■ ■ , wa} be a base for IF and let Ai= E?-i A^Xwj with -¿.¿G-Sd/p).

Then T(^4) = ¿Jï-i E?-i X(F¿v4¿j)wy. Each F¿ is the restriction to p of an ele-

ment Ji of 3 and we may assume that /» is homogeneous of degree ¿ + 1 — ¿<

which is the degree of F<. It follows that F< — /¿G X««+i-i¡¡ 5*(}>)S(Í).
Hence

F^ti - 7^tJ-G £ S.(p)S(î).
eád

Therefore from Lemma 13,

T(.A) - E E HM*])*) G E (^eï)IF
>=1 J=l eâ d

where ^ße = X(S6(p)). On the other hand we know (see [8(a)]) that

\(JiAij) m XVi^Aij) mod E X(5.(g))
eád

where 5e(g) is the space of homogeneous elements of degree e in 5(g). Since

X(5e(g)) C E«'á« ?«'£ from Lemma 12, it follows that

r(¿) - ¿ E HJiMAjtij g E (^eï)iF.
1=1  J=l eá d

Since IF is the subspace ((3£+33g))/33S) X F of 33*X V, it is clear that XWCW
and therefore

z2w¿)wcT((zse(p))xw).
eèd WeÁd / /

On the other hand

E E Hrà*(4tdwi = E H/.)r(i¡).
¿=i ¿=i i=i

The elements X(J¿) are in ,3 in virtue of the corollary to Lemma 11. Hence

Ei-i X(/¿)r(^4i)G3oo and therefore

T(A) - E x(/,)r(.4,) G 3H r( E s.(p) xw) = 3d.
¿=1 \ eSd /

This proves that T(A) G3d + 3oo and therefore 3d+iC3d + 3«>- Hence 3 = 3»-
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2.2. Second reduction. We shall now establish that the ring ß intro-

duced above is a finite module over its subring 3P. This will reduce the problem

of proving that 3' is a finite 3p-module to that of proving that it is finite

ß-module.

Let b be the Cartan subalgebra of g as defined in Lemma 4. Let p = dim p

and h = dim (f)P>p). We shall first show that ß cannot contain more than h

algebraically independent elements. Let (Fi, • • • , Yp) be a base of p. We

have identified every element F of g to the linear function Z—>B(Y, Z) on g.

Let yi, • • • , yp be the elements Fi, • ■ ■ , Yv regarded as linear functions on

g. These functions are zero on f. An element of ß may be written as a poly-

nomial Fiyi, ■ • ■ , yP) in yu ■ ■ ■ , yp and £f_t d.F(yi, • • ■ , yP)/dyi (p(X)y¡)

= 0 for all XGt. The function p(X)y{ is the function Z-^B([X, Yi], Z)

= -BiY{, [X, Z]) on g. Let Z be any element of p. Put U = JiiZ) (1 Û*ÛP).
Then

"    dF
E —itu---,t,)yii[x,z]) = 0.
•=i ayi

Let {Xi, ■ • - , Xk} be a base for f. Then the rank r(Z) of the matrix

iyii[Xj, Z]))i¿i¿p,i¿j¿k is the dimension of the space spanned by the ele-

ments [X, Z] for all ATGf- Let r = maxzgp r(Z). Then there exists a poly-

nomial function Gf^O on p such that r(Z)=r if G(Z)?¿0 (ZGp). it follows

from the above relation that ii Fi, ■ ■ ■ , Fq are in ß, the rank of the Jacobian

matrix (dFi/dy¡)i¿i¿q,i¿j¿p for y¿ = £\- is ^p — r(Z). Hence there cannot be

more than p — r algebraically independent elements among Fu ■ • ■ , Fq. Now

it is clear that r(Z) is equal to the difference between the dimension of f

and that of the space of elements XGt which commute with Z. Making use

of Lemma 4, we see that there exists an element ZGp such that r(Z) =p — h.

Hence r^p — h and therefore there cannot be more than h algebraically in-

dependent elements among F%, • • « , Fq. This proves our assertion.

The bilinear form B is nondegenerate on b. Since b = bp+br and f and p

are mutually orthogonal under B, it follows that B is nondegenerate on bp.

We may therefore assume that the base { Fi, • • • , Yp] lor p is so chosen

that Fi, • • • , Yh form a base for bp = bf> and B(Y{, Yf) =0 if i^h<j. The
restrictions of yh • ■ • , yh to bp are then linearly independent and the ring

generated by yi, • • ■ , yh may be identified with the algebra 5(bp) of poly-

nomial functions on f)p (i.e., those functions on bp which may be written as

polynomials in linear functions). The restriction of an element F(yi, ■ ■ ■ , yp)

oí S(p) to bp is ^(yi, • • • , yh, 0, • • ■ , 0). Let 30p be the algebra of restrictions

to bp of elements of 3p. We shall prove 3pp contains h algebraically independent

elements and 5(bp) is a finite module over 3^. Let 3& be the ring of restric-

tions to b of elements of J*. Then 3^ coincides with ring of restrictions to bp

of elements of ^V Let h) be the Weyl group of g with respect to b and 5(b)
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the algebra of polynomial functions on f). Then Chevalley(5) has proved that

every element of S(f)) which is invariant under to lies in 35. It follows that

every element <j>GS(i)) is integral over 3& since it is a root of the polynomial

Q.gm (T—S(j>) whose coefficients are in 35. Moreover since Id is a finite group

it follows from the theory of invariants that the ring of invariants of to

(in 5(f))) is finitely generated. Hence 3&isa Noetherian ring. Now the opera-

tion of restriction from f) to f)p is a homomorphism of 5(f)) onto 5(f),,) which

maps 3& onto 3&p. Hence 3&p is a Noetherian ring and every element of 5(f)„)

is integral over 3Cp. This shows that 3p,, contains h algebraically independent

elements. Furthermore since 5(f),,) may be obtained from 3&p by the adjunc-

tion of a finite number of elements which are integral over it, 5(f)p) is a finite

module over 3»,,. Let fi&„ be the set of restrictions of elements of fi to f)p.

Then this restriction is a homomorphism of fi onto fi&p. The ring fi does not

contain more than h algebraically independent elements and contains 3$p

which does contain h algebraically independent elements. Since fi and fi^

are integral domains, this implies that the operation of restriction to f)p in-

duces an isomorphism of fi onto fi&p. But since 3ijt)Cfi&,,C5(f),)) and since 3^

is Noetherian and 5(f)p) is a finite 3ip-module, it follows (see van der Waerden

[16, vol. II, §99]) that fiip is also a finite 36p-module. Therefore in view of the

above isomorphism fi is a finite 3,,-module.

2.3. The last step. We have now to prove that 3' is a finite fi-module.

For this we shall use the classical argument of Hubert. Let 21 be the 5(p)-

module generated by 3' (i-e. the set of linear combinations of elements of 3'

with coefficients in 5(p)). Since the ring 5(p) is Noetherian and 5(p) X IF is a

finite module over 5(p), 21 is a finite 5(p)-module and therefore 21

= Ei-i S(p)Af (AiGS). We shall prove that 3' = Ei-i ®&t- From Lemma 7,
S(p) X IF is the direct sum of 3' and the space 2ft spanned by the elements

%(X)A (XEÎ and A G5(p) X IF). Similarly 5(p) may be written on the direct

sum of fi and the space 5ft spanned by the elements p(X)F(XGt, FG5(p)).

Let A = Eí-i FiAi (F,G5(p)) be an element of 3'- Then Fi = F< +Ni when
F¡ Gfi and NiGW. If GG5(p), H(X)(GAi) = (p(X)G)Ai (XGt) since Z(X)At
= 0. Hence (p(X)G)AiG9il and therefore AM;G2ft C1 £*£r). Now F/4,-G3'
and A = Eî-i F/A+ Ei-i AM,-. The sum 3' + 9ft being direct, it follows
that A ■= Eï-i FíAi and this proves our assertion. Theorem 1 is now com-

pletely proved.

Part II. Well-behaved functions on a Lie group

4. Preliminary remarks. Let G be a connected Lie group and § a (com-

plex) Banach space. For any bounded linear operator A on § we write

\A\ =sup|^|gi \A\¡/\ (ipGSÍ>). Let / denote the unit operator on §. Then by

a representation of G on § we mean a mapping it which assigns to every

(6) Chevalley's results are not yet published. I am thankful to Professor Chevalley for

being good enough to let me use them.
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xGG a bounded linear operator 7r(x) on ^> such that the following two condi-

tions hold:

(1) T(xy) =x(x)7r(y) (x, yGG) and 7r(l) =/ where 1 is the unit element of

G.
(2) The mapping(6) (x, \P)—>t(x)\j/ (xGG, fG& is a continuous mapping

of GX§ into £.

It follows from the second condition that 17r(x) | is bounded on every com-

pact set in G. Conversely assuming that (1) is fulfilled, it is easy to prove

that if the mapping x—+r(x)\p (xGG) is continuous at x = l for every ^G^>

and |ir(x)| is bounded on some neighbourhood of 1 in G, then t is a repre-

sentation.

Let Cc(G) denote the set of all (complex-valued) functions on G which

are indefinitely differentiable everywhere and which vanish outside a com-

pact set. Let F be the subspace of § spanned by all elements d> of the form

* = f fixMxftix (f G C?(G), * G §)
J G

where dx is the element of the left invariant Haar measure on G. Let g0 be

the Lie algebra of G and g its complexification. We denote by S3 the universal

enveloping algebra of g. Gârding [5] has shown that for any XGgo and 4>G F

the limit

lim— {w(exptX)<b - <(>} (IGR)
(-»0     t

exists and lies in Fand if we denote this limit by TviX)<f> we get a representa-

tion tv of g (and therefore of S3) on F. We shall call F the Gârding subspace

of § and tv the Gârding representation of g (or 33). Unfortunately this

representation has one serious shortcoming. If U is a ir^-stable linear subspace

of V, then its closure U is not necessarily invariant under 7t(G). Thus one of

the main links which connect representations of G with those of go in the

finite-dimensional case is absent in the relationship between t and tv- Our

principal objective now will be to restore this link by replacing the Gârding

subspace by the space of all "well-behaved" elements in §.

5. Power series in a Banach space. Let {fa|0g; be an indexed set of

elements in §. For any finite subset F oí J let sf denote the sum J]0gr^t.

We say that the series £«g/ ip« converges if there exists an element <f>G&

such that for any e>0 we can find a finite subset F0 of / with the property

that \sf— <t>\ ale whenever F is a finite subset of / containing Fo. 4> is then

called the sum of the series and we write <£= £«£/ ^a. (It is clear that d> ii

it exists is unique.) Moreover we say that the series converges absolutely if

(•) It can be shown that condition (2) can be replaced by the apparently weaker require-

ment that the mapping x—*v(x)f (xGG) be continuous for every \¡/G§-
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E*e.r llM <°°. It is obvious that an absolutely convergent series is con-

vergent.

Let J2i.—.<k* ^(«ii • • • . en)tei ■ • ■ ft fflßu • • • , en)G£>) be a power
series which converges for h = ai, ■ ■ ■ , tn = a„ (a,£C). Then it follows from

the usual arguments that it converges absolutely for all h, • • • , tn such that

\ti\ < |a,|. We shall say that the series(7) E(«) ^(ei> • • • > e„) i? • • • ft con-

verges near the origin if it converges when |/i|, • • • , | i„| are all sufficiently

small. It is clear that convergence near the origin implies absolute conver-

gence for sufficiently small values of |ii|, • • • , |i„|. Moreover a power

series converges to zero near the origin if and only if all its coefficients are

zero. Since the field of complex numbers is a Banach space, the above ter-

minology is also applicable to ordinary power series with complex coefficients.

Lemma 14. Let En.-",«^ $(ei, • • • , en) i? • • • ft be a power series

with coefficients in § which converges near the origin. Let gi, ■ ■ ■ , gn be n

power series in m variables Ui, • • • , um with complex coefficients which are all

convergent near the origin and which take the values 0 at the origin (i.e. at

Ui = u2= • • ■ =wm = 0). Let

E fl(ei, ■ • ■ , e„, di, ■ ■ ■ , dm)uxl ■ ■ • umm (a(e, d) G C)
(d>

be the power series expansion of gl1 ■ • • g'ñ- Then the series

E    t(ei, • • ■ , e„)a(eh • • • , en, du • • ■ , dn)ui
(«)>(d)

d\ dm

Um

converges absolutely near the origin.

Choose e>0 such that the series Er«o $(ei, ■ • • , e„) f? ■ • ■ ft and the

series gi, • • • , gn all converge absolutely if | tt\ ¿e,\uj\ ^e (1 ¡&t g«, 1 ̂ j^m).

Let gt= E<<«) bi(di, • • • , dm)udi • • ■ u^ (bi(d)GC, l¿i^n). Since the con-

stant term of gi is zero, it is possible to choose ô>0 (5 ge) such that

E I bi(di,  ■  ■ ■   , dm)Ul    •  • ■  Um   |   g e
(d)

if \uj\ gô (1 gj'gm). Then it is clear that

E    I lKei> • ' - . e„)a(eh ■ ■ ■ , e„, du ■ ■ ■ , dm)ui   ■ • • umm \
(«).(d)

^Z\*(eu---,en)\eei+-+e"< oo

provided | u¡\ g 5. This proves the lemma.

(7) We shall often abbreviate (ei, • • • , en) to (e) and ^(«i, • • • , en) to ^(e). Similarly for

other symbols.
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Lemma 15. Let Z«äo ipie)te (^(e)G£>) oe a power series which converges

to fit) if \t\ <r (r>0). Then the power series £e>i'/'(e)g¿e~1 is convergent for \t\

< r and its sum is equal to the limit

lim
fit +h)- fit)

h
(A G C, | /1 < r).

It is clear that Z«êo |^(e)/e| converges if |i| <r and from this it follows

that the same is true of the series Z«êi |^,(e)e/l,_1|. Therefore if git) is the

sum of the series Z«ëi 4,ie)ete~l (|i| <r), we have

f(t + fit) -giD ^ EI *(«)
it + h)e - te

- et1'1

Choose ô so small (ô>0) that \t\+25<r. Then if \h\ <o/2,

it+hY

h
= \h£-

17(2-(z - l)2iz - t - h)
dz\ =: \h\

4x
ir - sy

where j> denotes complex integration on the circle \z — t\ =5. Hence

fit +h)- fit)
-git) 2S-f*| £ | *(*) | (r - «)'.

o¿ e¿0

Since £e&o |^(e)| (r — 5)"< oo it follows that

fit+h)-fit)
git) = lrm---

Put

Then

¿ «*      ,.    /(' + Ä) - /«
— /(O = lun-

¿/(O
Z etie)^-1 i\t\ <r).

Corollary. Let £(e) f(#ii • • • . O <? • • ■ # (^(ei, • ■ ■ , e„)G§) be a

power series which converges to fih, • • • , t„)=fit) if |í¿| <r< (r<>0, láíá»)-

TAe« the series Z(<o ^(^í. ■ • ■ , en) 3(í? • • • 4")/oV; converges in the same

region to

,  t„)   — fih,   •   ■   ■   ,  In)à fit) ,.       fih,   ■■■   ,U+   h,
-   = urn- -•

dti A-K) h

We  know that   E(«) lKei> " ' ' . e»)   t\l • ■ ■ t„   converges  absolutely for

\tj\ <r¡. Hence the series obtained by collecting together the coefficients of
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4* is also absolutely convergent. Let ^'(e.) denote its sum. Then

f(D = E *W
e.ÈO

and our assertion now follows from the above lemma.

Let M be a real (complex) analytic manifold. A mapping / of M into a

Banach space § is called analytic (holomorphic) at a point x0GM if for every

coordinate system (ii, • • • , i„) at x0 such that ti(x0) = 0, there exists a neigh-

bourhood F of x0 in M (on which our coordinates are valid) and a power

series E«i.«nao^(ei, • • • , e„)r? • • • *$ (^(ei, • • • , e„)G£) in m vari-

ables ti, • • • , r„ such that this series converges to f(x) at r< = i,(x),

1 gig« (xG F). It follows easily from Lemma 14 that if the above condition

is fulfilled for one coordinate system (ii, • • • , i„), then it necessarily holds

for all coordinate systems («i, • • • , un) at Xo such that Mi(x0)=0, lgigw.

Lemma 16. Let M and M' be real analytic manifolds and g a mapping of M'

into M which is analytic at a point xó GM'. Let x0=g(x0') and let f be a map-

ping of M into § which is analytic at x0. Then the mapping f o g of M' into §

is analytic at xó.

This again is an immediate consequence of Lemma 14.

Lemma 17. Letf be a mapping of M into £> analytic at x0. Let ubea (complex-

valued) function on M which is analytic at Xo- Then the mapping uf is analytic

at Xo.

Choose a coordinate system (ti, • • • , i„) at x0 such that i<(x0) = 0, 1 g î g ».

Then if x lies in a suitable neighbourhood V of x0,

fix) = E Wei, ■■■, en)t[\x) ■ - ■ C(x) (He) G $),
(«)

u(x) = E «(«ii • • • . en)t'i(x) ■ • ■ C"(x) (a(e) G C)
(«)

both series being absolutely convergent. Hence

E    Wei, • ■ • , en)a(di, • • • , dn)ti    l(x) • • ■ i„"     (*)
(«),(d)

converges absolutely to u(x)f(x) for xGV. From this the lemma follows.

Lemma 18. Let f be a mapping of M into § which is analytic at Xo and let

A be a continuous linear mapping of § into a Banach space §'. Then the

mapping A of of M into §' is analytic at x0.

Let 0 be the sum of a convergent series Eae-r ^A« m §• Since A is linear

and continuous, the series E«£ J A\f/a is convergent in §' and its sum is A<j>.

The assertion in the lemma is an immediate consequence of this fact.
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Let / be a mapping of M into $ which is analytic at x0 and let A'o be a

vector(8) in the tangent space of M at x0. Let ih, • ■ ■ , t„) be a coordinate

system at Xo such that /<(xo) = 0 and let

/(*) =  £ Heu ■■■ , en)h\x) ■ ■ ■ t„"ix) (*(*, ■■■ ,en)G&

for x sufficiently near x0. Then we put

Xof= £ HXoh)
la tan

where ypi is the value of ^(ßi, • • • , e„) for e, = l and ey = 0, j?*i. It is easy

to verify that the value of Xof does not depend on the particular choice of

the coordinate system ih, • ■ • , t„) used in its definition.

Lemma 19. Let f and X0 be as above and <f> a continuous linear function on

§. Then the function <f>(fix)) is analytic at x0 and X0i<l>(f)) =<¡>iXof).

<f> is a continuous linear mapping of § into C. Hence from Lemma 18,

4>ifix)) is analytic at x0. Moreover <£(/(x)) = £<«> 0(^(ei, • • • , e„))t\lix) • • •

/„"(x) if x is sufficiently near x0. Hence

XoiUD) =   £ HhHXoh) = tiXof).
láián

Lemma 20. Suppose M' and M are real analytic manifolds and g is a map-

ping of M' into M which is analytic at x0' GM'. Put x0==g:(xo') and let f be a

mapping of M into & which is analytic at x0. Then if X¿ is a vector in the

tangent space of M' at x0',

Xo'ifog) = idgXo')f

where dg is the differential of g.

This follows without difficult from Lemmas 16 and 14.

We regard the field R of real numbers as a real analytic manifold in the

usual way. For a given toGR let To be the vector in the tangent space of R

at to such that Tog= {dgity/dt}^^ for any function g which is analytic at to.

Lemma 21. Let f be a mapping of R into § which is analytic at to. Then

Tof = lim \ {filo +k)- fito)} = (f)  .
»-•o h \dt /10

Put hit) =t — to itGR). Then hito) =0 and h can be chosen as a coordinate

on R. Since / is analytic at to we can write

/(0= £*(«)*•(*) itie)G!Q)

(•) We use here and in what follows the terminology of Chevalley [4, Chap. III].
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for i sufficiently near to. Hence

f(0 - Äh) = E*(«) *-'(<)
h(t) «ai

and therefore

hm-—-= iKl) = Fo/.
i^o A(i)

This proves the lemma.

Corollary. Let g be a mapping of R in M which is analytic at to and j a

mapping of M into § which is analytic at x0 =g(to). Then if Xo — dgTo,

\dt / t=t0      A-0

f(g(k +   h))   - f(g(tp))

h

This follows immediately from Lemmas 20 and 21.

Let / be a mapping of a real analytic manifold M into §. We say / is

analytic if it is analytic at every point of M.

Lemma 22. Let f be an analytic mapping of M into Iq and X an analytic

infinitesimal transformation on M. Then the mapping Xf (i.e. x—>X(x)/, xGM)

is also analytic. Moreover if Y is another infinitesimal transformation and

Z= [X, Y]=XY- YX, then

Zf= X-Yf - Y-Xf.

Let XoGM and let (ii, •••,/„) be a coordinate system at x0 such that

ii(xo) =0, 1 gî g n. Then there exists an open neighbourhood U of x0 (on which

the system (ti, • • • , i„) is valid) and functions Ui, ■ ■ • , w„ which are analytic

on U such that X= Eiá<á» Ufd/dti on U. Moreover we may choose U so

small that we have the expansion

f(x) = E *(«i, • • • . en)ti(x) ■■■i: (x) (¿(e) G§,xG U).
(e)

It follows from the above corollary that

(^)(x) = lim —Í E Wei, ■■■ , en)l\\x) ■ ■ ■ (U(x) + h)" ■ - - C(x)
\oti/ h-*0    h    \ (e)

— E H*U ■ ■ • , en)t'i(x) • • ■ tï(x) ■ ■ ■ t'„"(x)>
<«o I

= E H*u ■ ■ ■ , en) \~ (ii1 • ■ • t'n)\
(e) \oti J   tj~lj(Id
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in view of the corollary to Lemma 15. This proves that df/dti is analytic at

x0. Since the functions w¿ are analytic at x0 we conclude from Lemma 17

that Xf is analytic at x0.

Now we come to the second part. Let 0 be a continuous linear function

on § and g an analytic mapping of M into §. Then from Lemma 19 the

function <pa: x—*/>(g(x)) is an analytic function on M and X4>e=<f>xg for any

analytic linear transformation X on M. From this it follows that <$>z¡ = <Pxy¡

-<prxf. Now put g = Zf-iXYf-YXf). Then 0(g(x))=O. Since this is true
for every <j> it follows from the Hahn-Banach Theorem that Zf = XYf— YXf.

6. Banach spaces of functions. Let I, be a closed finite interval on the

real line and t—yipi a continuous mapping of L into a Banach space §. Then

|^¡| is a continuous function on L and fi\\¡/t\dt< °°. Therefore the integral

fvptdt is defined and for any bounded linear function a on §, aif^tdf)

= fi,ai\¡/t)dt. Let D be a domain (i.e. an open connected set) in the complex

plane and z—*pz a continuous mapping of D into §. Let T be a rectifiable curve

in D. Then it is clear that the complex integral fr^zdz exists and o¿ifT\pzdz)

=frai\p!)dz.
Let £ be a locally compact Hausdorff space with a (regular) positive

measure p given on it. Let § denote the Banach space of all p.-summable

functions on E.

Lemma 23. Let D be a domain in Cn and (zi, • • • , z„, x)—►/(zi, • • ■ , z„; x)

a continuous function on DXE which satisfies the following two conditions:

(a) there exists a p-summable function g on E such that |/(zi, • • • , z„; x)|

á|g(*)| for all (zi, • • • , z„, x)GDXE;

(b) for each xGE the function (zi, • • • , z„)—»/(zi, • • • ,z„; x) is holo-

morphic on D.

Let ipizi, • ■ • , z„) be the element of § represented by the function

x—>/(zi, • • • , z„; x). Then the mapping (zlf • • • , z„)—*-^(zi, • • • , z„) is a

holomorphic mapping of D into §.

Let (zi, • • • , zn)GD. Given e>0 and a compact set K in E we can

find S>0 such that if max¿ |A¿| <S, then (zi+Ai, • • • , z„+h„)GD and

| /(zi + Ai, • • • , z„ + A„; x) — /(zi, ■••,«•;*) j á «

for x in K. Since | g \ is p.-summable we can choose K such that fs-K \ g \ dp 5= e.

Hence

| <Kzi + Ai, • • • , z„ + h„) — 4>izu ■ ■ • , z„) |

=  I   I /(2i + Ai, • • • , z„ + h„; x) — fizi, ■ ■ ■ ,z„; x) \ dp

= e f dp + 2 f       \g\dp^ ipiK) + 2)e
J K J B-K
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if \hi\ <8. This shows that the mapping (zu • • • , z„)—»p(zi, ■ - • , z„) is a

continuous mapping of D into §.

Now let (ai, • ■ • , an) be any point of D. Choose positive real numbers

ri, • • • , rn such that the polycylinder P defined by the conditions | Zf — a¿|

gr.- (1 gigw) lies in D. Let (zi, • ■ • , z„) be any interior point of P. Put

4 / 1 V 1 f WS*   ■•'An)
<í>(2i, ■ • • ,z„) = ( ———— )  <b   ■ ■ ■ <b    —-— ¿fi ■ • • ¿f„

\2ir(- 1)X'V /, y „  (fi - zi) • • • (f„ - z„)

where ^"x denotes complex integration on the circle | f * — a* | = rk. For any

measurable set X in E and a p-summable function F on E put

ax(F) = f Fdp.

Then ax may clearly be regarded as a bounded linear function on §. More-

over ax(F)=0 for all X implies F = 0 ju-almost everywhere. Therefore if

ax(ip)=0 (ipG§) lor all X then ^ = 0. Now

axO(zi, • • ' > zB))

\2t(-  1)W JX Jn    (fl  -  Zl)   ■   •   ■   (f„  -  Z„)

But ax(^(fi, • • • , fn)) =/x/(fi, ••■>?«; x)¿/i and therefore

| darOKTi. • • • - W) | Í 'J t it <*»■

Hence it is clear that

az(0(zi, • • • , z„))

W-1)1'2/ Jx 7.'' In (h-zi)--- a„-z„) fl"

=  I /(zi, • • • , zn; x)áp

by Cauchy's Theorem. Therefore

ajr(0(zi, • • • , Zn)) = ax(Wzu ' ' - . *»))•

This being true for all X we conclude that

>KZ1,  •  •  •   , Zn)   =  <p(Zl,   •  •   ■   , Zn)

= <«-iHr.y• • • f ■   ^'■••;f-)     *,...^
y i    j » (fi - zi) • • • (f„ - z„)

It follows immediately from this formula, by the classical argument, that
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there exists a power series in (zi — a{), ■ • ■ , (z„ — a„) with coefficients in §

which converges in the interior of P to ^(zi, • • • , z„). Therefore the mapping

(jd, • • • , z„)—^(zi, • • • , z„) is holomorphic at iau ■ • • , a„).

7. Well-behaved vectors in a representation space. Let t be a representa-

tion of a connected Lie group G on a Banach space §. We shall say that an

element ^£§ is well-behaved (under 7r) if the mapping /: x-^rix)\p is an

analytic mapping of G into £>. For any yGG let <f>v denote the mapping

x—yy~lx ixGG). Then it is easy to verify that ir(y) o/o </>„=/. Since <j>y is

an analytic isomorphism of G with itself it follows from Lemmas 16 and 18

that if/ is analytic at x = l then / = 7r(y) of o 4>v is analytic at y. Therefore

in order that/ be analytic it is sufficient that it should be analytic at 1.

Let IF be the set of all elements in § which are well-behaved under t.

Clearly IF is a linear subspace of §. Moreover since for a fixed yGG the

mapping x—>xy is an analytic mapping of G, it follows that if \p G W then

TÍy)ypGW. Let g0 be the Lie algebra of G. For any ypG Wand XG&o consider

the mapping t—>7r(exp tX)\p itGR)- Clearly this mapping is analytic and

therefore from Lemma 21 the limit

lim — {7r(exp tX)\p — ^}
i->0    t

exists. We denote this limit by TwiX)\p. Let f be the mapping x—yrix)y¡/ and

g the mapping x-+tÍx)twÍX)\}/. Then it follows from Lemmas 20 and 21 that

g = Xf and so g is analytic (Lemma 22). Hence TwiX)ij/GW. Thus we get a

linear transformation TwiX) of IF into itself. Moreover if [X, Y]—Z

iX, Y, ZGgo) we know from Lemma 22 that Zf=X- Yf- Y-Xf and therefore

Twi[X, Y])=twÍX)twÍY)—twÍY)twÍX). This shows that the mapping

X—>TwiX) is a representation of g0 on IF. Let go be the complexification of g

and S3 the universal enveloping algebra of g. We denote by tw the representa-

tion of 33 on IF which coincides on g0 with this representation.

Since go is a vector space of finite dimension over R we may regard it as

a real analytic manifold in the obvious way. Then the most important prop-

erty of well-behaved elements may be expressed as follows.

Theorem 2. Let \p be an element in IF. Then there exists a neighbourhood V

of zero in g0 such that the series £mao il/ml)TwiXm)\p converges to 7r(exp X)\f/

forXGV.

Let (¿i, • • • , t„) be the Cartesian coordinate system in g0 corresponding

to a base iXi, • • ■ , X„) so that X = £?_x tiiX)Xt (A^Ggo). Since the mapping

X—*7r(exp X)ip is an analytic mapping of go into §, we can find a neighbour-

hood F of zero in g0 such that

Tiexp X)f = £ *(«i, ■ • • . e„)t[\X) ■ ■ ■ i„"iX)
(«)
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(^(ei, • • • , e„)G§, XG V), the series being absolutely convergent. We shall

now prove that

E        H'u ■■■ , en)ti(X) ■ ■ -t': (X) = — Tir(X-)*      (X G go).
ei+-..+ e„=m ml

For a fixed XG$o choose r>0 so small that uXGF whenever \u\ ^r (uGR)-

Then

7r(exp uX)4/ = E HnUm (\u\ < r)
mèo

where x¡/m= E«i+...+«,-» ^(ei> - " " > «»K'W ' ! * in(X). We shall now prove

by induction on m that

/ dm      \
x(exp uX)rw(Xm)iP = E M-«") (|«| < 0-

,S„      \dum     /

This is true for m = 0. Now

■>*(*"")*   =   Tw(X)Tw(Xm)^

= lim — {x(exp sX)Tw(Xm)t - TW(Xm)t}.
s-»0   s

Since 7r(exp uX) is a bounded operator,

1   r
7r(exp «Z)7rlr(X'»+1)^ = lim — [x(exp (s + u)X) — x(exp uX)\H

S-K)    S

where \p' = ^w(Xm)\p. But

/ dm      \
x(exp«X)*' = E  lM—~M") (|«|<0

^„      \dum     /

by our induction hypothesis. Hence

¿m+l

x(exp «^TffiX»1-1)^ =   E   ^-«" ( I « I < r)

from Lemma 21 and so our assertion is proved. Now if we put w = 0 we get

TwiX-W = mlHn - »!        E       Hei, • • • , en)ii"(X) • • • C(X).
«lH-hen—m

Therefore if XG F

x(exp X)* = E — x^X"1)*.

Corollary. Lei \p be a well-behaved element and let Cl (xj7(33)^) denote the
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closure of tw(^6)^P in §. Then Cl (^(33)^) ** invariant under 7r(G).

Let \J/o be any element in ¿7 = 7^(33)^ and consider any continuous linear

function 0 on ^ which vanishes on U. Since ^oG IF the function x~^h(>(t(x)\Po)

ixGG) is an analytic function on G. On the other hand in view of the above

theorem there exists a neighbourhood F of zero in g0 such that

;r(exp X)*o = £ — Twixm)*o (X G F),
mäo ml

Therefore

*(x(exp X)iM = £ — 4>iTwiXm)to).
m^o ml

But TwiXm)}poGU and therefore <t>(TW(Xm)\[/Q) =0. Hence 0(ir(exp X)y[/0) =0

for XG V and therefore <¡>(t(x)\¡/o) vanishes on a neighbourhood of 1 in G.

But since it is an analytic function on G it follows that <p(t(x)tPo) =0 for all

xGG. Keeping x fixed and varying <p we deduce from the Hahn-Banach

theorem that 7r(x)^0GCI (£/). This proves that 7r(x)t/CO (U) ixGG) and

therefore by continuity 7r(x) Cl (L0CC1 (U).

8. Well-behaved functions. Let t be a representation of G on a Banach

space §. Then |tt(x)| = sup^|g1 |7r(x)^| (^G§) is a semi-continuous func-

tion on G and therefore it is measurable (with respect to the Haar measure).

Let LiG, t) denote the space of all (complex-valued) measurable functions/

on G such that

11/11  =   f  \f(x)\\T(x)\dx<   »
J a

where dx is the element of the left-invariant Haar measure on G. Then with

respect to the norm || ||, L(G, t) is a Banach space and we get a representa-

tion X of G on L(G, t) if we define X(y)/ to be the function whose value at x is

fiy-'x) (x, yGGJGLiG, t)). In fact,

l|Ky)/|| = f | fiy-'x) | | *ix) | dx = j | /(*) | | Tiyx) \dx^\ Ay) | ||/||

and therefore X(y) is a bounded operator and

||X(y)|| =  sup ||x(y)/|| í|w(jr)|.
11/11-i

This shows that ||X(y)|| remains bounded on a compact set. Therefore, in

order to prove that X is a representation, it is sufficient to show that

lim,.i ||X(x)/0—/o|| =0 for any foGL(G, t). Let F be a compact neighbour-

hood of 1 in G and m an upper bound for ||X(x)|| on V. Given any e>0 we can

choose a continuous function g which vanishes outside a compact set such
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that ||/o — g\\ ge- Since |x(x)| remains bounded on a compact set, it is clear

that we can find a neighbourhood U of 1 ( UC. V) such that

l|x(*k - g II - f I ifcr*V) - lOO 11 <y) Y****

Then

||X(*)/o - /o|| = ||X(x)(/o -g)~ (fo -g) + (Hx)g - g)\\

g ||X(x)||c + e + É g (m + 2)€ (* G U).

This proves that lim^i ||X(x)/0—/o|| =0 and therefore X is indeed a representa-

tion.

Let O be the Banach space of all bounded linear operators on § with the

norm |^| =sup^|Si |.<4^| (AGO, ÏG&- If fGL(G, x), the integral
f0f(x)ir(x)dx has a well-defined meaning in £) since /o|/(x)x(x) | dx = ||/|| < «>.

Put T/=ff(x)ir(x)dx. Then the mapping T: f—*T/ is a continuous linear map-

ping of L(G, x) into O since | T/\ g||/||. Now let 3BT denote the set of all

elements in L(G, x) which are well-behaved under X. Then for any ^G§,

Tc(x)Tft =   I  f(y)T(xy)\pdy =  J  /(tf^yMjOlKy = FX(I)/^.
«/ G «/ G

But the mapping x—>\(x)f is analytic and F is linear and continuous. Simi-

larly A—^A\p (A GO) is a continuous linear mapping of O into § since

\A\p\ g | .41 |\p|. Hence x^^T^x)í\¡/ = Tr(x)Tf\p is an analytic mapping of G

into § (Lemma 18). Thus we have the following result.

Lemma 24. LetfG%èx and ^G§. Then fgf(x)ir(x)\pdx is a well-behaved ele-

ment of § (with respect to x).

We shall now investigate the question of approximating arbitrary ele-

ments in § by well-behaved elements. Let Li(G) denote the space of all func-

tions on G which are summable with respect to the Haar measure.

Definitions. Let p(x) be any measurable function on G which is real and

non-negative and let {fn(x)} be a sequence of functions in Li(G). We shall call it

a Dirac p-sequence if the following conditions hold:

(1) ffn(x)dx = 1 and Iim,,,«, fa |/„(x) | dx = 1.
(2) For any measurable neighbourhood F of 1 in G,

lim   f      | /„(*) | (1 + p(x))dx = 0.
B-.00    J O—V

If p, = 1 we call it just a Dirac sequence.

Lemma 25. Suppose there exists a Dirac |x(x)| -sequence {/„(x)} on G such

that /bGSBt. Then the space W of all well-behaved elements is dense in ÍQ.
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Let \¡/ be an element in ^3. Given any e>0 we can find, due to the con-

tinuity of the representation t, an open neighbourhood F of 1 in G such

that |tt(x)^-^| £e\\[,\ for xGF. Then ii^„ = Tfnip,

4>» - 4> -    f fnix)ÍTÍx)^ - $)ix
Jo

=    f /.(*)(*■(*)* -  *)dx +    f        f„ix)ÍTÍx)t  -  4,)iX.
Jv J a-v

Therefore

|*B-*|£e|*|    f \f„ix)\dx+\*\    f       \fnix)\il + ¡TÍx)\)ixg2e\4r\
Ja " a—v

if « is sufficiently large. Hence yp = limn<00 \f/„. But since \p„GW (Lemma 24),

it follows that IF is dense in ^>.

We shall now give a method for constructing such a sequence under suit-

able assumptions regarding G.

Suppose g0 is the direct sum of two subalgebras f0 and 8o and K and 5

are the analytic subgroups of G corresponding to f0 and ê0 respectively.

Consider the mapping 4>: (u, s)-^us (uGK, sGS) of KXS into G. Clearly it

is analytic.

Lemma 26. $ is everywhere regular(8) on KXS.

Since the tangent space of a Lie group at any point may be identified

under left translation by its Lie algebra (which is the tangent space at 1), it

is clear that the tangent space of K X S at any point is the direct sum of f0

and êo and therefore it may be identified with g0. Let ¿$ be the differential

of $ and let UoGK and 50G5 be two fixed elements. Then we see without

difficulty that (á<E>)„0,.0í/ = Ad is0~l)U, (d$)«0,.0F = F for FGfo and U&o-

Here x—->Ad (x) is the adjoint representation of G. Let s—»Ad is) isGS) de-

note the adjoint representation of 5. Then it follows that

det Ads iso)
det ((<**)„„.„) = ;    * 0

det Ad (so)

and so <$ is regular at («o, So).

Corollary. If $ is a 1-1 mapping of KXS onto G, it is an analytic iso-

morphism of KXS with G.

For since $ is regular, the inverse mapping is analytic.

Lemma 27. Suppose i> is a 1-1 mapping of KXS onto G. Let du, ds, and dx

denote the left-invariant Haar measure on K, S, and G respectively. Then under

suitable normalisation of these measures we have
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det Ads (s)
dx = -duds      (x = us, u G K, s G S).

det Ad (s) V

This follows immediately from the fact that

det ((¿$)u,.) =det Ads (s)/det Ad (s).

Definition. Let § be a Lie algebra over afield of characteristic zero. We say

that 8 is quasi-nilpotent if it can be written as the direct sum of an abelian

subalgebra a and a nilpotent ideal n. A connected Lie group S is called quasi-nil-

potent if its Lie algebra is quasi-nilpotent.

From now on let 5 denote a simply-connected quasi-nilpotent Lie group

and êo its Lie algebra. Let êo = uo+no where a0 is an abelian subalgebra and

no a nilpotent ideal in ëo and the sum is direct. It is known that there exists

a faithful matrix representation of 5 (see for example [8 (b)]). Therefore we

may consider 5 a linear group and go a linear Lie algebra. Since every matrix

with complex coefficients may also be regarded as a real matrix of twice the

degree, we may further assume that all matrices in 5 and êo are real. Let 3

be the Lie algebra over C spanned by êo- Then ë is the complexification of

So. Let 5C be the analytic group of matrices corresponding to ë. Then SCZ)S

and, since ë is a complex algebra, Sc is a complex analytic group. Thus we have

imbedded 5 in a complex analytic group Sc whose Lie algebra ë is the com-

plexification of êo- We may assume that Sc is simply-connected, for otherwise

we could replace it by its universal covering group and thus obtain an im-

bedding of 5 into a simply-connected complex group. Let a and n be the sub-

algebra of ë spanned by u0 and ito respectively, and Ac, Nc, A, and N the

analytic subgroups corresponding to a, n, a0, and no respectively. All these

groups are simply-connected and (n, a)—+na (nGNc, aGAc) is a topological

mapping of NCXAC onto 5C. Moreover, naGS if and only if nGN and aGA.

Since a and n are complex Euclidean spaces we may regard them as complex

analytic manifolds in the obvious way. Then the mappings H—>exp H and

X—>exp X (HGd, XGn) define holomorphic isomorphisms of a with Ac and

n with Nc respectively.

For any xGSc and nGNc write xn = rx(n)a where rx(n)GNc and aGAc.

Then rx is a topological mapping of Nc onto itself and T*-ry = (tx)~1tv (x, yGSc).

Let 8 denote the conjugation of ë with respect to its real form êo, so that

Ö(X+(-l)1/2F)=X-(-l)1'2F(X, FGê0). We extend 0 to an automorphism

x—^Ox of Se.

Let / be a complex-valued function on Nc. We shall say that / is linear

(polynomial) if the function X—*/(exp X) (XGn) is a linear (polynomial)

function on n. Similarly, we call a function/ on NcX.Nca polynomial function

it fin, »') «£««*/<(»)//(«') (n, n'GNc) where /,-, // (lg¿g¿) are poly-

nomial functions on Nc. Let (h, ■ ■ ■ , lr) be a base for linear functions on Nc.

Then every polynomial function / on Nc is uniquely expressible as a poly-
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nomial P(h, • ■ ■ , lr) in h, ■ ■ • , lT. We define the degree of / to be the degree

of P. It is then clear that the polynomial functions of degree ^p form a

vector space of finite dimension.

For any function / on Nc we denote by fx ixGSc) the function n

~~ïf(**-*(*)) inGNc). If / is a polynomial function, then so is fx. It is clearly

sufficient to prove this when/is linear. It is then known that for any noGNe

the function w—>/(«0«) is a polynomial function (see Birkhoff [2]). Now if

x-i^noao inoGNc, a0GAc), firx-iin)) =fin0aona0~1) =fiiaona0~1) where /i is a

polynomial function. On the other hand

a0(exp X)a0~1 = exp (Ad(a0)Ar) (X G n)

where y—»Ad (y) is the adjoint representation of Sc. Hence the functions

n—tliiaonaö1) (l^i^r) are all linear and this proves that the function

fx: n^fiiaonaö1) is a polynomial function. Moreover if / is a linear function

on Nc, the function (n0, n)—>l(n0n) is a polynomial function on NCXNC (see

Birkhoff [2]) and so it follows that there exists an integer p independent of

no such that every function of the form n—>/(w0w) (/ linear) is of degree p.

This means that the vector space Q spanned by the functions (1¡)X (1 ^i^r,

xGSc) is finite-dimensional. Since (fx)v=fyx for any function / on Nc

(x, yGG), it follows that QxGO- for every QG€l.
We may choose the functions U, l^i^r, in such a way that they are real

on N. Then U(dn) =k(n) (nGNc) where the bar denotes complex-conjugate.

From this it follows that (li)$x coincides with (h)x on TV. Hence for every

QGG there is a function Q'GO. which coincides with Q on N. This shows

that Q is spanned by functions which are real on N. Moreover kGQ-,

lSifkr. Let (Qi, • • ■ , Qm) be a base for Q such that the functions Q¡ are

real on N and the functions U, l^i^r, are included among (Qi, • • • , Qm).

Then

m

(e<). = £ <*<â*)Qj (x g s.)

and the mapping x—>(a¿y(x)) =a(x) is a matrix representation of Sc. If / is a

linear function on Nc, (n, x)-^lx(n) is clearly a holomorphic function on

NCXSC. Therefore the same holds for the functions («, x)—*fx(n) where / is

a polynomial function on Nc. Therefore the functions a.y are holomorphic on

5C. Let die denote the real part of a complex number c.

Lemma 28. Let c¡, l^j^m, be given complex numbers and let x¡ +d

— £™i bij(xj+Cj) (bijGC, XjGR). There exists a constant e>0 such that if

max,-,y \bij — 5ij\ ^e, then

(m        A 1      m

£/U|£*2<
¿=i       /        2   <=i
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for all systems of real numbers Xi, ■ ■ ■ , xm such that E™ i *•&!'•

Put Cij = bij—8ij, M=maxi,j |c,-y|, and c = maxj |cy|. Then

X,' =   Xi+ E Cij(Xj + Cj)

and therefore

E *<  = E *i + 2 E CijXi(Xj + Cy) + E (  Ç C«(*J + Ci) j

Hence

E (*>• — xi) g w(2M + 2Mc + M2(l + c))Y1 Xi

provided E« x^=l- Hence if M is sufficiently small

E (xi   — xi) *jZ*

and therefore

9Î
/     m V Im

( E*< ) è —E*.'2-\ ¿=i   /     ¿ t=i

Since the functions a<y(x) are continuous and <z¿y(l)=5<y it follows from

the above lemma that there exists a neighbourhood V of 1 in 5C such that if

u(na) = E (&(») - <2.(1))2 (» GNc,aG Ac),

then

1 1   .A  2
$ft(w(x0«a)) ̂  — u(n) ^ — E ¿¿(»)

2 2  »=i

for nGN.aGA, and x0G F' provided Eí-i í (») è 1 •
Let us call a function X on ^4C linear if the function H—>X(exp H) (IIGo)

is linear on a. Choose a base (Xi, • • • , X.) for the space of linear functions on

/L such that X¿ are real on A and let Xo denote the constant function 1.

Thenif a,a'G^0,Xi(aa')=Xi(o')+X<(a)Xo(a'). lg*gs. Put

v(na) = E Xy(a) (»G^,«G^).

Then making use of an argument similar to that of Lemma 28, we see that

there exists a compact neighbourhood F of 1 in Sc ( FC F') such that
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1 1   A    2
dtivixona)) =■ — vina) Sí — 2-¡ ^i(a)

2 2   y=i

forxoGF, nGN, and aG^4. Nowputí'»(x)=r'i"(*)+,(*)l ixGSc) where v isa

positive real number. Then Fv is holomorphic on Sc and

I F,ixox) I g M, exp {- — ( £ $») + £ Xy(a)
t        2   \ j=i y=i

for XoGF and xGS ix=na, nGN, aGA). Here M, is the supremum of

er/2|e-»«(»on)|  for XoGF, and  £/?(«) =T (»G-A0-

Now let 7T be a representation of 5 on a Banach space §. We shall prove

that F^GSBr. Let us say that a function / on 5 is of at most exponential

growth if there exist real constants Mi, M2^0 such that

| fina) | ^ Mi exp (Af2 max ( | l<(n) |,  | Xy(a) | )) in G N, a G A).

Clearly the product of two such functions is again of the same type. Now

consider the function 17r(x) |. Let M denote an upper bound for |tt(x)| on

the compact set consisting of all points x = na in 5 inGN, aGA) such that

max,-,y {| Uin) \, |Xy(a) | Î á 1- For any xGS let q denote the least integer such

that g^maxi.j {| hin) |, |Xy(a)|} ix — na). Then we can choose elements

n'GN and a'GA such that n = n'q and a = a'" and

| tt(x) I g | Tin) \ | 7r(a) | ¿ | Tin') |«1 Tr(a') ¡5 ^ Af2«

since \liin')\=il/q)\liin)\^l and |Xy(a')| = (1/g)|Xy(a)| ^ 1. Since q^l

+max»,y {| kin) \, Xy(a)}, we see that 17r(x) | is at most of exponential growth.

Now consider the Haar measure dx on 5. Making use of Lemma 27 we find

that

dx = det (Ads ia~l))dnda (x = na)

when Ads is the adjoint representation of 5 and dn, da are the Haar measures

of N and A respectively. Since N is nilpotent and A is abelian,

dnda — dh • ■ • dlrdXi ■ • ■ d\s.

Moreover, since the function wa—>det Ads (a-1) is clearly of at most exponen-

tial growth, it follows that

I 7r(x) I dx = pix)dh ■ ■ ■ dlrd\i ■ ■ • dX„

where m(x) is a function of at most exponential growth. Therefore it is clear

that

I g'(x) I ""(*) \ dx < «,

)
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where

gv(na) = exp  j- y ( ¿ /?(«) + ¿ x!(a)) j (w G X, a G 4).

We have seen above that we can choose an open connected neighbourhood

IF of 0 in ê such that

| F„(exp (-Z)x)\ g M,g,(x) (ZGW, xGS)

where Z—»exp Z is the exponential mapping of ë into 5C. Therefore the func-

tion x—>F„(exp (-Z)x) is summable with respect to the measure |x(x)|¿x

on 5. Let L(S, x) denote the Banach space of functions corresponding to the

representation x, which was introduced in §7, and let \pp(Z) be the element

in L(S, x) which is represented by the function x—*F„ (exp (-Z)x) (ZGW).

Then all the conditions of Lemma 23 are fulfilled and therefore Z—^f/y(Z) is

a holomorphic mapping of IF into L(S, x). Let <r denote the representation

of 5 on L(S, x) as it was defined in §7. Then <r(exp X)ip,=\p,(X)(XGQo)

where \pv is the element in L(S, x) corresponding to F„. Therefore the map-

ping X—*a (exp X)\pv (XGëo) is analytic at X = 0 and so FvG3Br-

Now consider Jv=fFv(x)dx. If nGN and aGA, let n, and a„ denote two

elements in N and A respectively such that U(n,) =vll2li(n), l^i^r, and

Xy(a„)=»'1/2Xy(a), lg/gs. Moreover if
■

P-H C(pl,   ■■■   ,  Pr)fl    ■  ■  ■  t (C(P1,  ■   •  •   ,  Pr)   G  R)
(P)

is any polynomial function on Nc, we put P*(n) = ^w \ c(pi, ■ • • , pr) \

\li(n)\pi ■ ■ ■ \lr(n)\pr. Then it is clear that vll2\P(n)\ ^v^2P*(n)^P*(nv)

if F(1)=0. Hence if Qi (n) =Qi(n) -Ç,-(l),

( m s i \

Fr(na) = exp < - v E Qi (») - ?E Xy(a)>
l        i=\ y=i /
/ m 8 \

^exp \-  EC'*  M - ZU^p)}.
v      i=x y=i /

On the other hand

J, =  I Fy(na) det (exp Ads (a_1))a7i • • • dlrdki • • • d\s

and we can find real numbers Mi, M2>0 such that

det (exp Ads (a)) g Mi exp Í Af2E I M«) I )•

Hence
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det (exp Ads (a"1)) ^ Mi' exp i-ikf2£ | X<(«) |)

and

.  /* /      m «

J^ Mi     I   exp  < — £ Ç<   (m,) — £ Xy(a„)
■J v     >=i y-i

3                )                                                c

- M2 £ I Xy(a„) I WZi • • • dlrdXi ■ ■ ■ d\, = -> 0,
y=l ) v(H-.)/ï

where c is the value of the right-hand side when v = l. On the other hand,

let Fj be the neighbourhood of 1 in 5 consisting of all points naGS such that

[/»•(»)I <ô, |X,-(o)| <5 (5>0). Then let us consider the integral

/,(«) =  f      Fp(*)(l + | *(*) | )¿*.
J s-v,

We can find positive constants M3 and Af4 such that

(1 + | Tina) | ) det (exp Ads (O) ^ 3f, exp Mi ( £ | /,(») | + £ | X,(a) |).
\ ¿-i y-i /

Put

.2,    ,      .      t^     2,
Pi(«, a) = £ /,-(n) + £ Xy(a)   and   />,(», a) = £ | hin) \ + £ | Xy(a) |.

t-i y-i i=i y=i

Then vPiin, a)=Pi(w„ a,) and vlt2P2in, a)=P2in„ av) and therefore

J,i&) ^ Mz I        exp { -vPi(w, a) + v^MnPiin, a)}dh • • • dlrd\i ■ ■ ■ dks
J S-Vi

^ M3e-"(r+s)s2i2   f       exp   \-—Piin,a)
J s-rs \      2

+ v1i2MiPiin, a)\ dh- ■ ■ dlrd\i ■ ■ ■ dX,

<   g-x(r+s)S2/2

„(r+s)/2

where

c' = Mi j        exp <-Pi(«, a) + MiP2in, a) > dh • • • dlrd\i • • • ¿X, < o°.
J s-rt '       2 J

Therefore
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Jp(8)       c'
_Li ^  _ e-p(r+,)S2l2.vr+8

J, c

and so

,.    /,(*)      n
hm-= 0.

Hence if we put /„ = F,/J„ the sequence }/i, /2, ■ • ■ } is a | x(x) | -Dirac-se-

quence of functions in SB,. Therefore from Lemma 25 the space of well-

behaved elements is dense in §. We can now prove the following theorem:

Theorem 3. Suppose a connected Lie group G has two analytic subgroups K

and S such that the following two conditions are fulfilled: (a) K is compact and

S is quasi-nilpotent; (b) every element in G can be written uniquely in the form

us (uGK, sGS). Let x be a representation of G on a Banach space § and let

§o denote the set of all well-behaved elements \p in § such that the linear space

spanned by the elements iv(u)\p (uGK) is of finite dimensions. Then §o is dense

in §.

The restriction of x on 5 defines a representation p of 5 on §. Since p may

also be regarded as a representation of the simply-connected covering group

of 5, it follows from the result proved above that the set of elements which are

well-behaved under p is dense in £>. Hence given any \poG¡& and e>0 we can

find an element \p which is well-behaved under p and such that |^o— '/'I =e-

Choose a neighborhood U of 1 in K such that \tt(u)\P —\p\ ge for uGU and

let du denote the element of Haar measure on K such that /xáw = 1. Select a

continuous, real, non-negative function/on K such that/ = 0 outside U and

ficfdu = l. Then if H = JKf(u)iv(u)\!/du,

'Ai — xp | g   I   /(«) | x(m)iA — \p | du g e.
J K

Let 3Î be the set of all finite linear combinations (with complex coefficients)

of the coefficients of finite-dimensional matrix representations of K. Then

for any t;>0 we can find a function coG9Î such that \f(u)—u>(u)\ ^r,(uGK).

Hence

II(/(«) — w(u))it(u),pdu g Mr, | \\i | g Mr,( [ fo I + i)

where M is an upper bound for | x(w) | on the compact set K. Therefore if

^2 =   I   w(u)it(u)\¡/du,   I ̂ o — ̂ 2 I g 2« 4- Mr,( | \[>o | + «) g 3e
J K

if  r,  is  sufficiently  small.   Since (¿GSR  we  see easily  that  the elements



1953] REPRESENTATIONS OF A SEMISIMPLE LIE GROUP 221

TÍu)\pi iuGK) span a finite-dimensional subspace of §. Therefore in order

to prove the theorem it is sufficient to show that the element yp2 is well-

behaved under 7r(G). This follows from the lemma given below.

Lemma 29. Let « be an analytic function on K and ip an element in § which

is well-behaved under p. Then fK(^(u)T(u)\//du is well-behaved under t(G).

For any xGG and uGK put xu = uxs(x, u) where uxGK and s(x, u)GK.

Then we know (see the corollary to Lemma 26) that (x, u)—>ux and (x, u)

—>s(x, u) are analytic mappings of GXK into K and 5 respectively. Now put

\po— fK<>>iu)TÍu)\pdu. Then

x(x)i/'o =   I   wiu)TÍxu)ipdu.

But for x fixed, the mapping u—mx iuGK) is an analytic isomorphism of

the manifold structure of K with itself. Since G is connected, this isomor-

phism is orientation preserving. From this we conclude that

dux = Dix, u)du

where Dix, u) is an analytic function of GXK which is everywhere positive.

Hence
»

tÍx)\¡/o =   I   u(ux-i)T(xux-i)4>dux-i
J K

=   I   u(ux-')D(x~l, u)t(u)t((s(x~1, u))~l)ipdu.
J K

On the other hand, since \f/ is well-behaved under p, it follows from Lemmas

16 and 17 that the mapping is an analytic mapping oí GXK into §. Let

h, ■ ■ • , t„ be a coordinate system in G at 1 such that iy(l)=0 (í^jún).

Then for each UoGK we can find an open connected neighbourhood F„0 of Mo

in K and a coordinate system qi, ■ ■ • , qk in K valid on F„0 with the following

properties: (1) qi(u0) =0, 1 =íí=&; (2) there exists a power series Puo(q, t) in

(°i> • • • > 2*) and (h, • • • , t„) with coefficients in § and an open neighbour-

hood IFU„ of 1 in G such that the coordinates (h, • • ■ , tn) are valid on IFU0

and the power series converges to \f/(x, u) on IFU„X F„0. Suppose

Pu„(q, t) =     £    ipUo(a, e)qT ■ ■ ■ qakt'i   ■ ■ ■ C Ou„(a, e) G £)
(o).(e)  .

and put

^(a, e) = £ ¡pUo(a, e)qT(u) • • • ql\u) (u G F„0).
«o

Then the mapping u—*p„0(u, e) is an analytic mapping of F„0 into §. Choose
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a number r(u¿) > 0 such that the series PUo(q, t) converges if max,-,y ( | ç?y|, | i,| )

gr(«o). Let [/Uo be a neighbourhood of u0 (in K) such that ¿/«„C F„0 and max,

| q¡(u) | gr(wo) («6CÍ»,). Similarly we may suppose that max,- |/,(x)| g r(uo)

for xG Wu„. Since K is compact, there exists a finite set of points u\, • • • , up

such that K= UuJJUuJJ ■ ■ ■ VUUp. Put W=Wuf\Wuf\ - ■ ■ C\WUf and
r = min {r(ui), • • • , r(up)}. Then if uGUUi<^UUj (lgi, jèp) and xGIF,

Hx, «) = E ^u,(«. e)ii'(x) • • • /»"(x) =   E ^«}-(«, e)t'i(x) - ■ ■ t'ñ (x)

and therefore i>Ui(u, e) =\pUj(u, e). Thus for each (e) there exists a mapping

u—>Hu, e) °f -^ into § which coincides on t7u< with u—>\pu¡(u, e). This map-

ping is clearly analytic and

Hx, u) = E *(«, «VÍ'OO • • • tn(x)       (uGK,xG W).

Now if m G Um and x G IF,

E | *(«, ^)íílW • • • tn(x) | g E I *«,(«. e) I (r(ui)T+'"+en < ».

Moreover since X is compact, we can find a real number JWsuch that |x(m)|

g if for all u GK. Then

E | *(«)*(«, «)<î'(*)  •  •  •  In (X) |   g  M E I *(«, «)<!"(*)  • •  •  C(X) i
(«) (e)

and therefore the series

E x(m)\A(«, e)ii'(x) • • • C"(x)
("0

converges uniformly to Tr(u)\p(x, u) on -KXIF. Therefore

x(x)^o =   I   tt(m)^(x, m)¿m
J K

= E ( / "•(«)#{#, ^¿«Vf» • • • C(x) (x G IF).

This proves that the mapping x—yir(x)\po is analytic at 1 and so \p0 is well-

behaved under x.

Part III. Representations of a semisimple Lie group

9. Permissible representations. We shall now apply the results of Part II

to representations of a connected semisimple Lie group G on a Banach space

,£). Since every such representation may also be regarded as a representation

of the simply-connected covering group of G, we may assume that G itself
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is simple-connected. Let go be its Lie algebra. We define fo, bPo, and no as in

Part I, §2. Let K, A+, and N be the analytic subgroups of G corresponding

to go, bj,0, and no respectively. They are all simply-connected. Moreover,

S = A+N is a quasi-nilpotent group, and Iwasawa [9] has shown that the

mapping (u, s)-+us (uGK, sGS) is a topological mapping of KXS onto G.

However, in general K is not compact and therefore Theorem 3 is not ap-

plicable immediately. Therefore we shall now give a method for extending

the results of this theorem to the present case.

We know that fo is reductive (Lemma 3). Let Co be the center of fo and

D the analytic subgroup of G corresponding to Co- Then K is the direct prod-

uct of its commutator group K' and D. Moreover if Z is the center of G,

then K/DC\Z is compact(9). We shall say that a representation t of G on § is

permissible if t(z) is a scalar multiple of the unit operator for zGD(~\Z. Assum-

ing that t is permissible, we can choose a complex-valued linear function

p on Co such that 7r(exp r) = e^(r)7r(l) whenever exp TGDC\Z (rGco). Let

M—>zí* denote the natural mapping of K on K* = K/DC\Z. Then it is easy to

verify that e-"(rV(w exp T) (uGK', TGco) depends only on (u exp T)* and

so, if we denote it by t*((u exp T)*), the mapping u*—*r*(u*) is a representa-

tion of K* on §. Let \po be a given element in § and e a positive number. Since

5 is quasi-nilpotent, we can find an element ypG& which is well-behaved

under 7r(5) and such that \^p— ipo\ á<- Moreover, since K* is compact, we

can choose a finite linear combination « of the coefficients of a finite-dimen-

sional matrix representation of K* such that

and therefore

f   w(u*)t*(u*)Wu* - lp
I J K'

/¡j)(u*)T*(u*)\¡/du* — 4>o
K'

< 2e.

(Here du* is the element of the Haar measure on K* normalised in such a

way that fn*du* = l.) We now claim that (¡>= fic*w(u*)T*(u*)\(/du* is well-

behaved under 7r(G). Consider the element

t(x)<¡> =   f   c0(u*)t(x)t*(u*)Wu* (xGG).
J K'

For any uGK let T(u) denote the unique element in Co such that u

= (exp F(u))v (vGK'). Moreover \etxu = uxs(x, u) (xGG,uxGK, s(x,u)GS).

Then it is easy to verify that for a fixed x the elements (ux)*, T(ux) —T(u),

and s(x, u) depend only on u*. Hence we may write them as «*, r(x, u*), and

(9) This follows from the fact that the image of K into the adjoint group of G is compact

(see for example Mostow [13]).
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s(x, u*) respectively. It is clear that the mappings (x, m*)—>w*, (x, u*)

—>-r(x, u*), (x, u*)—>s(x, u) are all analytic and

e-"Cr("))x(x)x(«) = e-"(r(u))x(«x)x(s(x, «))

= e*(r<*.<«>T*(«s*)T(s(*, M*))<

Therefore

ir(x)<¡> =   f   œ(u*)e»(r(*.*'))T*(u*)%(srXt u*))fdu*
J K*

and we conclude exactly as in the proof of Lemma 29 that

x(x)<2> =  f   tt*(u*)Hx, u*)du*

where (x, u*)—*//(x, u*) is an analytic mapping of GXK* into §. Since K*

is compact we can now use the same argument as in the proof of Lemma 29

and show that the mapping x—*k(x)4> is analytic at x = 1. Therefore <f> is well-

behaved under x.

Let fi be the set of all equivalence classes of finite-dimensional irreducible

representations of K. For any 35Gfi we denote by £>s> the set of all elements

<AG§ with the following property: there exists a finite-dimensional linear

space U containing yj/ which is invariant and semisimple under ir(K) and is

such that the representation of K induced on every simple subspace of U

lies in 35. We shall say that an element \¡/G¡Q transforms under K (or tt(K))

according to 35 if ^G§x>- Let IF be the space of all elements in § which are

well-behaved under" x(G). We have seen above that Wi^(^^>^a §s) is

dense in §. But since IF is stable under x(G), it follows that WC\(%2_ sogn §35)

= E^G« H7® where W<n> — IFA§u (see Lemma 6). Thus we have the follow-

ing theorem:

Theorem 4. Let x be a permissible representation of G on § and W the set

of all well-behaved elements in §. Then if W%> = Wr\^> (35Gfi), the space

E®e« H7® î5 dense in §.

For any linear subspace F of § which is invariant under ir(K) put

Fs)= V!~\S¿)<z. Then we shall prove the following lemma:

Lemma 30. Let irbea permissible representation of G on § and V a subspace

of § invariant under x(X). Then if E®en V$> is dense in §, §s>=Cl (Fs>)(10).

We keep to the notation introduced above. For any 35Gfi let xs> denote

the character of the class 35. Suppose §3)?^ {o}. Then it is easily seen that

XT¡(u)e~"íríu)) (uGK) depends only on u*. We may therefore denote it by

P°) Cl denotes closure in !&.
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x£(w*). Let E$> = d('£))fK*xUu*)T*(u*)du* where ¿(SD) is the degree in SD
and the bar denotes complex conjugate. £$ is a bounded linear operator such

that E%=E^ and Iq<£> = E<£>!q. Hence §sd as closed in §. Moreover V0

= £sDgn F© is stable under t(K) and the linear space spanned by

T(u)\p (uGK) for any ipG Vo is of finite dimension. Hence F0 is stable under

£j). Nowleti/'G^S). We can choose a sequence \p„G F0such thati/' = limnH.00i/'n.

Then ip = Ewp = Y\m„^M E-&p„. But £®^„G FoHEsd^CFd. Therefore Fs is

dense in §35 and so §sd = C1 (Fjj).

Notice that the operator £33 is bounded and E®\p=ip or 0 according as

^G$S) or i^G&B' (SD'f^SD). (We define £35 to be zero in case §s={o}.)

Since £s)'gn §£>' is dense in !q, £s> is uniquely characterised by these prop-

erties. We shall call £33 the canonical projection of § on §©. It is clear that

E^Ev = E® or 0 according as SD' = SD or SDVSD (SD, SD'Gß).
Let ir be a representation of G on § and U a linear subspace of ¡£>. We

shall say that U is differentiable if there exists a representation tu of go on

Í7such that Tu(X)\¡/ = limt^o (1/t) (7r(exp tX)\p-\p)(XGüo, ÏGU). It is clear

that the sum of two differentiable spaces is again differentiable. Hence there

exists a largest differentiable space, namely the union of all differentiable

subspaces of Iq. We say that an element ^G§ is differentiable (under t) if it

lies in this union. It is obvious that the Gârding subspace and the space of

well-behaved elements are both differentiable. We now state without proof

the following lemma.

Lemma 31. Let t be a permissible representation of G on § and let £33 denote

the projection of § on ^533. Then if ip is a differentiable element in §, the series

£s)go Es>\p converges to \p.

We shall not make use of this result anywhere in this paper except in the

proof of Theorem 9. A proof of this lemma will be given in a subsequent

paper.

10. Quasi-simple representations. Let t be a representation of G on §

and V the Gârding subspace of §. We denote by g the complexification of

go, by 33 the universal enveloping algebra of g, by ,3 the center of S3, and by

Tv the Gârding representation of 33 on  V.

Definition. The representation t is called quasi-simple if (1) t is per-

missible and (2) there exists a homomorphism x °f 3 into C such that Tv(z)\p

= x(z)yp for all zGS and ipGV. x is then called the infinitesimal character of t.

Let U be the space of all elements in § which are differentiable under a

representation t. We denote by tu the representation of 33 on U such that

tu(XW = lim — {x(exp tX)t - *}       (X Gut G U).
i->o   t

Lemma 32. Let Uo be a linear subspace of U and x a homomorphism of $

into C such that Tu(z)xp =x(z)^p for all zG3 and ypG Uo- Then if Uo is dense in
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§, ■KU(z)y}/ = x(z)yP for all zGS and \pGU.

It we put i/o = F in the above lemma we get the following corollary.

Corollary. Let x be a quasi-simple representation of G on § and ttw the

corresponding representation of 33 on the space W of all well-behaved elements.

Then irw(z)f — x(z)^/ (ZG$>, \pGW) where x ** the infinitesimal character of x.

In order to prove the above lemma, we first establish a simple result

which was pointed out to me by Mautner. Let § be the space of all bounded

linear functions a on § taken with the weak topology. If \[/G^> and ^GtQ we

denote by (\[/, \[/) the value of the linear function \p at \p. Let A be a bounded

linear operator on §. Then the mapping A: \j/^>Äi[/ (^G§) defined by the

condition (A\f/, ip) = (\p, Axp) (ipGíQ) is a continuous linear transformation on

§. Ä is called the adjoint of A. Let M be a linear subspace of £> and 33 a

linear transformation of M into ÍQ. We put |-B| jf = supwgi \B\p\ (tpGM).

Lemma 33. Let M and N be linear subspaces of § such that MZ)N and N is

dense in §. Let A and B be linear transformations in M and N respectively

such that A coincides with B on N. Let M be a dense linear subspace of §.

Suppose there exists a linear transformation Ä in M such that (Ä<p. \f/)

= Q>, A\p) for all4>GM and^GM. Then \A\m=\B\n.

It is sufficient to prove that ¡A] m g \b\n and so we may assume that

\BN\ <°°. Now

| (Ä$, *) I - j ($, A*) | - | ($, Bt) | g | S|ff | $\ | *|

if 4>GM, \pGN. Since Xis dense in !q we get by continuity

\(Ä$,t)\ g I bU\$\\ *J (4>GM).
So in particular if ipGM

| ($, AH | = | (Â$, f) | g | F \N | ¿| | * | (ÍG Ü?).

Since iff is dense in |> we conclude that

|(5U*)| sf*|r|iT||f| (ïe^^ei).
But from a theorem of Banach [l, p. 55], we can choose <p so that (</>, yl^)

= |^| and |$| =1. Hence |^| g |f|ív|^| . This proves that |.4|jirg |j3|;y.

Now we come to the proof of Lemma 32. For any /G C™ (G) let A¡ denote

the operator ff(x~1)ir(x)dx and A¡ its adjoint. Let F be the subspace of §

spanned by the elements of the form Af¡i (fGC¡°(G), ipGlQ)- It is well known

that there exists a sequence {/„} of functions in C"(G) with the following

properties: (1) ffndx = l and lim„_00/|/„|a'x = l; (2) all but a finite number of

the functions/„ are zero outside any given neighbourhood of 1. From this it

follows immediately that lim,,..,» Afn\p=\f/ tyGC?) and therefore limn,M A¡J/

=$ (fiGfe). Hence F is dense in |). If XGßo and/GC"(G) we denote by Xf
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the function x—>{¿/(x exp tX)/dt}t^o. This defines a representation of g0 on

C""(G) which may be extended uniquely to a representation of 33. Let a(x)

denote the adjoint of 7r(x-1). Then if ^G§ and ^G§ we find that

1 __      __ 1    »
lim — (o(exptX)A/4> — A$, ip) = lim — (¡p, x(exp — tX)Af\p — A$)
f->0    / (-»0    /

= ft A-xrt) = (i-x/i, 0.
This shows that

1 ______
lim — (o-(exp tX)Aj\f/ — At\p) = A-xj*P
!-K>    t

and therefore we get a representation av of S3 on F such that

1 ~      ~ _      _
av(X)t = lim — (<r(exp tX)1> - *)       i^p G V, X G go).

<-M)    t

Hence

1 ~      _
(<rf (Jí)*, ¿) = lim — (<r(exp /__)* - f, f )

i-*o   /

1    .
= lim — ii,, 7r(exp -tX)i - ff) - (^, _y(---W)

(->0    ¿

if "/"G f, í'G F and XGgo- Let <p denote the antiautomorphism of 33 (over C)

such_that0(X) = -X (A-Gg). Then (ft *■_■(£#) -(<rffo(ô))ft tf) (tfGtf,
^£f, &G33). Now let z be any element in 3 and 5 the restriction of the

operator Tuiz) on Z70. Then B is x(z) times the unit operator and so is

bounded. On the other hand, F is dense in § and i\p, Tuiz)\p) = (o-y i<f>iz)\p, xp)

ixpGV, \pGU). Since i/o is dense in ^> we conclude from Lemma 33 that

Tuiz) is also bounded. Let A denote the unique bounded extension of the

operator Tuiz) on §. Then A — xiz)I is bounded and since it is zero on Uo it

must be zero. Therefore Tuiz)\p = A\p = xiz)4/ i°r ^PGU. This proves the lemma.

Let t be a representation of G on ¿p and U any linear subspace of § which

is stable under 7r(i_). Then for any SDGß, we denote by U%> the set of all ele-

ments in U which transform under TÍK) according to SD.

Lemma 33. Let t be a quasi-simple representation of G on § and tw the cor-

responding representation of 33 on the space W of all well-behaved elements.

Suppose </'oG£_£s¡ IF33 and U=Cl (7rnr(33)^o) iwhere Cl denotes closure in

&). Then U is invariant under tÍG), Twi^8)^Po= £s>eß ^*> an^ °-'m U$><°°

CSGß).

We use the notation of Part I and denote by f the subspace of g spanned

by fo over C. Let X be the subalgebra of S3 generated by (1, f). Since K is
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simply-connected there is a 1-1 correspondence between finite-dimensional

irreducible representations of fo (and therefore of f or Ï) and those of K.

Hence any SDGß may be looked upon as an equivalence class of finite-dimen-

sional irreducible representations of f. We shall regard it in this way whenever

it is convenient to do so.

We already know from the corollary to Theorem 2 that U is stable under

7r(G). Put Uo = Twi$i)4'o. It follows from Lemma 9 that Z70C £~go W<& and

therefore t/0 = £s>f=a VoC^W® (Lemma 6). Let g) be the set of all elements

xG3£ such that Twix)\po = 0. Then £) is a left ideal in ï which satisfies the con-

ditions of Theorem 1. Let a—>a* (aGS3) denote the natural mapping and t*

the natural representation of S3 on 33* = 33/33_). Put a(b*)=TW(b)\po (¿G33).

Then b*—>a(b*) is a well-defined mapping of 33* into Uo and a(T*(a)b*)

= Tw(a)a(b*) (a, ¿>G33). Now 33*= £_g:a 33® in the notation of Theorem 1

and therefore a(331) = t/0njF_ (S)Gß). Moreover for every SDGß we can

choose a finite set of elements b*, • • • , è*G33|) such that 33|>

= £î_i T*i3)b?. Hence U0r\W<ß= £f_i Twi3)<*ib*). But since t is quasi-

simple, it follows from the corollary to Lemma 32 that Twiz)=xiz)Twil)

(zG3) where x is the infinitesimal character of t. Therefore a(b*), 1 ̂ i^k,

span U0r\ IF33 and so dim ( Uo<~\ IF33) < °°. Now _/0n W*> = UoC\&i> = U0C\ 1%.

Since i/o = £_>{= a Uo A ÍAd is dense in U, it follows from Lemma 30 that

£7_ = Uof^ £/_-. But the dimension of c70CA í/_ is finite and therefore C/33

= Uo(~^ -/_). Hence i7o = £_e a £/_ and dim t/33 < <~.

Lemma 34. Let t be a permissible representation of G on & such that

dim ^33<c0 for every SDGß- Then every element \po in £_gn ^33 is well-

behaved and 7Tjy(33)^o= £_gn U® where £/ = Cl (^^(33)^0).

We know from Theorem 4 and Lemma 31 that §33 = ^33. But since

dim $33<=o, §S3=IF33 and therefore \po is well-behaved. Put F = 7^(33)^0

and F33=FP\_/s3. Then \poG £~gsi Fgj and therefore, from Lemma 6,

F= £s3ga Fs). Since F is dense in U we conclude from Lemma 31 that F33

is dense in U<¡>. But dim F_i=dim §33<°°. Hence U^=Vt> and therefore

F= £33^0 t/_.

The following theorem is of decisive significance for our purpose.

Theorem 5. Let t be a permissible representation of G on § such that

dim §33<oo for all SDGß. For any ^oG£s>g_ ^>_ put U' =Twi^Ô)xpo and

i/=Cl (_/'). Let M be the set of all closed linear subspaces of U which are in-

variant under 7r(G). Similarly let M' be the set of all linear subspaces of U'

which are invariant under xnr(33). Then there exists a 1-1 mapping V—*V of M

onto M' such that V = VC\U', F=C1(F'), and F'= £_eo 7».

Notice that since dim §33 < °° it follows from Lemma 34 that ^0 is well-

behaved, U is invariant under x(G), and _/'= £3)^0 £/_>. For any VGM

put V = Vr\ U'. Then if xPG V' and X G go,
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tw(X)^ = lim — {x(exp tX)f - xp} G V f~\ U' = V

since Fis closed. Hence Fis stable under xjf(33) and therefore, from Lemma

6, V'= E®Ga VT\ C/io = E®GQ ^°- Moreover E®GQ ^ ^s dense in F
(Theorem 4). Hence F=C1(F').

Conversely let V'GM'. Then, again from Lemma 6, F'= E®Gn V'C\Ut>.

Since every element in V is well-behaved F=C1 (V) is invariant under

x(G). But then, Fd = C1 (VT\U*>) (Lemma 30). Since dim (FTW©)
g dim §sd<«), F©= F'fWj) and so V = Es>Gn ^ Moreover since VGM

we know from the earlier part of the proof that V(~\U'= E®Gn ^S)- There-

fore V(~\ U' — V and the theorem is proved.

Let $1, ^2 be two closed subspaces of ^> both invariant under x(G).

We say that §2 is maximal in §i (with respect to x) if(n) ^i>§2 and there

exists no closed subspace §3 invariant under x(G) such that §i>§3>^2-

Then we get the following corollary from Theorem 5.

Corollary 1. If U^{o} there exists an element VGM such that V is

maximal in U.

Let Sfto be the left ideal in 33 consisting of all elements 6G33 such that

xjr(Wo = 0. Since U¿¿ {o}, i/'o^O and therefore lGStfto- Therefore by Zorn's

lemma there exists a maximal left ideal 3ft in 33 containing Sfto- Put V

= xnr(2ft)^o. Then it is clear that V is not properly contained in any element

of M' other than £/'. Put F=C1 (V). We claim F is maximal in U. For let

UDSDV (SGM). Then U'DS'DV and therefore S'=U' or V. Since the
mapping from M to M' is 1-1 this proves that 5= U or V and U¿¿ V and

this establishes our assertion.

Corollary 2. Let x be a quasi-simple representation of G on £> 9e {0}.

FÂew it is possible to find two closed invariant subspaces U and V in § such that

V is maximal in U.

As before let IF be the space of well-behaved elements in §. Then

Es>GQ ^D 's dense in § (Theorem 4). Choose i^oG E®Gn W&, 'Ao^O, and

put U=Cl (xir(33)^'o). From Lemma 33, dim Z7s<°° (35Gß) and so our

result follows immediately from Corollary 1 above.

Let xi, X2 be two representations of G on the Banach spaces §1 and §2

respectively. We say that they are equivalent it there exists a linear mapping 5

which maps §1 topologically onto ^2 such that X2(x)5 = 5xi(x) for all xGG.

However in case Xi and x2 are both permissible we introduce the concept of a

new kind of equivalence as follows. Let IF,- be the space of all well-behaved

elements in §,-, and let wwi be the representation of 33 on IF< (i = l, 2). Put

(") A and B being two sets we write A >B or A <B if BZ)A and A t¿B.
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IF,-,33 = IF¿A(^,)3) and §?= £_go IF.-.s). Then we know from Theorem 4

and Lemma 9 that §? is dense in §,-, and it is stable under 7^(33). Let 7r?

denote the representation of S3 induced on §J. We shall say that the represen-

tations 7Ti, Tí are infinitesimally equivalent if there exists a 1-1 linear mapping

a of $ onto §1 such that T°2ib)aixp) =o¡í>?(W) for all ¿G33 and \pG&°. It is

clear that if 7Ti, tí are equivalent they are also infinitesimally equivalent, but

the converse is not true in general. However we shall see later (§11) that for

irreducible unitary representations on Hubert spaces these two concepts of

equivalence actually coincide.

11. Unitary representations on a Hilbert space. In this section § shall

stand for a Hilbert space. A representation t of G on § is called unitary if

the operator 7r(x) is unitary for every xGG. For any two elements <p, \p in §

we denote by i<j>, \p) their scalar product.

Theorem 6. Let t be an irreducible representation of G on a Hilbert space §.

Then every element in £s)gn §33 is well-behaved and dim §35<°° (SDGß).

Moreover £_£_ £>_ is dense in ¡Q.

It is known that an irreducible unitary representation of G on § is quasi-

simple (see Mautner [12] and Segal [15]). Let IF be the space of all well-

behaved elements in §. Then £33^0 IFb is dense in § (Theorem 4). Choose

\poG £s>gß IF33, ̂ o^O. Since t is irreducible it follows from Lemma 33 that

|) = C1 (7^(33)1^0), 7^(33)^0= £_gQ €>_, and dim £>33<°°. This proves the

theorem.

Theorem 7. Let t be a quasi-simple unitary representation of G on ¡£>5¿{o}.

Then there exists a minimalif2) closed invariant subspace in §.

From Corollary 2 of Theorem 5 we can choose two closed invariant sub-

spaces U and 5 such that 5 is maximal in U. Let F be the orthogonal comple-

ment of 5 in U. Since t is unitary it is clear that V is invariant and minimal.

The above theorem has the following significance in relation to the theory

of Murray and von Neumann [14]. Let 7r be a unitary representation of G

on § and 31 the smallest weakly closed algebra of bounded operators on §

which contains 7r(G). Suppose 31 is a factor, i.e. the center of 31 consists of

scalar multiples of the unit operator. Then it can be shown that 7r must be

quasi-simple and we conclude from Theorem 7 that there exists a closed sub-

space Vt* {0} which is invariant and irreducible under 7r(G) and therefore

under 31. But then it follows from the results of Murray and von Neumann

(Lemmas 5.3.1, 5.3.8, 8.6.1) that 31 is of type I„ or IM. Thus we have proved

that any factor arising from a unitary representation of semisimple Lie

group in a Hilbert space is necessarily of type I.

The following theorem shows that for irreducible unitary representations

infinitesimal equivalence is the same as ordinary equivalence.

(12) A closed invariant subspace V is called minimal if {0} is maximal in V.
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Theorem 8. Let xi, x2 be two irreducible unitary representations of G on the

Hubert spaces §i and §2 respectively. Then they are infinitesimally equivalent

if and only if they are equivalent.

It follows from Theorem 6 that dim ^<,î><«3 (35Gfi), every element in

ÍQi= E®Gn €>»,£> is well-behaved, and §? is dense in §,- (i=1, 2). Let x?

denote the representation of 33 on §J. Then if xi, x2 are infinitesimally equiva-

lent there exists a 1-1 linear mapping a of §? onto §£ such that a(ir°(b)\p)

= TÜ(b)a4> for all ^G£î and &G33. It is clear that a(§i,s) = §2,s> (35Gfi)
and the representations of K induced on §i,s) and §2,sd are unitary and

equivalent to each other. Therefore there exists a 1-1 linear mapping 08 of

§i,s onto ¡Q2,$) such that if <pi, HGlQi,® and <p2=ß&bi, $2=ßz>H then

(<Pi, xi(m)i^i) = (cf>2, x2(w)'/'2) for all uGK. Let ß be the 1-1 linear mapping of

§? onto !q\ such that ß coincides with ßt> on §i,s>. Now it is easily seen that

for two distinct elements 35, 35'Gfi the spaces §,-,$ and §;,3y are mutually

orthogonal and therefore (<p, iri(u)ip) = (ß<p, x2(m)/3^) for all <p,^G§î and uGK.

In particular |^| = \ßf\ (ipGlQi) and since £>? is dense in §,- it follows that

ß can be extended uniquely to an isometric mapping of §i onto §2. Let 5

denote the linear transformation of §J onto itself given by Sip = ß~1a>l/

(^G^>?). Since a and ß are isomorphisms of §? onto §2 it follows that the

inverse transformation S~1 = a~1ß exists. Moreover it is obvious that 5 and 5_1

leave ^i,sd invariant (35 GB)- Since dim §i,s<°° it follows immediately

that there exists a linear transformation 5* of §? into itself such that

(S*<¡>, *) = (<p, S® (<t>, HGlQi).

Furthermore the inverse transformation  5*_1 exists and 5*, 5*-1 leave

§i,sd invariant for all 35Gfi- Put A =S*S. Then we claim that

Ar0i(b)A~X = T°i(b) (b G 33).

First notice that if XGßo and <£,-, ^<G^>° {4—1, 2) then

o 1
(4>i, Ti(X)H) = Hm — (4>i, x<(exp iX)^,- - fc)

Í-H)     i

1 0
= hm — (x,(exp -tX)<pi - <^¿, ̂¡) = - (in(X)<¡>i, H)

Í-K>     i

since x,- is a unitary representation. Hence if <p, ¡pG&i,

(<{>, A^\(X)A~\) = O, 5*5xî(X)5_15*~V)

= (5*. 5xî(X)5_15*_V)

= OW0, x2(X))35*~V)

since /35x1(X)5-1=ax,(X)«-1/3=xS(X)/3. Therefore
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(<¡>, At\íX)A~1í,) = («*, 7r'(Z)/35*_V) = - (*_(__)«*, ßS*"V)

=  - (axi(Z)0, flS*~V)

=  - Û3~axî(-0*, Í*"V)

= - (Sito*, S**~V)
= - i*lm* #) = (*, «to*).

Since this is true for all 4>G&° and since §î is dense in §1 we conclude that

AtiÍX)A~^ = TiiXW y G §i, X G go)

and from this our assertion follows immediately.

Now choose SDoGß such that $t&&* {o}. Since A leaves §1,33,, invariant

and since dim í>i,_0<°° we can find an element \poGí&i,®0 O/'o^O) and a

complex number c such that A\po = opo- But c\xp0\ 2=(¡po, S*S\p0) = | -SV'o]2

and S\po^0. Therefore c is real and positive. Moreover ATiib)\po = T2ib)Aipo

= CTiib)\po (ÖGS3). Let V = Ti($&)\p0. Since 7Ti is irreducible it follows from

Lemma 33 that F = §i and F = £33^0 êi,_ = £>?. Therefore A\p = op for

all i^Gêî- Now \œp\2=\SxP\2=iiP, AiP) = c | f |2 (^G§ï) and so a is con-

tinuous. Hence it may be extended uniquely to a linear mapping of §1

into §2 such that \cap\ =c1/2|^| (ipG&i)- Since c>0, a maps §1 topologically

into §2 and therefore a¡Qu being complete, is closed in §2. But a§0^ and

§2 is dense in £>2. Hence alQi = §2-

Now let ypG&l- Then by Theorem 2 we can choose a neighbourhood F of

zero in g0 such that if XGV, Tiiexp X)\p= £„&o (l/w!)7rï(Arn)^ and

7r2(exp X)ccip= £„^0 (l/ra!)7r2)(A''n)at/'. But since a is a continuous linear

mapping we find that

X~^ On ^—%      1       0        n
a7Ti(exp X)\p = 2_ — a7Ti(Z )\p = 2_ — tt2(Z )a\p = 7r2(exp X)cap

n_0  n\ n_«   w!

(X G F).

Put i^(X) =a7Ti(exp X)\p — 7r2(exp X)a^ (XGgo). It is obvious that the

mapping X—np(X) is analytic. Hence if <f> is an element in §2, ($, \piX)) is

an analytic function on g0 which is zero on V. This however implies that

i4>, \piX))=0 for all ZGgo- This being true for every 0G§2 it follows that

iPiX)=Q (XGöo). Hence con (exp X)yp=T2 (exp X)c«P (XGQo, ^G£î). But

§J is dense in §1, and therefore this relation is actually true for all \pG&i-

Moreover since G is generated by the elements exp X (XGgo), it follows

that a7Ti(x)i/' = 7r2(x)a^' (xGG, \pG&i) and therefore tti, 7r2 are equivalent.

Conversely, if tti, 7r2 are equivalent, it is obvious that they are infinitesimally

equivalent. Hence the theorem.

Let 7T be a permissible representation of G on a Banach space ^ and let

IF be the space of all well-behaved elements in §. Put §0= £~e_ I7_. We
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know that §o is stable under the representation of 33 on IF (Lemma 9). Let

x0 denote the representation of 33 on §0. We shall say that x is infinitesimally

unitary if it is possible to define a scalar product (\f/, <p) (ip, <£G£>o) such that

under this product §o becomes a (possibly incomplete) Hubert space and

(H tto(X)<I>) = - (xo(X)^, <(>) tor all H <pG£o and XGgo.

Theorem 9. Let x be a quasi-simple irreducible representation of G on a

Banach space. Then if x is infinitesimally unitary, it is infinitesimally equivalent

to a unitary representation a of G on a Hubert space. Moreover, a is unique,

apart from equivalence, and it is irreducible.

We keep to the above notation. Then it follows from Lemma 33 that

£>o= E$gq &$>• Let (<p, ip) be the scalar product in §0 satisfying the above-

mentioned properties with respect to xo. We can then complete ^)0 with re-

spect to the norm |M| = (H yp)1'2 (ipG&a) and thus obtain a (complete)

Hubert space F. We shall now define a representation a of G on F.

Let ipo be a fixed element in £>0 O/'o^O). Consider the mapping

T: (x, y, z) —> x(x)x(y)x(z)^0 = x(xy2)^o (x, y, z G G)

of GXGXG into §. Since ipo is well-behaved since (x, y, z)—>xyz is an analytic

mapping of GXGXG into G, F is analytic (Lemma 16). Hence we can find

an open convex neighbourhood U of zero in g0 such that U= — U and

x(exp rX)x(exp sF)x(exp tZ)\p0 =    E    ^m.n,P(X, F, Z)rmsHp

OrWP(X, F, Z)G$) tor X, Y, ZGU provided |r|, |s|, |i| gl. Now from

the corollary to Lemma 15 we find that

ldm    d"    dp )
<.-(7r(exp rX)x(exp sF)x(exp tZ)\p0)>
(drm  dsn   dtp ) r=s=t=o

- mlnlplHn,n,p(X, Y,Z).

Moreover we know from Theorem 2 that

t"
x(exp iZ)^o = E — ro(Zp)\po

päo pi

it \t\ is sufficiently small. Since x(exp rX)x(exp sY) is a bounded operator,

tp
x(exp rX)îr(exp sF)x(exp tZ)\po = E — x(exp rX)x(exp sY)tt0(Zp)\Po.

v   P]-

Hence

\-(x(exp rX)x(exp sF)x(exp tZ)\po)\        = x(exp rX)x(exp sY)ira(Zp)\po.
\dtp ) (_o
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Again since w0(Zp)\po is well-behaved,

x(exp sY)to(Zp)H = E — x0(F»)xo(Z")^o
m!

provided | s| is sufficiently small and so we find in the same way as above that

\- (x(exp rX)x(exp sF)7r0(Z^o)>       = 7r(exp rX)x0(F")7ro(Z")^o
Ids" ) s=0

Repeating the same argument once more we get finally

/   Qm+n+p -\

-J-(x(exp rXWexp sF)x(exp tZ)\po)>
{drmds"dtp j r-*-t-0

= xo(*m)xo(F")xo(Z'W,.

Hence

1
4>m,n,P(X, Y,Z) = -xo(X»F-Z')^o

m\n\p\

and

rmsn¿p

x(exp rX)x(exp sF)x(exp tZ)H =   E      '-xo(XmF"Z")^o
m.n.p^o  m\n\p\

provided |r|, |s|, |i| gl. Let Zi, • • • , Z9 be a base for g0 over R. We can

choose e>0 such that if [ii|, • • • , |is| ge, Zt = iiZi+ • • • +tqZq lies in U

(UGR, lgî'gff). Hence

r msn

%(exp rX)ir(exp sY)ir(exp Zi)ipo =   E      '-x0(X  Y Zt)\p0.
m.n.p^o   mlnlpl

But

PI Pi Pi

P T—>       il   i2     '   '   "   ig

£< = />!E —r-,-:z(ii- h..":. Í«)
Pl'-p2l   ■   •   •   Pql

where the sum is over all integers pi, - - - , pq^0 such that £i+£2+ • • •

+pq = P and

1
Z(pi, p2, ■ ■ ■ , pq) = — E Zi„mZi„u) • • • ZW

pi «

Here {ii, h, • • • , iP} is a set of p integers such that exactly p¡ of them are

equal to j (1 ^j^q) and the sum is over all permutations w of the p integers

(1, 2, • • • , p). Therefore
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<-(7r(exp rXWexp ¿FWexpZi'
Wï1 • • • dtpq« ■

=   £    —-T0(XmY")To(Z(pi, ••• ,pq))yPo.
m,n-0   »»!«!

Since the elements Z(p\, p2, • • ■ , pq) all taken together span S3 (see [8(a)]) it

follows that

*.7»~n

x(exp rX)7r(exp sY)T0(b)<p0 =   £    -T0(XmY")T0(b)iPo        (X, Y G U)
m,„    mini

for any &G33 and \r\, \s\ = 1. However, since 7r is quasi-simple and irreduc-

ible, it follows from Lemma 33 that 7^(33)^0 = §o- Therefore if we let r = 5 = 1

we get

7r(exp Z)7r(exp Y)\P =   £-T0(XmYn)xp
m,n_o mini

for all \pG$o and X, YGU. Now put expm Z=l+Z+Z2/2! + • • • +Zm/m\

G33 for any ZGgo- Then the above equation may be written as follows:

7r(exp J.)7r(exp Y)yp =      lim    (®7ro(exp„, X)7r0(expn 7)* (X, Y GU,*G §o).
m—*<x>,„—> —

Here lim (£) means limit in ¿p.

Let £33 denote the projection of £> on §33 (see §8). Since §33 is a finite-

dimensional subspace of 7 it may itself be regarded a Hilbert space. Moreover

§33 is invariant under t(K) and since (<bi, to(X)<¡>2) = — (7To(X)#i, <¡>2) iXGto,

4>i, 02G§5d) it is clear that the representation of K induced on $33 is unitary.

From this it follows immediately that if SDi?£SD2, then §33, and §3)s are mu-

tually orthogonal subspaces of §0 (SDi, SD2Gß)- Hence (£33^1, </>2) = (</>i, £_<£2)

(0i, 4>zG&o). For any finite subset F of ß put Ef= £33^;? £33. Then Ep

is a bounded linear operator on § and therefore if \pG¡Qo,

lim   < (£)£p7ro(expm X)7r0(exp„ F)¿ = ^(exp X)x(exp F)f     (X, F G U).
m—*~,n—*»

But £*•§ = £s3£if §s is a finite-dimensional subspace contained in ^p0.

Hence the two topologies induced in £f§ by § and 7 are the same. There-

fore

lim     (F)£F7ro(expm X)x0(expn Y)$ = £fx(exp Z)7r(exp Y)$       (X, YGU)
m—*~,n—♦ »

where lim ( F) denotes limit in V. Now

||7ro(expm X)^||2 = (x0(expm X)\p, 7r0(expOT X)xp)

= i\p, 7T0(expm (-X) expm X)\p) (X G go)

/ i,=fo= —
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since (xo(Z)^i, *2) = — (<pi, x0(Z)*2) for all <j>x, <p2G§o and ZGgo- Choose F

such that \pGEptQ. Then if XGU we have

lim ||x0(expm X)*||2 = lim (H x0(expm ( —X))x0(expOT X)*)
m—»oo m—»»

= lim (\p, EFTT0(expm ( — X))x0(expm X)*)

= ty, lim £jr-x0(expm ( —X))7r0(expm X)^)
m—»«

= f>, £Px(exp -X)x(exp X)*) = (*, Erf) = ||*||2.

This proves that the sequence xo(expm X)\p is bounded in F. Moreover, for

any *G§o we can choose a finite subset F of fi such that <I>GEf!ç> and there-

fore

lim (*, x0(expm X)*) = lim (*, FFx0(expm X)*) = (<j>, EFw(exp X)*).
m—» « m—» «

Since §o is dense in F, it follows that the sequence x0 (expm X)\p is weakly

convergent in F. Let A(X)\p denote the weak limit of this sequence in V.

Then it is obvious that .¡4(X) is a linear operator with domain §0- We shall

now show that A(X) is bounded. Let <pGÍ>o- Then

(<j>, A(X)t) = lim (*, x0(exp„ X)*).
n—»«

Hence | (<b, ¿(X)*)| g||*|| lim«.«, ||x0(exp„ X)*|| = |MIIMI as we have seen

above. Since §o is dense in F it follows that

I (4>, A(m) I ̂  n*|| 11*11
for all (¡>GV and therefore ||^(X)*|| g||*||. As this is true for all *G§o,

^4(X) is bounded and therefore it may be extended in a unique manner to a

bounded linear operator on F. We shall denote this extension again by .4(X).

Then it is clear that

\\A(X)\\ = sup |M(X)*|| g 1 (*GF).
IWIgi

We now claim that A (X) is a unitary operator. For if X, Y G U and *, *G£>o,

(4>, A(X)A(Y)t) * (¿*(X)*,¿(F)*)

where ^4*(X) is the adjoint of ^l(X). Therefore

(*, A(X)A(Y)t) = lim (A*(X)4>, x„(exp„ Y)<P)
n—»oo

= lim (*, ¿(X)x0(exp„ F)*)
n—»«

— lim (lim (<f>, 7T0(expm X)7r0(exp„ Y)^)
n—» «    m—» »
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since 7To (exp„ Y)G&o- Now choose F such that 4>GEfÍQ. Then we have seen

above that

i<p, EFTÍexp X)x(exp Y)\p) =     lim     (<¿>, x0(expm X)x0(expn Y)xp).
m—► « j n—* »

Therefore

i<p, AiX)AiY)f) = it, EFTÍexp X)x(exp F)^).

In particular if we put Y— —X we get

f>, ¿(X).! (-.i)*) = (#, £W) = f>, #).

Since _1(X).4( —X) is a bounded operator and since §0 is dense in §, we

conclude that -1(X).4(—X) =/ where I is the unit operator. Replacing X

by —X we obtain -1( — X)_1(X) =/. This shows that A (X) is regular (i.e. it

has a two-sided bounded inverse). Moreover,

\\4 = |M(-xM(x)^|| = H-itoii =- ikll
since ||/1(-X)|| and ||/1(X)|| are both =1. Therefore ||/1(X)^|| =|M| and this

proves that A (X) is unitary.

For any SDGß let £33 denote the orthogonal projection of Fon §33. Since

§0 is dense in F, it is clear that for any \pGV the series £33^ a E^ip converges

to \p in V. For any finite subset of £ of ß put £?= £:_•£*' E'F. It is obvious

that the operators E'F and Ef coincide on ^j0- We shall now prove that if

Xi, • • • , XrGU and \pG$o then

£f^(XiM(X2) ■ • • AiXr)xP = EFTÍexp Xi)x(exp X2) • • • x(exp Xr)i>

for any finite subset F of ß. First notice that since strong and weak con-

vergence in E'p V are the same,

£jv4(Xi)^ = lim £fXo(expn Xi)^ = £Fx(exp Xi)^

and therefore our statement is true if r= 1. So we may assume r = 2 and use

induction on r. Put 0=x(exp X2) • • • x(exp Xr)\p and <p'=AiX2) • • •

AiXr)\p. Then if £1 is any finite subset of ß it follows from our induction

hypothesis that

Ef,<j>' = EFl<¡> = <¡>Fl (say).

Moreover 4>f1GEFiíqGÍQo, and therefore

EFAiXi)(t>Fl = £px(exp Xi)<j>F..

Since \p is well-behaved in ^), the same holds for (p. Therefore from Lemma 31

the series £s3gn £_)</> converges to <j> in §. On the other hand, we have seen
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above that £33^ a Eyp' converges to <j>' in V. Therefore, since E'FA (Xi) and

£j?x(exp Xi) are bounded operators in F and § respectively and since

0j?!= £_£Fi £_$= ^efi Eyp', it follows from the above result that

E'FAiXi)<t>' = £px(exp Xi)<t>

and this proves our assertion.

Now suppose Xi, • • • , Xr is a finite set of elements in U such that

exp Xi ■ • • exp Xr= 1. Then for any <f>, \pG&o,

i<p, AiXMiXt) - ■ ■ AiXr)$) = (<*>, EpAiXi) ■ ■ ■ __(__,)*)

= (0, £Fx(exp Xi) • ■ ■ x(exp Xr)\p)

= (0, £F0) = i4>, H

where F is so chosen that <pGEp$$. Since §o is dense in F and since

/l(Xi)-l(X2) • • • /l(Xr) is a bounded operator in 7, this proves that

AiXi)AiX2) ■ ■ -AiXr)-I.
We know that every xGG can be written in the form x = exp Xi exp X2 • • •

exp XT iXiGU, l__*__r). Then if we put <r(x) =/l(Xi) • • • -l(Xr) it is clear

from what we have proved above that o^x) depends only on x and not on the

choice of Xi, • • ■ , Xr and oixy)=aix)<TÍy). Moreover er{x) is obviously a

unitary operator and <r(l) =1. Hence it follows from well known arguments

(see Godement [7(a)]) that in order to show that <r is a representation of G

on 7 it is sufficient to prove that limj,..! (0, oix)\p) = i<j>, \p) for any two ele-

ments <p, xpGV. First suppose <p, \pGtQo- Choose £ so that <PGEf&. Then

E'pAiX)\p = £Fx(exp X)\p (X G U)

and therefore

i<t>, <r(exp X)xP) = i4>, EpTiexp X)$).

Now as X—>0, x (exp X)\p-^np and since Ep is a bounded operator on §,

£yx(exp X)\p-^Ep\p. Hence

lim (0, <r(e_p X)f) = (0, £W) = (0, *)•
x-o

Now if we take into account the fact that §0 is dense in F and o-(x) is uni-

tary, it follows immediately that lim.^i (<£, <xix)\p) = (0, ^) for all 0, \pGV.

Therefore <r is a unitary representation of G on 7. Moreover, it is obvious

that for any uGK the operators o-(w) and x(w) coincide on £>0 and therefore

since x is a permissible representation and since §o is dense in 7, a is also

permissible. Hence it follows from Lemmas 30 and 34 that 7b = §33 and every

element in §0 is well-behaved under a. Let XGU and 0, \pG&a- Then

(0, (r(exp X)0) = i<t>, Epciexp __)*) = i<P, Ep^exp X)#)
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where F is so chosen that <j>GEf!q. Therefore

1 1
lim — (*, o-(exp tX)<p — \p) = lim — (*, Fi?(7r(exp iX)* — *))
<-K)     i <->0     Í

= (*, Efto(X)í) = (4>, xo(X)*).

Since ÍQo is dense in F and since * is well-behaved under a this shows that

1
lim — (<r(exp iX)* - *) = x0(X)*.
!->0     i

Therefore the representation of 33 on §o corresponding to a coincides with

xo, and this proves that x and a are infinitesimally equivalent. Since x is

irreducible, it follows from Theorem 5 that ÍQo is irreducible under xo and

therefore a is also irreducible.

Finally, if r is any permissible unitary representation of G on a Hubert

space 9Î which is infinitesimally equivalent to x it is clear that t is quasi-

simple and dim 9îs> = dim §d<°°. Therefore, from Theorem 5, r is irre-

ducible. Since a and r are irreducible unitary representations which are in-

finitesimally equivalent, it follows from Theorem 8 that they are equivalent.

12. Explicit construction of some representations. We shall now give a

method for constructing a certain class (13) of representations of G. This is a

generalisation of a method given by Gelfand and Naimark [6(a), (b)] in the

case when G is a complex semi-simple Lie group (see also [8(e), Part IV]).

First we compute the Haar measure of G in terms of the Haar measures(14)

of K, A+, and N, respectively. The group A+ being simply-connected, we

denote by log h (hGA+) the unique element HG§90 such that Ä = exp H.

Moreover set p = 2-1E«Gp a where the notation is that of Lemma 5.

Lemma 35. Let dx, du, dh, and dn denote the elements of Haar measures on

G, K, A+, and N respectively. Then

dx = e2'<lo<s hHudhdn (x = uhn, u G K, h G A+, n G N).

Let S = A+N. Then in the notation of Lemma 27 dx=pt(s)duds (x = us,

uGK, sGS where u(s) =det Ads (s)/det Ad (s) and ds is the element of the

left-invariant measure on 5). But since G is semi-simple, det Ad (x) = l

for all xGG. Hence p(s) = det Ads (s). Moreover, by applying the same

lemma to S = A+N we get

det Adjv (n)
ds =-dhdn   (s = hn, h G A+, n G N)

det Ads (n)

(13) It seems very likely that this method gives all irreducible quasi-simple representations

within infinitesimal equivalence (see [8(d) ]).

(M) For the meaning of the various symbols see the beginning of Part III (§8).
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where n—*Adjv (n) is the adjoint representation of N. Since N is nilpotent,

det Adiv (n) = 1 and therefore

dx = det Ads (h)dudhdn = eas,('^lo«h'>)dudhdn = e2><-lo*h'>dudhdn

in the notation of Lemma 5.

Let m—>w* denote the natural mapping of K on K* = K/D(~\Z and let du*

denote the element of Haar measure of K* so normalised that fu'du* = 1. Let

L2(K*) denote the Hubert space of all square integrable functions/on K*.

We shall now define a class of representations of G on L2(K*). For any xGG

and uGKwrite xu = uxh(x, u)n(x,u) (uxGK, h(x, u)GA+, n(x,u)GN). More-

over, let T(u) denote the unique element in Co such that u exp ( — T(u)) lies

in the commutator group K' of K. Then it is easy to verify that (ux)*, T(ux)

— Y(u), and h(x, u) depend only on x and u*. Hence we may write them as

ux, Y(x, u*), and h(x, u*) respectively. It is obvious that these elements de-

pend continuously on (x, u*). Put H(x, u*) =log h(x, u*).

Lemma 36. If x, yGG, then u*x = (u*)y and

$ % # + £ $
H(yx, u ) = H(y, ux) + H(x, u ),        T(yx, u ) = T(y, ux) + T(x, u )

For we have xu = uxh(x, u)ni (niGN) and therefore

yxu = yuxh(x, «)«i = (ux)yh(y, ux)nzh(x, u)ni («2 G N)

= (ux)vh(y, ux)h(x, m)w2»i

where n{ =(h(x, m))-1«2ä(x, u)GN. Therefore

(u)yx = (ux)y,        h(yx, u) = h(y, ux)h(x, u)

and

T(yx, u) = T(uyx) - T(u) = T((ux)y) - T(ux) + T(ux) - T(u)

= r(y, ux) + T(x, u).

The statements of the lemma now follow immediately.

Let v and p. be (complex-valued) linear functions on fyVo and c„ respectively.

Then we define a representation x„,, of G on F2(X*) as follows. For any

/GF2(X*), Tr,1,,(x)f (xGG) is the function g given by

g(u*)   =  e-^(x-luV)e-p'(.B(.x-l.u'))f(^x_1)

where v' = v + 2p. First of all, we have to verify that gGL2(K*). Notice that

if y = uhn (uGK, hGA+, nGN) then

xy = uxh(x, m)ä(ä_1m(x, u)hn).

Hence if x is fixed,

e*?Q°eh)dudhdn = dy = d(xy) = e2'ao* ^x-u'>h^dugdhdn
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since ¿(A(x, u)h)=dh for fixed x and u and d((h~ln(x, u)h)n)=dn for fixed

x, u, and A. This shows that du = e2p<-a(x'u):idux and from this it follows immedi-

ately that

du* = e2'(s<*.«,»¿w*

since K and K* are locally isomorphic. Hence

f    U(V)|2¿«*=f    \g(u*x)\2dux=  f    \giu*)e-w-»'»\*iu.

Now r(x_1, Ux*) = —T(x, u*) and H(x~x, ux*) = —H(x, u*) from Lemma 36.

Therefore

¡(«'jr'^1"'"'» = e"(r(x,u"))e(H"'')(S(:,;'u*)>/(M*).

The function | eß<xlx-u'))ei'+i')<»<*■«*» | being continuous is bounded on the

compact set £* and therefore if Mx is a bound for it

f    | g(u*) \2du* glilf \ /(«*) | *_«* < oo.

Hence gGL2(K*) and |x„,»(x)| ^A/., so that x„,„(x) is bounded. Moreover,

it follows easily from Lemma 36 that 7TM,,(y)xMlV(x) =x(1,„(yx) (x, yGG).

Therefore, it only remains to verify the continuity of x,,,„. Let U be a compact

neighbourhood of 1 in G. Then

sup       I e"(r(l'u*))e('+',)(H<:i:',i')) I = Mu < «

since «i'<r<».«*>V»+*)<tf<*.«'» is a continuous function on GXK*. Hence | xM,,(x) [

^ ¥u for xGU. Therefore in order to show that x„,, is a representation, it is

sufficient to prove that lim^i ||xM,,/— /|| =0 (fGL2(K*)) where ||-|| denotes

the usual norm in L2(K*). Given e>0, choose a continuous function g on K*

such that ||/—g\\ ^e. Then it is clear that we can find a neighbourhood 7 of 1

in G (VGU) such that \Tlí,,(x)g-g\ ge (xGV). Hence

lk.»(*)_ - g||2 =  f    I «■!..»(*)« - j N«* _. -2 (x G F)

and

lk,.,(*)/ - /||  = ||M*)Í/ --)~C/-f)+ (7r„„(x)g - g)\\
g | ■»(*) | 6 + 6 + e = (Jf, + 2)e (* G F).

This proves that x is a representation of G.

Let X be the left regular representation of K* on L2(K*) so that X(fl*)/ = g

(fGL2(K*), v*GK*) where g(u*)=f(v*~1u*). Then we check  easily that
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X(w*) = e-*<r(»)>,rMi>,(tt) (u G K).

Let § = F2(X*) and let ^>s> (35Gfi) denote the set of all elements in !q which

transform under t„,,(K) according to 35. Then if ^©^{o}, it is clear that

there exists an equivalence class 35* of finite-dimensional irreducible repre-

sentations of K* such that every element of §$ transforms under X according

to 35*. The degrees of the representations in 35 and 35* are obviously the

same. Hence if ¿(35) denotes this degree, it follows from well known results

on compact groups that dim §¡c g (d(35))2. Moreover x,,,, is permissible since

^ß.p(x) =e"(r(*>)x„,,(l) if xGDC\Z. Therefore from Lemma 34 every element

in Es>Ga &s is well-behaved under xM,,. We have seen above that if

fGL2(K*)

f    \Tr,,p(x)f\2du* =  f    |e"(r(-.««))eC+P)(H(x.««))/(M*)|2¿M*.

Therefore if the linear functions p and v-\-p take purely imaginary values on

Co and íy„0l the representation is unitary

Let M be the analytic subgroup of G corresponding to the algebra(16) nto

= mPig0 and let x—»x* denote the natural mapping of G on G/DC\Z = G*.

Since DGK, the mapping (u*, a, n)-+u*a*n* (u*GK*, aGA+, nGN) is a

homeomorphism of K*XA+XN onto G*. Therefore A% is closed in G*.

Since nto is the centraliser of f)io in f0 (Lemma 4), M* is the component of

identity of the centraliser of A% in K*. Therefore M* is closed and hence

compact.

Let T denote the right regular representation of K* so that

(r(«*)/) (v*) = f(v*u*)   (f G Lt(K*) ; «*, v* G K*).

Lemma 37. Let mGM and xGG. Then r(m*) commutes with xM,,(x).

Let uGK- Then xu = uxh(x, u)n (nGN). From Lemmas 4 and 5, n'

= m~1nmGN and h(x, u)m = mh(x, u). Hence xum = uxmh(x, u)n' and there-

fore (um)x = uxm, h(x, um)=h(x, u) and T(x, um)=T(x, u). Our assertion

follows immediately from these facts.

Let a be an irreducible representation of M on a finite-dimensional space

F. It is clear that we can choose p such that a (exp Y) = eM(r) a(l) if exp Y

GMÍ\Z (TGco). Put a*(«í*)=e-"(r(m))a(OT) (mGM). Then a* is an irre-

ducible representation of M* on F. Now it follows from well known results

(see [17]) on compact groups that we can choose a continuous function * on

K* such that the linear space spanned by the functions r(m*)<p (m*GM*)

is of finite dimension and the representation of M* induced on it under r is

irreducible and dual to a*. Let §¿ be the smallest closed subspace of L2(K*)

containing * which is invariant under irß,v. Let x^, denote the representation

(16) See §2 (Lemma 4) for the definition of nt.
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of G induced on ^ under tp,,. Then it can be shown that x^_, is quasi-simple.

Let 5 be the equivalence class of the representation a. Since m is reductive in

f (Lemma 5), every class SDGß is fully reducible with respect to M. Let

(D: 5) denote the number of times 5 occurs in this reduction. Then it follows

from the Frobenius reciprocity relation (see [17, p. 83]) that dim (§0)33

___(3» (SD: 0).
We shall return to a more detailed study of these representations of G in

another paper.
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