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Introduction

The purpose of this paper is to set up an algebraic machinery for the

theory of affine connections on differentiable manifolds and to demonstrate by

means of several applications the scope and convenience of this mechanism.

We shall associate with a manifold a series of spaces, best described as

spaces of multivectors with exterior differential form coefficients, and shall

exhibit the algebraic relations between these spaces. It is possible to consider,

in a more general fashion, spaces of tensors with differential form coefficients;

this is done, in fact, in Cartan [3, Chap. VIII, Sec. IlJC), where their use is

justified by means of geometrical considerations.

We shall define an affine connection as a certain kind of operator on the

space of ordinary vector fields to the space of vector fields with differential

one-form coefficients. It will be seen that this is simply another formulation

of the classical definition. One of our basic results (Theorem 7.1) is that an

affine connection induces an operator on each of the series of spaces just men-

tioned.

In Chapter I, we shall summarize the facts that we need about differenti-

able manifolds and introduce some notation. Chapter II is devoted to the

algebraic structure of the series of spaces Tpj that we introduce. In Chapter

III, we give the calculus associated with an affine connection and applications

to a number of identities. In the final chapter, we discuss some applications

of our calculus to Riemannian geometry, in particular to the "curvatura

integra" of S. Chern.

We hope in the future to give applications of this theory to other parts of

differential geometry, possibly to the theory of harmonic integrals and to the

theory of Lie groups.

Chapter I. Differentiable manifolds

1. Basic definitions. Let 2JÎ denote an M-dimensional differentiable mani-

fold. Usually we shall assume that 30Î is of class C°°, i.e., 592 bears an infinitely

differentiable structure; however, we shall have occasion for a few remarks

on the C" case, i.e., when 90? bears an analytic structure (Chevalley [9]).

The definitions and results we shall now state for Cx structures carry over
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with slight modifications to the analytic case. The reader may consult

Chevalley, loc. cit., for details.

The Cx structure of 59? carries along with it a space C(90?) of all infinitely

differentiable real-valued functions on SO?. Let P be a point of 90?. A tangent

vector at P is a real-valued function v on C(Af) satisfying

(1) v(f+g) = v(f) + vig),

(2) v(af) = avif),

(3) vifg) = v(f)g(P) + f(P)v(g).

Here/, g£C(59?) and a is real. The set of all tangent vectors at P forms a

linear space which we shall denote by Xp. It is known that Xp is an «-dimen-

sional space and that a basis of Xp may be obtained as follows(2). Let U be a

local coordinate neighborhood on 59?, containing P, and with coordinate func-

tions x1, ■ ■ • , xn. Define vectors e, at P by e,(/) = (df/dxi)P. Then ei, • • • , e„

is a basis of Xp. The dual space %p of Xp is usually called the space of one-

Jorms at P. The basis of j$p which is dual to the basis ei, • ■ • , e„ is denoted

dxl, ■ ■ ■ , dxn. Thus if [v, w'] denotes the application of a one-form w'

to a vector v, then [e,-, dx1'] — 5}f, the Kronecker ô.

If v is any tangent vector at P, then v = 22aiei, with unique constants ai.

A mapping X which sends each point P of 59? into a tangent vector XiP) in

Xp is called a vector field (or infinitesmal transformation) provided that in each

local coordinate neighborhood IX the expression XiP) = 22ai(xl< ' ' ' > *n)e¿

defines C°° functions a'(x) on a region of euclidean space E„. When there is

no danger of confusion, we shall refer to such a vector field simply as a

vector on 59? and denote it by the same symbol v as we used for a vector at a

point. In the same manner we define a form field or differential form of degree

one, w= 22aidx'.
The following notation will be useful. Let 70 = 70(90?) denote the ring of

all Cx functions on SO?. We have previously called this C(90?), but now wish

to include it in the hierarchy of ç-forms. Let 13 = 15(90?) be the space of all

vectors (i.e., vector fields) on 90?. This space may be considered as a linear

space over the ring of operators Jo (see Bourbaki [l]).

In much of this paper we shall work locally. Let U be a local coordinate

neighborhood of 59?. Then U is an open connected subset of 90? so that U itself

is an «-dimensional manifold. Thus all that has been said may be applied to

U. However the fact that U may be coordinatized implies the special prop-

erty that 13 is an «-dimensional space over the ring Jo.

2. Two important bundles. Consider the space $8i = Up£i>. This is a fiber

bundle (Steenrod [12]), called the tangent bundle of the manifold 90?, and it

again carries a C°° structure; in fact, from the expression v= ^a*e,- we ex-

(2) This result is given in Chevalley, loc. cit., for C" structures. Since it is not readily ac-

cessible as we have stated it, we shall include a short proof in the appendix to this chapter.
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tract the local coordinate system x1, • • ■ , xn, a1, • ■ • , an on the neighbor-

hood of 93i consisting of Upeuïp. A vector field on 59? is the same thing as a

C°° cross section of S8i.

Next, by a frame at P we mean any basis ei, • ■ ■ , e„ of the linear space

Xp. The set of all frames at all points P of 90? forms a new bundle 93„ called

the frame bundle of 90?. Since one passes from one frame to another in Xp by

the most general nonsingular linear transformation on an «-dimensional

linear space, it follows that Sß„ has dimension n+n2. A cross section of 33„ is

called a moving frame on 90?. The application of such frames to Riemannian

geometry has been given in Flanders [ll].

3. Multivectors and forms. Over the vector space Xp associated with a

point P of 59?, one may form the space /\pXp of /»-vectors at P. (See Cartan

[3, 4] and Bourbaki [2].) In the same way one may form the space /\9%p of

ç-forms at P. Each of these gives rise to a corresponding bundle (on which,

again, the full linear group acts), whose C°° cross sections are called p-vector

fields and differential form fields of degree q respectively.

It is important to note that the ring C(90?) acts both on the linear space

13p(90?) of all /»-vector fields and on the linear space 7,(90?) of all g-forms

(ç-form fields) on 59?. This remark helps to clarify the following assertion. Let

us restrict attention to a local coordinate neighborhood U on 90?, Jo = C(U) as

above, 15P = 13Î'(U), 7« = 7s(U). The space 13' = 15 is then an «-dimensional

space over 7o and it is true that 13p = A p13 formed over this coefficient domain

7o. In the same way Jq = A"Ji-
4. Appendix. In this section we shall sketch a proof of the assertions in

§1 about the structure of the space Xp. The crux of the proof is contained in

the following lemma, whose proof was communicated to the author by Pro-

fessor H. F. Bohnenblust.

Lemma 4.1. Let fix) be a CM function defined in a neighborhood of 0 on the

real axis. Assume/(0) =0. Then there is a Cx function g(x) defined in the same

neighborhood such that g(x) =/(x)/x for x¿¿0 and g(0) =/'(0).

It should be noted that this is trivial for/(x) analytic, and it is this fact

which is used in Chevalley [9, p. 78] to prove the corresponding facts about

Xp in the case of analytic manifolds. To prove our lemma, we simply write

down the answer. Set

(4.1) gix) =   f  f'itx)dt.
J o

This function is easily seen to have the required properties.

Corollary. Let Fix1, ■ ■ ■ , xn) be a C°° function in a star-shaped neighbor-

hood U of a point a = (a1, ■ • • , a") of En. Then there exist C°° j'unctions

G,(x)  (t = l, • • • , «, x=(x1, • • • , xn)) on the same neighborhood such that
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F(*) = ÜGiWtr-fl') and C(a) = (dF/dx*)«.

This is proved by applying the lemma to the function f(u)

= F(a+u(x — a)).

The proof of our assertions about Xp is now almost identical with that in

Chevalley, loc. cit., so we shall omit further details.

Chapter II. Vectors with form coefficients

5. Algebraic properties. In this section we shall consider the tensor prod-

ucts

(5.1) tfq = Jq®KP.

These spaces may be considered from two points of view: either as tensor

products of the spaces 7« and 15" over the ring 7o, or as cross sections of the

bundle of all elements of all (A q%p) <8> (A pXp) ; there the latter tensor product is

taken over the field of reals. At any rate, the ring 7o acts as a coefficient ring

for the spaces 13£.

Let us set 7= S®7a> e& = 22®^p- Each of these spaces is an algebra

over 7o, where multiplication is the Grassmann product. This implies, passing

to homogeneous components, the existence of an operation on 13jX13j' to

13¡+p given by linearity and

(5.2) (cov)(r,w) = (íoV)vw, where <o E Jq, n G J,', vG^.h-G 15"'.

This operation is associative and distributive, and obeys the following com-

mutation rule

(5.3) vw = (— 1) wv    for    v GE 13s    and   w Ç.15q'.

6. The displacement vector. Let ei, • • • , e„ be a moving frame on a local

coordinate neighborhood U of 90?. I.etcr1, • • • , <rn be a dual basis of one-forms.

We set

(6.1) dP = a1ei+ ■ ■ • + anen

so that dP£13l. It is clear that dP is intrinsic, i.e., it is independent of the

particular moving frame which is used to define it, and we shall call it the

displacement vector of 90?. The geometric meaning of dP is easily seen as fol-

lows (Cartan [3]). Let P = P(t) be a moving particle on 59?, where the real

variable t denotes time. Then along the trajectory c of P the ai contract to

one-forms in / and the velocity vector of P is given by

dP       a1 an
(6.2) —- = — ei +•••+— en.

dt       dt dt

As examples of our multiplication we have
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(6.3) dP2 = 2 22 o-^'eiej    and    dP" = (n?)al - ■ ■ «•"«, • • • e„.
i<i

Chapter III. Affine connection

7. Definition. The exterior differentiation operator d maps Jq into 7«+i

and is characterized by the following properties: (1) linearity, (2) dd = 0,

(3) d/= 5Z(d//âM*)dM* when / is a function on U, a neighborhood coordina-

tized by ul, ■ ■ ■ , un, and (4) d(wrf) =dur) + ( — l)qœdr}, where wG7«-

Definition 7.1. An affine connection on 59? is an operator d on T5¿ into

13] satisfying the two properties

(a) d(v + w) = d v + dw,

(b) difv) = dfv + fdv.

That this definition is equivalent to the classical one as given in Cartan

[5] or Eisenhart [10] is a fact whose demonstration we shall defer to §12.

The main result of this section is the demonstration that given an affine con-

nection d, then the operator d induces unique operators d on each 13' to

13j+1 satisfying, in addition to the obvious linearity, a condition consistent

with the condition (b) of the definition.

Theorem 7.1. If d is an affine connection on 59?, then there exists a unique

collection of operators, also denoted d, one on each space 13£ to 13j+1, and satisfying

the following three properties:

(a) d(v + w) =dv + dwfor v, w£13j,

(b) d(vw) = dvw+(-l)"vdwfor v£13J, w£13sr,

(c) d coincides with the given affine connection on 15j, and d coincides with

exterior differentiation on ^5q=Jq-

Proof. We begin with the uniqueness proof. If v£13j, then v is a linear

combination of vectors of the form w=coxi • • • xp, where wG:13° and x¿GE 13o-

If an operator d satisfying the conditions of the theorem exists, then we have

dw = dwxi • • • xp + ( — l)*w ¿2xi ' ' ' xi-idx,Xi+i ■ ■ ■ xp. This, combined with

linearity, yields the uniqueness of d.

To prove the existence of d, we shall begin by defining d on the spaces

13J of /»-vectors with function coefficients. Consider the mapping

V

(xi, • ■ • , Xp) —» 22 xi " - - Xi-idx¿x,+i • • • xp
i

on /»-tples of vectors of 13j into 13f. This mapping is alternating and multi-

linear, hence it follows from Bourbaki [2, Scholium, p. 64] that there is a

linear mapping d on 13o to 13Ï such that

(7.1) d(xi ■ ■ ■ xp) = 22 xi • • ■ Xi-iCiXiXi+i • • • Xp
i
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for any vectors xi, • • • , xp in 13j. To show that (b) is satisfied for v£13o,

w£13á, we observe that by linearity it suffices to consider the case v = xi ■ ■ •

Xp, w = yi ■ ■ ■ yr where the x,-and y,- are in 15¿. But property (b) is immediate

in view of the last formula.

We complete the proof by defining d on 13j. To do this, we consider the

mapping

(<o, v) —* dbiv + (— l)"wdv

which is on 13°X13S into 13J+1. This mapping is bilinear and so we may apply

the result in Bourbaki [2, Scholium, p. 7] to prove that there is a linear map-

ping d on T3J = 13J®13S into 13J+1 such that

(7.2) d(uv) = duv+ (- l)Wv

for any «£13° and any v£13o.

It now remains to verify property (b). By linearity, it suffices to do this

in the following special case: v=cou, w = r¡z, where w£13j, t?£13j, uGE15o,

*£135. In this case we have

d(vw)   = d[(wu)(r¡z)] = d [(un) (uz)]

= d(ar,)(uz) + (- iy+>(m)d(uz)

= (dwr) + (- l)«wdij)(uz) + (- l)q+s(o>r\)(duz + udz)

= (dwu)(ijz) + (-l)»(wu)(dijz) + (-l)»(wdu)(ijz) + i-l)«+'iwu)iridz)

= (dcou + (- l)"o>du)(Vz) + (- l)"(ùiu)(dvz + i- l)'r¡dz)

= dvw + (— l)qvdw.

In this computation we have used the relation r]du = i — l)'dur]. This is a

consequence of the commutation rule (5.3).

We may now simplify our notation by using the same symbol d to denote

exterior differentiation d, the (given) affine connection d, and all of the

derived operators d of the last theorem.

8. Curvature and torsion. The following matrix notation will greatly

simplify our work. If ei, • ■ • , e„ is a moving frame with the dual basis of

forms a1, ■ • • , a", we shall set

(8.1) e = i  '• J,    a = (y • • • er»)

\e/

and we make the convention of identifying a 1X1 matrix with its single

element. Thus the equation (6.1) becomes

(8.2) dP = ae.

Henceforth let us assume that 59? is a manifold with an affine connection d.



1953] AN EXTENDED EXTERIOR DIFFERENTIAL CALCULUS 317

The operator d may be applied to the displacement vector dP and this leads

to the following definition.

Definition 8.1. The torsion vector of 90? is the vector d2P = d(dP) of the

space ^d\.

Since each e¿ is in the space 13j, we have deiG;13}. It follows that there are

unique one-forms co{ such that de,= 22œi ei- This may be expressed in

matrix form as

(8.3) de = Í2e, where Í2 = ||co¿||.

The one-forms co| are sometimes called connection forms. If we now differenti-

ate (8.2) we get

d2P = dae — ade — dae — aüe = re, where t = do — aü.

Thus t is a IX« matrix of two-forms which we shall call the torsion forms,

and we have

(8.4) d2P = re,        r = der - <rfi.

Differentiating the second of these relations yields

dr = - daU + odti = — (r + ati)ti + odti

= - tO + <r(dü - Q2).

We write this as

(8.5) dr+TÜ = a&,       6 = dO - Ü2.

The «X« matrix © = ||ff{|| of two forms 0< is called the curvature matrix and

its elements are the curvature forms of 90?. Differentiation of the second of

these relations yields

d® = - dm + OdO = - (9 + tl2)Q + ß(0 + Ü2).

This gives us the known Bianchii identity

(8.6) d© = i20-0O.

It should be pointed out that this proof of (8.6) is identical with that given

in Cartan [3]. It is easily verified that further differentiation of the first rela-

tion of (8.5), or of (8.6), gives no new identities.

We may remark at this point that a connection d is called symmetric if its

torsion vanishes. In this case, equations (8.4) and (8.5) yield the results

(8.7) da = o-O,        0-9 = 0.

Some of the results in the next section also take simpler forms when the

connection is symmetric.

9. Other identities. We begin this section with the following result.
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Theorem 9.1 The identity

(9.1) d9r = 09r - 9rO

is valid.

This identity reduces to (8.6) for r = 1, while if it is true for a given value

of r, then

d(9'+1) = d(99r) = d99' + 9d9'

= (09 - 90)9r + 9(09r - 9r0)

hence it is true for r + l and, by induction, for all r.

Corollary 1. The following identities are valid.

(9.2) d(o-9r) = r9r + 09--0.

(9.3) d(r9r) = o-9r+1 - r®rti.

These follow from (9.1), (8.4), and (8.5) by means of these computations.

d(o9r) = do®r - ad®' = (t + oti)®* - o(ti®r - ®'ti).

d(r9r) = dr®r + rd9r = (<r9 - t0)9' + t(09-- - 9r0).

Corollary 2. The result of repeated differentiation of the displacement

vector dP is given by

(9.4) d2r~lP = o®'-le,        d2'P = r®'-lefor r = 1, 2, • • • .

Proof. For r = l, the relations reduce to (8.2) and (8.4). If they are true

for a given r, then we differentiate the second relation twice and apply (8.3)

and the results of Corollary 1 to obtain

d2r+ip = d(r®r-le) = d(r9'-1)e + r9'"1de

= (o®r - r9'~10)e + rQ^tie = o9re,

d2*+2P = d(o®re) = d(o®r)e - o®'de

= (r9r + <r9r0)e - a®rtie = r9re.

Corollary 3. The identities

(9.5) d2'~xe = 09r-1e,        d2re = ®'e,

for r — \, 2, • • • , are valid.

The proof of this corollary is similar to that of the last corollary, hence we

shall omit it.

We may summarize the results of this and the last section as follows. Let

us regard the quantities dP, e, a, fl, r, 9 as a set of basic quantities and d as
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an operator which may be applied several times to any of these. Then the

relations (8.2) through (9.5) express every possible result of iterated applica-

tion of d to any of the basic quantities as polynomials in these quantities.

What is more, the application of d to any of these relations yields another of

them.

10. Differentiation of a vector. Let v=X1ei + • • • +X"e„ be an arbitrary

vector field, i.e., v£13¿. We set X=(XS • • • , X") so that X is a IX« matrix

and v = Xe.

Theorem 10.1. The result of repeated differentiation of v is given by

10.1) d2,-V = £>X9'-1e,        d2rv = X9re for r = 1, 2, • • • .

Here

(10.2) D\ = (DX\ ■ ■ ■ , DX") = d\ + XO.

Also, the formula

(10.3) d(D\) = DX0 + X9

is valid.

Proof. If DX is defined by (10.2), then equation (10.3) follows by direct

computation. If the first formula of (10.1) is assumed to be true for a given

value of r—this is certainly the case for r = 1—then differentiation yields

d2rv = d(Z)X9r"1e) = (DXO + X9)9r-'e

- D\(ti®r~l - 9'-10)e - £»X9r-10e = X9re.

We have used (9.1) in this calculation. If we differentiate again, we obtain

¿2H-V = (£>x - X0)9re + X(09r - 9r0)e + X9r0e = Z?X9re.

The theorem now follows by complete induction.

The following theorem gives us an interesting application of our calculus.

Theorem 10.2. For each r= 1, 2, • • • and s = 1, 2, • • • , we have

d(d2*-lv)° = sd2rv(d2r-1v)a-\

(10.4) d(d2'v)2'-1 = d2*+lv(d2w)2*-2,

d(d2W)2> = 0.

Proof. Let us assume that we may write d(drv)s = cr,sdr+1v(drv)ä_1,

with constants cT,, to be determined. For 5=1 this is possible with cr,i=l.

From the computation

d(drv)'+1 = d[dwidrvY]

- dr+V(drv)9+ i-l)rCr,.drvdr+1vidrv)>-1

= ii + i-iy-hrjd^vid'vY,
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we see that the recursion formula

Cr,«+1 +  (-l)rCr,„  =   1

is satisfied and, in addition, that the form we have written is correct. One

easily verifies that the solution of the recursion formula with the stated

initial values is given by

/l-(-l)'\         /l + (-l)'\/l-(-l)*\

*" = V-2-) S + v-2-) {—¥—) '

and one thus obtains equations (10.4).

Thus, for example, one has the special cases

did2v)2 = 0    and    did2v)3 = d3v(dV)2.

Later on we shall find use for the special case r — 1 of the first formula of

(10.4) so we shall state this as a corollary.

Corollary. For r=l, 2, • • • , we have

(10.5) didvY = rd2vidvY-\

11. Change of frame. Let e* and e be two moving frames defined in the

same local coordinate neighborhood U. Then

(11.1) e* = Ae

where A is a nonsingular matrix defined on U. The dual bases a*, a of the given

frames are related by

(11.2) a* = oA-\

This is a consequence of dP = ae = a*e*. From the relation d2P = re = T*e* we

have

(11.3) r* = tA~K

Next, we differentiate (11.1) to obtain

0*e* = de* = dAe + Atie,

and hence

(11.4) ti* = AtiA-1 + dAA-1.

We may proceed a little differently in differentiating (11.1) to obtain the

transformation law for the curvature forms. Actually we shall differentiate

twice and use (9.5) :

de* - dAe + Ade,    ®*e* = d2e* = - dAde + dAde + Ad2e = A®e.

Hence we have
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(11.5) 9* = A®A-\

Next, let v = Xe be a vector field. Then dv = Z)Xe = Z)X*e*, hence

(11.6) D\* = D\A-\

12. Classical formulation. For the sake of completeness, we shall indicate

here how the quantities we have introduced may be expressed in the language

of the tensor calculus. In this section we shall use the Einstein summation

convention whereby common upper and lower indices are summed.

The one-forms otf may be expressed in terms of the basis ok of one-forms

according to

(12.1) «,' = VihoK

This defines the connection coefficients T,'* relative to the given moving frame

e. Similarly we may write

(12.2) 6i' = 2-1Ri>kiohol with   JKi'm + Ri'u = 0,

(12.3) r* = 2-lTijko'ok with     ¡T'ji + T<kj = 0,

(12.4) D\< = XV.

These equations define the Riemann tensor Ri'ki, the torsion tensor T{¡k,

and the covariant derivative X',y of X'. That each of these quantities actually

satisfies the tensor transformation law is a consequence of the equations of

the last section. Each of our identities may be expressed as an identity in-

volving the tensors defined in the last four equations.

It is now easy to show that our Definition 7.1 of an affine connection is

equivalent to the usual one. We first of all specialize our formulas to the case

in which the vectors ei, ■ • • , e„ of the moving frame are directional differen-

tiations with respect to coordinate functions. Thus let x1, • • • , x" be a local

coordinate system and let

d d
(12.5) d =-j • • • j e„ = -•

dx1 dxn

Then by (6.1) we have

(12.6) dP = dx'ei + • • • + dxne„,

which is to say that ai = dxi, and so to¿J'= IYidx*. It follows that

(12.7) dei = Ti>\dxkej.

Corresponding to each frame (12.5) we thus have functions IV*. To find their

transformation law, we let x*, • • ■ , x* be another local coordinate system

and e* the corresponding frame. Then (11.1) is valid, where A is the Jacobian

matrix
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(12.8)
dx'

dx*1

We change the formula (11.4) to the form tl*A =AQ,+dA, and may write it as

dxk dx'

dx*'       dx*i
<*ik +

d2xk

dx*idx*>
- dx*>;

or

T*i'rdx*r ■
dxk

dx*'

dx' dx1
Yikl—-dx*r +

d2xk

dx

Thus we have

(12.9)
dxk

dx*'

dx*

dx'     dx1

dx*idx*r
dx*

1 » r   _    ... . í l   I   .    ^,     .    ^

d2Xk

dx**   dx*r       dx^dx**

This is precisely the formula (2.1) of Eisenhart [lO].

Conversely, if we have associated with each local coordinate system

x1, • • • , x" functions l'A which satisfy the transformation law (12.9), then

we set Ui' = Ti'kdxk, Í2 = ||w¿'||, and follow our equations backwards to formula

(11.4). It then follows that if we set dv=(dX+Xß)e for v=Xe, the result is

independent of the particular local coordinate system with which we started

and satisfies the requirements of our Definition (7.1), since the crucial

formula (b) of that definition is verified by the calculation

difv) = d(/Xe) = (d(/X) + /XO)e

= (d/X + fd\ + /XO)e = dfv + fdv.

We shall finally give an explicit formula for the torsion tensor T'jk in the

case of a frame (12.5). From (12.6) we obtain

d2P = — dx^ei = — dx'ui'ej = — dxiYi'kdxkej

= - 2~liYJk - Yk'i)dxidxkei.

But by (8.4) and (12.3) we have

d2P = r'ej = 2~1T'ikdxidxkej,

hence

(12.10) T'ik = iVi - iy*.

Thus the tensor T'ik is essentially the skew-symmetric part (with respect to

the lower indices) of the connection coefficients IV,-.

13. Note on tensor spaces. It is worthwhile mentioning that the construc-

tion of §5 and the theorem of §7 could be formulated for tensor spaces also.
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As an example one may form the space

(13.1) Jq®®PK = SPq.

This space has algebraic properties analogous to those of 7« and the affine

connection d induces an operator d on 13^ to S^+i with properties similar to

those listed in Theorem 7.1.

Chapter IV. Applications to Riemannian geometry

14. Orthonormal frames. A Riemannian space is the structure consisting

of a Cx manifold 90? together with an inner product on each tangent space Xp

such that whenever v and w are vector fields, then their inner product v ■ w is

a Cx function on 90?. Locally one may always select a moving frame e such

that e¿-e, = 5,„ since the Gram-Schmidt orthonormalization process involves

algebraic operations only. Such a frame is called, as usual, an orthonormal

frame; in the remainder of this discussion we shall deal with only this kind

of frame. If e and e* are two frames, then e*=Ae where A is an orthogonal

matrix.

We may interpret the inner product as a bilinear functional on the space

13j over 7o- This functional may be extended to many pairs of the spaces

13j, but for our purposes only the following is needed. We define the inner

product of v£13¿ and z£7^ by linearity and the special case z = r)w, where

n £13?, w£13j:

(14.1) vw = zv = riiv-w).

This is a bilinear (and commutative) operation which maps 13¿X13J into 13°.

One of the salient features of Riemann spaces is the existence of an affine

connection of a special nature.

Theorem 14.1. There exists a unique symmetric affine connection d such that

(14.1) divw) = dvw + vdw.

Proofs of this result may be found in Cartan [3], Chern [6], and Flanders

[11].
In terms of an orthonormal frame e we have the relations

(14.2) dP = ae,    de = tie,    0 + <0 = 0,    da = ati,   9 + '9 = 0.

Because of the skew-symmetry of ß and 9, it is now advisable to write all

indices as lower indices. Thus we now write co¿¡ instead of cojt, da instead of 6{,

etc.

15. The curvatura integra. In two important papers, Chern [7, 8] has

shown how to define a series of intrinsic differential forms on the tangent

bundle 93* of all unit vectors at all points of 59? (see §2 above) and has given

relations between them. We shall show how to express these forms in terms
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of the calculus we have developed and derive the relations systematically.

We shall assume in this section that 59? is orientable, and shall work only

with the (orthonormal) frames of a definite one of the two orientation classes

of frames. Thus if e, e* are such frames, then e*=^4e where A is an orthog-

onal matrix of determinant one. It follows that e*e* • • • e* = ei • ■ • e„, so

that either of these expressions is a representation of an intrinsic «-vector

on 90?. We shall need the following lemma.

Lemma 15.1. The following relation is true.

(15.1) d(ei- • • e„) = 0.

Proof. Since ß is skew-symmetric, we have dei=wi2e2+ ' • ■ +Wi„en.

This implies that deie2 ■ • • e„ = 0, so the formula now follows by symmetry

and equation (7.1).

From the curvature matrix 9 we can construct a new vector as follows.

Definition 15.1. The vector c of the space 13^ is defined by

(15.2) c = 22 9ii*i6j = 'e9e.

The transformation laws (11.1) and (11.5) for the case of A orthogonal

show us that c is intrinsic.

Lemma 15.2. dc = 0.

Proof. dc=íde9e + 'ed9e + íe9de= -ieß9e + 'ed9e + 'e9ße = 0 by equa-

tion (8.6).

Now let v be any unit vector in 13j. We shall define two vectors that de-

pend on v alone and not on the particular frame used. We denote by [x] the

greatest integer in x.

Definition 15.2. For each k = 0, 1, • • • , [n/2] — 1, we define w*£13"_1

and zkÇ.T5" by

(15.3) wk = vidv)n-2k-1ck,

(15.4) zk = idv)"-2k-2ck+1.

Since ei • • • e„ is a basis of «-vectors, it follows that differential forms

may be defined by

(15.5) wk = «Hei • ■ • e„,

(15.6) zk = ^ei • ■ • e„.

Here <pk(E.Jn~i and ^¿£7»- These are the forms €>*, ̂k of Chern [7, 8]. A basic

algebraic relation is given in the following lemma.

Lemma 15.3. The following formula is valid.

(15.7) Zk = 2(¿ + l)vdV(dv)''-2*-2cfc.
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Proof. Since v is a unit vector field, we may select a moving frame e in

such a way that ei = v. Since both members of (15.7) are intrinsic, we may

use this particular frame in the proof. By the second equation (9.5) with

r=l, we have d2e=9e, hence dV = d2ei= ¿2ßu ei< where the sum is taken

over j = 2, 3, • • • , «, since 9 is skew-symmetric. On the other hand, we have

c = 2-j Oiidej = 2-1 9ijeie¡ + ¿^ 0»ie,-ei +   2-, Oije,ej
¡JÏ2

= 2ex 2_-0ij'eJ + 22^aeiei'

hence c = 2vd2v+h, where h is a vector of 132 which involves only e2, • • • , e„.

Since v2 = 0 and h commutes with every vector, we have

c* = 2kvd2vhk~1 + hk    and   ck+1 = 2<* + l)vd2vh* + hk+1

by the binomial expansion. Next, we assert that

idv)"-2k-2hk+1 = 0.

This is the case because dv = dei = 22iä2 Wi/«íi and so the vector on the left-

hand side is an «-vector in the (« — 1) vectors e2, • • • , e„, and hence vanishes.

Noting that vd2v is in "T^, and so commutes with every vector, we have

zk = (dv)"-2*-2c*+1

= 2(* + l)vd2vidv)n~2k-2hk

= 2(4 + l)vd2v(dv)"-2*-2c*.

The last equality is a consequence of the formula above for ck and the fact

thatv2 = 0.

The following result can be read out of the last proof.

Lemma 15.4. // v is a unit vector field, then (dv)n = 0.

For if v = ei, then dv=o)i2e2 + • • • -f-wi„e„, hence (dv)n is an «-vector in

e2, ■ ■ ■ , en.

It is convenient to set \p-i = 0 and z_i = 0. We now have our main result.

Theorem 15.1. For each k = 0, 1, • • • , [n/2] — l, we have

n — 2k — 1
(15.8) dwk = Zfc_i H-Zk.

2ik+ 1)

Proof. We compute dwk from the formula (15.3), making use of equation

(10.5) and Lemma 15.2.

dwk = idv)"-2kck + in - 2k - l)vd2vidv)n-2k-2ck.

The first term is z*_i. This is the case by virtue of (15.4) when &>0, and by

Lemma 15.4 when £ = 0. The second term is equal to the last term of (15.8)
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by Lemma 15.3.

Corollary 15.1. For k = 0, 1, • • ■ , [w/2] — 1, we have

« — 2k — 1
(15.9) dft = ft-i + ft.

2(* + 1)

This result now follows from (15.5), (15.6), and Lemma 15.4.
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