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1. Introduction. The Peter-Weyl theorem asserts that if G is a compact

group, then the matrix elements of a complete system of inequivalent ir-

reducible unitary representations form a complete orthogonal system of

functions in the Hubert space of complex-valued square-integrable functions

on G. When G is the circle (the real numbers modulo 27r), then the irreducible

representations are all one-dimensional, and are, in fact, the functions

exp (inx). The Peter-Weyl theorem, then, makes it possible to generalize the

concept of Fourier series to arbitrary compact groups and it asserts the

convergence in the mean of the Fourier series of a function in L2. Of course a

sequence of functions may converge in the mean without converging at any

point. For classical Fourier series there are several theorems concerning the

pointwise convergence or summability of Fourier series. Two of the principal

results of this type are Fejer's theorem which asserts the (C, 1) convergence

of the Fourier series at a point of continuity and the Fejer-Lebesgue theorem

which asserts the (C, 1) convergence, almost everywhere, of the Fourier series

of a function in L1. The direct analogue of Fejer's theorem has been proved

when G is a countable product of groups of order two by J. L. Walsh and

N. J. Fine. Walsh proved the theorem in a different setting [13, Theorem

VII], and the group theoretic character was pointed out by Fine [4, Theorem

XVII].
It is the major objective of this paper to prove analogues of Fejer's

theorem and the Fejer-Lebesgue theorem when G is the group of quaternions

of norm one. The direct analogues are no longer true but if we use the con-

cept of the character series (see Definition 2.4) instead of the Fourier series

and use (C, 2) summation instead of (C, 1) summation, then we obtain

Theorems 9.6 and 10.1. In connection with Theorem 9.6 it is interesting to

note the comment by Chandrasekharan and Minakshisundaram [2, p. 752] to

the effect that for a torus of dimension n, at a point of continuity of /, the

multiple Fourier series is uniformly summable (v, k) for k> (n — l)/2. It should

also be pointed out that Theorem 10.1 is actually a special case of a general

theorem on Jacobi polynomials [ll, Theorem 9.1.4] since except for a

normalizing factor the functions (sin «x)/(sin x) (essentially the characters of

the group of quaternions of norm one) are Pn/2,1/2\y) where y = cos x. Never-

theless it was thought that the approach followed here, being more in the

spirit of classical Fourier series, would be of interest.
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2. Some general definitions. We shall assume that G is compact and

satisfies the second axiom of countability in which case it follows from the

Peter-Weyl theorem that the set of irreducible representations, and therefore

the set of matrix elements {m%\ (the function in the t'th row and jth column

of the ath representation) is countable (see [9, Theorem 22]). We shall also

assume that the Haar measure has been normalized so that the measure of

G is one. Let us well order the set of functions \m"¡\ in any fashion, except

that we must keep all the functions from a given representation together.

(2.1) Definition. By the Fourier series of a function/in Ll we mean the

series

(2.2) 22 r* ( f /(*) Wn(x) Ydxj !*>)

where ra is the degree of the ath representation (which must be introduced

to normalize the functions m%).

It is easy to show (see [14, pp. 76-77]) that

(2.3) 22     M   I fix)[mïjix)]cdx\mïj = ra(f*x")
i=l,j=l \«/ G /

where Xa is the trace of the ath representation. We now see that the sequence

of partial sums of the series 22"-1 r<*(f * Xa) is a subsequence of the sequence

of partial sums of the Fourier series.

(2.4) Definition. We call the series

QO

(2.5) 22raf*xa

the character series of the function/.

It is clear that the convergence of the Fourier series implies the con-

vergence of the character series although the converse is not true (as may be

shown by an example).

The partial sums S„ of the character series may, of course, be written

in the form/ * 22*-i W- In this form they resemble Dirichlet's form for the

partial sums of the classical Fourier series and will, indeed, reduce to this

(') [ ]c denotes complex conjugate.
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when G is the circle and the representations are ordered in the customary way.

It seems appropriate therefore to make the following definition.

(2.6) Definition. The sequence of functions 22l-i r«X" will be called the

Dirichlet kernels. We shall denote them by the symbols DH- It is easy to see

that Dn is continuous and that fßDn(x)dx= 1.

If we consider an arbitrary sequence of kernel functions, Kn, we may

consider the sequence / * K„. The following theorem is classical. We assume

Kn is in L1 and that faKn(x)dx = l.

(2.7) Theorem. If lim sup fo\ Kn(x) \dx= <x>, then for any x there is a con-

tinuous function whose character series diverges for that x.

The classical proof given in  [6, Theorem 66] applies without change.

(2.8) Definition. We call the sequence of constants fa\Kn(x)\dx the

Lebesgue constants with respect to the kernels Kn.

(2.9) Theorem. // the Lebesgue constants with respect to the kernels K„

are uniformly bounded by the constant C and if each of the functions Kn con-

verges to zero uniformly outside of every neighborhood of the identity, then

f * Kn(x) converges to f(x) at each point of continuity if f is in L1. If f is con-

tinuous, then convergence is uniform.

The following proof of Theorem 2.9 is classical. For e>0 we choose a

neighborhood U of the identity, e, so that

I f(xy~l) - f(x) | < e/C

for y in U. We have

\f*Kn(x) -f(x)\ = I (f(xy-')Kn(y)dy -  f f(x)Kn(y)dy

è  f | fixy1) - fix) | | Kniy) | dy

+  f       | fixy-i) - fix) | | Kniy) | dy
J C(U)

< « +  f       I /(*rl) - /(*) I I Kniy) I dy.
J CÇU)

The last integral can be made arbitrarily small by choosing n sufficiently

large since Kn approaches zero uniformly in C(Z7). If/ is continuous, it is

uniformly continuous from which it follows that convergence of the / * Kn is

uniform.

3. Generalization of theorems about central functions. The central func-

tions are those functions of Ll with the property that <¡>(x) =<j>(y~1xy) for all
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x, y in G. They can also be defined as those functions of the Ll group algebra,

A, of G which commute with all the functions of A, or again as that subspace

of A spanned by the characters. The construction of Theorem 32 is similar to

a construction used in [14, §24].

On a compact Lie group the central functions are determined by their

values on a maximal abelian subgroup. Since the maximal abelian subgroup

is a torus it is often easier to work with central functions and then to gen-

eralize by means of Theorem 3.2 (see [7, Hilfsatz 3]).

(3.1) Definition. For/ in L1 and 5 in G we denote by C,(J, x), or G(#)

when / is clearly understood, the function Jaf(stxt~1)dt.

(3.2) Theorem. For almost all s, C, is a central function and the convergence,

to c, of the character series of f at the point s is equivalent to the convergence of

the character series of C, to c at the point e.

Proof. Consider first the function/' on GXG defined by/'(¿, x) =f(stxt~1).

Since the map sending (t, x) into stxt~l is continuous it follows that/' is meas-

urable. In fact/' is integrable since

/f(x)dx =  j    \ f(x)dtdx =  I    J f(sx)dtdx =  J    J f(stxt~l)dtdx
G J qJ G J G" G J G" G

=   I       /'(/, x)d(t, x).
J GxG

Consequently, by Fubini's theorem the function G(x) exists and is in Ll for

almost all s. We see also thatG(e) =fGf(s)dt=fis). To complete the proof of

the theorem we need only consider the fact that

i i     il f
| c — S„if, s) | = \c —   I fisx)D„ix~1)dx

J G

= \c -  I    I fistxt-l)Dnix~l)dxdt
•J gJ G

=   c \ Csix) [Dnix) ]cdi
J G

= I c — Cs*Dnie)

4. The group of quaternions of norm one. Let us denote the group of

quaternions of norm one by Q. It is well known that Q is isomorphic to the

group of 2X2 unitary matrices of determinant one and is also the two-

sheeted simply connected covering group of the group of proper rotations of

three space. Topologically speaking Q is the three sphere in four space. The

characters of the irreducible representations are well known (see [10, p. 186]

for example).

(4.1) Theorem. For each positive integer n there is one irreducible unitary
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representation of degree n. The character of the representation of degree n may be

written in the form

(4.2) sin n<t>ix)/sin (¡>ix)

where <j>ix) is the angle (O;£0(x) ^ir) between the radius to the identity of the

group and that to the element x (if Xy is the real coordinate of x then<j>ix)

= Arceos Xi). The values at d> = 0 and <j>=ir are determined by continuity.

It is easy to show that the conjugate class of an element x with real

coordinate xi is the two-dimensional sphere consisting of all elements whose

real coordinate is X\ so that 0(x) is a central function on Q. Given a central

function / let us denote by F the function on the reals modulo 7r defined by

(4.3) F(<b)=f(x)

where 0=0(x). Since 0 and/are central functions this definition will be inde-

pendent of the choice of x. Since translation by an element of Q is simply a

rotation of the three sphere it follows that the invariant measure of Q is

the same as the Lebesgue measure on the unit sphere in four space. We have

then

(4.4) f f(x)dx = (2/vr)  f   F(0) sin2<t>dcj>.
J Q Jo

(2/7r) is a normalizing factor to make the total measure of Q equal one.

5. The Dirichlet kernels on Q. Let us order the characters on Q according

to degree. By Definition 2.6 and Theorem 4.1 we have for the Dirichlet kernels

n

(5.1) Dn(x) = (1/sin (¡>ix)) 22 k sin H(x).
fc=i

We shall frequently use the symbol Dn to mean the function of 0 induced by

Z>„ as in equation (4.3).

Let

" sin (n + 1/2)0
(5.2) An(4>) = l + 2Ecos*« =-.   ,     '      ; A0(<b) = 1.

k=i sin (<p/2)

(5.3)   Dnij) = (1/2 sin <t>)   —An(4>) cot —0 -[\m
1 (2w + 1) cos (n + 1/2)0"

= (l/¿ sin 0H —Ani<t>) cot

Lemma.

2 sin (0/2)

This relationship follows immediately from equation (5.2) and the ob-

servation that

d
(5.4) A,(0) = - (1/2 sin 0) — ¿„(0).

O0
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(5.5) Theorem. For any positive t and for n sufficiently large we have

(4/ir) + « è (1/n) f | Dn(x) | dx è (21/2/tt) - e.
J Q

Proof.

I   | Z>„(x) | dx
J Q

= (2/x) f    | D„(0) | sin2 0¿0
•* o

= (1/tt)   I       — ̂ „(0)cot(— 0)
J,   I 2 \2     / 2 sin (0/2)

(2m + 1) cos (m + 1/2)0
sin <¡>d<j>

< /•* .           ,           2m + 1 C *       1| Ani4>) I ¿0 H-I    cos — 0¿0
0                                                        TT «/ o 2

= (1A) f * | ¿„(0) | ¿0 + (4»/x) + (2/t).

But for some positive constant C we have (see [6, p. 52])

(5.6) | Ani<b) | ¿0 ~ C log M.
•J 0

So (l/M)/e|i?„(x)|áxg(4/ir). On the other hand

f | £>,(x) | dx
J Q

2»+l /"[      /        1\   I       1 r*
I       cos f m H-10   cos — (bd<¡> — (Vf)  I      I An(4>) I ¿0

J o   I        \ 2/ 2 Jo•/ o

2m-|2m +1 rW2l     /      i\ rT,
> (21/2/2)- cos (m + —)0 ¿0-(lA)        \An(<t>)\d<t>.

T       J 0 \ 2/1 J 0

By making use of the periodicity of cos (n +1/2)0 we obtain

r , , 2m + 1      /• W(2n+i) / n

I   \Dn(x)\dx>(21'2/2)-m I cos(m + —)
Jq t J o \ 2 /

<t>d<t>

(iA) r '
•J 0

4„(0) | ¿0

= (2»Vt) - (1A) | AM | ¿0
/.
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Again making use of Equation (5.6) we have the desired result.

(5.7) Theorem. For any x in Q there is a continuous function whose char-

acter series diverges for that x.

This theorem follows immediately from Theorems 2.7 and 5.5.

6. The Fejer kernels. The Fejer kernels of the kth order are the functions,

Dn, obtained from the sequence of Dirichlet kernels using Cesaro summation

of the kth order, that is, if we let Dn = Dn, then for any positive integer k

(n+ k — 1\    k t^    *-i
k       JDn(x) =  22 Da   (x)

or, equivalently,

in + k - 1\    t "      /n + k - a\
(6.2) (^       k       JDn(x) =   2>.t k        Jx«(*).

(6.3) Theorem. faD„(x)dx=l on any compact group G satisfying the

second axiom of countability.

Proof. Since fGxa(x)dx = 0 if xa^l and fodx=l, it follows directly from

Equation (6.2) that

(n + k - l\ r     * /n+k-l\

from which the desired result follows.

7. The Fejer kernels of the first order on Q.

(7.1) Theorem. The Lebesgue constants with respect to the Fejer kernels of

the first order are unbounded above, in fact Jq \ Dn(x) \ dx~k log n for some posi-

tive constant k.

Proof. It is well known that we may write

" 1 — cos (m + 1)0
(7.2) \£am-fmi- . t' •

*-o 2 sin2 (0/2)

From Equations (5.4), (6.1), and (7.2) we have

i Id"
#n(0)= - T—r—TT 5>*(*)

ZM sin 0 a<p k=o

1 d   1 — cos (n + 1)0

2m sin 0 d<p       2 sin2 (0/2)

n (m+ 1

sin2 (0/2)        2 sin (0/2)

Vn + 1 sin (m + 1)0       cos (0/2)    F„(0)"|
= — (1/sin 0)-.

L    m      4 sin2 (0/2)        2 sin (0/2)      n    J
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Consequently

I Dn(<t>) | sin2 0 = | sin 0 |

M+ 1

GUSTAVE RABSON

m + 1 sin in + 1)0        cos (0/2)     Fn(0)

[September

2m

n+ 1

2m

m      4 sin2 (0/2)       2 sin (0/2)      m

sin in + 1)0 cot (0/2) - (1/m) cos2 (0/2)F„(0)

K+i(0) - cos in + 1)0] - (1/m) cos2 (0/2)Fn(0)

We have finally

/| I>l(x) I dx = (2/x) f   | Dn(<t>) | sin2 0<f0
p. Jo

= (2/x) f '
J 0

\n+ 1

2m
[An+l(<t>) - cos (m + 1)0]

- (1/m) cos2 (0/2)F„(0) I d+

~ (2/x)    f       | i4n+l(0) | ¿0 ~  * log M.
•'o

The last two steps follow from the fact that

f  |Fn(0)|¿0
Jo

is uniformly bounded (see [6, p. 58]) and from (5.6).

(7.3) Theorem.  For any x in Q there is a continuous function whose

character series diverges for that x even when (C, 1) summability is used.

This theorem follows immediately from Theorems 7.1 and 2.7.

8. The Fejer kernels of the third order.

(8.1) Theorem. The Fejer kernels of the third order on Q are positive func-

tions.

This theorem follows immediately from a theorem of Fejer [3, Theorem 1 ]

which asserts that the (C, 3) sums of the series 22™ n sin M0 are positive for

O<0<X.

(8.2) Theorem. D„((b) converges to 0 uniformly outside of every neighbor-

hood of the identity.

Proof. We have, from Equations (5.4) and (7.2),
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S%) = ¿ Dk(<¡>) = - (1/(2 sin 0)) - ¿ A„i4>)
(8.3) * d<t>   °

d    1 — cos (m + 1)0
= - (1/2 sin 0) —

(8.4)

¿0       2 sin2 (0/2)

2 A   i ¿   "    1 - cos (£ + 1)0
5.(0) = 22 5*(0) = - (1/2 sin 0) - £ . \        "

i ¿0   o 2 sin2 (0/2)

= - (l/sin0) —
d (n + 3/2 - ¿n+1(0)/2\

d0 \        4 sin2 (0/2) /

Sl(<t>) = 22 5Î(0)

(8.5) d
= - (1/sin 0) -

n+l

m(m +l) + 3(n+l) + l-22 M+)

d0 L 8 sin2 (0/2)

d  I 1 r 1 - cos (m + 2)01)
= - (1/sin<p)—\-   (m+2)2---— > .

¿0 (8 sin2 (0/2) L 2 sin2 (0/2)     J)

We have finally

Dl(<l>)=[l/(" + 2X^Sn(4>)

(8-6) r , r "   'i
(M+2)(l-cos0)[(w+2)-|-(l/sin0) sin (»+2)0J-2[l-cos («+2)0]

C5(1-COS0)3

We see that the theorem follows from this last expression if we make use of

the fact that

(8.7) k sin 0 ^ | sin k<b \

for all non-negative integers k and for all 0, 0^0^x. Inequality (8.7) is

easily proved by induction.

(8.8) Theorem. The character series of a function f in L1 is (G 3) summable

to the function at each point of continuity. Iff is continuous the character series is

uniformly (C, 3) summable to f.

Theorem 8.8 follows immediately from Theorems 8.1, 8.2, 6.3, and 2.9.

9. The Fejer kernels of the second order. Since the series 22"-i(~ l)n+1«2

= lim^J.T 22n-i (n sin «0)/(sin 0) is not (C, 2) summable to 0, one might

guess that Fejer's theorem must fail when (G 2) summability is used. It is

interesting to note that the volume element, sin2 0, is just enough to smooth
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the kernel function down to 0 at x and to make the analogue of Fejer's theo-

rem true.

(9.1) Theorem. Dl(d>) sin2 0 converges uniformly to zero outside of every

neighborhood of the identity.

Proof. From Equations 8.4 and 5.2 we have

sin 0        d   (2m + 3) sin (0/2) - sin (2m + 3)0/2
Z)„(0) sin2 0 =

m + 1\    d0 8 sin3 (0/2)

(T)
+ 3/2                   cos (0/2) - cos (2m + 3)0/2

cos (0/2)-
(n + l\ sin2 (0/2)

0.2) 4(    2    )

3 cos2 (0/2) [(2m + 3) sin (0/2) - sin (n + 3/2)0]

/m+ 1\
8(     .     ) sin3 (0/2)

The desired result follows from Equation 9.2.

(9.3) Theorem. JI\D„(4>)\ sin2 0d0 is bounded.

Proof. Examination of Equation 9.2 shows that it will  be enough to

prove

x/2

/' T"       COS X —  COS MX

■!-—-L dx = 0(n),
o                 sin¿ x

/' *12 Im sin x — sin mx I
---dx = 0(m2).

o                   sin3 x

To prove (9.4) we note that

2 | cos x — cos MX|      | [sin (n — l)x/2] [ sin (n + l)x/2] | ^ (n — 1)(m + 1)

sin2 x sin2 x 4

We have, therefore,

' COS X — COS MX I
/' W2    cos x — cos MX C "'"       C x/2

1--2--dX= +1
0 Sin''  X Jo J Tin

dx
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To prove Equation (9.5) we consider x, O^x^x/«. We have

m sin x — sin mx              (1/3!)m3x3
J-L g-U.- g „»

sin3 x (x - (l/3!)x3)3

Therefore

"■'2  ' m sin x — sin mx I Ç T/n Ç */2  m sin x + 1/'*<2    m sin x — sin mx C *'" T''
J-L dx ^  I      M3dx + I

0                            Sin3 X Jo J Tin
dx

sin3 x

- los I tan x/2 I
l/n     2 sin2 x| ,/„

*'»         cos X    I *'2        1
XM2 — m ctn x-;-H-log I tan x/2 g Im2.

t ¡n

(9.6) Theorem. /// is continuous at a point, x, and is in L1, then the char-

acter series of f will be (C, 2) summable to f(x) at x. If f is continuous, then the

character series will be uniformly (C, 2) summable.

This theorem follows immediately from Theorems 9.1, 9.3, 6.3, and 2.9.

10. The Fejer-Lebesgue theorem.

(10.1) Theorem. /// is in L1, then the character series of f is (C, 2) sum-

mable to f almost everywhere.

Proof. The proof of this theorem is essentially classical and has been pat-

terned after that given in [12, pp. 415-416].

By Theorem 3.2 it will be enough to prove that |/G(/, x)Dn(x)dx —f(s)\,

or equivalently, |/[G(/, x)—f(s)]Dn(x)dx\, converges to 0 for almost all s.

We shall need the following lemmas.

(10.2) Lemma. D2(0)áZ?2(O) ^ 2m2.

Proof. On any compact group Dn takes its maximum value at the identity

since the characters all take their maximum value, the degree of their repre-

sentation, there. The first inequality follows from this remark. The second

inequality is obtained by estimating the (C, 2) sums of the sequence Dn(0)

= Éï(-l)*+1P as follows:

S» = A,(0) ún2;

S\ú22k2^ m3;       Si á Z ** ¿ n4;        Z>"(0) =
s:

Ct1)
Let Ud(e) denote all elements, x, for which 0(x) <d, for d a positive number.

(10.3) Lemma. limd>o (l/d3)fudM [G(/, x) -f(s) ]dx = 0 for almost all s.

Proof. By a well known property of space differentiation (see for example

[5, Theorem 18.4.1]) we have
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f       [Cif, x) - f(s)]dx
(10.4) lim -^- = C.if, e) - fis) = 0

f       dx
Judie)

for almost all 5. But

f       dx = (2/x)  f   sin2 Öd9 = (1/x) \d-sin 2dl
(10.5) JUM 7, ;L       2 J

= (l/2x)[(l/3!)d3- (32/5!)d6 + • • • ].

The lemma now follows from (10.4) and (10.5).

(10.6) Lemma. Junni.') [G(/, x) —fis) ]Dn(x)dx converges to 0 for almost all s.

Proof.

I f [C.if, x) - /(i)]Z?„(x)dx  ^ max Z?I(0) I  f [G(/, x) - /(*)]dx

S 2m2 I f [G(/, x) -/(j)]dx.

This integral approaches 0 by Lemma 10.3.

(10.7) Lemma.  lim„^M fciudw)[Cif,  x) —/(s)]£>2(x)dx is equal to 0 for
almost all s.

This lemma follows immediately from Theorem 9.1.

(10.8) Lemma. For 0<d<(x/2), fudi,)-uu„w[Ctif, x) —/(5)]l>2(x)dx con-
verges to 0 for almost all s.

Proof. For O^0gd<x/2 we may show

2 2m + 3
A.(0) á K ■

(n+l\   .

v 2 r sin4 (0/2)

for some positive constant K as follows:

2 3 cos2 (0/2) [(2m + 3) sin (0/2) - sin (2m + 3)(0/2)]
Dni4>) =- -

/M +  1\
81 ) sin3 (0/2) sin2 0

(m + 3/2) cos (0/2) - cos (2m + 3)(0/2)
cos (0/2) —

CV) sin2 (0/2) sin2 0
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3 sin (0/2) [(2m + 3) - csc (0/2) sin (2m + 3)(0/2)]

/»+ 1\
8 í J sin3 (0/2) sin2 0

2(m + 3/2)

299

+
/»+ 1\

4Í J sin2 (0/2) sin2 0

6(2m + 3) 2m + 3

/»+1\   .

\    2    J"'

-+
sin2 (0/2) sin2 0        4 ( "      * ] sin2 (0/2) sin2 0

/m + 1\   .

V    2    j5"

2m+ 3

cr)
^ #- 2m+ 3

sin4 (0/2) cos2 (0/2) er)sin4 (0/2)

Since

> j
/> a I C.if, 0) - fis) | Z)2n(0) sin2 (0)d0

l/n

A-(2m + 3)  /■"

(•* + 1ï

/! siI C.if, 0) - /(,) | —
o sin4

sin2 0

(0/2)
d0

2    /

and

#(2m + 3) rd .

",' I C.if, 0) - /(í)

cr) '
1 16

sin4 (0/2)       04
sin2 0d0

approaches zero as n approaches infinity it will be enough to prove that

2m+ 3    r*  |G(/,0) -Ml2m+3     r"

/M + 1\    J 1/n
sin2 0d0 approaches zero.

Let F(a)=/¿*| C,(f, 0)— /(s)|  sin2 0d0. By integration by parts we have

rd [G(/,0)-/(5)l .
I      -sin2 0d0

^ l/» 04

rd F(<t>)
= (l/d4)F(d) - m4F(1/m) + 4 -d0.

J i/»   06

(10.9)
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But by Lemma 10.3 for any positive number, b, we may choose a positive

number 5 = S(6)<d for which (1/03)F(0) <b if O<0^ô. Equation 10.9 then
gives us

cs I of, 0) - fis) I r5 ¿0
I      J-- sin2 0d0 < (6/5) + 46 I      — ^ (6/8) + 46m,

J l/n 04 J 1/n  02

and consequently

2m+ 3    f   [G(/,0)-/W|   . , ^
Jn =- I -sinz 0d0

'n + l\  J i/er) l/n 0

2m + 3 2m + 3
< (6/5)-h 46m

cd   er)
So lim sup»,«, /„ ^ 166. Since b may be chosen arbitrarily small the right-hand

side of the above inequality approaches zero as n approaches infinity. The

desired result now follows from the fact that ff[C,if, 0) —fis) ]Dni<fr) sin2 0d0
approaches 0 by Theorem 9.1.

Theorem 10.1 is an immediate consequence of Lemmas 10.6, 10.7, and

10.8.

11. Kolmogoroff's theorem. If / is a function in ¿2on the circle and («*)

is a sequence of integers with the property that Mt+i/«*> C> 1, then the sub-

sequence Snk oí the sequence of partial sums of the Fourier series of / will

converge almost everywhere. This theorem was first proved by Kolmogoroff.

A proof by Marcinkiewicz [6, Theorem 83] shows that this is a simple conse-

quence of the Fejer-Lebesgue theorem. In the group Q we may prove essen-

tially the same theorem, although, because we have (G 2) convergence in the

Fejer-Lebesgue theorem instead of (G 1) convergence, we shall need a lemma

due to W. Meyer-König [8, Satz 2].

(11.1) Lemma. If (a„) is a numerical sequence with Ostrowski gaps ii.e.

there exists two increasing sequences of integers («,) aMd (m4') such that nl/n,

>C>1, «('<«{+!, and an is zero if nf^n^ni) and if the series (a„) is (G k)

summable to s for some positive integer k, then any subsequence (smj) of the partial

sums of the (a„), where ni^m¡^n't, converges to s.

(11.2) Theorem (Kolmogoroff). /// is a function of L2 on the group Q

and ink) is a sequence of integers such that nk+i/nk>C>l then the subsequence

iS„k) of the sequence of partial sums of the character series of f will converge to

f almost everywhere.

Proof. If the character series of/ has Ostrowski gaps, then the theorem is

a direct consequence of Theorem 10.1  (the Fejer-Lebesgue theorem on Q)
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and Lemma 11.1. If/ does not have Ostrowski gaps in its character series,

then we consider the two character series

ft ~ A1 + A2 + A6 + A* + A7 + A* + Au + ■ ■ ■ + A20 + ■ ■ ■ ,

f* ~ A* + A* + A9 + A1" + An + A12 + A21 + ■ ■ ■ + AM + ■ ■ ■

where
n    n      n n

/~ inj-aij-mij) = iA ).

Since/ is in L2 it follows from Parseval's equation that/i and/2 are in L2;

consequently, since f\ and /2 have Ostrowski gaps their character series con-

verge to them almost everywhere. Since / is their sum we have the same re-

sult for /.

12. Abel summability at a point of continuity. Although Abel summability

at a point of continuity follows from the analogue of Fejer's theorem, it is of

interest to give an independent proof of this fact.

Let A,i4>) = 22n°=i « (sin «0/sin 0) z"-1 for O^0^x and 0^z<l.

(12.1) Theorem. For f in L2 we have lim^i/ * ̂ 4z(x) =/(x) if x is a point of

continuity of f. If f is continuous then f * Az approaches f uniformly as z ap-

proaches 1.

Proof. The theorem follows from the following lemmas.

(12.2) Lemma. AJ&) = (l-z2)/(l -2s cos 0+z2)2.

(12.3) Lemma. As converges to zero uniformly outside of every neighborhood of

the identity.

(12.4) Lemma. (2/x)/oM,(0) sin20d0=l.

From 12.2 and 12.4 it follows that Az is positive for 0gz<l and that

/öv4i(0(x))dx= 1. Theorem 12.1 then follows from Lemma 12.3 and Theo-

rem 2.9.

Lemma 12.4 is noted in [l, p. 102, formula 7]. Lemma 12.3 is an immedi-

ate consequence of Lemma 12.2. To prove 12.2 we note that

"   m sin M0 °°   Me"* — e-in*
A*i<t>) =   2*. —:-z"_1 =  2^ -z""1

„_i     sin 0 „_i      2i sin 0

3   •
= — 22 (!/2t sin 0) \einHn — e~in*zn]

dz n=\

d   "                         I    e^z              e-^z   )
= - 22 (1/2* sin 0) I-- ---\

dz „=i (1 - e**z      1 - e-^z)

1 - z2

(1 - 2z cos 0 + z2)2
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13. The localization theorem. One might think that the localization theo-

rem could be invoked to dispense with the assumption that / is in L2 in the

proof of Theorem 12.1. Consequently it should be noted that the localization

theorem does not hold. Let us define the function / on Q as follows

(0    if    0 :g 0(x) < x/2,
fix) =  i

Il    if    x/2 ^ 0(x) ^ x.

(13.1) Theorem. The character series of the function f defined above diverges

at the identity of the group.

Proof. This theorem is proved simply by calculating the coefficients of the

character series of/. We have

/'         r         ,                       Cr   n sin né
fix) \xn(x)]°dx = (2/x) —;-sin2 0d0

o J T/2      sin 0

I 0 for m odd and greater than 1, 1/2 for n = 1,

2m2

x(m2 - 1)

- 2m2

x(m2 - 1)

for    m =■ 0 mod 4,

for    m = 2 mod 4,

and, finally,

r x        - 22             42              - 62
f(e) ~ (2/x) [- +-7 +- +-: H

7T

4   '   22 - 1  ■   42 - 1

which is a divergent series.
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