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Let $ be a continuous function defined on a neighborhood of the origin

in the product 3ÊX§) of two real or complex Banach spaces with values in 36,

and suppose that i>(0, 0)=0. For y near the origin in g), we seek solutions

xGï of the equation

$(x, y) = 0.

Hildebrandt and Graves [9](2) showed that if the partial differential

dx$(0, 0; A), considered as a linear transformation of 36, has a continuous

everywhere-defined inverse, then there exists a unique continuous single-

valued function 4> defined on a neighborhood of the origin in g) with values in

36 such that <f>(0) =0 and $[<f>(y), y] =0 for all y in this neighborhood. Graves

[8; 2, p. 408] showed that if dx$(0, 0; h) maps onto 3£, then there will be at

least one solution corresponding to sufficiently small y.

Cronin [3] recently considered a case in which dx$ need not map onto 36

and obtained, under suitable restrictions, theorems concerning the existence

of solutions in terms of the topological degree theory.

While our methods are closely related to hers, we focus our attention on

the problem of studying the branching of the solutions that this situation

allows. In a particular case we are able to apply Dieudonné's modification

[5] of the Newton polygon method to obtain results exactly parallel to some

for ordinary algebraic functions over the real or complex field. It is also seen

that the work of E. Schmidt [17], L. Lichtenstein [14], and R. Iglisch [12]

for a class of nonlinear integral equations hold valid for a general class of

functions defined on Banach spaces. Also, in both their work and that of

T. Shimizu [18], the assumption of analyticity can be replaced by that of

the existence of a few continuous derivatives. Further, because of the

simpler form for the equations we derive, it is possible to study particular

cases in terms of initially given data.

Our final part indicates briefly how these results can be applied to non-

linear differential equations with fixed end point boundary conditions. It is

possible to treat questions of existence and uniqueness of solutions in the

neighborhood of a given solution for a very general type of equation.    ..
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0) This paper is part of a dissertation submitted to the University of Chicago while the

author was an Atomic Energy Commission Fellow of the National Research Council. The

author is indebted to Professor Lawrence M. Graves for much encouragement and assistance

during its preparation.

(2) Numbers in brackets refer to the bibliography at the end.

366



SINGULAR POINTS OF FUNCTIONAL EQUATIONS 367

Part I

1. The hypotheses. In the following we shall suppose that $> can be ex-

pressed in the form &(x, y) =L(x)+F(x, y), where

(HI) L is a linear operator mapping ï into X with closed range and such

that the null spaces of L and L* have finite and equal dimension.

(H2) The function^) £„(x) = £(x, y) is defined and continuous for small

x and y, £(0, 0)=0, and F satisfies the condition ||£(xi, y) — £(#2, y)||

^Mixi, Xí, y)\\xi — x2\\ where M is a non-negative real-valued function which

goes to zero with its arguments.

We seek solutions for the equation

(1) Lix) + Fix, y) = 0

which lie in a neighborhood of the initial solution (0, 0).

It is known that (HI) is satisfied if L=\I—K, where some power of K

is completely continuous [l, chap. X], or if 0 is a pole of the resolvent of L

and the dimension of the null space of L is finite [6, p. 208]. Since hypothesis

(H2) is rather unusual in form, it is appropriate that we show it can be

satisfied under reasonable circumstances. We choose to connect this hy-

pothesis with the concept of Fréchet differentiability [7; 9; ll].

Theorem 1.1. (a) If _>(x, y) = L(x) + £(x, y), where L is linear and F satis-

fies (H2), then the partial Fréchet differential dx&(0, 0; A) exists and equals £(A).

(b)  Conversely, if 4> has a partial Fréchet differential djb(x, y; A) which is

continuous for (x, y) near (0, 0) uniformly for ||a|| =1, then Fix, y) =d>(x, y)

-¿.*(0, 0; x) satisfies (H2).

Proof. The first part follows from (H2) and the definition of the Fréchet

differential. To prove (b) we apply the mean-value theorem [7, p. 173] to

conclude that

Fixi, y) — Fix2, y) =  _>(xi, y) — 4>(x2, y) — dx$(0, 0; xx — x2)

=   I     {dx$[x2 + 6(xi — x2), y; Xi — x2]
J 0

- dx$(0, 0; xi - x2)}dd.

The conclusion then follows from the continuity of dx&.

The condition in (b) is immediately implied by the hypothesis that 3> is

in Class 6' in a neighborhood of the origin in XX§). We show that it is also

implied by the continuity of the Fréchet second differentials. Let II and 93

be two Banach spaces and 93(U, 93) be the space of bounded operators from

(3) Here and later it will sometimes be convenient to use the operator notation Fu(x) for

F(x, y), when y is considered to be a fixed element.
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U to 33 with the strong operator topology. Let A be any metric space and X0

one of its points. With this notation we can use the theorem of uniform

boundedness to prove:

Lemma. If X—>7\ is a continuous mapping of a neighborhood of X0 to

33 (U, 33) in the strong topology, then there exist two positive numbers r and R

such that if dist (X0, X) <r, then || Fx|| <R.

Theorem 1.2. If dxxf(x, y; h, h') and dxyf(x,y; h, k) are continuous for (x, y)

near (0, 0) for each fixed (h, h') and (h, k), then dxf(x, y; h) is continuous for

(x, y) near (0, 0) uniformly for ||/z|| =1.

Proof. Take a fixed h' and let A' = 36X§). The lemma implies that there

exist positive numbers r' and R' depending on h' such that if x and y have

norms less than r', then Hdw/f*, y; h, A')|| ^7?'-||ä|| for all &G36. This shows

that dxxf is continuous in h at 0 uniformly for (4) (x, y) G ©i(r') X ©»(/'). Hence,

for each fixed h' the function dxxf is continuous for (x, y, h) near (0, 0, 0). Now

allow h' to vary and set A = ©*(/') X@„(r') X®*. A second application of the

lemma and the homogeneity of dxxf in the argument h show that there exist

positive numbers r and R such that if x and y have norms less than r, then

||éW(x, y; h, ä')|| ^-R||â|| 'll^'ll- An exactly similar argument can be applied

to dxvf. The two inequalities thus obtained enable us to complete the proof of

the theorem by applying the mean-value theorem.

2. An implicit function theorem. We shall make essential use of the fol-

lowing theorem which can be easily derived. For convenience in our future

reference we state the result in the form we shall need.

Theorem 1.3. Let A be a metric space and suppose that A\(x) is continu-

ous on AX@x(r) to 36 uniformly for iGS,(r), Suppose that if x, #'G©i(/)

and\GA, then \\Ax(x) -Ax(x')\\ ^\\x-x'\\/2.
(a) Then the equation x—A\(x)=u has a unique solution x=f\(u) for all

wG©x(r/4)a«¿XGA0={X; ||i4x(0)||^r/4}.

(b) The function f\(u) is continuous on A0X©x(r/4) to ©x(r) uniformly on

@.(r/4).
(c) If r < », then fx(u) is the uniform limit of the sequence of functions de-

fined by

h  (u) = u, ■ ■ ■ , fx      («) = « + Ax[fx  (u)\, • • • .

For the sake of completeness, we state the following result, a special case

of a theorem of Hildebrandt and Graves [9], which gives a complete answer

to the question of existence and uniqueness of local solutions in the case

that the transformation L is invertible.

(4) We denote solid closed spheres around the origin by @*(r) = {*GX; ||*||ár}, and

spherical surfaces by S^(r)= {xGï; ||*|| =r\, with similar notations for other spaces. If the

radius r = t, it will be omitted.
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Theorem 1.4. If L is invertible and (HI) and (H2) are satisfied, there exist

two positive numbers dx and d2 such that if ||y|| ¿di, then there exists a unique

solution with \\x\\ ^d2. Moreover the function x=/(y) defined in this way is a con-

finions function on ©B(¿i) to ©.(¿2).

This result follows readily from Theorem 1.3.

3. Reduction of the singular case. We define 9B to be the range of L and

U its null space, with 9B* and U* playing similar rôles for L*. Then since 9B

is assumed to be closed we have(6)

Lemma 1. The subspaces 9B and U* are orthogonal complements. The same

is true for U and 9B*.

Let {uí\ i= 1, • • • , n} and {/<:*'■»_, • • • , n] be fixed bases for U and U*

respectively, then there exist {g,-: i=l, • • • , n} £ï* and {zí: i=l, ■ • • , n]

Gx such that g,-(«/) =/<(-i) = 5,,-. Let ,3 be the subspace spanned by the {z,},

and define the projection operators U(x) = J_*-i &«'(x)Mt and Zix)

- 5_?_i/<(*)*• Set £'(x)=L(x)- Er-i _«<*)**

Lemma 2. £Ae operator L' has a continuous everywhere-defined inverse R

such that

LR = I - Z,        R L = I - U.

Using these two lemmas we can easily prove

Lemma 3. 7/(x, y) is a solution of (1), then Z Fvix) =0 andx+R- F„(x)£U.

Guided by Lemma 3, we seek a condition on an element «£11 in order

that a solution of

(2) x + R-Fvix) = m

will satisfy equation (1). By virtue of (H2) and Theorem 1.3, it follows that

for any «£©„(¿4) there exists a unique solution

(3) x = Vyiu).

Moreover F„(m) is continuous on ©„(¿3) X@u(¿4) to ï uniformly on ©„(¿4),

and can be obtained by a uniformly convergent iteration:

(4) Vy\u)     =«,-■•,    Vy+1\u)     =    U    -    RFyVyr\u),

From Lemma 3 we know that a necessary condition that this solution F„(m)

of (2) be a solution of (1) is that

(5) ZFyVyiu) = 0;

(5) Lemmas 1 and 2 are results from the abstract Fredholm theory due to Riesz [15] and

Hildebrandt [10]; see also [l, Chap. X] and [l6]. The proof of Lemma 1 is essentially in

[1, p. 149-150; 16] and that of Lemma 2 in [l, p. 155; 10].
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that is, fiFyVyiu) =0 for i= 1, • • • , n.
Conversely, if we have a solution x= Vv(u) of (2) which satisfies (5), it is

not difficult to see that Vy(u) gives a solution of (1) for that value of y. We

state this formally:

Theorem 1.5. If (HI) and (H2) are satisfied, there exist positive numbers

¿3 and ¿4 such that if yG&vids) and «£©«(¿4), then equation (2) has a unique

solution x— Vyiu). The function F¡,(w) can be computed by the uniformly con-

vergent sequence (4) and is a continuous function on ©«(¿3) X©u(¿4) to ©^¿4)

uniformly on ©„(¿4). Moreover the pair (Fv(w), y) is a solution of (1) if and

only if Vyiu) satisfies (5).

Corollary. If yo£©B(¿3) is such that FVo maps some sphere ©»(¿0) with

¿o_=¿4 into SB, then equation (1) has a continuous family of solutions ( VVoiu), y0).

Theorem 1.5 shows that the problem of finding solutions of (1) is reduced

to that of finding solutions of the equation ZFyVyiu) =0 in the neighborhood

of the w-dimensional space U. In fact, there is a one-to-one correspondence be-

tween local solutions x of (1) and local solutions u of (5) and this correspondence

is given by x= Vviu). Equation (5) plays the rôle of the "Verzweigungs-

gleichung" which appears in many applied problems [14]. For fixed bases

of U and U*, we see that our problem can be formulated as that of finding

solutions of the system of n real- or complex-valued continuous functions in

the n scalar variables (£1, • • • , £„) given by

(6) *,■($!, •••,£„; y) = fiFvVv( ¿ fcnJ = 0, i = 1, ■ ■ ■ , n.

In general it is not possible to give an explicit solution to this problem—

however, in the important special case that U is known to be one-dimensional

the system reduces to a single equation in one scalar unknown and is more

readily treated. We shall consider this case at length in later sections.

4. A method of computation. We have seen that the equation

x = u — RF(x, y) has the unique solution x= Vy(u), for sufficiently small y.

Substituting this into £, we have

(7) FyVy(u)     =   Fy[u    -    RFy(x)].

By repeated substitution of u — RF(x, y) for x, we can compute the expres-

sion FyVy(u) or the solution Vy(u) to as many terms as desired, since £ con-

tains no linear terms in x.

At this stage it is convenient to add the following hypothesis:

(H3)  There exists a positive number m such that if x and y are sufficiently

small, then \\F(x, y) — F(x, 0)|| gOT||y||.

With this hypothesis we can now prove:

Theorem 1.6. If (HI), (H2), and (H3) are satisfied and FyVy(u) is written
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as FoVo(u)-\-B(u, y), then there exists a positive m' such that \\B(u, y)|| ^m'||y||

for sufficiently small u and y.

Proof. To show the inequality, it suffices to show that || Vv(u)— F0(m)||

^wi'||y|| for small u and y, for then we have

\\B(u,y)\\ = \\FyVy(u) - FoVo(u)\\

g \\FyVy(u) - FoVy(u)\\ + \\F0Vy(u) - FBV0(u)\\

^ m\\y\\ + M[Vv(u), V0(u), 0]\\Vv(u) - V0(u)\\

^ (m + Afm')||;y||.

To prove the inequality on Vy(u), we observe that (H3) implies that

\\R[FyVy(u)-FoVv(u)]\\ ^ w|| ä| 11| y| |, and that (H2) implies that \\R[F0Vv(u)

-FoVo(u)]\\^\\Vv(u)-Vo(u)\\/2. By the definition of Vv(u), we have the

identity [Vy(u) - V0(u)]+R[FvVv(u) -FoVy(u)]+R[FBVy(u) -F0VB(u)]

= 0. Transposing the middle term and using the triangle inequality and the

two relations already mentioned, the conclusion follows.

We shall have use of this theorem in Part II.

Part II

5. A generalization of the Schmidt theory. In this part we restrict our

attention to complex scalars and suppose in addition to hypotheses (HI),

(H2), and (H3) that the function F satisfies

(HA) For each yG®v(r), the function F is an analytic function of x in the

Banach space sense [ll, p. 8l] for ||x|| <r.

That is, we assume that F(x, y)= ^4"o F-i(x, y), where for each fixed

yG&y(r) the function £, is a continuous Banach space polynomial [ll, p. 66]

which is homogeneous of degree i in the argument x, and the series converges

absolutely for ||x|| <r.

It will be noted that the case handled by E. Schmidt [17] certainly

satisfies these conditions; in fact, his functions satisfy the condition of

analyticity in both variables. We shall show, however, that the conditions

we have stated are sufficient to obtain results generalizing his principal

theorem [17, p: 398]. At the same time this section should provide insight

into the methods used in the next part.

From the definition of Vy(u) and the assumption (HA) it follows that

Vy(u) is an analytic function of u for each fixed and sufficiently small y,

and that it is continuous in a neighborhood of (0, 0). Hence FyVy(u) is an ana-

lytic function of u for fixed y. From Theorem 1.6 of §4 it follows that if we

write this last function as a sum of F0Vo(u) and B(u, y), the latter function

is such that ||2?(«, y)|| áw*||y|| when u and y are sufficiently small.

We now examine some of the consequences when U is one-dimensional and

MiGU, /iGU* are such that ||wi|| =||/i|| = 1. In this case, the system of equa-

tions (5) becomes the single equation
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(8) 0 = fiFyVy(tui) = /iF„Fo(,«i) + /i5(f«i, y).

The first summand is independent of y and so gives rise to an ordinary com-

plex-valued analytic function 2^4™ 2 ».£' of the complex variable £ which con-

verges absolutely for |£| <fj. The second summand acts similarly yielding

an analytic function }JLa &¿(y)£¿ where the coefficients 6,(y) are complex-

valued continuous functions of the Banach space variable y £©,(ri). Theorem

1.6 tells us that |/i_B(m, y) | ^||£(w, y)|| ^?w'||y||. Hence equation (8) becomes

(9) 0 = ¿ a£ + ¿ M*H4.
¿=2 ¿=0

Suppose that not all a¿ vanish. Then the first function has a zero of multi-

plicity k = 2 at the origin, k being the first index for which a* f^0. Draw a circle

of radius p around the origin so small that except for £ = 0 the function

2_a,£¿ does not vanish for |£| :gp. Now on the circle |£| =p, we have

XX^I ^5>0. But if ||y||<5/m', then | T,biiy)^\ g |/iB(£«i, y)| ^S for all
£| <r_. In particular this inequality holds on the circle, so we conclude from

the theorem of Rouché that:

Lemma. Let k be the smallest index such that ak^0; suppose that k is finite.

Then there exists a p>0 and a a=aip)>0 such that if \\y\\ <a, then equation

(9) has exactly k zeros icounting multiplicities) with |£| <p.

In general there will be multiple roots of equation (9), which will be re-

flected in the coincidence of solutions of (1). We say that F¡,(£oMi) is a solution

of multiplicity p of equation (1) if £0 is a zero of multiplicity p of (9). (This

definition coincides with that of [13, p. 66] in the case discussed there.) It

is not difficult to see that this leads to an unambiguous notion of multiplicity

of solutions of equation (1). In terms of it we can summarize the preceding

discussion.

Theorem 2.1. If F satisfies (HI), (H2), (H3), and (HA) and k is (6) as in

the lemma, then there exist positive numbers po and a =cr(p) defined for 0 <p Spo

such that if ||y|| <a, the equation (1) has exactly k solutions, counting multiplic-

ities, in the neighborhood @x(p).

Part III

6. The Taylor expansion. In this part we shall assume in addition to

hypothesis (HI) that the following is satisfied:

(HT) In the neighborhood ©x(p) X©^) of the origin, F can be expanded

in a finite Taylor expansion of the form

m

Fix, y) =  D Ftfa y) +   E   Tifa, y), «_2,
i+3=\ %+j=m

(6) It can be seen that k is the first integer for which/i.E*(w_, 0) 5^0.
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where Fa is a continuous Banach space polynomial which is homogeneous of

degree i in x and j in y, Fi0 = 0, and limx,¡,,o Ta(x, y)/||x||i||y||' = 0. IFe also

assume that Ft;- has a partial Fréchet differential with respect to x which is con-

tinuous in this neighborhood.

It can be shown that this hypothesis is satisfied if F is in Class g<"l+1) in

the sense of [9]. By Theorem 1.2, (HT) implies that (H2) and (H3) are satis-

fied. In the case of complex scalars, (HT) implies that F is an analytic func-

tion of the two variables and generalizes the cases considered by E. Schmidt

[17], L. Lichtenstein [14, Chap. I], and T.-Shimizu [18]. Our primary inter-

est, however, is in the real case when the functions are not necessarily

analytic. Even so we shall be able to sharpen the results of these authors.

We shall show that hypotheses (HI) and (HT) enable us to compute

the terms of low degree in FyVy. These coefficients are relatively simple, and

since they largely determine the behavior of the function near the origin,

we are able to study the nature of the solutions. We employ the method of §4

to compute these terms by repeated substitution of u — RF(x, y) for x. Since

F contains no linear terms in x alone, this will lead to terms containing x to

successively higher degrees. Denote the polarized form of Fr0 by Pro, so that

Fro(u)=Pro(u, • ■ • , u). If k^m is the first index * for which Fi0 does not

vanish identically and 2k^m-r-2, we have

FyVy(u) = Fk0(u) H-+ F2k-2.o(u) + Foi(y)

+ {Fu(«, y) - 2P20[u, RFoi(y)]}

+ {Fo2(y) + F2o[RFoi(y)] - Fn[RFoi(y), y]}

+ {higher terms}.

We have written all terms containing only u with degrees less than(7) 2£— 1

and those containing y with degrees less than 3. If k>2, or if Foi vanishes

identically, there will be considerable simplification in the mixed and pure y

terms.

7. The one-dimensional problem. In the following we shall assume that

11 is one-dimensional and that % and /i are elements of norm equal to 1 in

11 and 11*. By virtue of (HT) we can see that equation (6) in §3 corresponds

to the single equation

m

(H) 0 =   £   aij(y)? +   £   *„($«„ y)
i+j=l i+j=m

where ö,y(y) is a continuous scalar-valued function which is homogeneous of

degree j in y, \pa(^Ui, y)=o(\^\ '||y||') and the equation is valid for |£| <pi

and ||y|| <cri.

It will be convenient to study the nature of the solutions of equation (11)

(7) If m-\-2<2k^2m, terms after the mth degree also involve the functions Ty.
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when y is restricted to a set of the form {Xy0; yo fixed, |X| <<ri/||yo||} which

we shall call a one-dimensional neighborhood of the origin through y0. In de-

fining one-dimensional neighborhoods, we shall always take y<)£ S^, the sur-

fact of the unit sphere in g).

In a one-dimensional neighborhood equation (11) reduces to an expan-

sion in the two scalar variables £ and X; for, substituting Xyo for y and using

the homogeneity, equation (11) becomes

m— 1

(12) 0=£   «<£*>+   Z   £Möi/ + *iXf,X)]j |,| <Pi,  |x| < <r,.
i+j=l i-r3=m

We observe that c¿0 depends only on uu whereas the remaining a,j and <pa

depend on the choice of y0 as well. In any case, (HT) implies that the <pa are

continuous and have continuous partial derivatives with respect to £ in this

neighborhood, and that </>,-,-(£, X) approaches zero as £ and X do. In §9 we shall

discuss the Newton polygon method which will give us a more or less sys-

tematic method of determining the nature of the solutions of £ in terms of y

in a one-dimensional neighborhood of the origin. Then, by assuming bound-

edness of certain functions, we shall be able to extend these results for

spherical (i.e., ordinary) neighborhoods of the origin.

For future reference, we list here the first few coefficients of equation (12).

«*0 = fiFkoiui),

a2k-i,o — fiF2k-2,oiui),

a2k-i,o = fiFik-i.oiui) — kfiPko[ui, ■ ■ • , Ui, RFkoiui)],

aoiiyo) = fiFoiiyo),

On(yo) = fiFuiui, yo) - 2fiP20[ui, £Foi(yo)],

a02iyo) = fiFoiiyo) - fiFn[RFoiiyo), yo] + fiF20[RFoiiyo)],

8. Cases of uniqueness and nonexistence. In the next section we shall

outline a method of determining the nature of the solutions when not all of

the ai0 and not all of the a0j vanish. This method fails if all of the coefficients

of either set are zero, but in this circumstance it is often possible to cancel

appropriate factors of £ or X and reduce to an equation that can be treated

by the method to be outlined. Throughout this section we suppose that all

of the constants ai0 and the function </>m0 of equation (12) vanish. From the

list above it is clear that this will certainly be true when £,o(3E)£3B and

Tmoi%, yo)C9B. Additional assumptions on some other coefficients will be

explicitly stated as made.

(a)  If all oí the coefficients of equation (12) vanish for some choice of y0,
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then the equation is satisfied for arbitrary values of £. Hence, as we have

seen in the Corollary to Theorem 1.5, equation (1) is solved by the pair

(VVo (£w2), y0) for any sufficiently small £. It is clear that this situation will

occur when F(36, yo)C9B.

(b) Suppose that y0 is such that a0i(yo)?i0; then it is possible to divide

equation (12) by X. Since aoi^O, there are no roots for £ which go to zero

with X, and hence no local solutions for equation (1). We thus have

Theorem 3.1. If y o is such that ai0 = 0, <£m0 = 0, and aoi^O, then correspond-

ing to this yo there are no local solutions of (1).

Remark. The hypotheses are satisfied if /iFi0(36) = 0 and/iFm0(36, yo) =0,

but/iFoi(yo)^0.
(c) On the other hand, if only the linear term does not vanish identically,

then equation (1) is the nonhomogeneous linear equation

(13) L(x) + Foi(yo) - 0.

From Theorem 3.1 we conclude that if y0 is such that ßoi(yo) =/iF0i(yo) ^0,

there will be no solutions of equation (13), whereas if y0 is such that «oi(yo) =0,

the considerations of (a) show that a general solution of (13) is given by

x= Vyjjíui) =£wi — i?Foi(yo), for any complex number £. This coincides with

the usual condition of linear integral equations [14, p. 191 ] stating that equa-

tion (13) has a one-parameter (since U is one-dimensional) family of solutions

or no solution according as Foi(yo) is, or is not, orthogonal to the solution fi

of the homogeneous adjoint equation.

(d) Now suppose that a¿o = 0mo = floi(yo) =0, butan(yo)?i0. We shall show

that this case gives rise to a unique local solution. As before we can disregard

a factor of X. Since an9¿0, we can divide our equation by it and use the

ordinary implicit function theorem to solve this expression for £ and obtain

a unique solution.

The preceding discussion has been for a fixed y0; that is, in a one-dimen-

sional neighborhood of the origin through y0. We have shown that for each

yG^y with a0i(y) 7^0 and an(y) 5¿0 there is a solution for Xy when X is suffi-

ciently small, say |X| <s(y). In general, s(y) will depend on y, and it is quite

possible that it may get arbitrarily close to zero. If this happens, we cannot

hope to find an open sphere around the origin in §) such that there is a unique

solution for each y in this sphere. The following theorem gives a condition

which insures that the phenomenon just described does not occur.

Theorem 3.2. Suppose that ai0, <pmo, and a0i vanish for y G?) and i=l, • ■ ■ ,

m, and assume that «n(y) is bounded away from zero on Z¡,. Then there exists a

positive number o0 which is independent of y, such that if \\y\\ <aB, then equation

(1) has a unique local solution. Moreover, if the scalar s are real, the solution will

be real.
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Remark. The hypotheses are satisfied if /iFi0(36) =0, /iFm0(36, y)=0, and

fiFoi(y)=0 for all y, and fiFn(ui, y) is bounded away from zero for yG^y.

Proof. In equation (12) cancel X and transpose the first term to the left

side. This gives

- an? =  [ao2X + • • • + \m~\a0m + <t>om)]

(14) + £[ai2X + • • ■ + X™-2(ai,m_i + <*>i,m_i)] + • • •

+ tm~l(am_i,i + 4>m_i,i).

Denoting the right side by Ax(i-), we see that given ô>0, if £ and X are suffi-

ciently small, then for each fixed X, Ax(£) will satisfy a Lipschitz condition in

£ with constant less than 8, uniformly on 2„. The uniformity is present be-

cause the fl's and <f>'s are bounded on Sv. Since an is bounded away from

zero, we can divide through by —an and see that the function ( — l/an)Ax(l;)

possesses the same Lipschitz property. After further restricting X so that

this Lipschitz constant and the norm of ( — l/an)Ax(0) are sufficiently small,

and putting m = 0, we can apply Theorem 1.3. We conclude that for X less

than oo in absolute value, no matter what yG^y we choose, the equation

has a unique solution for Xy. This proves the theorem.

(e) A case which is similar to (b) is one in which in addition to all the

al0 and <pmo vanishing, we know that all the an and <£m-i,i vanish as well, but

aoü^O. Here we cancel a factor of X2 and obtain the same conclusion as in

Theorem 3.1 with a0i replaced by a02.

(f) If, in (e), a02 = 0 but ai^O, we can proceed as in (d) to obtain a

unique solution. A result paralleling Theorem 3.2 is obtained if <Zi2(y) is

bounded away from zero on 2„.

9. The Newton polygon method. We now describe a technique of solving

equation (12) for £ in terms of X for a fixed choice of y. The recent work of

J. Dieudonné [5] allows us to employ this method in our present case and to

determine which expansions will give rise to real solutions.

We assume that there exist integers k and p such that c^o^O and a0p^0,

and use these letters for the minimal such. We first plot, in the (i, j)-plane,

the points for which a,,?¿0. Let P0=(k, 0) and rotate the ¿-axis around P0

in the clockwise sense until it strikes some of the plotted lattice points in the

first quadrant. Let —pi be the slope of the line obtained, and Pi be the plotted

point on this line with minimum ¿-coordinate. If Pi lies on the /-axis we are

through; if not, we continue this process obtaining a polygon with a finite

number of sides 5i, • ■ • , Sg. The point (i, j) is on Si if and only if j+Pu — Pik,

all other plotted points satisfying j+pii>pik. We introduce the change of

variable ^rçX"1 in equation (12) and observe that by further restricting the

modulus of X we can allow r, to take values in as large a disk as we please

without violating the requirement that |£| <pi. Splitting equation (12) into

a sum taken over Si and the remainder, and dividing by X"1*, we get
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(is) E *** = - E x'+^-^y ky + toáfr* X)].
Si

Let r = inf {/-f-M-*- pik; ii,j)G$i} and note that the ii,j) with j+pii—pik

— r lie on the first line Li parallel to Si that contains any plotted points.

Rearranging the sum in (15) we have

(16) E *nn* = - X' E «<*' + X'+'( • • • ), s>0.
«1 _l

Let Yo be a g-fold nonzero root of the polynomial

(17) E <*&' = o,
Si

so that ^.ftijT)* = in —yo)"piri), where pin) is a polynomial in 77 which does not

vanish in a neighborhood of 70. If the scalars are real we shall be interested in

only the real roots of (17), but in both real and complex cases we discard the

root 77 = 0 as extraneous. Substituting the above identity in (16) and dividing

by pin), which may require us to restrict 77 to a smaller neighborhood of 70,

and setting ßin) = ^Lfinn'/pin), we obtain

(18) iv-yo)* = \'{-ßiv) + Ki---)}.

If 5=1, we can apply directly the implicit function theorem to solve for 77.

If q>l, we suppose that ßiyo)9iQ, and attempt to extract the gth roots of

this equation. If the scalars are complex, this can be done by restricting 77 so

that ßin) does not vanish and then restricting X so that the binomial theorem

can be applied. Allowing all q roots for X1'5, we can write

(19) 7,-70 = X^{[-/3(»,)]1"+X'(---)}

and this expression is valid for (77, X) in a suitably small neighborhood of

(7o, 0).
If the scalars are real and q is odd, then exactly one of these expansions

will yield a real solution for 77. On the other hand if q is even, then there will

be either no real solution or two distinct real solutions according as \rßiy0) is

positive or negative. In case /3(7o)=0, the above analysis is not valid, but

similar considerations can be applied to higher order terms.

Since (HT) implies that the <pu have continuous partial derivatives with

respect to £, it is clear that the function obtained from (19) by transposing

77—70 has a continuous partial derivative with respect to 7; in a neighborhood

of the point (70, 0) which is equal to — 1 at that point. Hence we can apply

the ordinary implicit function theorem and solve for 77 in terms of X, and hence

evaluate £ in terms of X. We thus get q complex, or one, no, or two real solu-

tions for £ corresponding to this root 70 according to the possibilities we have

mentioned.

We can then apply the same analysis to the other nonzero roots of (17)

and then proceed to the other sides of the polygon. After a finite number of
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such steps this process comes to an end. It can be proved [5] that all solutions

of (12) will be obtained by this program.

Throughout this discussion we have supposed that yo was given and held

fixed. It does not appear to be possible to modify the argument so that one

can treat equation (11) directly, since almost all of the coefficients depend

upon y0. However, in particular cases when some of the coefficients are

bounded away from zero on 2„, this process can be applied along each one-

dimensional neighborhood in such a way that the results hold true for

spherical neighborhoods. We shall now consider a few such cases.

10. The case of a simple vertical tangent. We now employ the polygon

method in the case that 020^0 and doi^O. When the functions are analytic

it follows from Theorem 2.1 that there are two (possibly coincident) solutions

for sufficiently small y. We shall show that if a0i(y)?i0, these two solutions

are in fact distinct, and give conditions for these solutions to be real.

In this case the Newton polygon has a single side, and equation (17) is

ö2o'72+öoi = 0. If aoi^O, this equation has two distinct nonzero roots 7+ and

f, which are real if and only if a2o and aoi have opposite signs. Since only

real roots give rise to real solutions, and a0i(— yo) =/iF0i(— yo) = — aoi(yo),

while a2o is of constant sign, in the real case there are no real solutions on one

side of the one-dimensional neighborhood and two distinct real solutions on

the other side. In the complex case there are always two distinct complex

solutions under these conditions.

The remarks just made hold in one-dimensional neighborhoods. If we

assume that <Zoi(y) is bounded away from zero on 2„, the distinct roots y+(y)

and 7~(y) are both bounded away from zero. Since y+(y) = — 7_(y), there

exists a positive number p2 independent of y such that if 177 —"y+| <p2, then

p(r,)=a2o(r,—y~) is bounded away from zero. Choose 02 independent of y

with (T2^(Ti and such that if |X| 02 and 177— y+| <p2, then |£| = | 77X1/2| <pi

so that equations (15) and (16) are well-defined. Divide (16) by p(r¡) and

obtain an equation which corresponds to equation (18); and, since g=l in

this case, also corresponds to (19). The coefficients on the right side of

(19) are bounded above on 2„ (since p(r,) is bounded away from zero), so a

further restriction that |X| <<r3 will insure that the function obtained from

(19) by transposing n— 7+ has a partial derivative with respect to 77 which is

continuous and different from zero on this set. Hence we conclude from the

implicit function theorem that if |X| <<r3, there exists a unique solution for

77 — 7+ in terms of Xy, for an arbitrary yG2„. An exactly similar argument can

be applied to the root y~. We thus conclude the following

Theorem 3.3. Let /iF2ü(mi)?í0 and suppose that fiF0i(y) is bounded away

from zero on 2V. Then there exists a positive o-0, independent of y, such that if

0<\\y\\ <oo and
(C) the scalar s are complex, then equation (1) has exactly two distinct local

solutions;
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(R) the scalars are real, then equation (1) has exactly no or two distinct

real local solutions according asfiF0iiy) has the same or opposite sign asfiF2oiui).

The same type of analysis given above leads to the more general

Theorem 3.4. Let k be the first integer such that fiFkoiui) ¿¿0 and suppose

that fiFoiiy) is bounded away from zero on 2„. Then there is a positive ero, inde-

pendent of y, such that if 0 <||y|| <oo and

(C) the scalars are complex, then equation (1) has exactly k distinct local

solutions ;

(Ro) the scalars are real and k is odd, then equation (1) has a unique real

local solution;

(Re) the scalars are real and k is even, then the conclusion is the same as in

Theorem 3.3 (R) with Fko in place of FM.

In the complex case we can think of the solutions as arranged on k

spheres ©x(po), joined together in the same way as the Riemann surface for

x* = y at the singular point (0, 0).

11. A theorem of R. Iglisch. We are now prepared to obtain, as a corollary

of what we have done, a result which generalizes the principal theorem of [12 ]

in two ways. In this paper, Iglisch considered a special case of the form

£(x, y) =G(x) — y, where G is an analytic function containing no terms of de-

gree less than two. Since he was interested only in real solutions, it is ap-

propriate that we replace his assumption of analyticity with that of hy-

pothesis (HT) where the only term containing y is the linear term — y. We

shall suppose with him that 11 is one-dimensional and that k is the first index

such that a/fco^O. His main result may now be stated.

Theorem. With these hypotheses, if k is odd, then for sufficiently small y

there will always be real solutions for equation (1). If k is even, then there may or

may not be a real solution. In particular, if yo£<3 ¿s sufficiently small, then one

of the elements y o and —yo will have no real solution and the other one will have

exactly two real solutions.

Proof. From §7 we have that aoi(y) = —fiiy)- Now for yo£,3 with yo^O,

we have/i(y0) t^O, for otherwise yo would be in the annihilator of/i which we

know to be 9$. The final part of the theorem now follows from Theorem 3.4

(Re). It remains to show that if k is odd, there will always be a real solution.

If aoiiy)?éO this follows from (Ro) of Theorem 3.4, while if y£9B it follows

from the Newton polygon method and the fact that a polynomial of odd de-

gree and real coefficients has at least one real root.

12. The case of a double point with distinct tangents. In contrast to the

case treated in §10, we now suppose that c^o^O but that a0i = 0. We shall

again give conditions that the solutions be real and distinct.

The polygon for this case has one side, and equation (17) is a2on2+aiiW+ao2

= 0, which has two distinct roots 7+ and y~ when A(y) =a2n — 4a2oao2 is not
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zero. Both of these roots are real when the scalars are real and A(y)>0.

Hence, if these roots are nonzero, we can apply the process of §9 and obtain

two distinct solutions. Note that if A^O the roots are distinct so that 2=1.

In order to pass to spherical neighborhoods, we assume that A(y) is

bounded away from zero on S„ so that the roots can be uniformly separated.

Select p2 such that pin) =a2oin—y~) is bounded away from zero for 177— 7+|

<p2, and choose <r2=>i such that if |x| <a2 then |£| = | T7X| <pi for these 77.

The reasoning can now be completed as in §10.

In the parabolic case (when A(y0) =0) the roots coincide, so that we must

examine the nature of the coefficients lying on the line Li with equation

i+j = 3. From §9, we conclude that, in the real case, there will be two distinct

or no real solutions according as the quantity X3ßiy+), where ßin)

= (l/a2o)(a3o'?3+a2i»72+ai2'7+flo3), is negative or positive. If this quantity

vanishes, still higher terms must be examined. We can summarize the re-

sults for the non-parabolic case in a theorem.

Theorem 3.5. Suppose that a209^0 and a0i = 0, and the Aiy) is bounded away

from zero on 2„. Then there exists a positive a0, independent of y, such that if

0<||y|| <ffo and

(C) the scalars are complex, then equation (1) has two distinct local solutions;

(Rh) the scalars are real and A(y)>0, then equation (1) has two distinct

real local solutions;

(Re) the scalars are real and A(y) <0, then equation (1) has no real local

solutions.

Remark. It follows from §7 that a20=fi£20(^1) and if £01 = 0 then A(y)

= [fiFniui, y)]2 — i[fiF2oiui)][fiF02iy)]. If £01 is not identically zero, the

form of A(y) is somewhat more complicated.

13. Another special case. The last case we consider is that in which

k>2, a0i = 0, but a02 and an are nonzero. The polygon for this case has two

sides, the first side giving rise to the equation a4o77*+an77 = 0, which has £ — 1

distinct nonzero roots when an is different from zero. If the scalars are real

this side gives only one real root when k is even, and either no or two real roots

when k is odd according as the signs of ako and an are the same or opposed.

The other side of the polygon leads to the equation 01177+002 = 0, which has a

single real or complex root which is nonzero under these conditions.

Passage to spherical neighborhoods of the origin can be guaranteed by

the assumption that an(y) is bounded away from zero on Sv. We shall not

go through the details of the arguments. It can also be seen that the solutions

given by the two sides of the polygon will be distinct when y is small enough.

We state formally:

Theorem 3.6. Letai0 = 0for 2f¡i<k, butato^O; let a0iiy) =0 and a02iy) ¿¿0

for y£2„. Suppose that an(y) ¿8 bounded away from zero on 2¡,. Then there

exists a positive ao, independent of y, such that if 0<||y|| O0 and
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(C) the scalars are complex, then equation (1) has k distinct local solutions;

(Re) the scalars are real and k is even, then equation (1) has two distinct

real local solutions;

(Ro) the scalars are real and k is odd, then equation (1) has one or three

solutions according as an and ak0 have the same or opposite signs.

Remark. The hypotheses are satisfied if fiFi0(ui) = 0 for 2^i<k, but is

nonzero for k; if Foi^O and/iF02(y)?i0, and if/iFn(wi, y) is bounded away

from zero for yG2„. It is clear that in the complex case we can view the

solutions as arranged on a cycle of order one and one of order k — l.

Part IV

14. Applications to differential equations. It is easy to see how the pre-

ceding results can be applied to the nonlinear integral equations of E. Schmidt

in cases where the functions are given in concrete cases so that the ay can

be computed. J. Cronin [4] has also shown how this type of theory can be

applied to elliptic partial differential equations. In this final section we dis-

cuss an ordinary differential equation of the form

(20) <b"(t) + coV(i) + f[t, I 4>(t), *'«)] = 0,

with the boundary conditions </>(0) =0(tt) =0. We suppose that the scalars

are real and seek real solutions for e near 0. For our purposes it will be appro-

priate to suppose that d> is in the Banach space of functions of Class ß"[0, t]

where we take the norm \\<j>\\ =sup \<j>(t)\ +sup |</>'(0| +sup |<?S"(i)|.

It is well known that the Green's function for the problem <j>"(t)—0,

<f>(0)=d>(Tr)=0 is

2   "    sin nt sin ns        lt(l — s/tt),    0 g í ^ í ¿ t,
K(t, s) = — y.-= ■{

ir tX n2 U(l - t/ir),    0 | j á ; g x,

which, as the kernel of an integral operator, has eigenvalues X„ = «2 and

eigenfunctions un(t) = (2/ir)112 sin nt, for ra = 1, 2, • • -, each eigenvalue being

simple. We let x(t) =<tí"(í)GS[0, ir] and consider x to be our unknown func-

tion. Conversely, given an x, we obtain <b and by <p' by <p(t) = —flK(t, s)x(s)ds

and <f>'(t) = —fôKt(t, s)x(s)ds, so if Xi and x2 are two functions in S[0, x],

then the corresponding<pi satisfy \\<j>i— 4>2¡\ á(l+¿' + &)||xi — x2||, where k' and

k are bounds for the norms of the integral operators with kernels Kt and K.

Substituting in equation (20) we obtain

x(t) — o2 J    K(t, s)x(s)ds
J 0

(21)

+ /   i, e, -   f   A-(i, s)x(s)ds,     -  J     Kt(l, s)x(s)ds    = 0.

If/ contains no linear terms in x alone, this equation is of the same form as
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equation (1) with L = I—u2K, where £ is a completely continuous operator

on 2E = S[0, tt] and the real parameter e plays the rôle of y. If the function is

chosen to have a certain amount of differentiability in its last three argu-

ments, then the associated function £(x, e) satisfies hypothesis (HT). In such

a case we can apply our preceding results to derive information about solu-

tions of (20) in the neighborhood of a given solution.

As a particular illustration, we consider

<P"it) + «V(0 + A it) [<pit) ]2 + Bit) [0(0 ]«

+ e[Cit) + Dit)<bit)] + e2Eil) = 0,

with the boundary conditions 0(0) =0(ir) =0, and seek solutions in a neigh-

borhood of the trivial solution (0, 0). In the case that w is not a positive

integer there is a unique local solution, by Theorem 1.4. We suppose that

<o = l(8).

Bearing in mind that Mi(i) = (2/7r)1/2 sin / and /i(x) =/¿'x(<) -Uiit)dt, we

can easily compute some of the coefficients of §7 to be

Ö20 = hA*, A* —  I    Ait)i3 sin t — sin 3t)dt,
J 0

«30 = - hB*,       B* =  |    Bit)i3 - 4 cos 2/ + cos U)dt,
J o

aoi = AC*, C* =   f  Cit) sin tdt,
J 0

where A has been used to denote three different and unimportant positive

constants. We have the following cases:

(1) If A*C*<0, then Theorem 3.3 implies that there are two distinct

local solutions for e small and positive and none for e negative. If .4*C*>0,

this situation is reversed.

(2) H A* = 0, but B*C*^0, then Theorem 3.4 implies that there is one

local solution.

(3) If A* = B* = 0, but C*5¿0, Theorem 3.1 implies that there are no

local solutions.

If C vanishes identically the computation is facilitated and

an = - AD*,       D* =   f   D(0(1 - cos 2t)dt,
J 0

a02 = hE*, E* =   I    £(¿) sin tdt,
J 0

(8) Almost all of the special results we cite are true without change if « is an odd integer.

In the case that w is an even integer the appropriate conclusions can be determined in a similar

manner.
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so that if C vanishes identically we have:

(4) If A*E*?¿0, Theorem 3.5 implies that there are either two distinct

local solutions or none according as D*2 is greater or less than 4A*E*.

(5) If .4* = 0, but B*D*E*^0, then Theorem 3.6 implies that there are

either one or three distinct solutions according as B*D*e is positive or nega-

tive.

If both C and E vanish identically, it is readily seen that for e sufficiently

small, <f> = 0 is automatically a solution. Under this hypothesis we also have:

(6)" If A*?¿0, then Theorem 3.1 implies that there is also a non trivial

local solution.

(7) If .4* = 0, then Theorem 3.3 implies that there are two nontrivial

solutions when B*D*e is negative, but none if it is positive.

It is interesting to note that if we replace (22) with

*"(<) + *(0 + A(t)[4,'(t)]2 + B(t)[4>'(t)}3 + <[C(t) + D(t)4>(t)] + e2£(i) = 0,

and A* by A**=f¡A(t)(sin i+sin 3t)dt and B* by B** = f0rB(t) (2 sin 2i
+sin 4i)ó"i, then all of the special results listed above remain true without

change. Other modifications can be made as desired, and in this way we can

obtain information about the existence of local solutions for differential equa-

tions of this form.
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