
ON RESIDUES OF POLYGENIC FUNCTIONS

BY

VINCENT C. POOR

1. Introduction. The class of complex functions considered here are de-

fined in a domain D of the complex plane. The single-valued function f(z)

— u(x, y)-\-iv(x, y) is polygenic in the sense that the z derivative

limit (/(z) -/(zi))/(z-zi)

depends on the rectilinear direction of approach of z to Zi. It, in fact, has a

different value for each direction of approach.

In a previous paper in the Transactions [3] we considered residues at a

point, of polygenic functions. Here our purpose is to extend these results to

areas, generalizing the notion of classical residues of holomorphic functions,

with the same object, of course, to characterize in some way polygenic func-

tions. We shall develop the general theory and apply it to several special

cases.

2. Character of problem and proposed solution. In the theory of mono-

genic functions the residue is defined by the equation

& -— ff{z)dz.

If f(z) has no poles inside the closed contour c bounding the region a, then R„

is zero. If in this region F(z) has a pole so that f(z) = F(z)(z — a), then the

residue of F(z)

R. = /(«)•

The restriction here is that the contour c bounding a includes no other singu-

larities of F(z).

If, on the other hand, f(z) is a polygenic function, the contour integral is

no longer independent of the path. Hence R„ given above depends on the

contour c, and the definition loses its sense.

In the paper [3] referred to, we defined the residue of a polygenic func-

tion as the limit toward which the above expression, when the contour is re-

garded as a circle with radius r, center at a, tends when r—»0. This definition

generalizes the above definition for monogenic functions since for such func-

tions it furnishes the same value of R.

It appears that there exists another way out of this difficulty which has

an advantage over the "limit definition" for residues. We may note the fact
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that the failure in the application of the contour integral to polygenic func-

tions is due to two distinct causes; one is that a polygenic function involves

a certain continuously distributed density over the area and the other is

the presence of discontinuities. The use of the residue is to characterize the

discontinuity—we want therefore to eliminate the first cause. In the "limit

definition" this purpose was achieved by contracting the contour and thus

reducing the area to zero. In the alternative we are proposing, the same pur-

pose is achieved by subtracting from the contour integral an area integral

which accounts for the continuous distribution. The advantage is that the

new definition conforms better to the general idea of residue—the value of

the expression is now independent of the precise region over which we inte-

grate; this is analogous to the classical residue. In the case considered the

integral over the area will contain the Pompeiu [2] areal derivative as a

factor in its integrand.

The following question now arises: Does the new definition give the same

result as the "limit definition"? This paper is devoted to a study of the new

definition and its extension and in particular to a discussion of the question

just stated.

3. Basic theorems. Some fundamental theorems included here will be

useful in the sequel.

Theorem 1. If f(z) possesses a differential at every point of D so that

df=fxdx+fydy, then for the circulation fcf(z)dz around every rectifiable closed

curve c in D bounding the area a to exist and be finite it is necessary and sufficient

that the Pompeiu areal derivative df/da exist and be finite at every point of D.

The necessity. The two displacements dz and Sz of the point z define an

elementary parallelogram, Aa¡, say, whose boundary we designate by c¡.

The flow around c¡ (area to the left) of /(_) we compute starting with f(z)

at the point z. It follows then that

L}(z)dz = f(z)dz + (f(z) + df+ Vi)Sz - f(z)Ôz - (f(z) + 5/4- V2)dz
(3.1)    Jci

= i[ux — Vy + i(vx + uy)](dx5y — dySx) + i?i5z — r¡2dz

= i[ux — Vy + i(vx + Uy)](Ao-¡)' + rjiôz — r¡2dz,

7/i and 172 being second order infinitesimal functions of ¿x and hy and (Aa,)'

an infinitesimal area of the same order as A<r¿. Hence

~r f f&dz
lAo-j J Cj2ÍAcSí

(3.2) '
1 r 1 W 1

= —- [Ux — Vy + l(vx + Uy)]-h —- (r¡iSz — 7]2dz),
2 ¿\ffj        2iAffj

and in the limit as Acr—>0 as an area the left member of (3.2) becomes the
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areal derivative at z while the terms in 771 and ij2 vanish so that

df/da = [ux — vv + i(vx + uy)]/2.

Thus the areal derivative exists and is finite at every point of D.

The sufficiency. We here choose a rectifiable closed curve ein D bounding

the area a. We then divide a up into a system of n mesh circuits by two

families of intersecting parallel lines. For the/th mesh we have by definition

from this it follows that

imit—;- I
<¡¡-<0   2ÍAo-jJoj

limit f(z)dz;
da Aa-

If 10/
—-;   I      f(z)dz = — — Affy + IJjAo-y
lict J c, x   da

where ijy is an infinitesimal function of A<ry. We now sum the terms of the last

equation (j=l, 2, • • • , n) and observe that E"-i vAffi £>oes to zero as n

increases without limit by the Duhamel theorem. By the fundamental law

of the integral calculus the remaining terms lead to the equation

1  r if»/
(3.3) ffrz)dg = _l     J_d(T.

¿irlJ c it J a   da

However, in computing the left member of (3.3) we resort to the use of

the triangles formed by drawing a diagonal of each parallelogram, together

with those triangles at the boundary one side of each of which is the join of

two adjacent points of intersection of the families of lines with the curve c.

These joins form an w-gon.

Now, the circulation around a parallelogram is equal to the sum of the

circulations around its two triangles since the resultant flow along the di-

agonal is zero. The resultant flow along a common side of two adjacent tri-

angles is zero. Thus the resultant circulation is the flow around the w-gon.

In the limit then as n—> °° this becomes the circulation integral taken around

c, since for a rectifiable curve the ratio of the cord to the subtended arc is

unity. If in the right member the summation is by triangles the limit will

evidently be the integral over the area. The areas between the cords and

their subtended arcs are second order infinitesimals which also vanish in the

limit.

This proves the theorem since the right member of (3.3) exists and is finite.

In passing we include the

Corollary. If f(z) is continuous, the necessary and sufficient condition that

f(z) be analytic in D is that the areal derivative df/da = 0 at every point of D.

If f(z) is analytic in D, then evidently the areal derivative vanishes. The
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converse of this is the Morera theorem since/(z) is continuous.

Theorem 2. If f(z) possesses a differential of the form df—fxdx+fydy, then

for the circulation fcf(z)dz to exist and to be finite for every rectifiable closed curve

c in D bounding a, it is necessary and sufficient that the Kasner mean derivative

[l] df/dß exist and be finite at every point of D.

The analogue to the corollary above may be stated and proved. The van-

ishing of the mean derivative makes/(z) analytic in z. The proof of Theorem 2

will be omitted since the proof may follow the arguments on Theorem 1.

The mean derivative is defined by the equation

df -if
—  = limit- I    f(z)dz
dß       a<tj-*o 2iAo-jJ cj

where z as usual is the conjugate of z. However, Theorem 2 leads at once to

the theorem

in 1   C  df

(3-4) -^//Wii"7J. 5*
4. Residues of polygenic functions. Following the suggestions in §2 we

define the residue of f(z) over an area <r in D by the equation:

1    c 1   C  df
(4.1) £' = —     /(z)¿z--        ~¿<r(i)

¿TlJc x J„   da

when these integrals have a meaning.

It is assumed throughout that the areal (mean) derivative of the poly-

genic function f(z) in general exists and is finite in D; this statement is

omitted when it is clear from the context.

Theorem 3. If f(z) is continuous and if the areal derivative exists and is

finite in D, then the residue R' over a bounded by c in D is zero.

This theorem follows directly from (3.3). If f(z) is analytic in D, R' re-

duces to the classical residue since in this case df/da = 0.

In the sequel we shall consider a function f(z) to be regular [4] in the

sense that it possesses a restricted Hamilton differential so that f(z) may be

expressed in the form

(4.2) /(_) =f(a) + dl(z-a) + dt(z-a) + r,
dp da

where n is a second order infinitesimal function of z — a, or it may be con-

sidered "der Rest der Reihe" of a Taylor series [5].

(') This result was communicated to me by Professor I. Halperin in a letter now misplaced.
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Theorem 4. // f(z) is regular at every point of D and if z = a is a single

simple isolated pole of F(z) in a bounded by c a rectifiable closed curve in D so

thatf(z) = (z —a)F(z), then the residue R' of F(z) over a is

1    n f(z)dz       1   r   df/da
(4.3) R„(F)=—\   ^-JL—dff = Âa),

¿■kiJ c  z — a       x «/„  z — a

This is the Pompeiu theorem [2]. However it is easily proved by sur-

rounding the point a by a circle center at a and applying (3.3) to the annular

area and contracting the circle to a point. It is understood that the circle is

joined to c by a line making the annular area simply connected. The integrals

along the connection cancel so need not appear in the analysis. Again it f(z)

is analytic in D the integral over a drops out leaving the classical residue.

This, of course, is not the whole story for a second type of residue arises

for polygenic functions. This type of residue is associated with the mean

derivative. We define it by the equation

- i   r 1 C df
(4.4) R' =-: I f(z)dz-I    — da

2-KlJ c IT  J „    dß

when these integrals have a meaning.

Theorem 5. If f(z) is continuous and if the mean derivative exists and is

finite in D, then the residue R' of f(z) over a bounded by c in D is zero.

This is evidently a consequence of (3.4).

Theorem 6. If f(z) is regular at every point of D and if z = a is a single

simple isolated pole of F(z) in a bounded by a rectifiable closed curve c in D

so that f(z) = (z — a)F(z), then the residue R' of F(z) over a is zero.

In the proof of this theorem we surround the point a by a circle, radius r

with center at a, and write out R' for the annular area a' between c and o.

We thus have

1    r  /íf)*        1    C Mdz       1   r   àf   f(z)
(4.5) R'AF)=-—I    -^-^— + —1    —-I    — -^-¿«r = 0

2-wiJ e   z — a       2iriJ o  z — a       ir J „- dß z — a

since the annular area contains no discontinuity. The integral around the

circle

/'  f(z)dz C      dz df C   z — a

o z — a J o  z — a      dßJ o  z — a

df C    & ~ à)dz C     r,dz' C    (z — a)dz C
- +

iJ o      z — a ./ o

The first three integrals on the right of (4.6) are identically zero while the
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last goes to zero with r since v is a second order infinitesimal function of

z—a = rew. Hence as a'—><r, R'—»0.

We now define the total residue by the equation

R = R' + R'.

Thus if f(z) is continuous and the integrand has no singularities,

R = 0,

while if the integrand carries also the simple pole z = a only, we see that

R = R' + R'= fia).

5. Many isolated poles and poles of higher order. Suppose that z = ai and

z = a2 are single simple isolated poles in a so that /(z) = £(z) (z — ai) (z — a2),

where/(z) is regular, as defined by (4.2). Then by definition

1    r           f(s)dz               1   r        W/
(5.1) £' = —;      -—-I    ——

2x¿ J c   (z — ßi)(z — a2)       T J „   (z — ax

idf/da) d<r

)(z — a2)

To show that these integrals exist and are finite over <r we surround ai

and a2 by nonintersecting circles Oi and o2 with centers at ai and a2 respec-

tively. We join each of the circles to c by straight lines, say, making the area

between c and the circles a simply-connected region, <r'. The integrals along

the joins cancel each other as before and do not appear. We then have for

this area a'

fiz)dz 1    C f^dz
-ft*'
?, = J_ Ç        f(z)dz_l_ r

2tíJ c   iz — ai)iz — a¡)      2tíJ „.,   iz — ai)(z — c2)      2tíJ 0l iz — «i)(z — a2)

1    r fiz)dz 1   r       idf/da)do-

2tíJ „2 iz — ai)iz — a2)       x J„- (z — ßi)(z — a2)

If the function /(z) is regular and treated as in Theorem 6, it will be

simple to show, and it was implied in Theorem 4, that the general result

holds that

1    r  f(z)dz
(5.3) limit—; I    A±-=fia)

r-H)   2xi J o   z — a

o being a circle with radius r and center z = a.

For the circle around o\, /(z)(z —a2) is the regular function in the integrand

so that the second term on the right in (5.2) becomes — /(ai)/(ai — a2) and

similarly the third integral becomes —fia2)/ia2 — ai) in the limits.

Hence the residue over <r

D/      fiai) - fia»)
Re =-

ai — a2
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since each circle has been contracted to a point, its center.

The  result   here   generalizes   at   once   to   n   isolated   simple   poles  a¡

(j = l, • • • , n). Evidently

*' = E
3=1

It will also be easy to show that

/(«;)

II    (ai - ak)
k-l,jptè

R' = 0.

The analysis will be omitted.

Poles of higher order may be treated in some similar manner, each case

on its own merits.

6. Singularities of a certain linear function. There was another type of

pole considered in the Transactions paper. The problem there was to de-

termine the residues at the origin of the function (az-f-ôz)-1. We shall

broaden this problem by introducing the factor f(z), a regular polygenic

function defined by (4.2). The problem here then is to determine the residues

of f(z)(az-\-bz)~1 over an area a bounded by a rectifiable closed curve c in D,

with the origin a point of a.

We surround the origin by a circle o, radius r with center at the origin,

and since the poles of the integrand are at the origin we have for the annular

area a' between o and c

(..t, *;.„-Lf J^ÍL.AC ÜS¡L,-¿j| ±JW_*_o,
2iriJ c   az + bz      2tiJ „   az + bz       x J „> da az + bz

with the similar defining equation for RJ. In evaluating the integral around

the circle o it is to be understood that the poles of the integrand, when they

fall outside o, lie in the annular area.

When f(o) replaces f(z) in the integrand of the integral around the circle

o aside from the constant factor/(o), we obtain the integral treated in the

Transactions paper [3]. But the situation is different here; in the former

paper poles outside the circle o gave a zero contribution to the residues.

In case I: |ö| >|a| the poles of the integrand fall in the annular area. In

this case, since

(6.2)
1 / 1 1 \

!a\z - i(b/ayi2r       z + i(b/ayi2r)'az2 + br2      2a\z - i(b/a)^2r       z + i(b/a)

we must revise (6.1); we draw two nonintersecting circles Oi and o2 with cen-

ters at the poles; we connect the circles to c by straight lines, say, to preserve

the simply connected region. We subtract the integrals around these circles

each multiplied by l/2x¿ from the left member of (6.1). It is evident from



1953] ON RESIDUES OF POLYGENIC FUNCTIONS 251

this that the residue

Rl = fio)/a.

The integral around o is found and when each circle involved is collapsed to

a point, o-' becomes er. Here also RJ =fio)/b which is found by first writing

the integrand in the form (z/b)/(z2 + (a/b)r2) which in turn has its two

poles inside the circle. Had the poles in (6.2) been inside the circle, Case

II: |è| <\a\ the residue RJ would have been the same. In Case III: \b\

= |a|, the poles were distributed along a straight line through the origin.

Here the residues will differ from those in the former paper by the factor/(o).

When /(_) is replaced by (df/dß)z, the integrand, omitting the constant

factors, is

z2 br2
(6.3) -=1 + --■-

z2 + (b/a)r2 aiz2 + ib/a)r2)

When (df/da)z replaces/(z), the integrand will be r2/(z2 + (b/a)r2) omit-

ting some constant factors again. When |ô| ^\a\ 5^1 we need consider only

the function

1 _    a1'2   / 1 1 \

z2 + (b/a)r2 "   «6»V\_ - i(b/ay2r "  z+ ¿(J/o)1/2r/

We treat the two poles here as formerly. The contribution to the residues will

evidently be zero.

When | 61 = | a\, Case III, we have to consider only the integral

r2dz

Sz2 + e'*r2

The integrand will have poles distributed along the straight line with slope

angle (<p — x)/2. But aside from the fact that the integral around o is zero,

there is an extra r in the numerator which goes to zero also. Thus the second

and third terms in / contribute zero to the residue.

When /(z) is replaced by r¡ in the integrand in the integral around o in

(6.1) and rj in turn by a homogeneous quadratic function, the integral reduces

to the original integrals each multiplied by r2 or r with an exponent greater

than two, and to some other integrals which are zero or carry the factor r2.

Higher degree terms than the second in n act even more favorably. Thus r¡

contributes zero to the residues.

We determine Ï?' in the same way as indicated using z as the variable.

The final results tabulate as follows:

i    i      i    i ,      fio) —,      f(o) a + b
Case I:      | b \ > \ a \ ; R, = —-, R, = i^~ ; R = f(o)-;

ab ab
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iiii /      f(°) —i      f(o) a + b
Case II:    \b\<\a\;        R', = ^ ; % = ^ ;        F = /(o) —^- ;

0i ao

iiii ;      f(o) — ,      f(o) a + b
Case III:    o   =   «   ; R„ = — ;       £„' = ¿14- ;        tf = /(«,)-

2a 2b 2ab

7. Singularities of certain quadratic functions. We shall be interested

here in the residues of the function /(z)(az2+£>¿zz-|-c'z2)-1 over an area a

bounded by a rectifiable closed curve c in D. The function f(z) is defined by

(4.2), while the origin is a point of a. Without affecting the generality of the

problem we take the constant a equal to unity so that

(az2 + b'zz + c'z2)-1 = z2(zi + b'r2z2 + cV4)"1

= s2(z2 + bxr2)-\z2 + b2r2)-1

when r is constant.

If a circle o, radius r, is drawn with the origin as center the residue over

the annular area a' between o and c,

f(z)dz 1    r f(z)z2dzR, = J_ C        f{*)dz_i_ r

2iciJ c   z2 + b'zz + c'z2      2-wiJ o.   z2 + b'zz + c'z2      2tíJ0   (z2 + bir2)(z2 + b2r2)

(7.1)

-If ±—M_,„.„,x J „' da z2 + b'zz + c'z2

with the similar defining equation for R'a,.

There are essentially nine different cases to consider and when f(z) is

replaced by the linear terms in (4.2) there will be three times as many, dis-

regarding the number arising when R'y is to be determined.

We, of course, concern ourselves with the integral around o and its alter

egos. If some of the poles are distinct and lie in the annular area, (7.1) has to

be revised. We treat it and the integrals around the other circles needed just

as in §6, and finally contract each circle to a point.

When f(z) is replaced by f(o), aside from the constant factors, the inte-

grand of the integral around o

z2 Oi     1      62     1
(7.2) ■-=-+ ■-(h ^ b2)

(z2 + hr2)(z2 + bit2)      bi - b2 z2 + hr2      b2 - h  z2 + b2r2

and when bi = b2 = b we have

z2 1 br*
(7.3)

(z2 + br2)2      z2 + br2      (z2 + br2)2

The residues here will be zero in all cases. Each integral excepting the

last is essentially the function obtained in (6.3). It is easy to show that the

last function when properly integrated will vanish also in all cases. When the
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poles are distributed along a straight line chief values must be taken, as in §6.

A complete classification of cases will be given subsequently.

When/(z) is replaced by (df/dß)z in (7.1) the integrand of the integral

around o, omitting the constant factor, is

z3 bi z b2 z
(7.4)    -=-h--'  bi^b2,

(z2 + hr2)(z2 + b2r2)      bi - b2 z2 + V2      b2 - h z2 + b2r2

while

z3 z br2z
(7.5) -=-> bi = b2 = b.

(z2 + br2)2      z2 + br2      (z2 + br2)2

These functions arose in §6 except the last in which case it is not reducible

when the poles are linearly distributed.

We consider briefly one case: ¿»1 = 6**; \b2\ >1. Since bi9¿b2 we use (7.4).

The integrand of the first integral will have poles distributed along the

straight line with slope angle (<p — x)/2 as in §6. The integral around o,

/zdz r '

22,    gi*r2~   J

zdz r2'       iei$dd

e^r2 0}

2t

— I      idd —  |     tan (-6)
2 Jo Jo \2        )

dd

In evaluating the second integral from 0—>2x we take chief values avoiding

the line of poles by integrating from (<p — x)/2+e to (4>+t)/2 — e and from

(<p+T)/2+e to (<p—x)/2— e. When the terms are properly paired off, they

will be seen to cancel in the limit as e—>0.

The second function on the right in (7.4) has two poles in the annular

area, which are to be treated exactly as in §6. The sum of the two integrals

arising, omitting the constant factors, is 2tí. In this case the resultant residue

_    bi - 2¿2    d¿

' " 2(6! - b,) dß '

When/(z) is replaced by (df/da)z in the integrand of the integral around o

we obtain the function

1      /       z z       \
- =-),     bi^bi,
)      bi-b2 \z2 + b2r2      z2 + ôW(z2 + bir2)(z2 + b2r2)

while for £>i = b2 = b we get r2z/(z2+br2)2, which is not reducible when |i>| =1.

In all cases £¿ = 0 excepting in the  two cases,  II  and VII  below, where

Rl=df/2(bib2).
oaf
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When/(z) is replaced by r, in the integral around o in (7.1) and it in turn

by a homogeneous quadratic function, we shall have a situation analogous to

that in §6. The statements there are also applicable here. The finite integrals

already studied will recur each multiplied by r with an exponent sufficiently

large. The other integrals arising are zero or they go to zero with r. The

contribution to the residues F„' furnished by r, is zero.

In tabulating the final results we have attempted to order the sets, working

from inside the circle o to the annular area, bi playing the leading role. Thus

,      df
Cases I, IV, IX:     | h \ $ 1,      | b21 ̂  1,     6i ^ b2;      Ra =

dß

Cases II, VII:   h = e¿*,   \h\ $
1        / df      df\

,      df
Cases III, VIII: hx^b2 = b,    I b   < 1;       K' = — ■■

dß

1 df
Case V:                        h = b2 = b = e^;       R, =--,

2 dß

,        1   df
Case VI: h = e1*,    b2 = e**;       R, =--

2   5/3

The similar results obtained for RJ defined by (4.4) will be entirely omitted.

A second quadratic function is (zs —1)_1 with poles distributed on the circle

radius one. We simplify the argument by drawing three circles with centers

at the origin Oi with radius 1— e, o2 with radius 1+e, and o3 with radius r3

>l+e.

For the circular area ai bounded by Oi we have

1    r       dz 1   C        zdo
—: I-+ — I   -= o
2-KÍJ 0l  ZZ —  1 7T J „x   (zz —  I)2

and for the annular area a2 bounded by o2 and Oz

1    r       dz 1     r       dz If

2-7TÎ J „,   ZZ  —   1 2-7TÎ J „„   ZZ  —   1 7T   J „

zâV

liriJ 0%   ZZ  —   1 2lviJ 0l   ZZ  —   I IT  J „z   (ZZ  —   I)"1
0.

The sum of these left members will be F^, for the area a' excluding the poles;

this excluded area lies between e>i and o2.

We wish to determine what happens to R'a- as e—>0 or when tr'—xr. If we

combine the integrals around Oi and o2 we get zero, since for a fixed € each

integral is zero. In adding the integrals over ai and a2 and introducing polar

coordinates we find that each integral carries the factor ei9d0 with limits 0

and 2x. These integrals are evidently zero. From this one must conclude that
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R¡ = 0 = X.

8. The role of the limit definitions. In reviewing the results obtained

under the new definitions it may be noted that every residue over an area

was computed through the use of the limit definition. This is evident for the

single isolated pole and possibly for n such poles computed as the sum of the

residues at each pole. The residue at a point was used directly to determine

the residues over an area for the function f(z)(az+bz)~1. (The difference in

the results from those in the Transactions paper were due to the poles outside

the circle.) This is also true for the first quadratic function in §7. For the dis-

continuities distributed on the unit circle the limit definition was slightly

extended when the circles Oi and o2 were made to coincide with the unit

circle when e—>0.

This shows the importance of residues at a point of polygenic functions in

the extension to residues over an area. Further, the residues of holomorphic

functions become special cases of residues of polygenic functions.
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