
INVARIANTIVE THEORY OF EQUATIONS IN A
FINITE FIELD

BY

L. CARLITZ

1. Introduction. Let GFiq) denote a fixed finite field and r a fixed integer

5:1. Consider the set of transformations

(1.1) <f>: £,• = <t>iivi, ■ • ■ , Vr) ii = 1, • • • , r)

possessing an inverse; here £,-, niGGFiq) and thecp, are polynomials with co-

efficients GGFiq). The totality of transformations (1.1) form a group iso-

morphic with the symmetric group on qr letters. If /=/(£i, • • • , £r) is an

arbitrary polynomial with coefficients GGFiq) and <pf=g, then/ and g are

equivalent. Two polynomials / and g are defined as equal if /(£i, ■ • • , £r)

= g(£i> ' ' ' » Sr) for all £<. It follows that there are ç4' distinct polynomials.

By means of the previously defined equivalence relation they are separated

into a certain number of classes; a simple combinatorial argument shows that

the number of classes is

/qr+q- 1\

(1'2) (,-•)'

where the symbol in (1.2) is a binomial coefficient.

The purpose of this paper is to discuss invariantive properties of the equa-

tion /(¿i, • • • , £r) =0, where/ is an arbitrary polynomial with coefficients in

GFiq). In particular if N/ia) denotes the number of solutions oí f = a, then

the numbers N/ia) form a complete set of invariants in the following sense:

Two polynomials / and g are equivalent if and only if N/ia) = N0ia) for all

ct^O. Moreover any invariant of/ (with rational values, say) can be exhibited

as a polynomial in the N/ia) with rational coefficients. A number of addi-

tional topics and applications are also discussed.

Dickson in [5] and subsequent papers (for references see [ll]) initiated

the study of modular invariants. The transformations employed are restricted

to the group of linear transformations. By contrast we are here considering

the larger group of transformations (1.1). Thus many of the invariants in-

troduced by Dickson are no longer invariants from the viewpoint of this

paper. While we are here considering only the invariants of a single poly-

nomial, we hope to discuss subsequently the general case of systems of poly-

nomials.

It may be helpful to list the contents of the paper by sections. 1. Introduc-
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tion. 2. Notation and terminology. 3. Some preliminary results. 4. Trans-

formations. 5. Classes. 6. Characteristic invariants. 7. Reducibility. 8. Addi-

tional properties of M(f). 9. Some applications. 10. Other applications.

2. Notation and terminology. The numbers of GF(q) will be denoted by

lower case Greek letters a, ß, y, • ■ ■ , £, r¡. The letters q = pn and r will have

the meaning assigned above.

By a polynomial f=f(x\, • - ■ , xr) will be meant a polynomial in the

indeterminates Xi, - - • , xr with coefficients in GF(q) ; we write /

GGF[q, Xi, • • • , xr]. Polynomials will in general be denoted by lower case

italics f, g, ■ ■ ■ ; however the polynomials constituting the transformation

(1.1) will be denoted by lower case <p, \p, • • ■ . Two polynomials /, g

GGF[q,Xi, - ■ ■ , xr] are equal il and only if/(^i, • • • ,£r)=g(£i, • ■ ■ ,£r)forall

ZiGGF(q). Thus every polynomial/ is equal to a unique reduced polynomial

in which every exponent ^q — 1 (proof in [4]).

Two polynomials /, g are equivalent (f~g) if there exists a transformation

<f> of the form (1.1) such that <f>f = g. By a transformation will always be under-

stood one of the form (1.1), that is, one possessing an inverse. Equivalent

polynomials constitute a class. Classes of polynomials will be denoted by

capital italics, A, B, C; in particular the class containing the polynomial/

may be denoted by A¡. If the transformation \p leaves / unaltered (that is,

\pf=f) then \p is an automorphism of/. Thus the totality of automorphisms of

/ form a group G = G¡ of order v(f). If <£/=g, then it is clear that the group of

automorphisms Gg=<p~1G¡<p; in particular v(f)=v(g). Thus the number of

automorphisms is the same for any polynomial of a fixed class A ; accordingly

we write v(A) for this number.

If a polynomial / is equivalent to one in s but not fewer variables, then s

will be called the rank of/. We may also call 5 the rank of A¡, the class con-

taining/.

If aGGF(q) we define

(2.1) t(a) = a + a" + • • • + a**-1,

so that t(a) is an integer (mod p). We next put

(2.2) e(a) = «**«<«>/*,

so that

e(a + ß) = e(a)e(ß),       e(0) = 1,

(2.3) £     e(aß) =  \Ç
aGOF(q) U)

where the summation is over all a in GF(q). If/ is an arbitrary polynomial we

define

(2.4) M(f)=   £    </"(&. • • • , Ér))
fi, ••-.{,

(ß = 0),

08 * 0),
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and

(2.5) NA\a) - Niffo, ■ • • , &) - «},

where the N on the right denotes the number of solutions £i, • • • , £r of the in-

dicated equation. Similarly by the symbol

(2.6) ff{/>(fi. ■ • • , Sr) "- «i, • •'• • , Mti, ■•-,*,) = at)

is understood the number of solutions of the indicated system of equations.

It is clear from the definition that

(2.7) D    N/ia) = f;
aEGF(i)

a like result holds for (2.6).

For brevity we shall sometimes speak of the point (£i, • • • , £r); also

when convenient we shall write /(£) for /(&, • • • , £,•)•

3. Some preliminary results. The following theorem is given by Dickson

[5, p. 124] and is an immediate consequence of the Lagrange interpolation

formula.

Theorem 3.1. Let /(xi, • • • , xr) be a polynomial that takes on the values

fiiu " * " i £r) ; then we have

(3.1)    fixi, ■■■ ,xr) = i-iy £   ^—^... ______Ç/(fi)... t £r).
Í1. ••-,{,.    *1 — Ç1 Xr — fr

The right member of (3.1) is evidently in reduced form.

It follows at once from Theorem 3.1 that the number of distinct poly-

nomials in r variables is qq'. Another consequence of Theorem 3.1 can be

stated as follows: The residue class ring GF[q, _.,*••, xr] modulo

ix\ — Xi, • • • , x' — Xr) is a direct sum of qr fields GFiq).

Theorem 3.2. // M(f) and N/ia) are defined by (2.3) and (2.4), respectively,

then

iS.2) N/ia) = ç-1 £ ei- aß)Mißf).
ß

To prove (3.2) we consider the sum

(3.3) £     £«{0/tti, ••■,{,) -a/3}.
fl.---.fr    »

On the one hand it is evident from (2.3) that (3.3) is qN/ia); on the other

hand, interchanging the order of summation, we get

E ei - aß)     Z    eißfiiu ■■■ , Ir)).
ß fi.---.f,

Applying (2.3) we get (3.2).
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Theorem 3.3. In the notation of Theorem 3.2, we have

(3.4) M(yf) = £ e(ay) N;(a) (y G GF(q) ),
a

and in particular

(3.5) M(f) = D e(a)Nf(a).
a

To prove (3.4), we multiply both members of (3.2) by e(ay) and sum:

£ e(ay)Nf(a) = r'IZ «((7 - ß)<*)M(ßf)-
a ß        a

Now apply (2.3) to the inner sum on the right, and (3.4) follows.

Theorem 3.4. Iff~g then M(f) = M(g) and N,(a) = Ng(a) for allaGGF(q).

Let g(£)=f(r,), where

(3.6) Vi = fruí, ■ ■ ■ ,{r) (i = 1, • ■ • , r).

Then clearly to each solution of g(^)=a corresponds a unique solution of

f(r,)=ct. Conversely since (3.6) has an inverse, to each solution ot f(r,)=a

corresponds a unique solution of g(i-) =a. This proves the second half of the

theorem. The first half now follows on applying (3.5).

By Theorem 3.4, M(f) and N/(a) are class invariants; hence if fGA we

may define

(3.7) M (A) = M(f),        NA(a) = Nf(a).

Note that by (2.7) we have

(3.8) Y,NA(a)=qr
a

so that the numbers Na.(ol) are not independent. However aside from the rela-

tion (3.8) the integers NÁ(a) can be chosen arbitraril}'. More precisely we

prove

Theorem 3.5. Given integers h(a) ^0 such that

(3.9) E h(a) = q',
a

then there exists a polynomial f such that

(3.10) Nf(a) = h(a) for all a G GF(q).

This theorem can be thought of as a corollary of Theorem 3.1. For the num-

bers /(£i, • • • , |,) ia (3.1) are arbitrary quantities in GF(q) and Nj(a) de-

notes the number of terms in the right member of (3.1) such that/(£i, • • • , £r)

= a, that is, h(a). The necessity of (3.9) is merely a restatement of (3.8).
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A word may be added about such equations as (3.2) and (3.4). If Ria),

5(a) are two complex-valued functions of a such that

(3.11) Ria) = X eiaß)Siß),
ß

then it is easily proved using (2.3) that

(3.12) Sia) = q-i¿2i-afi)Rifi);
ß

conversely if we assume (3.12) then (3.11) follows. Moreover we have

(3.13) £ Siy)S~ia + y) = q~» X <aß) \ Riß) \2,
7 ß

where 5 denotes the complex conjugate of 5. For a fuller discussion and gen-

eralization of these formulas see [12; 13]. Incidentally, for the special func-

tions A7/ and M, (3.13) becomes

X N/iy)N/ia + y) = <?"» X <aß) \ Mißf) |2,

(3.14) T '

X MiyfWHa + y)f) = ?X <~ ocß)N)iß),
y ß

and in particular for a = 0,

(3.15) Y,\Miyf)\2=qT.N2/iß).
y ß

4. Transformations. We first prove

Theorem 4.1. The totality of transformations (1.1) constitute a group iso-

morphic to (_5Qr, the symmetric group on qr letters.

It suffices to show that every permutation of the points (£i, ■ • • , £r) can

be effected by means of a transformation (1.1). This again is a consequence

of Theorem 3.1. For consider the polynomials

3 «

-— • •- tu it = 1, ■ • • , r).
ll, •••,{,     *1  —  k\ Xr  —  ,r

Clearly (4.1) implies <p,(£i, • • • , £r) =»?> (i:= 1, • • • , r). This evidently proves

the theorem.

Theorem 4.2. Two polynomials /, g are equivalent if and only if

(4.2) N/ia) = N,ia) for all a G GFiq).

Remark. In view of (3.8) it suffices to assert (4.2) for all but one value of

a.

The necessity of Theorem 4.2 has already been proved in Theorem 3.4.
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To prove the sufficiency let a be a fixed number of GF(q) and let

f(ßl    , • ■ •  ,ßr    )  =  g(yi    > ■ ■ ■  , 7r' )  =  OL        (j =   1, • • •  , S),

where s = N/(ct)=Ntt(ct). Now consider the permutation

(4.3) (ßi    ,-■■   ,ßr    )-»(Yi    , •  • •   ,7r    )

as both/ and a assume all permissible values. By Theorem 4.1 the permuta-

tion (4.3) can be effected by means of a certain transformation and this

transformation clearly carries / into g. The transformation is in general not

unique.

Theorem 4.3. Two polynomials f, g are equivalent if and only if

(4.4) M(ßf) = M(ßg) for all ß ^ 0.

It will suffice to show that condition (4.4) is satisfied if and only if (4.2)

is satisfied. Suppose (4.2) holds; then by (3.4) it follows that (4.4) holds. Con-

versely if (4.4) holds, then by (3.2) it follows that (4.2) holds. Hence the

theorem is proved.

Theorem 4.4. The number of automorphisms v(A) of the class A is deter-

mined by

(4.5) v(A) = H(NA(a))\,
a

the product extending over all aGGF(q).

Let fGA and as in the proof of the previous theorem let

}(ßi\ • • • , ß^) =a (j = 1, • • • , Nf(a)).

Clearly every automorphism of / is obtained by permutating the points

(ßi\ ■■■ , ß?) (i = 1, • • • , N,(a))

tor each a. Thus

"(f) = n wo*))!
a

which is the same as (4.5).

Theorem 4.5. The number of polynomials p(A) in the class A satisfies

(4.6) M>(A) = <?'!•

Let/ be any polynomial GA and let us apply to / each of the qT\ trans-

formations of <S5r. Since the number of automorphisms depends only on the
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class, it is clear that / is carried into each polynomial of A and that each

occurs the same number of times, namely viA). Therefore (4.6) is proved.

We next prove some theorems of a somewhat different nature. Let

<pi=<Piixi, ■ ■ ■ , xr) he one of the polynomials in the transformation (1.1).

Clearly (pi can be transformed into Xi and conversely if a polynomial <pi is

equivalent to Xi, then we can find r — 1 additional polynomials <f>2, ■ ■ ■ , <pr

so that the set of r polynomials define a transformation. Generally given k

polynomials <pi, ■ ■ • , <pk, then one can find r — k additional polynomials

<pk+i, ■ ■ ■ , <Pr such that <pi, ■ ■ ■ , <pr define a transformation if and only if

one can simultaneously transform <pi, ■ ■ ■ , <pk into Xi, • • • , xk, respectively.

Now if a polynomial <p is equivalent to Xi then it is clear that

(4.7) N+ia) = f~l for all a.

Using (3.4) and (3.2) it is easily seen that (4.7) is equivalent to

(4.8) Miy<¡>) = 0 for all y ¿¿ 0.

Thus when (4.8) holds we have, using (3.2),

N*ia) = g-W(O) + ç-'X «(- aß)Miycb) = f~K
ß*0

In the next place if we have two polynomials (pi, <p2 which can be simul-

taneously transformed into £1, £2, then it is evident that the number of solu-

tions Naiai of the system

<r>i(£i, • • ■ . &•) = ai,        <p2i£i, ■ ■ ■ , ¿r) = a2

is qr~2 for all a\, a2, and conversely. Now by (2.3) it is clear that

_W-i«, =   ___«(- «101 - ct2ß2)    X    «{0i*i(Ö + AWÖ}
(4 m ßl-ß2 fi.---.fr

= qr +   X' ei- aißi - a2ß2)Mißi4>i + Ml),
ßl.ßl

where in the sum on the right the combination /3i=/32 = 0 is excluded. If we

multiply (4.9) by e(<~iYi+<~2Y2) and sum we get, again using (2.3),

(4.10) Miyi<pi + 72^2) =   X e(«i7i + a2y2)Naia2.

By means of (4.9) and (4.10) we see that the condition Naai = qT~2 for all

«i, «2 is equivalent to Miyicpi+y^) =0 (71, 72 not both 0). It is now evident

how to prove generally the following

Theorem 4.6. Let l^k^r. Let N denote the number of solutions of the

system

(4.11) <PiiZi, ■ ■ • Ar) = ai Ü-.U--..M

Then the condition
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(4.12) N = q*-k (for all au ■ ■ ■ , ak)

is equivalent to

(4.13) M(yi<bi + • • • + yk<pk) = 0 {yt not all 0).

In particular for k = r, we have the following corollary.

Theorem 4.7. The set of polynomials <pi, ■ ■ • , <pr define a transformation

(1.1) if and only if

(4.14) M(yx<t>i + ■ ■ ■ + yrà,r) = 0 (y, not all 0).

We need only observe that when k = r, (4.12) becomes A^=l for all

«i, • • • , a,.

Rank. The rank of a polynomial has been defined in §2. We now prove

Theorem 4.8. If q\ Nf(a) for all a, then f is of rank &r — l.

Proof. The non-negative integers h(a) =q~1N/(a) satisfy y^.Mcc) = qr~1.

Hence by Theorem 3.5 there exists a polynomial g(r,i, ■ ■ • , ^r-i) such that

N't(ct)=h(<x), where the prime indicates that r,r is ignored in counting the

number of solutions. Consequently Ne(a) = qh(a) = Nf(a) and therefore by

Theorem 4.1 we have /~g.

Theorem 4.9. If q" is the highest power of q such that qs\ Nf(a) for all a,

then f is of rank r — s.

This theorem is evidently a consequence of Theorem 4.8 since it is clear

that if/ is of rank r — s then q*\ Nf(a).

If/is a quadratic form with nonvanishing discriminant (p9i2), then by

the familiar formulas the highest power of q dividing N/(a) is q"-1 tor r = 2s

and q* for r = 2s-{-l. Consequently by the last theorem the rank is 5 + 1 in

either case; thus the rank <r for r^3. In particular, then, the rank as defined

here is not to be confused with the ordinary rank of a quadratic form.

5. Classes. Theorems 4.2 and 4.3 furnish criteria for the equivalence of

two polynomials, Theorem 4.4 determines the number of automorphisms of

a class, and Theorem 4.5 determines the number of polynomials in a class.

We shall now determine the number of classes of polynomials in r variables.

As we saw in the proof of Theorems 4.3 and 4.4, for every polynomial/

there is a partition g,r= ¿^jaNf(a) and for each a a set of s = N/(a) points

(di", • • • , /3?>) such that

f(ßl\  ■■■   ,ß(/)   «« (/"I, •••.*).

It is convenient at this point to define a category of polynomials. Two

polynomials /, g belong to the same category if the set of integers {Nf(a)}

is some permutation of the set of integers {Ng(a)}. Thus by Theorem 4.2

equivalent polynomials fall in the same category; in other words each cate-
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gory consists of a certain number of classes. It is clear from the definition

that the number of categories is the number of partitions

(5.1) <r = £*. (*tft *»è *'■■' à i),
¿

where the number of summands is at most q; in other words the number of

categories is the number of partitions of qr into at most q parts. In particular

for r = 1 the number of categories is the number of unrestricted partitions of q.

Now corresponding to each partition (5.1) we get a certain number of

classes, which can be determined as follows. Clearly it is necessary only to

count the number of permutations of the ki making due allowance for repeti-

tions. Now, changing the notation, suppose we rewrite (5.1) as

(5.2) qr = ei+ 2e2 + 3e3 H- (a ^ 0).

Then the number of permutations in question is

?!
(5.3) - (e0 + ei + e2 + - - ■ = q) \

e0!ei!e2! • ■ •

since the number of values that/ takes on is q, the sum of the e¡ must also be q.

Thus the number of classes is

«I

(5.4)
eo!«i!e2!

where the summation is over all e¿ satisfying (5.2) and eo is defined by the

second of (5.3). To evaluate (5.4) we construct the generating function

(5.5) G(x) = ! + £*»•£
*-i eo!«i!«2-' ■ • ■

where the inner sum is over all e, such that

(5.6) m = ei + 2e2 + 3e3 + - - • ,        q = e0 + ex + e2 + • •

Now, on the other hand, consider the expansion  [10, p. 60] of

(a0 + axx + Ü2X2 +•■•)*=£ Amxm;

m=0

it is easily verified that

-r-i "• «0    «1    «2

Am = 2-, —:—:—:-flo ai «2
e0!ei!e2!

where
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Co + ei + e2 + ■ ■ ■ = k,        ei + 2e2 + 3e3 + • ■ • m m.

Comparing with (5.5) and (5.6) we see that the coefficient of x"1 in G(x) is

equal to the coefficient of xm in

" (q + m - 1\
il + x+ x2+ ...)-= (1 - *)-«= X( )*".

,„=o \     q — 1 /

Thus for m = qr we see that (5.4) reduces to

(5.7)

We have therefore proved

c:ry
Theorem 5.1. The number of classes of polynomials in r variables is de-

termined by (5.7).

It may be helpful to illustrate the theorem in one or two simple cases.

For <7 = 5, r—1, we have the following table.

I [5]        5
II [41]      20

III [32]      20
IV [311]      30
V        [221]      30

VI       [2111]      20
VII     [11111]     __1

126

There are seven categories as indicated by the Roman numerals. The second

column indicates the partition defining each category, the third column the

number of classes in each category. Note that the total number of classes is

/9\
126 -0

in accord with (5.7). We remark that category I contains the constants

0, 1, 2, 3, 4, while category VII consists of the class with representative £i.

Again £? is a representative of one of the 30 classes in category V.

For a second illustration we take q = 2, r = 3. There are now 5 categories

and 9 classes.

I [8]     2        0, 1

II [71]        2 ,1,2,3,  ,¿2,3   +   1

III [62]     2        ,1,2, ,i,2+l

IV [53]        2 ,1,2,3   +   ,!, ,!,2,3   +   ?I   +   1

V        [44]     1        ki
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The fourth column contains representatives of the several classes.

A somewhat more instructive example is furnished by g = 3, r = 2. There

are now 12 categories and 55 classes. However we shall not take the space to

exhibit the table.

We can refine Theorem 5.1 somewhat by determining the number of

classes of rank s, O^s^r. The result is contained in

Theorem 5.2. Let 1 ̂ s^r. The number of classes of rank s is determined by

f:r)-c7-r)
To prove this result we need only observe that the classes of rank ^s may

also be obtained by means of the polynomials in 5 variables; moreover each

class will be counted only once. Hence (5.8) follows at once.

We remark that the second example above also illustrates Theorem 5.2.

Indeed it also illustrates the following

Theorem 5.3. All the classes in a fixed category have the same rank.

This theorem follows immediately from Theorem 4.9 and the definition of

category. We have also

Theorem 5.4. The number of categories of rank s is equal to the number of

partitions of q" into at most q parts with greatest common divisor not divisible by q.

6. Characteristic invariants. Following Dickson [5; 6], we define the fol-

lowing functions

(l (B  m A),
(6.1) IA(B) =   ^

l0 (B^A),

where A and B denote classes. The IA are called characteristic invariants.

It is to be understood that the values 0, 1 taken on by these functions lie in

the complex field. The following properties are immediate consequences of

(6.1):

(A = B),

(A * B),

(6.3) £ IA = 1.

(Ia
(6.2) IAIB = 8AB =  i.

If h(A) is any function of A (with values in the complex field), then we

have the representation

(6.4) h(A) = £ h(B)IB(A).
B

Moreover the representation (6.4) is unique as follows from (6.2).
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The I a can be expressed in terms of a single invariant J now to be defined.

Let the classes be ordered Ai, A2, ■ ■ ■ , Aw in any convenient manner, where

w is given by (5.7). Now define the function JiA) by means of

(6.5) JiAi) = i (f- 1, • ■ ■ , w).

Then we have the easily verified formula

_, /(JO - /(¿y)
(6.6) IAiiX) = n -^——>

ii JiAt) - JiA,)

where X denotes an arbitrary class. Thus I a is a polynomial in /.

The exact values taken on by / in (6.5) are not essential; it is necessary

only that they be distinct. With the particular choice in (6.5) we can rewrite

(6.6) as follows

1        (w - i\ _
iAiix) = (-i)«-«-—— (.    )n(j(x) - JiAS)).

(w - 1) ! \ i - 1 / fyki

We have proved

Theorem 6.1. The characteristic invariant I a can be expressed as a poly-

nomial in J by means of (6.6).

Next, referring to (6.4), we get

Theorem 6.2. Any function HiA) with values in the complex field can be

exhibited as a polynomial in J of degree <w.

We shall now show that JiA) can be expressed as a linear combination of

Njiia), a t^O. Consider the sum

(6.7) íW = ZíAW;
ajtO

we seek a set of rational numbers ca such that the numbers FiA) are distinct.

We shall again suppose that the classes have been numbered Ai, • ■ -, Aw.

Then by Theorem 4.2 we can find a set of rational numbers {c^} such that

FiiAi) * FiiA2),      where F ¿A) = £ e_-ix(a).
_?*G

If FiiAi) = FiiAz), we pick a set {c?a} such that

F2iAi) * F2iA3),      where F_(_i) = X c_2V„(«) ;

then we can choose k so that if Fi2= Fi+kF2, then FniAi) ¿¿FniA^, FniAi)

¿¿FniAi) are all distinct. If now Fi2(-li) = -712(-44), we pick a set {c3a} such

that FiiAi) ^FsiAi), and proceed as before. Eventually we shall arrive at a

set {ca} such that the function (6.7) has the asserted property, that is, the
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numbers F(A) are distinct. Comparing with the proof of Theorem 6.2 we

infer the following fundamental property of the function NA(d).

Theorem 6.3. Any function H(A) with values in the rational field can be

exhibited as a polynomial in NA(a), a ?¿Q, with rational coefficients and of de-

gree <w.

Alternatively H(A) can be expressed as a polynomial in M(ßA), but the

coefficients need not be rational.

In view of Theorem 6.3, the set of invariants NA(a), a^O, may be called

a fundamental set. The same remark applies to the set M(ßA), ßr^O.

7. Reducibility. A polynomial /(£i, • • • , £r) is reducible if it is equivalent

to a sum

(7.1) g(vi, ■ ■ • , V«) + h(inB+i, ■ ■■ , r,/),

where g and h are each of rank 2:1 ; otherwise it is irreducible. A class is re-

ducible if it consists of reducible polynomials.

To derive a criterion for irreducibility note that the definition implies

(7.2) Nj(a) =  £ Ne(ß)Nh(y)

which is equivalent to

(7.3) M(yf) = Ms(yg)Mr-,(yh) (y * 0),

where M,(g) = £tl.....t. e(g(f)).

We recall that by (3.4)

(7.4) m(y) = M(yf) = £ e(ay)Nf(a),
a

where the notation m(y) indicates that/ is fixed. When 7 = 0 we have

m(0) = M(0) = £ Nf(a) = q\
a

Put p=e2ri,p and let Z denote the field R(p), where R is the rational field.

Thus»2(7) is an algebraic integer inZ. Since, by (2.2),e(ay) is some power of p

for all a it follows that

m(y) = m(0) = 0 (mod 1 — p).

In other words m(y) is divisible by the prime ideal p = (l—p). Thus (7.3)

implies the following sufficient condition for irreducibility.

Theorem 7.1. If m(y) ^0(p2) for at least one value of y, then f is irreducible.

It is now easy to exhibit irreducible polynomials. Consider the poly-

nomial
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(7.5) /= (í-^r1)--- ií-fr'1).

We shall compute

(7.6) «•(_)-Jf(/) -   X    «{(l-ÉrV'-íl-ÉT1)}-
íl.---.fr

It is clear from (7.5) that

((&, • • •  , Ir)  =  (0, • • •  , 0)),

((íi, • • •, 6) * (o, • • •, 0)).

Thus (7.6) becomes

(7.7) mil) = iqr - 1) + p";

since iq) = ipn)=pn(p~1\ it is evident that (7.7) implies w(l)^0(p2) provided

p\n. This proves

Theorem 7.2. The polynomial (7.5) is irreducible provided p\n.

The same argument proves the following more general result.

Theorem 7.3. Let f be a polynomial such that /=0 has N0 solutions and

/= 1 has A7! solutions where No+Ni = qT. Then if iq, Ni) = 1 and p\n it follows

that f is irreducible.

Returning to (7.3) and making use of Theorem 3.5 we can state a neces-

sary and sufficient condition for reducibility.

Theorem 7.4. The polynomial f is reducible if and only if there exist sets of

non-negative integers mi(a), m2ia) satisfying

m(y) = X eiay)miia) X eißy)^2iy) Í7 ** 0),

(7.8) _ " '
X *»i(«) = qs,        X miiß) = g" (1 S s < r).

a ß

Alternatively, we may get a similar criterion by means of (7.2) and

Theorem 3.5. We state

Theorem 7.5. Using the notation of the last theorem, f is reducible if and

only if

(7.9) N/ia) =   X miiß)m2iy).
/S+7-«

In proving these theorems it is only necessary to observe that, by Theo-

rem 3.5, the condition X<*wi(°0=<Zs implies the existence of a polynomial

g(fi. •'•.£>) such that Ngia) = miia), where in counting the number of

solutions only the first s unknowns are considered.

Theorem 7.5 may be compared with Theorem 4.9.
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Repeated application of (7.1) evidently leads to a decomposition

(7. 10) /~ gl + • • -  + g, (gi =  gi(U  • •  ■   , {<„)).

where r¿^l, £r, = r; no two of the g's have any common unknowns. More-

over each g is irreducible and of rank ^ 1. A natural question is whether the

decomposition (7.10) is unique, that is, whether a second decomposition into

irreducible components /~&i+ • • • +Ä« implies s = t and (possibly after

renumbering) Ä,~g; tor i=l, • • ■ , s. Some restriction on the g,- is necessary

since we may obviously add and subtract constants; we may for example

assume that/and all the gi vanish at (0, • • • , 0). It is also necessary to take

into account such equivalences as £i+g(£¡, • • ■ , ¿>)~£i. We hope to discuss

the question of unique decomposition on a later occasion.

8. Additional properties of M(f). It is an immediate consequence of (2.4)

that

(8.1) £ M(f) = £ p(A)M(A) = 0,
/ A

where p(A) is the number of polynomials in the class A. We have also

(8.2) H'M(f) = q^-\

where the summation in (8.2) is restricted to all / without constant term.

To prove (8.2) it is necessary to examine only the terms of first degree in/:

/ =   «if 1 +   •   •   ■   + CLÄr +   ■■■   -

Summing over a,- it follows from (2.3) that £¿ = 0 so that the left member of

(8.2) reduces to the number of/without constant term.

In the next place consider

(8-3) Y,\M(f)\2 = Zß(A)\M(A)\2.
1 A

We have

£l^(/)|2 = £££*(/(£)-/«)•
/ U   ft    f

Examining the terms of first degree as in the proof of (8.2), we see that the

innermost sum vanishes unless £, = 17,-. Thus the multiple sum reduces to

£ £ i = T-r-
U    !

This proves

(8.4) £|jw(/)|2 = <r<r,

so that on the average \ M(f) \ is qr/2. Indeed (8.4) implies a bit more. Let N be
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the number of polynomials / such that

(8.5) ¥(/)èMH"'! in > 0, t > 0).

Then by (8.4) and (8.5), q'"'^Nn2qr+t, so that

(8.6) N g

This proves the following theorem:

q"r

Theorem 8.1. Let e>0, n>0. If N is the number of polynomials for which

(8.5) holds, then N satisfies (8.6).

In other words, if q is large and r fixed, then for "almost all" polynomials

we have

(8.7) Mif) = Oiq^i2),

where O has its usual meaning. However (8.7) need not hold for some/. To

take a trivial example, if/= constant then | M(/)| =qr. Again for the special

polynomial (7.5) we have seen that

M(f) = ?' - 1 + p",

which contradicts (8.7). Other examples of this sort are easily constructed.

On the other hand for certain polynomials not only (8.7) but the stronger

result

(8.8) Mif)=Oiq"2)

can be asserted. For example (8.8) holds (in more precise form) when/ is an

ordinary quadratic form.

One or two additional examples may be mentioned. For example, for the

polynomial /=£i • • • £r we have

Mif) =    X     X "(£i?2 •••&).
f2.---.fr      ÍI

The inner sum vanishes unless £2 • ■ • £r = 0. This will happen qr~l — iq—l)r~l

times.    It follows that

Mif) = gig"1 -iq- 1)-*) = (r - l)f +■■■ ,

so that M(f) is of order g'-1. Then for r>3, (8.7) is not satisfied. A similar

example is furnished by/ = £ï • ■ • £,. In this instance we have

Mif)- Z   Zh Z   £•<*-■••£>
(,8.9) h-H   fi f2---fr*o   h

= qiqr-i -iq- l)->) + iq - 1)^S,

where 5 is the Gauss sum [2, §3]



1953]       INVARIANTIVE THEORY OF EQUATIONS IN A FINITE FIELD        421

(8.10) S=£e(£2), \S\-f».

It follows from (8.9) and (8.10) that M(f) is of order qr~112. Somewhat similar

results can be obtained for

/-«?••• £ (ei ^ 0).

It should be remarked that while M(f) is a class invariant it is not an in-

variant of a category. For example, if q = p>2 and r=\, consider the cate-

gory containing the polynomial £2. The partition defining the category

(compare the example following Theorem 5.1) is evidently [2 • • • 21]. Now

define/(£) as follows:

/(0) = 0,       /Í» = f(2s - 1) - 2s - 1 (lûs£(p- l)/2).

Then we have

(p-n/2 i _ pp-i      p _ i

M(f) = 1 + 2   £    p2-i = 1 + 2p- = ——,
»=i 1 — p p + 1

from which it is evident that

(8.11) M(f) = o(l) (/>->»).

On the other hand, by (8.10), | M(£2)\ =q"2.

Incidentally (8.11) furnishes an example of a polynomial with M(f)—>0

but M(/)?í0. The restriction q = p is not essential and other examples of the

same kind can easily be constructed.

While M(f) is not an invariant of a category the functions p(f) and vif)

are invariants. If we use the fuller notation

(8.12) [k'ik? ■ ■ ■ C] (ki > k2 > ■ ■ ■ > k, è 1; et è 1)

for the partition defining a category K, then (5.3) furnishes the number of

classes in K. Consequently the total number of polynomials in the category is

q\ q'\
(8.13)-

eoleyl • «. 41  (^iOei • ■ ■ (ksiy-

Theorem 8.2. The number of polynomials in the category defined by the

partition (8.12) is given by (8.13).

9. Some applications. Consider a polynomial/ that has the property:

(9.1) Nf(a) = I for all a 9¿ 0.

If we put Nf(0) =U, then (9.1) implies

(9.2) lo + (q - 1)1 = q\
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Hence by (3.4)

(9.3) Miyf) = ', + I X eiay).
ario

It is convenient at this point to define a function

(9.4) kia) =   ^~*

Then (9.3) becomes

(9.5) Miyf) = h + Ikiy)

and using (9.2) this yields

ia = 0),

(a * 0).

(9.6) Miyf) = i    r (7 = 0),

ç1" - ?/ (7 * 0).

={;

Conversely, given (9.6), then (3.2) implies

N/ia) = ç-W(O) + f'Af(l)i;«(- «7)

= q^+iq^-Dkia)

(k (« = 0),

[l ia * 0) ;

in other words/ satisfies (9.1). This proves

Theorem 9.1. A polynomial f satisfies (9.1) if and only if it satisfies (9.6).

Condition (9.1) is satisfied when / is a quadratic form in r = 2s variables

with discriminant ô ̂ 0 and q odd. Let ^(a) = 0, +1, — 1 according as a = 0,

square, or nonsquare of GFiq). Then as is familiar

(9.7) N/ia) = g2"-1 + q»-lkia)tii-l)s5)

so that

(9.8) I = g2»"1 - g»-Y((-l)'«).

Thus in this case (9.6) becomes

MOr/) = _iK(-D'«) (7^0).

When r = 2s + l, then in place of (9.7) we have

(9.9) N/ia) = g2s + q*iPii-l)>a5).

This suggests consideration of polynomials / having the property

(9.10) NficL)=h + hl>ia).
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Summing over a we get h = qr~i. Application of (3.4) yields

(9.11) M(yf) = W(y)S (y * 0),

where 5 is the Gauss sum defined by (8.10). Conversely if (9.11) holds, then

(3.2) implies

N,(a) = <rl + ?-'«£ e(- aßW(ß)
ß*0

= O'-1 + q-^Vi- «) = ?r_1 + AK«)-

This proves

Theorem 9.2. A polynomial satisfies N/(a)=qr~1-r-lip(a), where I is inde-

pendent of a if and only if it satisfies (9.11).

If/satisfies (9.1), r = 2s, and / is defined by (9.8), then, by Theorem 7,/

is equivalent to a quadratic form in 2s variables with discriminant 8. In the

same way if/satisfies (9.10) with r = 25 + 1 and

(9.12) / = ?•*((-!)'«),

then / is equivalent to a quadratic form in 2s+ 1 variables with the dis-

criminant 8. We may state

Theorem 9.3. A necessary and sufficient condition that a polynomial be

equivalent to a quadratic form of discriminant 8 is furnished by (9.1) and (9.8)

when r — 2s, and by (9.10) and (9.12) when r = 2s + l.

We may mention an example of a different kind that also falls under

(9.1). The writer has proved the following result [l, Theorem 4]. Given the

equation

(9.13) £a<ÎÏ£7=« (0,^0),
i=i     j=i

where

(9.14) (ah, ■ ■ ■ , air,) = 1 (i = 1, ■ ■ ■ , s)

and the r< are arbitrary integers  =1. Then the number of solutions ¿tJ- of

(9.13) is

(9.15) g-» + <f^k(a) fl (g*< - q(q - I)«*),
t=1

where r = ri+ • - ■ +r, and k(a) is defined in (9.4). To compare (9.15) with

(9.1) we note first that r has the same meaning in both cases. Thus we have

U = f~l + q~Kq - l)W,        1 = g'-1 - q~lW,

where IF stands for the product in (9.15).
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The result (9.15) is particularly simple when all r< = 2. We then find that

the number of solutions of

(9.16) aiÉÏSjî1 + • • • + a£'nbss = a ((<?,, b,) = 1)

is

(9.17) {M + r'*W-

Comparing (9.17) with (9.7) it follows at once by Theorem 7 that the poly-

nomial in the left member of (9.16) is equivalent to an ordinary quadratic

form with ^(( - l)'b) = +1.

Returning to the general case (9.13), we observe that (9.15) is inde-

pendent of the coefficients a¿ and the exponents ai}. Consequently Theorem

4.1 implies the following

Theorem 9.4. The polynomials

(9.18) X«.-íjJ°J'' («i#0),
1 = 1 3=1

where the a¡/ satisfy (9.14) and the r, are fixed, are all equivalent. In particular

when all r, = 2, the polynomials (9.18) are equivalent to a quadratic form with

*((-l)'S) = +l.

By Theorem 4.9, the rank of (9.18) is r — s + 1 provided all r¿> 1.

Another example that falls under (9.1) depends upon the following result

of Fine and Niven [8]: Let A denote the determinant |f,-y| of order s in

the 52 letters £<;. Then the number of solutions of the equation A = a is given by

(9.19) N&ia) = g«2-1 + q'^kia) <l-— f[ (1 - g-¡)> •
I        q - 1 i=i )

By Theorem 4.8 the rank of A is s(s + l)/2.

It may be of interest to remark that if a polynomial satisfies

(9.20) mi, ■ ■ ■ , 77fr) = n'fih, ■ ■ ■ , ,r) ((i, ?-l)-l),

then it also satisfies (9.1). The condition (9.20) is a kind of homogeneity

condition and in view of is, q — 1) = 1 might seem to imply linearity; however

even when s=l this is not necessarily the case.

Now assuming (9.20), we have for 7^0,

Miy'f) =    X    e(7'/(li, • • • - 10)
fl.---.fr

=      X      «C/(7ll,   •   •   •   ■  7lr))
fl.---.fr

=    X    eiSiiu ■■■ , I,)) = Mif),
fl.---.fr
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so that M(yf) = M(f) for all 75^0. Consequently by Theorem 9.1,/ satisfies

(9.1).
Similarly if a polynomial satisfies

(9.21) mi, ■ ■ ■ , rtr) = V'ftti, ■ ■ ■ Ar) ((s,q-l) = 2),

then if \p(ß) = +1, we have

M(ßf) = M(yf) = M(f)

as above, while if ^p(ß) = - 1, M(ßy*f) = M(ßf). Thus it follows from (3.2) that

q'((q - l)/2)(M(f) + M(ßf)) = qNf(0) &(ß) = - 1).

If in addition we assume N¡(fS) =gr_I, then (9.11) holds. This proves

Theorem 9.5. If a polynomial satisfies (9.20), then it also satisfies (9.1).

If a polynomial satisfies (9.21) and in addition N/(0)=qr~1, then it satisfies

(9.11).   "

10. Other applications. If Nf(a) is known and /~g, then N„(a) is also

known. Theoretically this should enable us to determine Nj(a) for a variety

of polynomials derived from a few standard ones. In practice however it does

not seem easy to construct interesting examples.

Let g(£i, •••,£„) denote a polynomial that never takes on the value 0,

and consider the set of equations

(10.1) n. - |_i(fc, • • • , |_i)& (5=1, ■■■,r),

where go=L Clearly (10.1) defines a transformation (1.1). Hence applying

(10.1) to the quadratic form, Q(r,i, • ■ • , Vr), we infer that the number of

solutions of

(10.2) Q(ïi, gi(Hi)£2, ■■■ , f^ifji, • ■ • , &_,)&) = oc

is given by (9.7) or (9.9) according as s = 2r or 2/- + 1. When the hypothesis

gsr^O is weakened it may still be possible to find the number of solutions of

(10.2) ; however we shall not discuss that problem at present. The transforma-

tion (10.1) may also be applied to the other results of §9.

In view of (10.2) one is led to consider such equations as

2 2 2

(10.3) «l£l + a2gi(£i)£2 +  • • •  + argr-i(£i, • • • , £r-l)£>- = Oi,

where as above the g, never vanish. If we specialize further, we can de-

termine the number of solutions in simple form. For example consider the

special case

(10.4) Q&u • • • , {„) + gfe, • • • , tiJQihu ■ ■ ■ , r,2t) - a,

where Qi, Q2 denote quadratic forms and g does not vanish. Clearly the num-

ber of solutions of (10.4) is
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(10.5) XX       X    i.
ß+y=a   AiiO-ß     c,(f)02(,)-r

Since gil-i, ■ ■ ■ , ¿2«) t^O for any choice of £,-, a glance at (9.7) shows that the

innermost sum is precisely the number of solutions of Q2in) =y. Thus (10.5)

becomes
-

„_   ,,       _L E X      1 =  ^Qi+O^i«)
(lu.oj   3+7=_ o!(f)-/s   <32(,)=r

_. Ç2H-2.-1 + q*+'-ikia)tii-l)*+>ô,ô2),

where Si, ô2 are the discriminants of Qi, Q2, respectively. We now state

Theorem 10.1. The number of solutions of (10.4) is determined by (10.6).

Moreover the left member of (10.4) is equivalent to a quadratic form in 2s + 2t

variables of discriminant 5i52.

The second part of the theorem is of course a consequence of Theorem

4.1. Once again, as in §9, we have determined the number of solutions of

a certain problem and then inferred equivalence. It is not difficult to general-

ize (10.4) considerably; also one may consider the case in which the quad-

ratic form contains an odd number of variables.

Even when N/ia) is not known for all a, application of a transformation

to / may lead to interesting results. For example, it follows from a result of

Hua and Vandiver [9, Theorem 2] that the number of solutions of

(10.7) ai£+ ••• +ar£ = 0,

where (e,-, e,-) = l, is q*~l. Consequently applying (10.1) it follows that the

number of solutions of

«lÉÍ1 + a%gliHl)£ +   ■ •  ■   + «rgr-ldl,  • •  •   , £r-l)frr =  0

is also gi_1.

A similar remark applies to a number of other special results. For example

the equation [3, Theorem 7]

(10.8) Qiti, ■ ■ ■ , & = r (*__1, t* 2)

may be cited. The number of solutions of (10.8) is gr for r even or r odd and

k odd, while for r = 2s + l, k even the number of solutions is

g2»+l+g3(g_   1)^((—l)-ô).

The same therefore is true of

<?(!l, • ■ •  ■ Sr)   =  U»«(ti, ' V , lr)

and more generally of
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Q(£l. gl&,   ■   •   ■   , gr-ltr)   =   Vkg(%L   ■   ■   ■   Ar),

where the g's have the same meaning as above. More elaborate examples of

this kind can easily be constructed. In particular this applies to the de-

terminantal equation A =a cited at the end of §9 as well as a recent paper by

O. B. Faircloth [7] concerning the number of solutions of the equation

«ill    +   •   •  •   +  Ctrir     =   Ci.

Returning to (10.1) we may remark that the equation

(10.9) ,. = f. + *^i(fi, • • • , É.-0 (s = 1, • • • , r),

where h0 = 0 and hu ■ - - , hT-i are arbitrary polynomials, also defines a trans-

formation. Thus (10.9) can be used in place of (10.1) in some of the above

results.
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