SOME CONTRIBUTIONS TO THE THEORY
OF RINGS OF OPERATORS()

BY
ERNEST L. GRIFFIN, ]JR.

PREFACE

The extension of von Neumann'’s work on factors to general rings of opera-
tors on Hilbert spaces of arbitrary dimension has been begun by Dixmier and
Kaplansky in [1] and [3] (the numbers in brackets refer to the List of Refer-
ences at the end of the paper). It is the purpose of this paper to extend these
res]ults still further, in particular Chapter X of [5] and Chapters I to III of
[8].

The general scheme of this paper is as follows: First, the constant C of
von Neumann (Chapter X of [5]) is extended to an operator belonging to the
center of a ring of semifinite type, such a ring being one with no type III
part. Next, using techniques devised by Dye and von Neumann, this operator
C (termed the coupling operator) is shown to be the chief invariant governing
the spatial type of a ring. Finally, these results are applied to questions of
topology in rings, yielding the fact that the strongest topology is purely
algebraic along with the notion of semifinite subring. Besides these main re-
sults, we obtain various subsidiary results, in particular, conditions for strong
and weak continuity of *-isomorphisms, continuity of the trace in various
topologies, and conjugate isomorphism of a ring with its commutant.

The notation of this paper is essentially that of [5] and [7], with but a
few exceptions. Throughout the paper, the notation [Mx] will denote the
closure in some Hilbert space H of the family of vectors { Ax} for 4 in a ring
M and x a fixed vector. The symbol < between projections E and F (E<F)
in a ring will denote the fact that E is equivalent to a subprojection of F
belonging to M. This will denote a proper projection only when specifically
stated. This particular notation is used because the printer does not have the
symbol used in [5] for this relationship. The symbols \U and M will be used
in their usual sense of set theoretic union and intersection, the remaining
ones being those standard in Hilbert space theory.

In preparing this paper, we have received much valuable assistance from
Professors 1. E. Segal, I. Kaplansky, and P. R. Halmos, which we gratefully
acknowledge.

Note: Since this paper was written, Professor Segal has informed me that
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my term “semifinite” is identical with his term “substantial.” My attention
has further been called to two papers by Robert Pallu de La Barriere;
Algébres auto-adjointes faiblement fermées et algébres hilbertiennes de classe finie,
C. R. Acad. Sci. Paris vol. 232, p. 1994, Isomorphism des *-algébres faiblement
fermées d’opérateurs, C. R. Acad. Sci. Paris vol. 234, p. 795, in which some of
my results are announced.

CHAPTER 1. THE COUPLING OPERATOR

1.1. Introduction. In [5, Section 10], there is introduced a finite real con-
stant C which relates a factor M and its commutant M’. This constant later
turns out to have important properties with respect to unitary equivalence.
It is the purpose of this chapter to extend the notion of this invariant C to
general rings of operators. In later chapters, it will be shown that quite a
number of properties of rings depend on this invariant. As this invariant turns
out to be an operator in the center of M, it is termed the coupling operator.
(For a similar operator, defined only for finite rings, see [3].)

Before getting down to the task of defining C we first prove some lemmas
of general usefulness.

LeEMMA 1.1.1. Let M be a ring with commutant M'. If E, E’ are projections
in M, M’ respectively, such that EE’'=0, then there exists a projection P in
the center of M such that ESP, E' < P*.

Proof. Consider N = [x| E’M'x=0]. For xEM; ACM, A'EM': E'M'Ax
=AE'M'x=0 and E'M'A’xCE'M'x=0, showing that AN and 4A’MCN.
Thus Ay MMM’ or P9y = Pisaprojection in the center of M. If x€H; E' M’Ex
=EE'M'x=0, from EE'=0. Thus EHC.

Now consider EP and E’P: If x is arbitrary in H, EPx=Ex as Ex&N
=PH. Thus EP=E. Also E’P=0 as E'M=0.

DEFINITION 1.1. A ring M is said to be countably decomposable if every
collection {E.,} (¢ ET") of orthogonal projections in M is countable.

LeMMA 1.1.2. Let w be a positive linear functional on a ring M such that if
w(E) =0 for a projection E in M, then E=0. M s now countably decomposable.

Proof. Let E,, a €T, be any orthogonal family of projections in M. Let
€ be the set of all &’s&T such that 1/(k+1) <w(E.) <1/k where £ is a posi-
tive integer. (Assume that w(I) =1.) Clearly I'=U;.,E,.

However, €, contains at most £ &'s since if it could contain £+1 a's, say
a1, +, oy, then D ¥ w(E,,)> (k+1)/(k+1) =1, which is impossible as

21 0(Ea,) =0( D51 Eq) Sw(I) =1. Thus, I' is a countable union of sets of
finite cardinality, and therefore is countable itself.

DEFINITION 1.2. A positive linear functional w on a ring M is termed
countably additive if for any countable collection E, of orthogonal projections
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in M, we have w( X oy En) = 2wy w(E,). If there exists an x in H, a projec-
tion E in M such that w(4*4)=||Ax||? for all 4 in M with AE=EA=A4,
then we write w<K(E, x) (and also w<KE). If w(4) =(4x, x) for all 4 in M such
that AE=EA =A, then w~(E, x) (and also w~E).

Note: w<E is equivalent to the condition obtained from the above by
restricting the 4’s to projections. The condition then reads: w(F) < || Fx|| 2 for
all Fin M such that F<E. To show this, let D axEx (s =0, E; projections in
M contained in E) be an approximating sum for A*4 (0SA*4 — > i axEx
<e-I) and assume w(l)=1. Then w(4*4) Zw( Ek arEy)+e= Zk aw(Ey)
+e= Zk ar(Exx, x) +e=(( ZakEk)x, x)+e=(4 *Ax x)+e= ”Ax” 24¢ Thus
we get the inequality w(4 *A)<”Ax|[2+e As e is arbitrary, we obtain the
condition w(4*4) <||4x||2

LEMMA 1.1.3. Let w be a countably additive, positive linear functional on a
countably decomposable ring M. If for x in H, P a projection of M,w(P) = ||Px|| 2,
then there exists a projection E in M such that 0 #E S P and w<(E, Ex).

Proof. If w<KP is false, there exists, by the preceding note, a projection
E, =P such that w(E¢) > (Eex, x). Now using Zorn’s Lemma we obtain a
maximal collection of orthogonal projections E,., such that E,<P and
w(Eqs) > (Eax, x). As M is countably decomposable, we may index the E's by
integers as {E } Let F= Y v, E,.

By countable additivity of w, we get: w( Domi En)= Dom w(E,)
> 3w (Eux, ) =(2n.y Enx, x). But as F<P, w(P)=(Px, x), and w(F)

> (Fx, x), we cannot have F=P. Thus E=P — F#0. But now we have w<E;
for if Ey is a projection in M such that Ey<E with the property w(E,)
> (Eex, x), we could add the projection E, to our maximal collection {E.}.

LeEMMA 1.1.4. Let w be a positive linear functional on the ring M. If w<<(I, 2'),
then there exists a vector z in [Mz' |\ [M'2'] such that w~(I, z).

Proof. Consider the following semilinear form on Mz, [42', Bz'| =w(B*4)
for A, B in M. It has the requisite linearity properties and by the Schwarz in-
equality plus w<K(I, 2'): | 42, BZ]| = [w(B*A)l S(w(4*A4))V2(w(B*B))Y*?
<“Az IlllB#||- This inequality clearly makes it possible to extend the form
to [Mz']. It is extended to [Mz']* by defining [x, y] =0 if either x or y is in
[M2']*. Now by linearity we get the form extended to H with the inequality
| =, 1| <l|l]-l5]]-

For each vector ¥ we now have the linear functional [x, y] on H. By con-
tinuity and the Riesz Lemma there exists a unique vector y* such that
[x, y]=(x, ¥*), with (3% %) =|l*|*=[y* y]1=[ly]|-[ly*]| and hence |||
é”y” everywhere. Since the map y—y* is clearly linear we get a bounded
operator T on H such that T'y=y*

From the above inequalities, (x, T"x) = [x, x] =0, showing that T720.
We now wish to show that T"EM’. For S, A, B in M, (4%, T'SBz?')
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=[A2', SBg'| =w(B*S*4) = [S*Az', Bz'|=(S*A%', T'Bz’) = (A%, ST'Bz’) or
(47, (T'S)Bz')=(A%', (ST")BZ'). By continuity (x, T'Sy) = (x, ST'y) for x
and y in [Mz']. For y&[Mz']*, (x, T'y) = [x, ] =0 for all x, showing that T
is zero on [Mz'|*. Now for x and y arbitrary in H, let x=x;+x; and y =y,+7y,
be the decomposition of these vectors into components in [Mz'] and [Mz']*
respectively. Then (x, T'Sy)= (%, T'Sy1)+ (%1, T'Sy2)+(x2, T'Sy). But
(%2, T'Sy)=(T"xz, Sy)=0=(x1, T'Sys) as T is 0 on [Mz']*, and [Mz']* is
invariant under M. Thus (x, T'Sy) = (%1, T'Sy1) = (%1, ST’y:) which in turn
equals (x, ST’y) by a computation similar to the above. This proves that T”
isin M’. As T' =0 we may form (7')Y/2, which also is in M’. Let z=(T")V%3’.

By the definition of T, w(4) = [A2', 3’| = (42, T'z') = (A(T") V%, (T") %)
=(As, 2). zis clearly in [M’z'] and also is in [M3z’], since if y in [M3z’]*, then
[z 0| =1(TH, »)| =@ (@) =|Z|[T)] =|2]- @, T7y)v2
= [y, y]2-||z]| =0.

1.2. The coupling operator for M/ and M’ finite.

LEMMA 1.2.1. Let M be a finite ring with a vector z such that [M'z]=H.
If w s the linear functional defined for A in M by w(A) = (A", z), then there
exists a vector y such that for A in M, w(A)=(Ay, y) and such that [M'y]=H.

Proof. Let w(E) =0 for E some projection in M. Then we have (E'z, 2)
=||(E"V%||2=0, or (E")V2%z=0. Thus we get E%=0. But by [ M’z] = H, this
means E¥=0, and hence that E is 0. This property plus Lemma 1.1.2 shows us
that M s countably decomposable.

Now, by Zorn’s Lemma, we pick a maximal collection {Ea} , aET, with
the properties:

1. The E, are mutually orthogonal projections in M.

2. There exist vectors x, such that E.x.,=x, for all «, and such that
w~(Eq, xq).

3. The manifolds [Mx,] are all orthogonal.

Since M is countably decomposable, we see that the E,'s may be indexed by
the positive integers n=1, 2, - - -, yielding a collection {E,.}, {x,,} Now
Py = E, follows from E,A'x,=A'E.x,=A’x, for A’©M’, and then by
W(En—Prarrs,1) = ((En—Prarzn)%n, %) =(%n—%s, %a) =0 we get

En = P[M'z,.]'

Let E; =Pius), E= D sy Ea, E'= D 2, E!, and x® = ) 2_; x;. From
llal|2 = (Enen, %a) =02(Ea) we get 2 2., ||l > = 2tai0(Ei) =( 23-1Ex) Sw(I)
for all integers #, showing that there exists a vector x = D o, %x = limy—s ™.
We now observe that [M’x]D[M'E.x]=[M'x,] and similarly [Mx]
D [Mz,], showing that Py Z E and Py, = E’. But it clearly follows from
Ex= Z:—l Ex= Z:—l EEyx,= Z:—l Eyxy= Z:-l x,=x that Py =<E
which finally yields

E = Py 4.
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Similarly,
E’ = P[Mz].

The next step is to show that (I —E)(I —E’) =0. For, if not, there exists
a vector ¥’ such that (/—E)(I—E')x’=x" and w(I—E) =”x’||2. By the
countable additivity of w (which follows trivially from [1, p. 256, Theorem
17] it follows from Lemma 1.1.3 that there exists a projection G in M
such that GEI—E and w<(G, Gx’). Also we have (I—E)(I—E')Gx'
=G(I—E)(I—E")x’ =Gx'. Now applying Lemma 1.1.4 to M ¢x we get a vector
x” lying in the manifold [MgGx'|N\[MenGx']=[M'Gx'|NG[MGx']
=G[M'Gx' |\ [MGx'] = [M'Gx'|N\[MGx'], such that w~(G, x"). Clearly,
Gx''=x"" and GLE, for all n. Further, for A, B arbitrary in M, (4Ax"’, Bx,)
=(Ax", BE'x,) = (AE'Papg21%", Bx,) =0 for all n by the fact that E' [ MGx']
=[ME'Gx'| = [ME'(I—-E')(I—E)Gx']=0. Thus [Mx"]L[Mx,] for all n
which shows that G could be added to our “maximal” collection {E,}. This
contradiction proves that

(I — E)(I — E') = 0.

Lemma 1.1.1 now provides us with a central projection P such that
(I—E)ZPand (I—E')<P*. Remembering that [M’z]=H, consider [MPz]
=P[Mz]CPH=PE'H=P|[Mx]=[MPx]. By Lemma 9.3.3, p. 179 of [5]
(although this lemma applies apparently only to factors, the proof makes no
use of the particular properties of factors), this leads to [M'Pz]=P[M’z]
=PH< [M'Px]=P[M'x]=PEH or P<XPEZ<P. Then by finiteness of M,

PE~P which, combined with (I —E) < P, yields

E=1

Using the fact that (4 B)"=(BA)" for A, Bin M (Property 4« of Theorem
10, p. 249 of [1]) we see that w(4E,) =w(4 E,E,) =w(E,AE,) for all A in M.
Hence, w(A 3 3.1 Ex)= 2 21 w(AE) =D 1) w(EeAEr) = D i i(Axi, x).
But we have (4x®, x®™) = D7 | 32 (Axi, %1) = 2 nay (Axx, x1) as (Axx, x1)
=0 for k> by the orthogonality of the family [Mx,]. Thus we finally obtain
the equation w(4 D gy Ex) = D peq (A%i, x1) = (Ax™, ™). As D 2, E, con-
verges strongly to I in the unit sphere of M, we have, by the continuity of
w, W(A) =limpey w(4 D 21 Ei) =limp—y (Ax™, ™) = (4x, x).

To complete the proof of this lemma, notice that I =Py,.

DeriNITION 1.3. A mapping J of H onto itself will be called a conjugation
of H if for x, y arbitrary vectors in H and a any complex number we have the
following properties: J(x+y)=Jx+Jy, J*=I, Jax=aJx, and (Jx, Jy)
=(y, x).

LeEMMA 1.2.2. Let M be a finite ring. If there exists a vector z such that
[Mz] = [M'z]=H, then there exists a conjugation J of H such that TMJ= M’
and such that for A in the center of M, JAJ =A%,
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Proof. By Lemma 1.2.1, there exists a vector x such that [M’x]=H and
such that (4%, z) =(4x, x) = (4%, x) for all 4 in M. Also, by Lemma 9.3.3,
p. 179 of [5], [Mx]~[Mz]=H; and therefore there is a partial isometry V"
in M such that V'[Mx]=[MV’'x]=H and V'*V'x=x. But now (4 V'x, V'x)
=(Ax, V'*V'x)=(4dx, x)=(A%, x)=(4"""x, V'x) with [M'V'x]
D[M'V'*V’'x] = [M'x]=H. Thus if we replace z by V’x, we get a vector com-
bining the properties of x and 2, and there is clearly no loss of generality in
assuming both properties for our original vector z.

We first define J on vectors of the type Az for A in M. Here JAz=A4%*s.
Clearly we have, for A and B arbitrary operators in M,

(JAz, JBz) = (A*z, B*z) = (BA*z, 2) = ((BA*)43, 2) = ((A*B)Y4z, 2)
= (A*Bgz, z) = (Bgz, Az),
yielding
|74z = [|42]].

This last fact shows that J is single-valued since Az=0 implies JAz=0.

Now since M3z is dense in H, we can extend J by continuity to all of H.
Clearly, (Jx,Jy)=(y, x)for x and y arbitrary in H,and JJAz=JA*z=Azyields
JJ=1I. A similar computation yields Jax = &Jx for @ a complex number and x
any vector. The additivity of J clearly follows from its additivity on Mz. This
completes the proof that J is a conjugation of H.

Now for A any bounded operator on H, JAJ is clearly additive. That it
is linear follows from JAJax=JAaJx=aJAJx, for o complex. That it is
bounded follows from ||J4 Jx|| =||4 Jx|| <||4]||| Jx|| = ||4]|||<]|- If we let A be
in M, with B, V arbitrary in M, then

(JAJB)Vz = JAV*B*; = BVA*;
and
(BJAJ)Vz = BJAV*3 = BVA*z

showing that JAJB=BJAJ on Mz and hence on H. By arbitrariness of B,
we find that '

JAT e M.

However, this just shows that JMJC M’. A similar computation withA4’,B’,V’
in M’ would complete the proof by showing that JA'J& M, provided we could
prove that JS'z2=S"*z for all S’ in M’. To get this result consider: for B
arbitrary in M and S’ fixed in M’, (JS'z, JB*z)=(B*z, S'2)=(JS'z, Bz)
=(S’*z, Bz) by properties of a conjugation plus the fact that JBz=B*z.
The above equation now yields (J.S'z2—.S"*z) L Mz and thus J.S'z=S5"*z. Thus
we have proved JMJ=M".

Now let 4 be in the center of M with S arbitrary in M. Then (JAJ)Sz
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=JAS*2=SA4%2=A%*Sz as A* is also in the center of M. Again by density
of Mzin H, we get JAT=A*.

We now prove the following corollary to the above lemma. This result is
one of Segal’s, namely, Corollary 1.1, p. 9 of [9].

COROLLARY 1. If M is an abelian ring with a vector z such that [Mz]=H,
then M 1is maximal abelian (M= M").

Proof. Since M is abelian, M is finite and M C M’. Hence we see that
H=[Mz]C[M'z], so that we see that M satisfies the conditions of Lemma
1.2.2. But then the conjugation J satisfies JMJ= M, and we get finally that
M=M.

COROLLARY 2. Let J be a conjugation on H such that JTMJ = M'. If x is any
vector in H, then JPya)J = Piusz and (JAT*)=JA*T for any A in M.

Proof. For x and y arbitrary in H, 4 in M, we have: (JAJx, y)
=(x, (JAD)*y)=(Jy, AJx)=(4*Jy, Jx)=(x, JA*Jy), thus showing that
(JAD*=TA*]J.

Thus it is clear that JP 4 J is a projection in M’. To get its domain we
form JPupgJH=JPppagH=J|M'x]|=J[JMJx]=[MJx]. This completes
the proof of the corollary.

LEMMA 1.2.3. Let M be a ring satisfying the conditions of Lemma 1.2.2. If
J 1s the conjugation of that lemma and if x is any vector, then [Mx]~[MJx]
and [M'Jx]~[M'x].

Proof. By Theorem 6, p. 222 of [1], there exists a projection P in the
center of M such that P[Mx]<P[MJx] and P*[Mx]>P+[MJx]. Since P
is in the center of M, we get by the previous lemma that JPJ=P. Hence
P[MJx]=[MPJx]=[MJPx] and thus we have [MPx]<[MJPx]. Again
by Lemma 9.3.3, p. 179 of [5], [M’Px] < [M’JPx]; and by using JMJ=M’,
one gets a partial isometry V in M such that V[M'Px]=VJ[MJPx]
C[M'JPx]=J[MPx]. Then by JJ=I we get finally that JVJ[MJPx]
C[MPx]. But JVJ is obviously a partial isometry in M’ and this proves
[MJPx]< [MPx]. Adding this inequality to our original fact that [MPx]
< [MJPx], we obtain the result [MPx]~[MJPx]. A similar argument for
P! yields finally [Mx]=[MPx]+ [MP*x]~[MJPx]+[MJP*x]=[MPJx]
+[MP*Jx]=[MJx]. A similar argument proves [M’x]~[M'Jx].

LemMA 1.2.4. If [M'x] is finite, then | Mx] is finite. (See [3, Theorem 1].)

Proof. Let Piysy=E and Py, =FE’. For an operator A in the ring Mgy
consider the map A—AE’. This map clearly is from Mgy to Mgg u; and if
AE’=0, then Ax=0 and hence AE=0. But Mgy is the set of all operators B
in M such that BE=EB=B. Thus AE’'=0implies AE=0 and then 4 =0,
proving that the above defined map is an isomorphism into. Since Mgg g is
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the ring EMEE’, we see that the above map is onto; or Mgy is isomorphic to
Mggg. A similar argument proves Mgy isomorphic to Mzgg.

By hypothesis we now get Mgy finite and hence Mgg y is finite. Also,
[Megux)=EE'H=[Mgg ux], so we may apply Lemma 1.2.2 to get a con-
jugation J such that JMgg yJ= Mgpy. Clearly we now get that Mggy is
finite and thus finally the result that Mgy is finite. This completes the proof
of the lemma.

LeEmMA 1.2.5. Let M and its commutant M’ be finite. If there is a vector z
such that [M'z] = H, then the operator C= [ Mz]" in the center of M has the prop-
erty [Mx]"=C[M'x]" for every vector x. Furthermore, C~! exists.

Proof. By [M'x]C[M'z]=H and Lemma 9.3.3, p. 179 of [5], [Mx]
< [Mz], and there exists a partial isometry V’ in M’ such that [MV'x]
= V'[Mx] S [Mz]. Then, since equivalent projections have the same trace,
there is clearly no loss of generality in assuming [Mx]C[Mz].

Let E' =Pu,y, F' =Pius, and F=Py+s. For AE' in Mg g, consider the
map AE'—A"E’. This is a map into the center of Mz x and clearly has all
the properties of the trace. Hence if we use (AE’)° as the trace in Mg g,
then (AE’)°=AYE’.

But [Mg uz]=[Mz]=[Mzysz], so by Lemma 1.2.2, there exists a conjuga-
tion J of [Mz] such that J M = My;;. Then by Lemma 1.2.2, Corollary 2,
JFE'J =JPg maJ = JP(m i) Which is equivalent to Piay,,-1 by Lemma
1.2.3. Thus JFE'J~Pyuye1 =Piusy=F'. This results in the equation:
J(FE')°J=JF'E'J = F'E’ = (F’)°, by the continuity properties of J and by
FE' € M a0\ Mpsy.

To find (F’)° we invoke the definition of trace and get a collection V3,
real numbers ai,.=0 such that E;‘(_’{ ar.=1, 7 in a directed set T,
n(r) an integer, k=1, 2,---, n(r), such that V{*V} =E'=V| V%,

) Gk VixF'V;, converges (with respect to 7) to (F')° in the uniform

!

topology. But obviously F'~all V;*F'V]. and therefore, by the uniform
continuity of the trace, lim, 2% a;..(F')i=(F)"=((F')°)"=F*(E')"=CF".
This proves [Mx]"=C[M'x]".

To complete the proof, assume Cx =0 for some vector x. Then CPs:z =0
= CP{i's3 = Pyz1. But this means that x is 0, and thus C—! exists.

LeEMMA 1.2.6. Let M be a finite ring with x an arbitrary vector. If w is the
linear functional defined on M by (A%x, x) =w(A), then there exists a projection P
in the center of M such that if E is a projection in M with w(E) =0, then E < P*.

Proof. Using Zorn’s Lemma pick a maximal family of orthogonal projec-
tions {E.,}, a&T, in M such that w(E,) =0. Let F= Eaer E,. As F is the
strong limit in the unit sphere of finite sums of E,’s, we see by additivity
and continuity of  that w(F) =0. Again, by Theorem 6, p. 222 of [1], there
exists a projection Q in the center of M such that FQ < F-Q and FQ*> F-Q*.
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This leads to w(FQ*) =w((FY)4Q) fw((F)'QY) Sw(F%) =w(F)=0. But as
FQ! is a projection orthogonal to F, we could add to our “maximal” collec-
tion {E.}, « €T, unless F*Q* =0. Clearly FQ =0, and we end up with F<Q*
and F* =, showing that we must have F-=0.

Clearly, the Q above is the P of our lemma; since if w(E) =0 for some pro-
jection E in M, then ES F=(Q", for EQ>0 implies that our maximal collec-
tion {E.} could be enlarged.

LEMMA 1.2.7. Let M be a finite ring. There exists a family {P.}, a €T,
of orthogonal projections in the center of M such that the rings MP, are all
countably decomposable, Zaer P,=1.

Proof. By Zorn’s Lemma there exists a maximal collection of projections
{P.}, a€T, such that the rings MP, are all countably decomposable and
the {P,} are mutually orthogonal. Let P = Zaep P,.

If P is not the identity, pick a nonzero vector x such that Ptx=x. Now,
by the previous lemma, there exists a central projection Q with the property
that if (E%, x) =0 for some projection E in M, then ESQ*. Then Px=0
implies (P%, x) = (Px, x) =0, and finally P < Q*.

But MQ is countably decomposable by Lemma 1.1.2; so Q may be added
to the family {P,}. This contradiction proves P = I, completing the proof of
the lemma.

LeEmMA 1.2.8. If M is a countably decomposable ring, then there exists a pro-
jection P in the center of M, vectors y and z, such that [My]=PH and [M'z]
=PLH.

Proof. By Zorn’s Lemma there exists a maximal collection of vectors {x.},
a €T, such that the families { [Mx.]}, { [M’x.]} consist of orthogonal mani-
folds. Let Ea=Puzp1, Ed =Piszpy, E= D aer Eay E'= D ocr Ed.

If (I—E)(I—E')#0, pick a vector x’ such that (I —E)(I—E’)x" =x'0.
But it is clear that [Mx’] L[Mx,]and [M'x’] L[ M’x,.] for all « €T, and hence
x’ could be added to our “maximal” collection {x.}, «ET. Thus

(I - E)I—-E)=0.

Now, applying Lemma 1.1.1, we get a projection P in the center of M
such that

I—-E=P
and
(I — E') £ P,

Since M is countably decomposable by hypothesis, the collection {x.} is
countable. Hence we may replace {x.}, €T, by a sequence {x.}. Also, we
may assume that Y .. ||#a]|2< o, for [Mx,] and [M'x,] are not affected
by multiplying x, by a constant.
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If x=)m, %, then [M'x]D[ME/x]=[M'%,] and [Mx]D[ME.x]
= [Mx,]. Thus Puz 2 E’' and P, = E. But then it is clear that Ex=x
=E’x, or .P[Mz]_éE' and P[M/z]§E, with ﬁnally E=P[Mr=] and E/=P[Mz].

To complete the proof of this lemma we observe that: if y=Px and
g=P'x, then

PH = PE'H = P[Mx] = [MPx] = [My]
and

PiH = PLEH = PL[M'x] = [M'Pix] = [M'z].

THEOREM 1. Let M and M’ be finite rings. There exists a unique operator
CoMN\M' (called the coupling operator for M, M’) such that [Mx]%=C[M'x]"
for each vector x. Furthermore, C~! exists.

Proof. Using Lemma 1.2.7, we pick orthogonal projections {P.}, a €T,
such that Zaer P,=1I and such that MP, are countably decomposable.
Then, by Lemma 1.2.8, one gets projections E., o €T, in the center of
MP., o €T, vectors Xa,1, Xa2EPoH, a €T, such that [MPux,,]=E.P.H and
[M'Poas] =ELP.H.

Now, applying Lemma 1.2.5 to the rings Mu'z, 5 and M{y;, ;;, we obtain
operators C, and D, in the center of M such that [Mx]i=C.[M'x]" for x in
ELP,H and [M'x]'=D.[Mx]* for x in E.P.H. Also C;' and D' exist
(inverses taken with respect to the E,P,, ELP.).

Let C= Zaep (Ca+DzY). This operator clearly belongs to the center of
M and has the obvious inverse Zaer (Cz'+D.). For x any vector,
we have, by the above equations, that (for all @) P.E:[Mx]*=P,E‘Pjy,
= (PaEzPua)' = Piupipats) = [MPoEgx] = Coa[M'PoEzx]* = CPlip porat 2
=CP.E:[M'x]%. Similarly, P,E,[Mx]"=CP.E.[M'x]% and hence P,|Mx]"*
=CP.[M'x]". Now, by D .cr Pa=1, we get finally

[Mx]s = C[M'x]s

If C’ is another operator with the same properties as C, consider [ Mx,,]"
=C'[M'%,2]"=C'ELPy=CE:P, and also CE.P.=C'E,P, which yields
easily C=C’. This completes the proof of the theorem.

DEFINITION 1.4. A ring of operators M is said to be semifinite if every non-
zero projection in M contains a nonzero finite projection. A ring M is said
to be purely infinite if there is no finite nonzero projection in the center of M.

1.3. The coupling operator in semifinite rings. In the previous section we
introduced the coupling operator for the case where M and M’ are both finite.
It will be the purpose of this section to extend this idea to semifinite rings.

LEmMA 1.3.1. Let M be a ring with E, E' projections in M, M’ respectively.
If M is semifinite then so are the rings M', Mgn, and Mg g.
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Proof. Let F’ be an arbitrary nonzero projection in M’. Pick a vector x
such that F/'x=x0 and notice that Py, =< F’. Since M is semifinite, the
projection P, contains a nonzero finite projection G. Then the manifold
GPiuagH=G[M'x]=[M'Gx] is finite, which implies [MGx] is finite by
Lemma 1.2.4. But now [M’Gx]Z [M’x] implies by Lemma 9.3.3 of [5] that
[MGx] < [Mx]. Thus there exists a finite manifold belonging to M’ which
is equivalent to the finite manifold [MGx] and contained in [Mx]. This
proves that there is a finite nonzero manifold contained in F’, and M’ is
shown to be semifinite.

Mgy is clearly semifinite as F(Z E) is a finite projection in Mgy if and only
if it is finite in M. Further, Mg g=(Mpgg)’, so Mg g is semifinite.

LEMMA 1.3.2. Any semifinite ring M contains a projection P in its center
such that MP is finite and MP* is purely infinite.

Proof. Using Zorn’s Lemma, select a maximal collection {P,,}, a&T, of
orthogonal, finite projections in the center of M. Clearly, P= Zaep P, is
finite as any partial isometry compressing P also compresses some P,. If
Q#0 is a projection in the center of M such that QP=0, then QM is
infinite, since if not, Q could be added to our maximal collection {Pa},
aET. Thus MP is finite, and MP* is purely infinite.

TuEOREM 2. Let { E.}, a €T, { F.},a €1, be distinct families of orthogonal,
finite, equivalent projections in a purely infinite ring M (E. not necessarily
equivalent to F,). If Zaep E,=I= Ever' F.,, then the cardinal of the set T
equals the cardinal of the set T".

Proof. Let Q be cardinal of I and €’ that of I'V. Take an arbitrary vector x
such that Hx” =1, and consider the functional (4dx, x)=w(4) on MNM'.
By Lemma 1.2.6, there exists a projection P (#0) in the center of M such
that w is not zero on nonzero projections contained in P. Also P = Zaep PE,
= Zwer' PF, with {PE.}, {PF,} as families of orthogonal, equivalent,
finite projections. Thus, with the aid of the spectral theorem, there is no loss
of generality in assuming that there is a linear functional w on the center of
M such that for 4 a nonzero, positive semi-definite operator in MMM,
w(A4)>0 and w(l)=1.

Now let EJ=[yEI'|E.FyE.70]. For any yE&I', if E.F,E.
=(E.F,)((E<F,)*)=0 for all «&T, then E,F,=0 for all €T, which implies
Eaep E.F,=F,=0. This contradiction proves that for each y&I", there
exists an a(y) €T'such that Eq(y) FyEa(y) #0; but then vy € E,(4), yielding finally
that

rr= UuE.
aEcT

As Mg u is finite, we have a trace b, in it. Since the center of Mg u is
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(MNM")gz by Lemma 11.3.2, p. 186 of [5], we may write (E,FyE,)"a
=S7E., where S;& MNM'.

Let I'{ be an arbitrary finite subset of I'V. By E,Ep' E.F,E,=E, and
EoFyEa20, 0= 3 cry (BaFyEa)a= D cry S2E.<E.. But the E, are all
equivalent, and thus for any BET, there exists a partial isometry V in
M such that V*V=E, and VV*=E, The above inequality now becomes
0= D ery SSV*VZV*V, and hence 0S VY cry SIV¥VV*SVV*VV*,
Finally, we get, for all BET,

0= X SyEs<E,
1ETo

But by hypothesis, der Eg=1, so that we have shown that 0
= E.,er.,' Sy=I, with 0<S; in particular. Using our linear functional
w, 0= Z,en’ w(Sy) =1, and w(SY) #0 if and only if SJ 0. These facts, plus
the argument of Lemma 1.1.2, show that the set [yEI"|w(S%) 0] must be
countable. However, it is clear that w(S%) 0 if and only if (E.F,Eq)"% #0,
and we see that €/ = [yEI"|(5%) #0] is countable.

Thus @' =the cardinal of U,er€J =8o-2=Q. By symmetry, <’ and
finally Q=9'.

DEFINITIONS 1.5. A semifinite ring M is said to be of homogeneous type if
it either satisfies the hypotheses of Theorem 2, or is finite. If the cardinal
of Theorem 2 is «, then the corresponding homogeneous ring is said to be of
type S.. If finite, a ring will be said to be of type Si.

THEOREM 3. Let m be the collection of cardinals containing 1 plus all infinite
cardinals a Zthe cardinal of H. If M is a semifinite ring on H, then for eacha &
there exists a projection P, in the center of M such that the collection {P.,}
is orthogonal, D lac« Pa=1I, and MP, is of type S..

Proof. For « an infinite cardinal in w, pick, by Zorn’s Lemma, a maximal
collection { 0y}, YET, of orthogonal projections in the center of M such that
{MQ.,}, y¥€&T, are of type S,. In each ring MQ, we have an orthogonal
family {E.,;,} , B€Ek, of equivalent finite projections such that Q,
= ZEE,‘ E, . (As cardinals of {E.,,k} for each ¥E&T are the same, we may
choose the same index set k for all v.)

Now form Ex= Z.,er E, x for each kE«k. E; is clearly finite as it is the
sum of finite projections, each in a different central projection Q,, all or-
thogonal. But now Z},E, E,= Eke, _E'YGP E,x= Ever ZkE, Eyx
= E,ep Q,=0Q shows that QM is of type S., since the Ej are clearly equiva-
lent. If Q' is any projection in the center of M such that MQ' is of type Sa,
then Q' £, since otherwise we could add Q*Q’ to our “maximal” collection
{0y}, YET. We have now proved that there exists a maximal projection Q in
the center of M such that MQ is of type S.. We define P,=0Q.

We define P; as the P of Lemma 1.3.2 and also P= Z.,e, P,. Assume
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P10 and pick a nonzero finite projection G < P*. By Zorn’s Lemma there
exists a maximal collection of orthogonal projections E.,, ¥ €T, such that each
E,~G. Let E= ) 1 E,, and consider E*P*. Clearly, we cannot have
G < E*P*, otherwise we could enlarge our maximal collection {E,}, yET.
Also, if E*P+=0, then P*<E which implies Pt=E, as E is the sum of
projections equivalent to a projection in Pt. But then P! is homogeneous and
must lie in P, or P*=0. Thus our assumption of P* >0 drives us to the
possibility that there exists a projection Q in the center of M such that
0=QE*P*<QG. Now QP*= Y 1 QE,+QE*P*, with the QE, all equiva-
lent (T' is clearly infinite, since P M is purely infinite). Assuming the index
set I' is well ordered, QE,~QE,;; and Zl.,gl QE,~ Z-y>1 QE,. Therefore
> 21 QE,> X ys1 QE4+QELPL~(QP*, and clearly QPt~ Y 51 QF,. Let V
be the partial isometry in M such that V*V= Y >, QE,, VV*=P*Q. Then,
if Fy=VQE,V*, we have the { F,} as a collection of orthogonal, equivalent,
finite projections such that ) '4»1 Fy=VV*VV*=VV*=QPL, showing fi-
nally that QP*M is homogeneous. This again contradicts our choice of P
and so we have proved that P=1.

That the P, are unique is obvious once it is noticed that the P, must be
the maximal projection of type S,.

DEeFINITION 1.6. Let M be a semifinite ring. By Theorem 3, there exists
a collection of orthogonal projections { P} in the center of M such that MP,
are of type Sa, for a&Ew. Using our Lemma 1.3.1, M’ is semifinite too, and
thus there exists a collection P/, a&Em, such that M'P.; are of type Sa,
Yowce Pd =I. Now, if Paw=PsPd, then D awecr Paaw= D acr Pa
. Z..'E, Pl =1, with MP, o, M'P, o of types S., S respectively. We now
introduce the operator C,, the coupling operator defined in Theorem 1, for the
rings M P11, M'P,,;. We also introduce the formal operators (a/a’)Pa,or and
form the formal sum

C= Cl + Z 'ﬁ, Pa,a'-
(a,a’)%(1,1) @
The formal operator we have just introduced will be called the coupling
operator for the rings M, M'.

It is clear from the above definition that to say that C is the coupling
operator for M, M’ is to give C; as the finite coupling operator plus the fact
that MP,,o, M'P, o are of type S., S« respectively. That such a formal
operator is unique follows from the uniqueness of the { P.} and { P/ }, a&m.

DEeFINITION 1.7. Let {4.}, €T, be a directed set of bounded operators
on a Hilbert space H. The above collection is said to converge to 0 in the
a-weak topology if for every two sets {x,.}, {yn} CH, n an integer, such that
Doy lxal2< 0, 2oy |lyal|2< 0, then D p; (Aun, ¥4) converges to 0.

THEOREM 4. Let M be any ring on a Hilbert space H and I' an abstract set
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of cardinal Q. There exists a ring of operators M on a Hilbert space H with the
following properties:

1. There exists a collection {e., }, vy &, of orthogonal equivalent projections
in M such that ) .,cr e,=1I, the identity of M, and such that M., 5 are each
unitarily equivalent to M.

2. There is a *-isomorphism ¢ of M’ onto M’ which is continuous in the
strongest and o-weak topologies. The inverse map ¢—! is continuous in the weak,
strong, strongest, and o-weak topologies.

Proof. For each vy €T choose a replica H, of H and form = ), ®H,,
in the standard way. Let V, be the isometry mapping H onto H,.

Let e,=Pp, and define ey,, =V, V;'e, for yET. Each bounded operator
A on His obv1ously determined by the collection e.,Ae., , Y, v ET. We now
notice that for 4 bounded on H, the 0,.,.(4)=V;'e,de, V, are bounded
operators on H.

We define M to be all bounded operators on H such that 6,.,.(4) lies in
M for ally, y'ET. If A’E M’, then e,A’ = A'e, for all v, and hence by e,e, =0
for y#v', e;d’ey =A'e,e,, =0 for y#v'. From e, €M comes V, V;'e,A’
=A'V, V=V, V;'e,A'e, =€, A'e,, V,y V7' and  finally:  8,,.(4")
=V 'e,A'e,Vy=V; ey A'ey Vyr =0, ,.(4"), for all v, v'ET. Thusit is clear
that if 6,/,,,(A’) =0 for some v’ ET, then e,A’e, is 0 for all yET or 4’ =0.
Furthermore, we have, for B any operator in either M or M’, for all yET,
0y4(A' B) = V;'eyA' Bey Vy = Vy'eyA'ey, Byey Vy = Vy'eyA'e, V., Ve, Be, V,
=0,.,(4")0, .,(B), and hence @, , is an isomorphism of M’ into the algebra of
bounded operators on H. Also if B is arbitrary in M, consider the operator
V,BV; e, on H. This operator is obviously an operator B in M, and 6, ,,(4")B
=0,.,(4") '07,7(.'3) =0y,4(A'B)=0,,,(BA") =0,,4(B) -0,,(4A") = B, ,,(4") prov-
ing that 6,,(4’) lies in M’. Conversely, if B’ is arbitrary in M’, form B’

Zaep e;VsB'Vy'es. This is a bounded operator on H; and if 4 i 1s arbi-
trary in M, then Oy .y (AB)=V;"e,ABey Vy=V;'exde, V, B' Ve, V.
=0,.,(4)B' =B, ,(A) which equals 0,4 (B A) by a similar computatlon
From this it follows readily that e,4 B'e,» =e, B’ de, for all v, ¥’ ET, and thus
B’ lies in M’. We have now proved that the isomorphism 6, is onto M’. Let
¢ =077

Now let A be arbitrary in M". For B’ arbitrary in M’ let B’ =¢—(B’)

and  consider 0y,y(A)B' =0y, (A)0y 1 (B)=V,'eyde, Vy V,iey BeyV,
=V,'eyABe,V, =0,,(AB)=0,,(BA4)=B0,,(A) showing that
0,.,-(A) lies in M"" =M for all v, ¥'ET, and hence A4 lies in M. Therefore,
we have proved that M = M"’ is a ring of operators on the Hilbert space A
such that M’ is isomorphic to M’. Also, it is clear that for each yET, V, is
a linear isometry mapping Me,,ﬁ onto M.

To complete the proof of the theorem it is necessary only to show the con-
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tinuity properties of ¢ and ¢~!. From the computations of the previous page
we have ¢(4")= D, cr ¢,V44' Ve, and thus for 2€H, §E A,

—1
}é“,r (eyV, AV, e4%, §)
v

-1 —1
ZE:I‘ (A'Vy ey%, Vo ey9)
v

(¢(4)%, )

Il

plus the equation
le(ans]® = 3 [lavy e,s]".
7ET

Now, letting {a’v,.}, {)’r,,}, n an integer, be collections of vectors in H such
that D =, ||%]|2< e, Do, ||54]|2< =, we get by the above equations that

Sz’ =2 X 4V el
n=1 n=1 YET
and
Z (¢(A") &n, Fn) = Z Z (A'V,le,,:i:,,, V'vle'r}"n)?
n=1 n=1 YET
which proves that ¢ is continuous in both the strongest and the ¢-weak topolo-
gies. (Since clearly Doy D er || VileyEal|2= Dony || 4]|2< @, with the same
computation for {§,}.)
Now let {x,.} ) {yn }, 7 an integer, be collections of vectors in H such that
Domr lxal|2< o, Domy ||9a]|2< . By the above equations,

0

Z (¢(A’)V1xm V‘yyn) = Z (Alxm yn)

n=1 n=1

and

2 e Vyml|? = 3 ||

n=1 n=1

showing that ¢~! is continuous in the strongest and o-weak topologies. By
specialization of the previous equations, |[|¢(4’) V,x||2=]||4'x|? and (4'%, ¥)
=(¢p(4")V,x, V,y), and ¢! is clearly continuous in the strong and weak
topologies. This completes the proof of the theorem.

CHAPTER II. A REPRESENTATION THEOREM FOR LINEAR FUNCTIONALS

2.1. Introduction. In [2, p. 30] is proved a representation theorem for
positive linear functionals on countably decomposable, “essentially finite”
rings of operators. In this chapter, this theorem is generalized to semifinite
rings, and is applied to problems of continuity of the trace.
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2.2. The representation theorem.
DEeFINITION 2.1. A positive linear functional w on a ring M will be called
strictly positive if w(E)=0, for E a projection in M, implies E=0.

LeEMMA 2.1.1. Let w be a strictly positive countabdly additive, linear functional
on a ring M. If there is a vector 3 such that [M'z)=H and if M is finite, then
there exists a vector y such that w(A)=(Ay, y) for all A in M.

Proof. By Lemma 1.1.2, M is countably decomposable, so that we can
proceed as in Lemma 1.2.1 to obtain countable sequences {E.}, {E/}, n
an integer, of orthogonal projections such that w~(E.,, x,) for vectors {%.}.
By hypothesis M is finite and hence [Mz] is finite. But Lemma 1.2.4 implies
that [M’z] is finite, and with it M is finite.

Continuing as in Lemma 1.2.1, we obtain I= Z;.l E,. Define F,
= > »., Ei and assume that the vectors {y:} have been defined for £=#,
with x1=9y1, Fiyrp=y for k+p=n, w~(F,, vy.). Also, if F,. =Py,
F”, -J-Er,t+m P>0-

We now proceed to the induction step. Asin [2, p. 34] we get, for arbitrary
Ain M:

W(Fni14*AFp11) = o((Fp + Ea41)A*A(Fa + Ent))

= w(F,A*AF,) + &(En1A*AF,) + o(F,A*AE,+1)

+ "’(En+lA*AEn+l)
< W(F A*AF,) + @(Enp1A*AEny) + 2| o(F,A*AE,y,) |
< w(F,4*AF,) + w(Ep1A*AE, )
+ 2(w(FoA*AF,)w(E1A¥*A Ep )22

< 2[w(F,A*AF,) + &(Ep A*AE, ;)]

=‘<- 2[(14)’», Ayn) + (Axn+1, Axn+l)]

§ Z(A(yn + x’l+l)) A(y» + xn+l)).
(The cross terms like (A%n41, Ay,) vanish since [My,|ZF!HLE, .H
= [Mxa11].) Thus, if ¥4y =2(¥a+%,41), then @K (Fny1, ¥o1) by Definition
1.2. Clearly Fopyri1=9¥ea=(Fi +Es1)yns1, and by Lemma 1.2.2, there
exists a vector y"/ satisfying w~(Fny1, »’) and lying in the manifold
[Fn+lMFn+ly£z+1] N [M’Fn+1y$.+1] = Fn+l{ [My;+l] N [M'y;-q-l]} = [My£|+1]
N My | S { [Mxnia] + [ My ]} N [M%01a] + [M'y]} S (Ersa+ Fil ) (B
+Fo)H=F.p(F) +E;1)H. Then, if A is arbitrary in M, w(F.4*4F,)
=(A*Ayn, v.)=||A.||2=(F.A*AF.y", ") =||AF.y"||?, showing that the
mapping V’ defined as V'A F,y"’ = Ay, can be extended to a partial isometry in
M’ taking [MF,y"] into [My,]. Also, since [MF,y"1C [My" |C(F! +Et1)H
and [My,]=F,) HC(F, +E,1)H, V' can be extended to the partial isometry
V,,H.] such that V:-‘I‘—l V:,+1= V7,¢+l V,’:.';.‘ =E£,+1+F«,{ (M' is ﬁnite).
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Now let yap1=Vity”, Fima=Pury,,- Then, (Ayni1, Ya41) =(4 Viry”,
Vo) = AV Vi, ¥'") = (A(F) + Ewn)y”, ¥") = (4y”, ")
=w(F,,+1A F,.+1), or

0~ (Fay1, Ynt1).

AlSO, F1,t+1H= [Myn+l] = [MV,I;+13’”] = V1,t+l[My"]g(Fn, +E;+1)H7 and Fnyn+1
=F,Vany’' =ViuFoy' =y, proving that F),lE. .., $>0, and com-
pleting the induction step.

We now have, by the above induction argument, a sequence of vectors
{y.} and a sequence of projections {F,.} such that w~(F,, y,) and F,
= Y »_, E. But the computation

”yn+p - yn”2 = ”Fn+pyn+p - Fnyn+p”2 = “(Fn+p - Fn)yn+p”2
= ((Fats — Fn)Yntp) Yniv) = 0(Fpyp — Fn)
n+p n+p
= ( b E,,) = 2 w(Ex)
k=n+1 k=n+1
shows that the sequence {y,} is cauchy, and thus there exists a vector y such
that { y,.} converges to it. Also, we have, for 4 in M:
| 0(4) — w(FadF,) | < | 0(4) — w(4F,) | + | «(4F,) — w(F.AF.)|
(w(44%)w(I — Fa))'* + (@(FaA*AF,)-o(I — F,))'?
[((44%))12 + (w(F.A*AF,))' 2] ((I — Fa))"?

(a9 +[l45.]]] (“’( > (Ek)))llz

k=n+1

A IA

IIA

© 1/2
< [(w(44%)12 + || A ya||] ( > w(Eo)

k=n+1
which implies (4y, ¥) =limuey (AYn, ¥n) =liMpee W(F AF,) =w(4).

LEMMA 2.1.2. If w is a countably additive, positive linear functional on a
countably decomposable ring M, then there exists a projection E in M such that
w(EY) =0 and such that w is strictly positive on the ring Mgy.

Proof. Choose, by Zorn’s Lemma, a maximal collection {Fn}, n&r, of
orthogonal projections in M such that w(F,) are all zero. Because of countable
decomposability of M we may assume that I' is the set of positive integers.

Let F= -1 F.. Using countable additivity of w, w(F) = D m, w(F,) =0.
We now can show that (I — F) is the E of the lemma.

Assume that G is a projection in M_py g such that w(G) =0. But then G
could be added to our maximal collection {F,}, thus contradicting our argu-
ment and proving w is strictly positive.
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THEOREM 5. Let w be a countably additive, positive linear functional on a
ring M. If there exists a vector z such that [Mz] is finite and if, for A in M,
Az =0 implies w(A) =0, then there exists a vector x in the manifold [ Mz] N[ M'z]
such that w~(I, x).

Proof. Let G = Px, and consider the linear functional (42, 2) on the ring
Mgg. 1f (Fz, 2) =0 for F a projection in Mgy, then clearly Fz=0 and conse-
quently FG = F=0, showing that Mgy is countably decomposable by Lemma
1.1.2. Now, invoking Lemma 2.1.2, there is a projection E in Mgy such that
w(G—E)=0 and such that w is strictly positive on Mgy. Also, notice that
G'z=0 implies that w(G*) =0 by hypothesis. Thus we have a projection E
in M such that w is strictly positive on Mgy and such that w(E') =w(G—E)
+w(G*) =0.

Let E' = PuEes (finite, by hypothesis) and consider the ring Mgg g. The
mapping A—AE' is an isomorphism of Mgy onto Mgg g, since if AE'=0,
then AE'Ez=AEz=0 which in turn implies A =0 by A & Mgu " Mgn. There-
fore we can introduce the linear functional ¢ on Mge x by ¢(AE') =w(4).
¢ is clearly a strictly positive, countably additive, linear functional on
MEE'H, with Méglyﬁn’l:te, and [MEE'HEZ] = [E’M’E’EZ] =EFE’ [M/Z] =EE'G
=EFE'H. :

Now, using Lemma 2.1.1, we get a vector y lying in the mani-
fold EE'HCE'GH = [MEz|N\[M'z]C [ Mz]N\[M'z], such that (4 E’) =w(4)
=(AE'y, y)=(4y, y) for A in Mgy. But then the inequality |w(4E*)|2
Sw(AA*)w(EY) =0 (plus a similar one for (E*4)) proves that for 4 in M,

w(4d) = w(EAE) + w(EAEL) + w(ELAE) 4+ w(ELAEL) = w(EAE)
= (EAEy, y)
= (4dy, ¥),

thus completing the proof of the theorem.
2.3. Applications of Theorem 5.

THEOREM 6. Let (M, M) and (M, M') be finite rings on the spaces H and H,
with joint cyclic vectors zand 3. If ¢ is a *-isomorphism of M onto M, then there
exists a linear isometry W mapping H onto H with $(4) = WAW, for A in M.

Proof. Consider the linear functional w defined on M by w(4) =(¢#(4)%, )
for A in M. If Az=0, then A =0 by [M’z]=H, showing that w satisfies all
the hypotheses of Theorem 5. Let y be the vector in H such that w(4)
=(Ay, v). Then ||4y||?=w(4*4) =||¢(4)4||?, and Ay=0 implies $(4)z=0,
with finally 4 =0. Thus [M'y]=H=[M’s] and [My]~[Mz]=H by Lemma
9.3.3, p. 179 of [5].

Let V' be the partial isometry in M’ defined by V'[My]=[MV'y]=H
and define x=V"y. Now [Mx]=H and ||4x||2=||4 V'y||2=(A*4AV'*V"y, y)
= (A*4y, y) =||4y||2=||¢(4)2||? proves that we can define a linear isometry
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W from H onto H such that WAx=¢(4)z. Furthermore, if B arbitrary in
M, then WAW-1Bz=WA¢—(B)x=¢(A) Bz proves that ¢(4) = WA W-! for
Ain M.

THEOREM 7. Let w be a countably additive, positive, linear functional on o
finite ring M. If the coupling operator C of the pair (M, M') is bounded (Cy s
bounded), then there exists a finite set z, 2, + * * , 2n Of vectors such that w(A)
= Z’;_l (Az, 2) for A in M. In fact, if the Cy of Definition 1.6 is bounded
above by mPy 1, m an integer, then n=m.

Proof. We first consider the case where C1 < P;,;. As in the proof of Theo-
rem 1, we use Lemma 1.2.7 and Lemma 1.2.8 to get a collection {P.,,' }, acT,
of orthogonal projections in the center of M such that either [M’'x,]=P. H or
[Mx,]=PdH with ) ,cr Pd =I. But by the definition of C, if [Mx.]
=P/ H then P/ <P, by Lemma 1.2.4, and [M'x,] = C{*[Mx.]"=C{'P.
=P/, proving that P/ = [M’x,] and yielding us a collection of operators
{PJ} in the center of M such that D ,er Pd =I and such that each is
generated by a vector x, and M’.

Let I'V be the set of €T such that w(P4 ) 0. It follows from linearity of
w that IV is countable and thus there is obviously no loss in generality in
assuming D _.er ||xal|2< w. In fact, by the orthogonality of the {P.},
a €T, there exists a vector x= Zaer' Xo If P'= Eaer P., then, for 4 in
M, w(4)=w(P'A)+w(AP*)=w(AP"), by |w(AP™")|?Sw(A4*)w(P'*)=0.
Also, Ax=0implies 0=APJx=APJ x (¢ €I") which in turn implies AP, =0
for a€I". But AP, =0, a €I, yields AP’ =0 and finally w(4) =w(4AP’')=0.
Thus we have proved that w and x satisfy the requirements of Theorem 5,
once we notice that [Mzx] is finite by Lemma 1.2.4. This completes the proof
of the case C1 = Py,1.

We now consider the case Ci=mPy,; for m an integer. Again we pick
orthogonal projections {Pa’ },aEI" , in the center of M such that Zaep» P,
=TI with either P H=[M'x,] or P/ H=[Mx,]. Now, with ' equal to the
positive integers less than m+1, apply Theorem 4 to M’, obtaining rings
M’ and M with equivalent projections e, k€T, in M’ such that >, ex=1I,
exM'e,= Vi M'Vier via the isometries Vi. We also get an isomorphism ¢ of
M onto M such that

$(4) = 2 VidVi e
k=1
for A in M.

Let Fa=Puyzy, Fa=Piiv,a,, Fd =Piiiyz,). From the proof of Theo-
rem 4, 01,1(F,,) =¢_1(Fa) = V{lelﬁ"ael Vl, and thus ¢°1(F¢)H= V,'lelFaelHl
=Vf’elﬁa§=V{1e1 [H'lea] =Vi-l [elﬂ'elle.,] =Vl—1 [VlM’ Vi-l lea] = [M’x,.]
= F.H, proving that

#(Fa) = F.
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We now consider the x, such that [Mx,]=PJ H. (P )e;H=V\P. Vi'e A
= V1P¢,H= Vl [an] and Fa' §= [Hlea] = [VlMVl’lel lea] = V1 [anl,
showing that

#(Poer = F..

But by definition of the coupling operator, PJ =[Mx.]"=Ci[M'x,]"
= Cy(F.,)%; and by the continuity properties of ¢, ¢(Po)=¢(C1) ¢((Fa)?
=¢(C1)- ((Fo)%. Also, if C is the coupling operator for M, M’, then (FJ)"
= [MVix]"=C1[M' Vixe]*= Ci(F.)% and we get, by combining these two
equations (using (Fd)"=¢(Pd)(e)"=(1/m)$(P.)), (1/m)$(Pd)=Ci(Fa)
=(1/m)p(C1) - (Fa)". But clearly (F,)" has an inverse with respect to ¢(P. )
and we get finally that

’ \ o1 ’
€l¢(Pa) = ¢(Cl)¢(Pa)';; =< ¢(Pa)-

For those o€l such that [M'x,]=F,H=P.H, we get ¢(Fa.)=F,
=¢(PJ) or ¢(PL)H=F.H=[M'Vix,]. It is now clear from Lemma 1.2.5
that here too Ci¢(P.)=<¢(P.). Combining this result with the preceding
paragraph, we obtain finally the inequality

C'l é Pl,l)

as Tacr $(Pi)=1. ) )

We now introduce the linear functional @ on M by defining &(4)
=w(¢~1(4)). This functional clearly satisfies all the requirements of the first
paragraph of the proof of this theorem, and hence there exists a vector # in
H such that &@(A4) = (A%, ). Then, for A in M,

w(4) = a(¢(4)) = (¢(4)%, %)
( S VAV e, x)

k=1

E 4 V;le;,a'c, V;lek:f?),

k=1

and the nonzero members of the set { Vi'e:&} form our set z, 22, « + +, 2a,
with n=m.

THEOREM 8. Let M be a finite ring. The mapping A—A"¥ is continuous in
the strong (weak) topology if and only if the coupling operator C is bounded.

Proof. First, assume C is bounded. For any vector x, the linear functional
(4%, x) on M clearly satisfies all the requirements of Theorem 7, and there-
fore there exists a finite collection of vectors {z.,} such that (4%, x)
= D> 2 1 (A%, z). This proves that the trace is weakly continuous. Then, by
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Lemma 8.1, p. 254 of [1], (4%)*(4%) S (4*A4)" for all 4 in M, and we get the
inequality || A%||2=((4"*(4%x, x)<((A*4A)%, %)= D 3a1 (A*Az, z)
= ZZ_I ”Az,,“’, which proves that the trace is strongly continuous.

Now, assume C is unbounded. As this means that C; is unbounded, there is
clearly no loss of generality in assuming that M and M’ are both finite. Then,
by the spectral theorem, there exists a sequence { Px}, k an integer, of projec-
tions in the center of M such that I=P¢>P;>P;> - - -, with CP,=nP,.
Also, we can choose vectors 2, & (P, — P,—1)H such that “z,%l“’ =1/n?, and since
S “z,.||2= > o, (1/n2) < », there exists a vector 2= D -y 2.

For x arbitrary in H, define E(x) = P{y'4. Clearly E(x)P,=E(P.x) for all
n, and by the definition of C, E(P.x)'=C-![MP.x|"<C-'P,<(1/n)P..
Also, let © be the collection of all finite sets of vectors {(xl, Xoy * 0 0, Xp) },
n some integer, which is made into a directed set by defining (for 7, 7:EQ)
Ti éfz if Tlg‘fz.

If 7(E€Q) consists of the above vectors {x}, define E, = SUpPz,er E(PayiXr)
and F,=P,.1—E,. Now, by Theorem 5.4 [4, p. 244] for arbitrary projec-
tions E, F in M, E\JF—F~E—ENF or (EUF)i=E‘+F—(ENF)"
<E'+F% Then, by a trivial induction argument, we obtain (E,)%
= E:-l (E(Pn+1xk)h) =(n/(n+1))Pny1 and thus (F‘r)h Z2Pop—(n/(n+1))Paps
=2(1/(n+1))P.y. Clearly F,x:=0 and for 7’ =7, F,x,=0.

Now, with the above notation, we get a directed set of operators {A,},
T1EQ, by letting A, = (r+1)3F,, with the following property: If x is arbitrary
in H,letto=(x) in €, and consider 4,x = (n+1)}F, x =0. Asin the above para-
graph, A,x=0 for 7 =7,, proving that 4, converges to 0 in the strong topol-
ogy. But A= (n+13F = (n+1)* (1/(n+1))Ppy1 = (n+1)2(Ppy1— P,) shows
that, using the vector z defined above, (4'z, z)=(n+1)2- “ (P,.+1—P,.)z||2
> (n+1)%|2a41]|2=1; and thus the directed set {4%} does not converge to
zero in the weak topology.

Thus we have succeeded in constructing a directed set of operators {A,}
in M which converge to zero in the strong (and thus in the weak) topology,
but with the set {A%} not converging to zero in the weak (and thus zot in
the strong) topology. This success proves that the mapping 4—A" is con-
tinuous in neither the strong nor the weak topology, and the proof of this
theorem is complete.

CHAPTER III. CONTINUITY PROPERTIES OF *-ISOMORPHISMS OF RINGS

3.1. Introduction. The main result of this chapter is a condition which
determines when a *-isomorphism between semifinite rings is given by a spa-
tial isometry, thus generalizing a result of von Neumann in §3.3 of [7]. Then,
growing out of this result, we obtain conditions for various of the standard
topologies to be purely algebraic. Our final result is a theorem on the rela-
tionship of a semifinite ring to its commutant.

3.2, Spatial isomorphism of semifinite rings.
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DEFINITION 3.1. Let (M, M’), (M, M') be finite rings with coupling opera-
tors C, C respectively, and let ¢ be a *-isomorphism of M onto M. Further,
as in the proof of Theorem 1, let the coupling operators have the form:
C= Y wer (CatDZY), C= 2 .er (CatD7"). If there exist decompositions of
C and C such that ¢(C,) =C. and ¢(Ds) = D,, then we write ¢(C)=C.

LEMMA 3.2.1. Let (M, M"), (M, M’) be finite rings on Hilbert spaces H, H
with coupling operators C, C respectively. Further, let 3, % be vectors in H, H
respectively such that [Mz]|=H, [Mz]=H. If ¢ is a *-isomorphism of M onto
M such that $(C) =C, then there exists an isometry W of H onto H such that
WAW-1=¢(A4) for A in M.

Proof. If G=Pix s, then G'C=C[M'z]"=[Mz]*=1, and thus I=¢(J)
=¢(G") - ¢(C) =¢(G)"C. But, since [Mz]"=C[M'z]"=1, we get ¢(G)"= [ Mz]".
Thus we can select a vector % in H such that [M'&]=¢(G)H and [Mz]=A.
Also, [M[M',,]Z] = [MfM',lz] =GH and [ﬁ[ﬁlili’?] = [M'm:i]ic] =¢(G) H, show-
ing that, by Theorem 6, there exists a linear isometry W, mapping GH onto
¢(G)H with ¢(A) =WeAW, " for A in M.

Now, by Lemmas 4.11, p. 231, 4.9, p. 230, and 6.4, p. 235 of [1], we can se-
lect a nonzero projection E in M such that E <G and such that E*= (1/z)P for
some projection P in the center of M. Further, one can choose orthogonal
projections {E:}, 1 <k<mn, such that each E is equivalent to E and with
Z’,‘_l E,=P.Let V;, 1 Sk<n, be partial isometries in M such that VyV,=E;
and V,V¥=E.

Clearly, the mappings ¢(Vi)* W,V are isometric from E.H to ¢(Ei)H,
since (Vo ( Vi) =¢(Er) and ¢(Vi)d( V3) =¢(E). Thus we can define the map-
ping W= >_1_, ¢(Vi)*W,V, as an isometric map of PH onto ¢(P)H. For
A in MP consider

> d(V)*WoV, AV Wile(V,)

k,8=1

wAwW—?

> d(V(VrAV¥)G(V,) (since VAV .* in Mgn)

s, k=1

= Y VAVAVEV) = ¢( > <EkAE,>)
8, k=1 k,e=1

— B(AP) = (4).

Thus we have constructed an isometry implementing ¢ on MP, for a projec-
tion P in the center of M. From this result, an obvious transfinite induction
argument yields a collection {Pa}, a&T, of orthogonal projections in the
center of M, such that Zjaep P,=1I and such that there exist linear isom-
etries W, mapping P,H onto ¢(P,)H and implementing ¢ on MP,. Let
W= Zuep Wa.
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For I' any finite subset of ', we notice that

W(A > P,,) W=t = D Wa(APIWit = D ¢(AP,) = ¢<A > Pa>
a1 a1 aETr a1’

¢(A)¢< ; Pa)
= d’(A) EZI:" ¢(Pa)'

But Zaep (P,) =I=¢(I); and thus by the continuity of W(-)W-!, WA W-!
=¢(4).

LEMMA 3.2.2. Let (M, M'), (M, M') be finite rings on Hilbert spaces H,
H, with coupling operators C, C respectively. Further, let 2, z be vectors in H,
H respectively such that [M'z)=H, [M'z]=H. If ¢ is a *-isomorphism of M
onto M such that $(C) = C, then there exists an isometry W of H onto H such that
WAW-1=¢(A), for A in M.

Proof. Let G'= P, and, as in the previous lemma, select a projection
E’'£G in M’ such that (E’)"= (1/n)P for some projection P in the center of
M. Also, pick an orthogonal collection of projections {E{ }, 1<k=n, such
that each is equivalent to E’ and Y ., E{ =1, as well as partial isometries
Vi in M’ with Vi*V{ =E{, V{ Vi*=E'.

Now let E=Py 5., and notice that we have the equation [ME’z]t
=(E'[Mz])i=(E'G")i = (E")=C[M'E'z]"*= C(E)!. Thus we get the result
(E")4=(1/n)P=C(E)" and consequently, (1/2)¢(P) =¢(C) -¢(E)*=C ¢(E)".
But [M'$(E)z] =¢(E)H, by hypothesis; and if we define E' = P4z, then
by the definition of C, (E')"=C¢(E)"=(1/n)¢(P). Again we can choose or-
thogonal projections {£¢} such that > %., Ef =¢(P) and with each Ey
equivalent to E’. Let V{ be partial isometries in M’ such that V.*V{ = E;
and V¢ Vi*=F'.

But now the map A—AE’ is an isomorphism of MP onto Mgy, since if
AE'=0, then, for all k, AV Vi*=0=AV{ Vi*V{ =AV{! =AV*V{ =AE/!
and finally D> 3., E{A=AP=A=0. A similar computation shows that the
mapping A—A E' is an isomorphism of M¢(P) onto Mz 7. We now are in a
position to define the isomorphism ¢’ of Mgy onto M%g by ¢'(AE’)
=¢(A)E' for A in MP.

Next, we observe that [M’pyE'z]=[E'M'E'z|=E'[M'E's]|=EE'H,
[MgnE'z]l=|ME's)=E'|Mz)|=E'GH=FE'H, [Mgz¢(E)z]=[E M'¢(E)z]
=FE¢(E)[M'z)=E¢(E)H, [Mzz¢(E)z]=FE [M¢(E)z]=FE'H; and thus, if
C’, C’ are the coupling operators for the rings (Mg n, M'gy), (M55, M's%)
respectively and if the symbol ° denotes the trace in the above reduced rings,
then (E’)°=C'(EE’)° and (E')°=C'(F'¢(E))°. But this implies that ¢’(E’)°
=C'¢'(EE")°=¢'(C")-¢'(EE’)° and proves that ¢/(C’) =C’. This fact, plus
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Lemma 3.2.1, yields a linear isometry Wy of E'H onto E'H such that ¢'(4E’)
=W AE' Wy

As in the proof of Lemma 3.2.1, we can define a linear isometry from PH
onto ¢(P)H such that W= D 2, V¢ *W,V{ and compute (for 4 in MP),

WAW-Y = >, VI*WWVEIAVI*WiV!

k,8=1

= > VIW(VLVI* AWV (since Vi VI* = 0 for k # s)
k=1

n

= Y VIW(EADWTVL = D Vi*-¢'(EA)VL

k=1 k=1
= 3 VBN = 3 VITIeM) = > Ble(4)
k=1 k=1 ke=1

= ¢(P)p(4) = ¢(4P) = ¢(4).

Thus we have proved that there is a linear isometry implementing ¢ on MP,
for some projection P in the center of M. The remainder of the proof is
identical with the last part of the proof of Lemma 3.2.1.

LEMMA 3.2.3. Let (M, M), (M, M’) be finite rings on Hilbert spaces H, H,
with coupling operators C, C respectively. If ¢ is a *-isomorphism of M onto M
such that ¢(C)=C, then there exists a linear isometry W of H onto H such
that WAW-=¢(A) for A in M.

Proof. By Definition 3.1 and the proof of Theorem 1, we have collections
of orthogonal projections {P.}, {Ea}, { P.}, {E.} (@ €T) in the center of
M, MP,, M, M P, respectively with vectors Xa,1, Xa.2, a1, &a,2 in H, H such
that ) .er Pa=1,

[an.1] = E,P.H, [M'xa'l]li =D,
[Mza:]t = Ca, [M'%,..] = ELP.H,
[M%..] = E.P.H, [0 %0 ]r = D;,
[M £a,s]t = Ces [M'%q,] = EcP.H,

and finally
¢(Ca) =Cay (DY) = D
Clearly, ¢(P.) = P,, ¢(E.) = E. and we can apply Lemmas 3.2.1 and 3.2.2
to get linear isometries We.i, aET, k=1, 2, implementing ¢ on the rings

ME.P., ME_P,. Having done this, we get an isometry W in the large by
the method of Lemma 3.2.1, thus completing the proof of this lemma.

LEMMA 3.2.4. Let M, M’ be of types Si, Sa (Q infinite) respectively. There
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exists a collection of orthogonal, equivalent, finite projections {E.,’ }. acrl,
such that D acr Ed =1I; the Mg'g are all isomorphic to M, and the coupling
operator for (Mg g, Mg, u) is the identity.

Proof. We first consider the case when there is a vector x such that [M’x]
=H. The projection F{ =Py is finite by Lemma 1.2.4. Now, by Zorn’s
Lemma, pick a maximal family {F.}, €T, of orthogonal projections
equivalent to F¢ and let F' = Zaer F..Comparing FJ with (F')*, we notice
that F{ < (F')* is false by the maximality of our family {F.}; and thus
there exists a projection P in the center of M such that P(F')*<PF{
(proper).

We now have P= Zaep PF]+P(F')* and the set I is clearly of infinite
cardinality (by finiteness of F{ ). Further, the projections PF, are all equiva-
lent to PF{. Let ay be any element of I' and consider the fact that
Zaep_ao PF] ~ Zaer PF/] as each of the index sets has the same cardinal-
ity. But this obviously leads to the equation Zaer PF{ > Zaer—aoPFa'
+P(F')*> X uer PF! +P(F)-=P or P~ .cr PF..

Next, select a partial isometry V' in M’ such that V'*V'=P
and V'V'*=3 ,cr PF/. Then, P=V*V'V*V'=V'*(X.er PFd)V’
= Zaer PV'*F! V', where the PV'*F, V' are clearly equivalent to PFy.
Thus we have expressed a central projection P as a sum of orthogonal projec-
tions equivalent to PFy.

Again apply Zorn'’s Lemma to obtain a maximal family of orthogonal
projections { P.}, €A, such that Po= ),y FL., the F.,, being orthogonal
projections equivalent to P,F¢ (the same index setI' can be used for the F,,
since all have the cardinal Q). Form P= ) .ca Pa, and consider P*. If
P10, then the process described in the first part of the proof of this lemma
shows that there is a nonzero projection in the center of M(P*) which is a
sum of projections equivalent to FJ cut down to that central projection. This
contradiction of maximality of the family {Pa} proves that P=1.

Now, form the projections Ey = D aca FL.,. These projections are ob-
viously equivalent to D agaPeF¢ =F{ and I = > wer E4 . Furthermore, the
rings Mg g are isomorphic to Mryg. Also, the mapping A—A4F{ is an iso-
morphism of M onto Mryx, since if AFg =0, then Ax=0 and hence 4 =0.
Finally, [Mr,ux]= [Mzyux]= F¢ H shows that the coupling operator for the
rings Mp,u, Mr,u is the identity. This completes the proof of the case when
[M'x]=H for some x in H.

In the general case, we use Lemmas 1.2.7 and 1.2.8 to obtain a family
{P.}, @ €A, of orthogonal projections in the center of M such that Zae A Ps
=1 and with either [Mx,]=P.H or [M'x,]=P.H for vectors x, in H. But
if [Mx,]=P.H for some aEA, then, by Lemma 1.2.4, [Mx,] and thus P,
would be finite in M’, contradicting the fact that M’ is of type Sg. Thus all
the P, satisfy [M'x.]=P.H,
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Applying our previous results to the rings M P,, we obtain a set of equiva-
lent, finite, orthogonal projections E,,, a«aGA, y&T, such that P,
= E,er E., and the rings MPapayn, M Pap, n have the identity as a
coupling operator. But finally, defining E, ZO’EA E,., we see that the
E; are a family of orthogonal, equivalent, finite projections with .ep E;
=1. Smce P E E;’.,, (]l/I.Pa,l«;,y H, MPaE,’IH) (MPaE'a,-yH, MPab aﬂy)
thus the coupling operator of (Mg, x, Mfz.,fy) on P,E, is the identity. But
piecing together the coupling operators on P,E,; we obtain finally that the
coupling operator of (Mg, u, M},-,':y) is the identity.

To complete the proof of this lemma, notice that the mapping A —A4E,
is a *-isomorphism of M onto Mg u; since if AE, =0, AP.E;y =0 which
yields AP,=0 for all a, by the first part of this proof. Then, 4 =0 follows
from D aga Pa=1I.

LEMMA 3.2.5. Let M, M', M, M', be rings of types Si, Sa, S1, Sa respectively
(Q an infinite cardinal). If ¢ is a*-isomorphism of M onto M, then there exists
a linear isometry W mapping H onto H, such that $(4) = WAW-" for A in M.

Proof. Applying the preceding lemma to the above rings, we get the fami-
lies {E,,,’ }, {E,,,’ }, aET, of Q equivalent, finite, orthogonal projections in
M', M’ respectively such that D .er EJd =1, D ,er Ed =1 and such
that the coupling operators of the rings (Mg n, Meyn), (M5, %, M, %)
are the identity operators. Further, one can define the *-isomorphism ¢’ of
Mg, u onto Mz, 5 by ¢'(AEL,) =¢(A) E, for A in M. Lemma 3.2.3 can now
be invoked to yneld a linear isometry W, of ELH onto E. H such that
Wo(AEL,)Ws'=¢(A)EL,.

Pick partial isometries { V. }, { VJ }, « €T, in M’, M’ respectively such
that VJ*V) =E/, Vi Vi*=E.L, Vi*V. =E}l, Vi Vd*=E., Asin the proof
of Lemma 3.2.2, we define the linear isometry W= Zaep Vi*W,Vd of H
onto H; and, if I is any finite subset of I' (by the same computation as in
Lemma3.2.2), (Zaer'V'*WoV VA aer Vi * W5 Vd) =¢(A)( Xaer Ed)
=W 2 wcr Ed AW~ Thus by continuity of W, WAW-1=¢(4).

LEMMA 3.2.6. Let M, M', M, M’ be rings of types Sa, Sar, Sa, So- respec-
tively (Q, Q' being infinite cardinals). If ¢ is a *-isomorphism of M onto M,
then there exists a linear isometry W mapping H onto H, such that ¢(A)
=WAW-'for A in M.

Proof. Since M is of type Sq, there exists a family {Ea}, aCT, of Q
orthogonal, finite, equivalent projections in M such that ZaEr E.=1I1If
we let ¢(Eq) = E,, the family {E.}, « €T, is a family of projections in M
with properties similar to those of {E.}. For a a particular element of T,
there exist partial isometries { Va}, aET, in M such that V¥*V,=E,, V.V*
=Eaq,.

We notice that ¢ induces a *-isomorphism of Mg, o1 onto ME . Further,
the map A’—A4'E,, is an isomorphism of M’ onto MEGH, since 1f A'E,,=0,
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then by the same argument as the third paragraph of the proof of Lemma
3.2.2, this implies A’E,=0 for all e €T" and hence A’ would vanish. A similar
argument shows that M’y %, # is isomorphic to M’. Thus the rings M E ol
ME.,, o, MEa 7, M's ol 1€ of types S1, Ser, S1, Sar, and we can apply Lemma
3.2.5 to get a linear isometry W, with the property: WA Wy '=(4) for 4 in
the ring Mg, &

Now, we can define the linear isometry W= Zaeﬁﬁ( VHWoVaandif IV is
any finite subset of I' then, by the same computation as that of the third
paragraph of the proof of Lemma 3.2.1,

W( > E)A( )> E) o= 3 (BaAB) = T (EJA) T (B,

«Er =3 of @, 8T’

But now, by the continuity properties of W, we get finally: ¢(4) = WAW-1

DEFINITION 3.2. Let M, M’, M, M’ be semifinite rings of operators on
Hilbert spaces H, H, with coupling operators C, C respectively. If, as in Defi-
nition 1.6, we write

44 ~ ~
C=Cl+ Z '_;Pa,a’y C C1+ Z _Paur

a,a’%#1,1 «& a,a’#1,1 a’

Il

then a *-isomorphism ¢ mapping M onto M is said to take C into C, if
®(Pa,ar) = Pa,o for all @, o’ and if ¢(Cy) = Ci. Cis said to be essentially bounded
if all the { P..}, @ >1, are zero.

THEOREM 9. Let M, M', M, M’ be semifinite rings of operators on Hilbert
spaces H, H, with essentially bounded coupling operators C, C respectively.
If ¢ is a *-isomorphism of M onto M taking C into C, then there exists a linear
isometry W mapping H onto H such that $(A) = WAW-! for A in M.

Proof. Let C=Ci+ Q_(a/a’)Pa,or. By Lemma 3.2.3, there exists a linear
isometry implementing ¢ on P;,;. By Lemma 3.2.5, there exists a linear isom-
etry implementing ¢ on the P4, «>1; and by Lemma 3.2.6, there is a linear
isometry implementing ¢ on the P, for a, a’>1.

Thus we have a collection of orthogonal projections in the center of M such
that on each one ¢ is implemented by a linear isometry. But now by the
argument at the end of the proof of Lemma 3.2.1, there exists a linear
isometry nnplementing ¢ in the large. This completes the proof of the
theorem.

THEOREM 10. Let M, M’ be semifinite rings with an essentially bounded
coupling operator C. If ¢ is a *-automorphism of M leaving C fixed, then there
exists a unitary operator W on the Hilbert space H such that ¢p(4A) = WAW*
for A in M.

Proof. ¢ is clearly a *-isomorphism of M onto itself, which takes the
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coupling operator C into the coupling operator of its image. Thus we can
apply Theorem 9, obtaining a linear isometry W of H onto itself such that
¢(A)=WAW-for A in M. But such a W is unitary on H, and consequently
W-1=W*,

3.3. Continuity properties of *-isomorphisms.

LeEmMA 3.3.1. Let M be a semifinite ring on the Hilbert space H. If w and
{P.,} are the cardinals, projections respectively of Theorem 3, let Q be an in-
finite cardinal larger than any of the cardinals in . If T' 1s an abstract set of
cardinal Q, then the ring M of Theorem 4 is of type Sq.

Proof. Let ¢ be the isomorphism of M’ onto M’ given in Theorem 4. With
the notation of the proof of that theorem, consider the family ¢(Pg)e,, yET
(« fixed). These projections are clearly all equivalent, and since the M. 1
are unitarily equivalent to M, each ¢(P.)e, of the above family is the sum of
a orthogonal, equivalent, finite projections in M. Thus ¢(P,) is the sum of
Q-a =9 such projections, and M¢(P,) is of type Sa.

But D .gr ¢(Pa)=¢(I)=1I proves that M is of type Sq, and the proof
of this lemma is complete.

THEOREM 11. The strongest and o-weak topologies are purely algebraic in
semifinite rings; that is, any *-isomorphism between semifinite rings is bicon-
tinuous in the strongest and o-weak topologies.

Proof. Let ¢ be a *-isomorphism of the semifinite ring M; onto M,. Pick
an abstract set I' with infinite cardinality © larger than that of the Hilbert
spaces on which the rings M;, k=1, 2, act, and apply the process outlined in
Theorem 4 to the rings My . Let ¢, ¢ be the 1somorphlsms of My, M onto M.
M, respectlvely, and form the isomorphism ¢ =¢.pd; .

& is now a *-isomorphism of M, onto M. In M, form the family {Pa}, as
in Theorem 3. But, from our selection of @, and by Lemma 3.3.1, it is clear
that the M/{ are of type S, and thus our coupling operator C; for i 1 has the
form: C;= Z..e,l (/) P,. Since the types S, are preserved under *-iso-
morphism, we also get the coupling operator C; of M, in the form: C,
= 3 een (@/D3(P.).

Thus we see that ¢ takes C; into C, with each being essentially bounded.
Applying Theorem 9, we see that there exists a linear isometry implementing
6. But now ¢ is obviously bicontinuous in both the strongest and g-weak
topologies; and since the ¢, k=1, 2, are bicontinuous in these topologies by
Theorem 4, we get finally the result that ¢ =¢; '¢¢: is bicontinuous in the re-
quired topologies. This completes the proof of the theorem.

LEMMA 3.3.2. If M, M’ are purely infinite semifinite rings on a Hilbert
space H, then the strongest and strong topologies are equivalent and the o-weak
and weak topologies are equivalent.



1953] CONTRIBUTIONS TO THE THEORY OF RINGS OF OPERATORS 499

Proof. Let T" be the set of positive integers, and apply Theorem 4 to M,
obtaining rings M, M’ and an isomorphism ¢ of M onto M. If the projec-
tions {Pa,a'}, o, o' Ew, are the ones in the standard decomposition of the
coupling operator for (M, M’), consider the rings ¢(Pa,o’) M, ¢(Pa,o’) M'. As ¢
is an isomorphism, the ring ¢(Pa,«') M is of type S, like P, M. Also, as in the
proof of Lemma 3.3.1, the family ¢(Pq a’)eq, nET (a fixed), are all equivalent;
and as each member of that family is the sum of &’ orthogonal, equivalent,
finite projections, we get finally that ¢(P, ) is the sum of a’-No=a’ such
projections. This proves that ¢(Pg o) M’ is of type Sa.

Thus we see that if { Pa.}, @, @/ Em, is a decomposition of the coupling
operator of (M, M’), then ¢(P. ) is the corresponding decomposition of the
coupling operator of (M, M’). Since both operators are obviously essentially
bounded, we may apply Theorem 9 to obtain a linear isometry W implement-
ing ¢.

Now let {x.} be a sequence of vectors in H such that > ., ||x.][2< =,
and, using the notation of Theorem 4, define #,=V,x, Clearly we
may define a vector Z= ) m, &, in H; and, by the proof of Theorem
4, for A in M, Yo, (AVi'%, Vilg) = Doy (A%x., x,)=((4)%, )
=(WAW-'%, &), or D oy (A%n, %a) =(AW-'%, W-'z). That the strongest
and the strong, the weak and the s-weak topologies are equivalent is now clear,

THEOREM 12. Let M, M’ be semifinite rings on a Hilbert space H, with
coupling operator C. If C is bounded, the strongest and the strong, the weak and
the o-weak topologies are equivalent pairs of topologies.

Proof. Let C=Ci+ D (a/a’)Pa,o be the standard decomposition of the
coupling operator. By boundedness of C, the P,;, a>1, are all zero and G,
is a bounded operator. Thus Qt= Z(a an=1 Pa,o has the property that
M(Q*Y) and M'(Q*) are purely infinite semifinite rings, and we see that the
theorem is true on (Q)*H, by Lemma 3.3.2.

Now, let {x.} be a sequence of vectors in QH such that > ., ||%.]|2< «,
and form the linear functional w(4) = ) .., (A%x, x.) on MQ. This functional
clearly satisfies all the conditions of Theorem 7, and thus there exists a finite
set {z}, 1<k<m, with w(4)= D", (A=z, z). But this proves that the
theorem is true on QH. Combining this result with that of the first para-
graph, we finally complete the proof.

THEOREM 13. The trace function in a finite ring is continuous in the strong-
est and o-weak topologies.

Proof. Let M be the finite ring, and with I' as the positive integers, apply
Theorem 4 to M’, getting rings M, M’ and an isomorphism ¢ of M onto M.
Since M’ is purely infinite, the coupling operator for (M, M’) satisfies the
conditions of Theorem 12, proving that the strong and the strongest, the weak
and o-weak topologies are equivalent pairs of topologies on M.
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Now, let {44} be a directed set of operators in M which converge to zero
in the strongest topology. By the continuity properties of ¢, ¢(4.) converges
to zero in the strongest (and thus the strong) topology on M. Again using the
fact that M’ is purely infinite, Theorem 8 can be applied, yielding ¢(A4)*
—0 in the strong (and thus the strongest) topology. Then, applying ¢!, we
get A% converging to zero in the strongest topology. This proves that the
trace is continuous in the strongest topology, and a similar argument does the
same for the o-weak topology.

THEOREM 14. The notion of subring is purely algebraic with respect to semi-
finite rings; that is, if ¢ 1s a *-isomorphism of the semifinite ring M onto the
ring M and if N is a semifinite subring of M, then ¢(N) is a subring of M.

Proof. If NV is defined as the strongest closure of ¢(NN), it is clearly sufficient
for the proof of the theorem to prove that N C¢(N). Therefore, let A be in
N and pick a directed set {A.} of operators in ¢(NN) converging to 4 in the
strongest topology. But by Theorem 11, ¢! is strongest continuous from M
to M, so that we have the directed set ¢—1(4,) converging to ¢—1(4) in M.
Furthermore, the ¢~!(4,) are in N; and by the closure properties of N,
¢~1(A) lies in N. Now, applying ¢, we get finally that 4 lies in ¢(N), and the
proof of the theorem is complete.

3.4. Standard rings.

DEFINITION 3.3. Let M be a semifinite ring on a Hilbert space H. If there
exists a conjugation J of H such that JMJ = M’ and such that for 4 in the
center of M, JAJ=A%*, then M is said to be a standard ring.

LeEMMA 3.4.1. If M is a finite ring on the Hilbert space H, then M is standard
if and only if the coupling operator is the identity.

Proof. First, assume that the coupling operator is the identity operator.
By Lemmas 1.2.7 and 1.2.8, there exists a family {Pa} , a €T, of orthogonal
projections in the center of M such that ) _,erPa=1 and with vectors x., « €T,
such that either [Mx,]=P.H, or [M’'x,]=P.H. However, since I is the
coupling operator, we always get both: [M'x,]| = P.H = [ Mx.]. But now we can
apply Lemma 1.2.2 and get conjugations J., «ET', on P.H, such that MP,
is standard with respect to J,.. That Zaer J« is the conjugation of our
lemma now follows immediately.

Next, assume that M is standard. As above, pick a family {Pa} , a&T, of
orthogonal projections in the center of M such that Zaer Pq,=1I and such
that either [Mx,]=P.H or [M'x,]=P.H. Suppose [Mx.]=P.H, and con-
sider [M'x,]=[JMJx,]=J[MJx.]. By the proof of Lemma 1.2.3, [MJx,]
~P.H or [MJx,]=P.H. But then [M'x,]=JP,H=P.,JH=P.H, or
[M'xo.]=P.H. A similar computation for the case [M'x.]=P.H shows that
for all €T, [Mx.] =P.H = [M’x,]. It is now clear that the identity operator
is our coupling operator and the proof of the lemma is complete.
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LeEMMA 3.4.2. If M is a purely infinite ring of type Sq on the Hilbert space H,
with coupling operator C, then M is standard if and only if C=(Q/Q)1.

Proof. Let C=(Q/Q)I. As M is of type Sq, there exists a family {E.},
a&T, of orthogonal, equivalent, finite projections in M such that Eaer E,
=1. Let ay be a fixed element of I', and pick partial isometries { V,,}, acrl,
in M such that V}V,=E,, V.V}=E,,

Notice that the mapping A’—A’E,, is an isomorphism of M’ onto M; ’an}{
since if A’Eq,=0, then A’E,=0 for all « with finally 4’=0. Thus we get
Mg, u finite with Mg Equ Of type So. Now, Lemma 3.2.4 glves us a family
{ Ea,Ey }, €T, of orthogonal equivalent, finite projections in M EqqH SUCh
that the rings (Mg, oF gt M E,%any) have the identity as a coupling operator.
Furthermore, the family { EZ}in M’ is a collection of equivalent, finite pro-
jections; and since for a#a’, 0=E/ E, E./, it follows that E/ El, =0 or that
the above collection is orthogonal. In a similar fashion, Eaer E; =1

Apply Lemma 3.4.1 to (Mg, oEleoHo Mg, JEL H) and let the corresponding
conjugation of E,E. H be J,. Plckmg partlal isometries {vi}, a€T, in M’
such that V*V)/ =EJ, Vi Vi*=E], we define Jog=VFViToVaVp Jap is
clearly a norm preserving mappmg of E.E{ onto E/ Es acting like a conju-
gation from E,E{ to EdJ Eg. Since D o per EoEf =(D acr Ea)( D ser EF)
=], we can form J = Eagep T8

Now for any finite subsets I'V, I’ of T, we have:

J( > EaEp,’)A( > E.,Es’)J

aEr gET! SET gET
= e ) B TapATs.y = S VIVFIVVEAVIFV X VsV ]
aYET gICT!
" e Zer VI*V3ToEa! (VaAV )T VaV S
7,0y ’

since V4 V;*=0 for 8§ and equals E, for 8=34. Also, since JoE, (Va4 Vi Jo
lies in Mk, JE',H» Tepresent it by the operator B, ,E., for B, in M &1 Then

J( 2. E.Ej(4) 2 EaE.')J

«ET gET YET €T
= > V*V§*Ba yEaVsVy = ( > V,;“Va>( > Vf,*B'.,,.,V',)
ay&ET LBET/ ﬂe T a Y&

= ( 3 E,,)( > V;*BL,,V;).
pET ayET

Then, by arbitrariness of IV and continuity of J,

J( > Ea,)A< > E.,)J = > V*B,,V,=Sr

aET yEr a,yET
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in M’. But the left-hand side of this equation converges to JAJ in the strong
topology, and thus St converges to JAJ, proving that JAJ lies in M.

If A lies in the center of M, then B,’,,'.,Ea,,=JoAE[,°VaV.’,"Jo=0 for a =,
=Jod Eq EaJo=A*E, Ea, for a=7v. We now get J( Zaer' EJ)A( E.,epu E,)
=D eer VEIFA* VL =(2 .er Ed)A*. Again by continuity of J, JAT = A*,
and M is shown to be a standard ring.

Now assume that M is standard of type Sa. If {E.}, a €T, is a collec-
tion of orthogonal, equivalent, finite projections such that Zaer E,=1, then
2ecr JEJ=I with the family {JE.J}, aE€T, consisting of orthogonal,
equivalent, finite projections in M’. Thus M’ is of type Sg and the proof of
the lemma is complete.

THEOREM 15. Let M be a semifinite ring with coupling operator C. M 1s
standard if and only if C has the form Zae, (/) Py, e

Proof. Let C= Eae, (0/0)Pgy,o. By Lemma 3.4.1, M P, is standard with
respect to a conjugation Ji, and by Lemma 3.4.2, the rings MP,, a>1, are
standard with respect to the conjugations J,. But now the conjugation J
= Zae, Ja clearly makes M a standard ring.

Let M be standard with respect to J. If {Po}, @ €T, is the decomposition
of I into homogeneous parts given in Theorem 3, then {JP,J} is clearly the
decomposition of M’ into homogeneous parts. But JP.J=P,, as the projec-
tions are in the center of M; and thus Pg,a =P4-Por =0 or P.. Also, since
MP, is standard with respect to J, CPy=P;, and C= Z,E, (a/a)Pg,a.

Added in proof. It will be noted that the condition “essentially bounded”
occurs in several of our theorems, and it would be of interest if perhaps the
condition might be removed for some. In the case of Theorem 9, however, the
following example shows that here the condition cannot be removed.

Let M be the ring of all bounded operators on an infinite-dimensional
Hilbert space. Now, letting T' consist of two elements, apply Theorem 4 to
M’ obtaining rings M, M’ with M *-isomorphic to M. This *-isomorphism
clearly preserves the coupling operator which is not essentially finite. But, if
¢ could be implemented by a linear isometry W, then M’ and M’ would be
*.isomorphic—clearly an impossibility since M’ is abelian and #’ is non-
abelian.

APPENDIX. WEAK AND STRONG CONTINUITY OF *-ISOMORPHISMS

In Theorem 9 we obtained a condition for unitary equivalence, depending
upon the coupling operator. In this appendix we shall obtain a condition for
strong (weak) continuity of *-isomorphisms also depending upon the coupling
operator.

LEmMMA 1. Let M be a finite ring of operators on a Hilbert space H, with
coupling operator C. If ¢ is a *-isomorphism mapping M onto a ring M acting
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on the Hilbert space H, and if C is bounded, then ¢ is weakly and strongly
continuous.

Proof. This lemma clearly follows from Theorems 11 and 12, plus the fact
that the strong (weak) topology is weaker than the strongest (o-weak)
topology.

LEMMA 2. Let M, M', M, M’ (M finite), be semifinite rings of operators on
Hilbert spaces H, H, with coupling operators C, C, respectively. If ¢ is a *-iso-
morphism mapping M onto M, and if C is bounded, then ¢ is strongly (weakly)
continuous if and only if C is bounded.

Proof. Assume that ¢ is strongly (weakly) continuous. We consider the
mapping A—A"% in M as a composite of the mappings 4—¢(4)—d(4)4
=¢(4%)— A" By hypothesis, ¢ is continuous; and the continuity of the other
maps follows from Lemma 1, Theorem 8, and the fact that C is bounded.
This shows that the mapping 4—A" is continuous and finally that C is
bounded, by Theorem 8.

THEOREM A. Let M, M’, M, M’ be semifinite rings of operators on Hilbert
spaces H, H, with essentially bounded coupling operators C, C respectively.
Further, let Co and C, be the ordinary operator parts of the coupling operators,
plus S=L.U.B. (Co, I). Now, if ¢ is a *-isomorphism mapping M onto M, then
& is strongly (weakly) continuous if and only if the operator T = Cop~1(5~?) s
bounded.

Proof. Let C=Co+ D (1/a') Prw+ D a>1 (@/@) Poor, be the canonical
form for the coupling operator, and define Qo= D Pia, 0s= D a>1 Poar.
Further, we write Co= ) ser (Cs+Dz") as in Theorem 1. Clearly, §
= r (BsPs+D;")+ Q2+ 0s; and thus we have for E= 3 ser Pirzy,
0.5 s EsPs, Qo= Docr B3 Ps that S-1= 3%, Out Soes Dp and
hence §-1= > 3., Ox+F5

Now let Qr=¢"1(0s) and E=¢~!(E), and assume that the operator
T=Cop~1(5-1) = Co(E"+ Q1+ Q) is bounded (CoQ; is zero by the assumption
of essential boundedness). The continuity of ¢ on MQ; follows from Lemma
3.3.2, and continuity on MQ; and MQ,is implied by Lemma 1 above. To prove
the continuity of ¢ on MQ,, consider the linear functional w on MQ, defined
by the equation w(4) = (¢(4)%, %) for & arbitrary in H. It is clearly a linear
functional on the ring Mpn, where F= Pg3, F=¢"'(F), and F’ = Pz Since
CoEr= (o, we get Fi'=F1CoFi= F"E"< F% and we see that CoF" is dom-
inated by the bounded operator CoE*<T. But the operator C,FF is the
coupling operator for the rings Mpy, Mpg by an argument similar to that of
the proof of Lemma 1.2.5, and thus the functional w has the form given in
Theorem 7. The continuity of ¢ now follows easily.

Finally, assume that ¢ is strongly (weakly) continuous. The boundedness
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of Co(Q1+Q:) clearly follows from Lemma 2 and so it remains to prove the
boundedness of CoEf. But the boundedness simply follows from Lemma 2
applied to the rings Mgy, Mgy, M55, MEg with coupling operators CoE*E, E;
and the proof of the theorem is complete.
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