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Preface

The extension of von Neumann's work on factors to general rings of opera-

tors on Hubert spaces of arbitrary dimension has been begun by Dixmier and

Kaplansky in [l] and [3] (the numbers in brackets refer to the List of Refer-

ences at the end of the paper). It is the purpose of this paper to extend these

results still further, in particular Chapter X of [5] and Chapters I to III of

[8].
The general scheme of this paper is as follows: First, the constant C of

von Neumann (Chapter X of [5]) is extended to an operator belonging to the

center of a ring of semifinite type, such a ring being one with no type III

part. Next, using techniques devised by Dye and von Neumann, this operator

C (termed the coupling operator) is shown to be the chief invariant governing

the spatial type of a ring. Finally, these results are applied to questions of

topology in rings, yielding the fact that the strongest topology is purely

algebraic along with the notion of semifinite subring. Besides these main re-

sults, we obtain various subsidiary results, in particular, conditions for strong

and weak continuity of *-isomorphisms, continuity of the trace in various

topologies, and conjugate isomorphism of a ring with its commutant.

The notation of this paper is essentially that of [5] and [7], with but a

few exceptions. Throughout the paper, the notation [Mx] will denote the

closure in some Hubert space H of the family of vectors {Ax} for A in a ring

M and x a fixed vector. The symbol -< between projections E and F (P ■< F)

in a ring will denote the fact that E is equivalent to a subprojection of F

belonging to M. This will denote a proper projection only when specifically

stated. This particular notation is used because the printer does not have the

symbol used in [5] for this relationship. The symbols U and C\ will be used

in their usual sense of set theoretic union and intersection, the remaining

ones being those standard in Hubert space theory.

In preparing this paper, we have received much valuable assistance from

Professors I. E. Segal, I. Kaplansky, and P. R. Halmos, which we gratefully

acknowledge.

Note: Since this paper was written, Professor Segal has informed me that
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(') Some of the work on this paper was done while the author was an A.E.C. Predoctoral

Fellow at the University of Chicago.
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my term "semifinite" is identical with his term "substantial." My attention

has further been called to two papers by Robert Pallu de La Barriere;

Algebres auto-adjointes faiblement fermées et algebres hilbertiennes de classe finie,

C. R. Acad. Sei. Paris vol. 232, p. 1994, Isomorphism des *-algebres faiblement

fermées d'opérateurs, C. R. Acad. Sei. Paris vol. 234, p. 795, in which some of

my results are announced.

Chapter I. The coupling operator

1.1. Introduction. In [5, Section 10], there is introduced a finite real con-

stant C which relates a factor M and its commutant M'. This constant later

turns out to have important properties with respect to unitary equivalence.

It is the purpose of this chapter to extend the notion of this invariant C to

general rings of operators. In later chapters, it will be shown that quite a

number of properties of rings depend on this invariant. As this invariant turns

out to be an operator in the center of M, it is termed the coupling operator.

(For a similar operator, defined only for finite rings, see [3].)

Before getting down to the task of defining C we first prove some lemmas

of general usefulness.

Lemma 1.1.1. Let M be a ring with commutant M'. If E, E' are projections

in M, M' respectively, such that EE' = 0, then there exists a projection P in

the center of M such that Eg>P, E'gP1.

Proof. Consider M= [x|__'il_"'x = 0]. For xGM; AGM, A'GM': E'M'Ax
= AE'M'x = 0 and E'M'A'xQE'M'x = 0, showing that AM and A'MQM.
Thus ÜíínMC\M' or Pjft = P is a projection in the center of M. HxGH; E'M'Ex

= EE'M'x = 0, from EE'= 0. Thus EHQM.
Now consider EP and E'P: If x is arbitrary in H, EPx = Ex as ExGSW

= PH. Thus EP = E. Also £'P = 0 as E"M = Q.

Definition 1.1. A ring M is said to be countably decomposable if every

collection {Ea}  (aG-0 of orthogonal projections in M is countable.

Lemma 1.1.2. Let w be a positive linear functional on a ring M such that if

<_(P) = 0 for a projection E in M, then E = 0. M is now countably decomposable.

Proof. Let Ea, <~Gr, be any orthogonal family of projections in M. Let

£4 be the set of all a'sGT such that 1/ik + l) <co(_£a) á 1/k where k is a posi-

tive integer. (Assume that w(J) = 1.) Clearly V = U£li£fc.

However, £k contains at most k a's since if it could contain k + 1 a's, say

ai, • ■ ■ , ak+i, then Xî-î G)iEai)> ik + l)/ik + l) = 1, which is impossible as

Xî-Î uiE«¡) -«( _D*_i E«() á«CT) = 1- Thus, T is a countable union of sets of
finite cardinality, and therefore is countable itself.

Definition 1.2. A positive linear functional w on a ring M is termed

countably additive if for any countable collection En oí orthogonal projections
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in M, we have w( y^-i Pn) = 22n=i «(Pn). If there exists an x in H, a projec-

tion P in M such that uiA*A) ^\\Ax\\2 for all A in M with AE = EA=A,
then we write co<$C(P, x) (and alsoto<iCP). If ü)(4) = (4x, x) for all ^4 in Af such

that AE = EA =A, then co~(P, x) (and alsoco<~P).

Note: co<3CE is equivalent to the condition obtained from the above by

restricting the ^4's to projections. The condition then reads: coiF) ^||Pc||2 for

all Fin M such that F^E. To show this, let 22* ockEk (a*^0, Ek projections in

M contained in P) be an approximating sum for ^4*vl iO ̂ A*A — 22* akEk

^e-I) and assume co(7)=l. Then coiA*A) ̂ co( 22* akEk)-\-eik 22* a/tw(P*)

+e^ E* «»(£»«. *)+É^((2>*£t)3f, x)+e^iA*Ax, x)+e£\\Ax\\*'+t. Thus
we get the inequality w(^4*/l)^||^4x||2+€. As t is arbitrary, we obtain the

condition w(4*/l)g||,4x||2.

Lemma 1.1.3. Let co be a countably additive, positive linear functional on a

countably decomposable ring M. If for x in H,P a projection of M, w(P) ^ ||Px||2,

then there exists a projection E in M such that 0 ¿¿E?¿P and co <3C(P, Px).

Proof. If co<3CP is false, there exists, by the preceding note, a projection

Po^P such that co(Po)>(PoX, x). Now using Zorn's Lemma we obtain a

maximal collection of orthogonal projections Ea, such that EaúP and

co(Pa) > (Pax, x). As M is countably decomposable, we may index the P's by

integers as {Pn}. Let F= 22»°-i -^«-

By countable additivity of co, we get: co( 22«= i Pn) = 22 "=i «(£„)

> 22»°=i (Enx, x) = (22»=i Enx, *)• But as FgP, co(P) = (Px, x), and co(F)
>iFx, x), we cannot have F = P. Thus E = P — F^O. But now we have co«P;

for if P0 is a projection in ikf such that EoúE with the property co(P0)

>(PoX, x), we could add the projection P0 to our maximal collection {Pa}-

Lemma 1.1.4. Let co be a positive linear functional on the ring M. i/co<<C(/, z'),

then there exists a vector z in [Mz']i^ [AI'z'] such that co<~(7, z).

Proof. Consider the following semilinear form on Mz', [Az', Bz'] =uiB*A)

for A, B in M. It has the requisite linearity properties and by the Schwarz in-

equality plus co«(7, z'): | [Az', Bz']\ =\a{B*A)\ ^{a{A*A))1ii(a{B*B))1it

^||j48'||||Bz'||. This inequality clearly makes it possible to extend the form

to [Mz']. It is extended to [Afz']x by defining [x, y] =0 if either x or y is in

[Afz']x. Now by linearity we get the form extended to H with the inequality

¡[*.y]NIHHHI-
For each vector y we now have the linear functional [x, y] on H. By con-

tinuity and the Riesz Lemma there exists a unique vector y* such that

[x, y] = (x, y*), with (y*, y*) = ||y*||2= [y*, y] =\\y\\ '\\y*\\ an<I hence ||y*||

è\\y\\ everywhere. Since the map y-^y* is clearly linear we get a bounded

operator T' on H such that T'y = y*.

From the above inequalities, (x, P'x) = [x, x]^0, showing that T'^0.

We now wish to show that T'GM'.  For S, A, B in  M,  {Az1,  T'SBz')
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= [Az', SBz']=a>iB*S*A)=[S*Az', Bz'] = iS*Az', T'Bz') = iAz', ST'Bz') or
iAz', iT'S)Bz') = iAz', iST')Bz'). By continuity (x, T'Sy) = ix, ST'y) for x

and y in [___']. For yG [Mz']L, (x, T'y) = [x, y] =0 for all x, showing that T'

is zero on [Mz']x. Now for x and y arbitrary in H, let x = Xi+x2 and y =yi+y2

be the decomposition of these vectors into components in [Mz'] and [Af_']x

respectively. Then (x, T'Sy) = (xi,P'5yi)+(xi> r'5y2) + (x2, T'Sy). But

(x2, r'5y) = (rx2, 5y)=0 = (xi, T'Sy2) as V is 0 on [Mz'Y, and [Mz']L is

invariant under M. Thus (x, T'Sy) = (xi, T'Syi) = (xi, ST'yi) which in turn

equals (x, ST'y) by a computation similar to the above. This proves that T'

is in M'. As P' = 0 we may form (P01/2> which also is in M'. Let z = (P01/2-'.

By the definition of P', w(/l) = [/!_', _'] - iAz', T'z') = G4(P01/23', (ZV)1'V)

= iAz, z). z is clearly in [M'z1] and also is in [Mis'], since if y in [Afz']-1-, then

|(*. y)\=\«T'y2z', y)\=\izi, (n^l^lklllKn^lláikii-Cy. T'y)m
= [_v, _v]1/2||s'|| =0.

1.2. The coupling operator for M and M' finite.

Lemma 1.2.1. Let M be a finite ring with a vector z such that [M'z]=H.

If o) is the linear functional defined for A in M by co(/l) = iÄ*z, z), then there

exists a vector y such that for A in M, <_(-!) = iAy, y) and such that [M'y] =H.

Proof. Let w(£) =0 for £ some projection in M. Then we have (ü?-, z)

= ||(£*)1/2-||2 = 0( or (£*)1/2~ = 0. Thus we get £". = 0. But by [M'z]=H, this

means £'' = 0, and hence that £ is 0. This property plus Lemma 1.1.2 shows us

that M is countably decomposable.

Now, by Zorn's Lemma, we pick a maximal collection {£_}, «G-1, with

the properties:

1. The Ea are mutually orthogonal projections in M.

2. There exist vectors x„ such that £axa = x« for all a, and such that

co~(£a, xa).

3. The manifolds [Afx„] are all orthogonal.

Since M is countably decomposable, we see that the £„'s may be indexed by

the positive integers n = l, 2, • • -, yielding a collection [En], {x„}. Now

P[M'i„]=£n follows from £„/l'x„ = /l'£„xn=-l/xn for A'GM', and then by

co(£„ —P(iii'x„i) = ((£» — P[Af'.»])x„, x„) = (x„ —x„, x„)=0 we get

En   =   P[M'x„].

Let £„' =P[m,„], £= Xr.i -En, £'= Ei-i £« . and *<n)= -Cï-i *»• From
||xB||2 = (£„xn,xn) =ü>(£„) we get XLi ||%||2= X--t"(^) =«( Zî-i-Et) _»«(/)
for all integers «, showing that there exists a vector x= Xt°-i Xi = limn=00 x(n).

We now observe that [M'x]^>[M'E¿x]=[M'xn] and similarly [Mx]

3 [ilfx„], showing that P[jtf<„] =£ and P[Mx] =£'• But it clearly follows from

P*= Xt-i £xa= X*-i EEkxk= X"-i £^/t=X-'=i x/t=x that P[M'.]á£
which finally yields

£  =   P[i!f !]•
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Similarly,

E'   =   P[Mx]-

The next step is to show that (7 — E){I — E') =0. For, if not, there exists

a vector x' such that (7-P)(7-P')x'=x' and co(7-P) =||x'||2. By the

countable additivity of co (which follows trivially from [l, p. 256, Theorem

17] it follows from Lemma 1.1.3 that there exists a projection G in M

such that G^I-E and co«(G, Gx'). Also we have iI-E)iI-E')Gx'

= Gil — E) il — E')x' = Gx'. Now applying Lemma 1.1.4 to M0H we get a vector

x" lying in the manifold [M'aHGx']r\ [MGHGx'] = [M'Gx']f\G[MGx']

= G[M'Gx']r\[MGx']=[M'Gx']r\[MGx'], such that co~(G, x"). Clearly,

Gx"=x" and G_LP„ for all n. Further, for A, B arbitrary in M, iAx", Bxn)

= iAx", BE'xn) = iAE'PlMGx']x", Bxn) =0 for all n by the fact that P' [MGx']

= [ME'Gx']=[ME'iI-E')iI-E)Gx']=0. Thus [Mx"]±[Mxn] tor all n
which shows that G could be added to our "maximal" collection {Pn}. This

contradiction proves that

(/ - E)il - E') = 0.

Lemma 1.1.1 now provides us with a central projection P such that

(7-P) ^P and (7-P') 2s Px. Remembering that [M'z] = 77, consider [MPz]

= P[Mz]ÇP77=PP'77 = P[Mx]=[MPx]. By Lemma 9.3.3, p. 179 of [5]
(although this lemma applies apparently only to factors, the proof makes no

use of the particular properties of factors), this leads to [M'Pz]=P[M'z]

= PH< [üPPx]=P[ilPx]=PP77 or P<PE^P. Then by finiteness of M,
PP~P which, combined with (7—P) ^P, yields

E = I.

Using the fact that {AB)* = (Ad)* lor A, Bin M (Property 4a of Theorem

10, p. 249 of [1]) we see that co(^P„) =co(^P„Pn) =coiEnAEn) tor all A in M.

Hence, co(4 22Li £*) = 22Li a{AEk) = Eï-i "(P^P*) = 2Xlv4*t, xk).
But we have (^4x(n>, x(n)) = 22"-i 22*-i iAxk, xi) = 22"-1 (Axk, **) as (.4x*, x¡)

= 0 for k?±l by the orthogonality of the family [Afx„]. Thus we finally obtain

the equation «(4 22¡U P*) = 22?-i {Axk, xk) = iAx™, «<«>). As 22"-i P* con-
verges strongly to I in the unit sphere of M, we have, by the continuity of

co, u{A) =Iimn=00 wiA 22Li P*) =lim„_M iAx™, i<*») = iAx, x).

To complete the proof of this lemma, notice that I = Pim'x]-

Definition 1.3. A mapping J oí H onto itself will be called a conjugation

of H if for x, y arbitrary vectors in H and a any complex number we have the

following properties: 7(x+y) = Jx+Jy, J2 = I, Jax = äJx, and (Jx, Jy)

= (y, x).

Lemma 1.2.2. Let M be a finite ring. If there exists a vector z such that

[Mz] = [ilPz] —H, then there exists a conjugation J of H such that JMJ— M'

and such that for A in the center of M, JAJ=A*,
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Proof. By Lemma 1.2.1, there exists a vector x such that [M'x] =H and

such that iA\ z) = (_lx, x) = iA*x, x) for all A in M. Also, by Lemma 9.3.3,

p. 179 of [5], [Mx]~[Mz]=H; and therefore there is a partial isometry V

in M' such that V [Mx] =[MV'x]=H and V* V'x = x. But now (¿ F'x, F'x)

= (/lx, F'*F'x) = L4x, x) = (-l"x, x) = iA*V'x, V'x) with [AT F'x]

3 [M' F'* F'x] = [ Jkf'x] = H. Thus if we replace z by F'x, we get a vector com-

bining the properties of x and z, and there is clearly no loss of generality in

assuming both properties for our original vector z.

We first define J on vectors of the type Az for A in M. Here JAz = A*z.

Clearly we have, for A and B arbitrary operators in M,

iJAz, JBz) = iA*z, B*z) m iBA*z, z) = ((P/l*)1-, z) = ((-.*5)1_, z)

= iA*Bz, z) = iBz, Az),

yielding

\\JAz\\ = \\Az\\.

This last fact shows that / is single-valued since Az = 0 implies JAz = 0.

Now since Mz is dense in H, we can extend J by continuity to all of H.

Clearly, (Jx, Jy) = iy,x) for x and y arbitrary in H, and JJAz = JA *z = Az yields

JJ = I. A similar computation yields Jax = âJx for a a complex number and x

any vector. The additivity of / clearly follows from its additivity on Mz. This

completes the proof that / is a conjugation of H.

Now for A any bounded operator on H, JAJ is clearly additive. That it

is linear follows from JAJax = JAäJx = aJAJx, for a complex. That it is

bounded follows from || JA Jx\\ =||-_Px|| _i||-l||||Px|| =||/l||||x||. If we let A be

in M, with B, V arbitrary in M, then

iJAJB)Vz = JAV*B*z = BVA*z

and

iBJAJ)Vz = BJAV*z = BVA*z

showing that JAJB=BJAJ on Mz and hence on H. By arbitrariness of B,

we find that

JAJ G M'.

However, this just shows that JMJÇ.M'. A similar computation withyl',P', V

in M' would complete the proof by showing that JA'JGM, provided we could

prove that JS'z = S'*z for all 5' in M'. To get this result consider: for B

arbitrary in M and 5' fixed in M', iJS'z, JB*z) = iB*z, S'z) = iJS'z, Bz)

= iS'*z, Bz) by properties of a conjugation plus the fact that JBz = B*z.

The above equation now yields iJS'z — S'*z)-LMz and thus JS'z = S'*z. Thus

we have proved JMJ=M'.

Now let A be in the center of M with 5 arbitrary in M. Then iJAJ)Sz
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= J-15*z = 5-l*z = -l*5z as A* is also in the center of M. Again by density

of Mz in H, we get JAJ = A*.

We now prove the following corollary to the above lemma. This result is

one of Segal's, namely, Corollary 1.1, p. 9 of [9].

Corollary 1. If M is an abelian ring with a vector z such that [Mz] =H,

then M is maximal abelian (Af = M').

Proof. Since M is abelian, M is finite and ¥Ctf. Hence we see that

H= [Mz]CL [M'z], so that we see that M satisfies the conditions of Lemma

1.2.2. But then the conjugation / satisfies JMJ= M, and we get finally that

M=M'.

Corollary 2. Let J be a conjugation on H such that JMJ= M'. If x is any

vector in H, then JP{m'x\J = Pímjx] and iJAJ*) =JA*Jfor any A in M.

Proof. For x and y arbitrary in H, A in M, we have: iJAJx, y)

= (x, iJAJ)*y) = (Jy, AJx) = iA*Jy, Jx)=ix, JA*Jy), thus showing that

iJAJ)* = JA*J.
Thus it is clear that JP[wx\J is a projection in M'. To get its domain we

form JPim>x]JH=JPim>x]H=J[M'x] = J[JMJx]=[MJx]. This completes

the proof of the corollary.

Lemma 1.2.3. Let M be a ring satisfying the conditions of Lemma 1.2.2. //

/ is the conjugation of that lemma and if x is any vector, then [Mx]~[MJx]

and [M'Jx]~[M'x].

Proof. By Theorem 6, p. 222 of [l], there exists a projection P in the

center of M such that P[Mx] <P[MJx] and P±[Mx]>P±[MJx]. Since P

is in the center of M, we get by the previous lemma that JPJ = P. Hence

P[MJx]=[MPJx]=[MJPx] and thus we have [MPx] < [MJPx]. Again

by Lemma 9.3.3, p. 179 of [5], [M'Px] < [M'JPx]; and by using JMJ=M',
one gets a partial isometry V in M such that V[M'Px]= VJ[MJPx]

Q[M'JPx]=J[MPx]. Then by //=/ we get finally that JVJ[MJPx]
Ç.[MPx]. But JVJ is obviously a partial isometry in M' and this proves

[MJPx\< [MPx]. Adding this inequality to our original fact that [MPx]

< [MJPx], we obtain the result [MPx]~[MJPx]. A similar argument for

P1 yields finally [Mx] = [MPx] + [MPLx]~[MJPx] + [MJPLx] = [MPJx]
+ [MPxJx] = [Af/x]. A similar argument proves [Af'x]~[lf'./x].

Lemma 1.2.4. // [M'x] is finite, then [Mx] is finite. (See [3, Theorem l].)

Proof. Let P[m'x) =£ and P\ux\ =£'. For an operator A in the ring M eh

consider the map A—>AE'. This map clearly is from M eh to Mee'h; and if

AE' = 0, then Ax = 0 and hence AE = 0. But Meh is the set of all operators B

in If such thatP£ = £B=P. Thus AE'= 0 implies AE = 0 and then A=Q,
proving that the above defined map is an isomorphism into. Since Mee'h is
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the ring EMEE', we see that the above map is onto; or MEh is isomorphic to

Meb'h- A similar argument proves M'KH isomorphic to M'EWR.

By hypothesis we now get M'E¡¡ finite and hence Mee-h is finite. Also,

[Mee'hx]=EE'H— [Mbe'hx], so we may apply Lemma 1.2.2 to get a con-

jugation J such that JMEe'hJ= M'EE'H. Clearly we now get that M'EE>H is

finite and thus finally the result that M'KH is finite. This completes the proof

of the lemma.

Lemma 1.2.5. Let M and its commutant M' be finite. If there is a vector z

such that [M'z] =77, then the operator C= [Mz]* in the center of M has the prop-

erty [Mx]** = C[M'x]bi for every vector x. Furthermore, C_1 exists.

Proof. By [M'x]Q [M'z] =77 and Lemma 9.3.3, p. 179 of [5], [Mx]
< [Mz], and there exists a partial isometry V in M' such that [MV'x]

= V'[Mx]çZ [Mz]. Then, since equivalent projections have the same trace,

there is clearly no loss of generality in assuming [ifx]ç [Mz].

Let P'=P[m2], F'=P[Mx], and F — P[M'x]. For AE' in ME'h, consider the

map AE'-^A^E'. This is a map into the center of ME'h and clearly has all

the properties of the trace. Hence if we use (4£')° as the trace in Me<h,

then iAE')°=A*E'.
But [ME'hz]= [il7z]= [M^/flz], so by Lemma 1.2.2, there exists a conjuga-

tion 7 of [Mz] such that JM\mz\J = M[Uzy Then by Lemma 1.2.2, Corollary 2,

JFE'J = JPe'imx]J = JP[M-imJx] which is equivalent to Pim^x] by Lemma

1.2.3. Thus JFE'J~P[Mlu,)x]=PiMx] = F'. This results in the equation:

7(7P,)°7 = 77AE/7=P<P' = (P')°, by the continuity properties of 7 and by

F^E'GMlM^M[M!].
To find {F')° we invoke the definition of trace and get a collection V't<T,

real numbers aktT^0 such that 22*-i ak,T = l, r in a directed set T,

w(t) an integer, fc-1, 2, • • • , n(r), such that V't*Vi<T = E'= V'k§TV'k*r,

22*íi a,k,rV't*rF'V'ktT converges (with respect to r) to {F')° in the uniform

topology. But obviously 7"<~all Vi*F'ViiT and therefore, by the uniform

continuity of the trace, limr 22ï-i a\,TiF')* = iF')* = iiF')y = F\E')* = CF\

This proves [Mx]* = C[M'x]*.

To complete the proof, assume Cx = 0 for some vector x. Then CP[Wx\ =0

= CP[M'X] =P[Afz]- But this means that x is 0, and thus C_1 exists.

Lemma 1.2.6. Let M be a finite ring with x an arbitrary vector. If co is the

linear functional defined on M by iA^x, x) =co(^4), then there exists a projection P

in the center of M such that if E is a projection in M with co(P) = 0, then E £= Px.

Proof. Using Zorn's Lemma pick a maximal family of orthogonal projec-

tions {Pa}, «er, in M such that co(Pa) =0. Let F= 22«er P«- As F is the

strong limit in the unit sphere of finite sums of Pa's, we see by additivity

and continuity of co that oiiF) =0. Again, by Theorem 6, p. 222 of [l], there

exists a projection Q in the center of M such that FQ < FLQ and FQL > FLQL.
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This leads to 0)iFxQL) = a>((Px)*<2x) ̂<-((P)1<2x) £«(_*) =co(P) =0. But as

F^-Q1- is a projection orthogonal to F, we could add to our "maximal" collec-

tion {Ea}, aGr, unless PXÇX=0. Clearly FQ = 0, and we end up with F^QL

and Px = Q, showing that we must have Px «■ Q.

Clearly, the Q above is the P of our lemma; since if <_(£) =0 for some pro-

jection £ in M, then ESF=QL, for EQp^O implies that our maximal collec-

tion {£«} could be enlarged.

Lemma 1.2.7. Let M be a finite ring. There exists a family [Pa], «GT,

of orthogonal projections in the center of M such that the rings MPa are all

countably decomposable,  Xa£rP<« = P

Proof. By Zorn's Lemma there exists a maximal collection of projections

{PaJ, <~Gr, such that the rings MPa are all countably decomposable and

the {Pa} are mutually orthogonal. Let P= X«Gr Pa-

li P is not the identity, pick a nonzero vector x such that Pxx=x. Now,

by the previous lemma, there exists a central projection Q with the property

that if (p^x, x)=0 for some projection £ in M, then £gÇx. Then Px = 0

implies iP*x, x) = (Px, x) =0, and finally P g QL.

But MQ is countably decomposable by Lemma 1.1.2; so Q may be added

to the family {Pa} ■ This contradiction proves P = I, completing the proof of

the lemma.

Lemma 1.2.8. If M is a countably decomposable ring, then there exists a pro-

jection P in the center of M, vectors y and z, such that [My] =PH and [M'z]
= PLH.

Proof. By Zorn's Lemma there exists a maximal collection of vectors {x« ),

«Gr, such that the families { [¥x„]}, { [Af'x„]} consist of orthogonal mani-

folds. Let Ea = P[M'xa], Eá =PiMxa], E= X_er Ea, £'= X<*er E¿.

If (._-_-)(_"-£')5*0, pick a vector x' such that (7-£)(/-£')x'=xV0.

But it is clear that [Mx']_L[Afx0] and [Af'x']_L[Af'xa] for allaGT, and hence

x' could be added to our "maximal" collection {xa|, «Gr. Thus

(/ - £)(/ - £') = 0.

Now, applying Lemma 1.1.1, we get a projection P in the center of M

such that

(7 - E) g P
and

(/ - £') =~ Px-

Since M is countably decomposable by hypothesis, the collection {xa} is

countable. Hence we may replace {x„}, «GT, by a sequence {x„}. Also, we

may assume that Xn=i ||xn||2<00, for [lfx„] and [ilPx„] are not affected

by multiplying x„ by a constant.
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If x=22«-i xn then [M'x] 3 [M'E¿x] = [M'xn] and [Mx]^[MEnx]

= [Mx„]. Thus Ptüíxj ^P' and P[jifi] è£. But then it is clear that Px = x

= P'x, or P[Afi]2=P' and P\wx]^E, with finally E = PlM'x] and E'=P[u»\.

To complete the proof of this lemma we observe that: if y = Px and

z = Pxx, then

PH = PPP = P[Mx] = [üfPx] = [My]

and

p±H = P-i-EP = pi.[M'x] = [M'P±x] = [i/'z].

Theorem 1. Let M and M' be finite rings. There exists a unique operator

Ct,MC\M' icalled the coupling operator for M, M') such that [Mx]* = C[M'x]*

for each vector x. Furthermore, C~l exists.

Proof. Using Lemma 1.2.7, we pick orthogonal projections {Pa}, «GT,

such that 22a£r Pa = 7 and such that MPa are countably decomposable.

Then, by Lemma 1.2.8, one gets projections Ea, aGT, in the center of

MPa, aGT, vectors x«,i, xa,2£Pa77, aGT, such that [l7Pax«,i] =P„Pa77and

[M'Paxa,2]=PxPa77.

Now, applying Lemma 1.2.5 to the rings M[M'xa¡2] and M[MxaV, we obtain

operators Ca and Da in the center of M such that [Afx]11 = Ca [M'x'Y for x in

£XP„77 and [M'xY=D*[Mxp' for x in EaPaH. Also C"1 and D~l exist

(inverses taken with respect to the EaPa, ELPa).

Let C= 22a£r (Ca+7?"1). This operator clearly belongs to the center of

M and has the obvious inverse 22a£r (C"1 +£><,)• For x any vector,

we have, by the above equations, that (for all a) PaEx[MxY = PaExP^Mx]

= iPaEÏPlMxtf =P[Afp„^x] = [7l7PaPxx]* - Ca [M'PaE^xf = CPàrPaE*±x}
= CPaE±[M'x]\ Similarly, P0Pa[Jlfx]" = CPaEa[M'x]\ and hence Pa[Mxf

= CPa[M'x]". Now, by  22«£r P„ = 7, we get finally

[Mx]« = C[M'x]*.

If C is another operator with the same properties as C, consider [-Mx^]1*

= C'[M'xa,i]* = C'ELPa=CELPa and also CEaPa=C'EaPa which yields

easily C= C. This completes the proof of the theorem.

Definition 1.4. A ring of operators M is said to be semifinite if every non-

zero projection in M contains a nonzero finite projection. A ring M is said

to be purely infinite if there is no finite nonzero projection in the center of M.

1.3. The coupling operator in semifinite rings. In the previous section we

introduced the coupling operator for the case where Afand AI' are both finite.

It will be the purpose of this section to extend this idea to semifinite rings.

Lemma 1.3.1. Let M be a ring with E, E' projections in M, M' respectively.

If M is semifinite then so are the rings M', Meh, and Me>h.
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Proof. Let F' be an arbitrary nonzero projection in AI'. Pick a vector x

such that P'x = x?¿0 and notice that P[Mx\ÚF'. Since M is semifinite, the

projection P[m'x] contains a nonzero finite projection G. Then the manifold

GPlM>x]H = G[M'x]= [M'Gx] is finite, which implies [Mc7x] is finite by

Lemma 1.2.4. But now [M'Gx]çi [M'x] implies by Lemma 9.3.3 of [5] that

[MGx] < [Mx], Thus there exists a finite manifold belonging to M' which

is equivalent to the finite manifold [MGx] and contained in [Mx]. This

proves that there is a finite nonzero manifold contained in F', and M' is

shown to be semifinite.

Meh is clearly semifinite as P( ^£) is a finite projection in MEh if and only

if it is finite in M. Further, Me'h = iM'E>H)', so ME'h is semifinite.

Lemma 1.3.2. Any semifinite ring M contains a projection P in its center

such that MP is finite and MPL is purely infinite.

Proof. Using Zorn's Lemma, select a maximal collection {P<,}, «£r, of

orthogonal, finite projections in the center of M. Clearly, P= Xa£r P« is

finite as any partial isometry compressing P also compresses some Pa. If

Q^O is a projection in the center of M such that QP = 0, then QM is

infinite, since if not, Q could be added to our maximal collection {Pa},

«Gr. Thus MP is finite, and MPL is purely infinite.

Theorem 2. Let {£«}, «GT, {Fa},aGV, be distinct families of orthogonal,

finite, equivalent projections in a purely infinite ring M (£„ not necessarily

equivalent to Fy). If Xa£r Ea = I= X7£r' P7! then the cardinal of the set V

equals the cardinal of the set V.

Proof. Let £2 be cardinal of T and Í2' that of V. Take an arbitrary vector x

such that ||x||=l, and consider the functional iAx, x) =co(_l) on MC\M'.

By Lemma 1.2.6, there exists a projection P (5^0) in the center of M such

that co is not zero on nonzero projections contained in P. Also P = Xa£r PEa

= X^er' PP7 with {PEa}, {PP7} as families of orthogonal, equivalent,

finite projections. Thus, with the aid of the spectral theorem, there is no loss

of generality in assuming that there is a linear functional co on the center of

M such that for A a nonzero, positive semi-definite operator in MC\M',

coL4)>0 andco(7) = l.

Now let £d,= [yGT'\EaFyEa^0]. For any 7G-1', if EaFyEa
= iEaFy)iiEaFy)*) =0 for all aGT, then EaFy = 0 for all aGr, which implies

Xa£r EaFy = Fy = 0. This contradiction proves that for each YGr', there

exists an «(7) Grsuch that £„(T)P7£a(7)5^0; but then 7 G £«(7), yielding finally

that

T' =     U  £1.
«Er

As Me„h is finite, we have a trace t]a in it. Since the center of Me„h is
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iMC\M')EaH by Lemma 11.3.2, p.  186 of  [5], we may write iEaFyEa)*«

= S?P„, where S*yGM(~\M'.

Let To be an arbitrary finite subset of V. By 227Gr' EaFyEa = Ea and

EaFyEa^0, Og EtGpo' iEaFyEa)*"= 22-rGro' S^Ea^Ea. But the Ea are all
equivalent, and thus for any ßGT, there exists a partial isometry V in

J17 such that V*V = Ea and VV* = Eß. The above inequality now becomes

0^22-rer.' S?F*F£ÎF*F, and hence O^F^ero' SyV*VV*^VV*VV*.
Finally, we get, for all ßGT,

0 ^    22   ^P^ sí Efi.
7£r0'

But by hypothesis, 22/sGr Eß = I, so that we have shown that 0

Ss 227£ro' $^ = 1, with 0iï5^ in particular. Using our linear functional

co, Oâ 227Gro' «(■$?) á 1, and co(5^) ̂ 0 if and only if S^ ¿¿0. These facts, plus

the argument of Lemma 1.1.2, show that the set [yGr'Ico^) ^0] must be

countable. However, it is clear that coiS^) j^Oif and only if iEaFyEa)*a ¿¿0,

and we see that £a' = [y£r'| (5^) 5^0] is countable.

Thus Í2' = the cardinal of Uagr£~ £¡N0-£2 = fí. By symmetry, fi^fi' and

finally fí = fí'.
Definitions 1.5. A semifinite ring M is said to be of homogeneous type if

it either satisfies the hypotheses of Theorem 2, or is finite. If the cardinal

of Theorem 2 is a, then the corresponding homogeneous ring is said to be of

type Sa. It finite, a ring will be said to be of type Si.

Theorem 3. Let it be the collection of cardinals containing 1 plus all infinite

cardinals a ^ the cardinal of 77. If M is a semifinite ring on 77, then for each a Gk

there exists a projection Pa in the center of M such that the collection {Pa}

is orthogonal,  22aG» Pa = 7, and MPa is of type Sa.

Proof. For a an infinite cardinal in it, pick, by Zorn's Lemma, a maximal

collection [Qy\, y£r, of orthogonal projections in the center of M such that

{ APQy}, y£r, are of type Sa. In each ring MQy we have an orthogonal

family {P7,i}, &£k, of equivalent finite projections such that Qy

= 22*e« Ey,k. (As cardinals of {P7,fc} for each y£r are the same, we may

choose the same index set k for all y.)

Now form Ek= 22>Gr Ey,k for each &£/c. Ek is clearly finite as it is the

sum of finite projections, each in a different central projection Qy, all or-

thogonal. But now 22/tG« Ek = 22*G« 22iGr Ey,k = 22TGr 22*G« Ey-k
= 22*Gr Qy ~ Q shows that QM is of type Sa, since the Ek are clearly equiva-

lent. If Q' is any projection in the center of M such that MQ' is of type Sa,

then Q'^Q, since otherwise we could add QXQ' to our "maximal" collection

{Qy} • yGT. We have now proved that there exists a maximal projection Q in

the center of M such that MQ is of type Sa. We define P„ = Q.

We define Pi as the P of Lemma 1.3.2 and also P= 22aG"- P«- Assume
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Px ¿¿0 and pick a nonzero finite projection C7^PX. By Zorn's Lemma there

exists a maximal collection of orthogonal projections Ey, 7GI1, such that each

Ey~G. Let £= X7Gr Ey, and consider £XPX. Clearly, we cannot have

G<E±P±, otherwise we could enlarge our maximal collection {£7}, 7Gr.

Also, if £XPX = 0, then Px^£ which implies Px=£, as £ is the sum of

projections equivalent to a projection in Px. But then Px is homogeneous and

must lie in P, or Px = 0. Thus our assumption of Px?i0 drives us to the

possibility that there exists a projection Q in the center of M such that

0^QE1Px<QG. Now QPL= T,y<=T QEy + QELPL, with the QEy all equiva-
lent (r is clearly infinite, since P^M is purely infinite). Assuming the index

set T is well ordered, Q£T~Ç£7+i and X7S1 QEy~ X7M QEy. Therefore
XT_i QEy> X7M <2£ + 0£xPx~(2PJ-, and clearly (?Px~X7_i QEy Let F
be the partial isometry in M such that V*V= X7_i QEy, VV* = P±Q. Then,

if Fy= VQEyV*, we have the {Fy} as a collection of orthogonal, equivalent,

finite projections such that Xt_;i Fy= VV*VV* = VV* = QPl, showing fi-

nally that QPLM is homogeneous. This again contradicts our choice of P

and so we have proved that P = I.

That the Pa are unique is obvious once it is noticed that the Pa must be

the maximal projection of type Sa-

Definition 1.6. Let M be a semifinite ring. By Theorem 3, there exists

a collection of orthogonal projections {Pa} in the center of M such that MPa

are of type Sa, for aGir. Using our Lemma 1.3.1, M' is semifinite too, and

thus there exists a collection Pá, a Gir, such that M'Pá  are of type Sa,

X«e>r    Pá=I-    NOW,     if    Pa.a'=PaP¿ ,    then      X-,a'r=T    Pa,a'=  X«e "■   Pa

■ X<*'e» P'a'—d, w'th MPa.a', M'Pa.a' of types Sa, Sa> respectively. We now

introduce the operator C\, the coupling operator defined in Theorem 1, for the

rings MPi.i, M'Pi.i. We also introduce the formal operators ia/a')Pa,a' and

form the formal sum

C  =  Cl+ X —,Pa.a'.
C_,_')i-<1,1)   a

The formal operator we have just introduced will be called the coupling

operator for the rings M, M'.

It is clear from the above definition that to say that C is the coupling

operator for M, M' is to give Ci as the finite coupling operator plus the fact

that MPa,a', M'Pa.a' are of type Sa, 5a< respectively. That such a formal

operator is unique follows from the uniqueness of the {Pa} and {Pá }, a_ir.

Definition 1.7. Let {Aa}, a£r, be a directed set of bounded operators

on a Hubert space H. The above collection is said to converge to 0 in the

a-weak topology if for every two sets {x„|, {y„} QH, n an integer, such that

X"-i IW|2<°°,  XXi IWI2<co. then  _-J.«=i i-^aXn, yn) converges to 0.

Theorem 4. Let M be any ring on a Hilbert space H and V an abstract set
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of cardinal Í2. There exists a ring of operators M on a Hubert space 77 with the

following properties :

1. There exists a collection [ey], 7£I\ of orthogonal equivalent projections

in M such that 227Gr ey = I, Ihe identity of M, and such that Meyfi are each

unitarily equivalent to M.

2. There is a *'-isomorphism <f> of M' onto M' which is continuous in the

strongest and cr-weak topologies. The inverse map <p_1 is continuous in the weak,

strong, strongest, and a-weak topologies.

Proof. For each y£T choose a replica Hy of 77 and form H = 22tGt ®Hy,

in the standard way. Let Vy be the isometry mapping 77 onto Hy.

Let ey = P¡iy and define ey,Y = Vy> V~ley for y£r. Each bounded operator

A on 77 is obviously determined by the collection eyÄeY, y, y'£r. We now

notice that for Ä bounded on 77, the Oy,y>iÄ)= VyleyÄeYVY are bounded

operators on 77.

We define M to be all bounded operators on 77 such that Oy,y>iÄ) lies in

M for all y, y'GT. If Ä' G M', then eyÄ' = Ä'ey for all y, and hence by eyey>=0

tor y7^7', eyÄ'ey>=Ä'eyeY=0 for 75^7'. From ey,YGM comes Vy'V~1eyÄ'

= Ä'VYVyley=VYVy1eyÄ'ey = eYÄ'eYVYV;1 and finally: Oy,Y{Ä')

= VyxeyA'eyVy = VYeYÄ'eYVY=dYiYiÄ'), for all 7, y'GV. Thus it is clear

that if 6y,y>iA')=0 for some 7'£i\ then eyÄ'ey is 0 for all 7£r or Ä' = 0.

Furthermore, we have, for B any operator in either M or M', for all y£r,

Oy.yiÄ'B) = Vy1eyÄ'BeyVy= Vy1eyÄ'eyByey Vy = Vy1eyÄ'eyVyVy1eyBeyVy
= dy,yiA')0y,yiB), and hence By¡y is an isomorphism of M' into the algebra of

bounded operators on 77. Also if B is arbitrary in M, consider the operator

VyB V~1ey on 77. This operator is obviously an operator B in M, and 9y,yiA')B

= 6y,yiÄ')   -6y,yi_B)   =0y,yiÄ'B)  =0y,y{BÄ')  = dy ,y { B )  ■ dy ,y (!')   =Bdy,y{Ä')   prOV"
ing that dy.yiA') lies in M'. Conversely, if B' is arbitrary in M', form B'

= 22äGr esV¡B'V¡1es. This is a bounded operator on 77; and if Ä is arbi-

trary in M, then dy.yiAB') = V'^yÄB'eyVy =VyleyÄerVYB'VYley'Vr

= 9y¡y'iA)B' — B'Oy,y'iA) which equals 8y,y>iB'A) by a similar computation.

From this it follows readily that eyÄB'ey =eyB'Äey> tor all y, y'GT, and thus

B' lies in M'. We have now proved that the isomorphism 9y,y is onto M'. Let

Now let A be arbitrary in M". For B' arbitrary in M' let 5'=0-1(7i')

and consider By,YiA)B'_=By,YiA)9y. ,y\B') = VyleyÄ_eY VyVYleyB'eY Vr

= Vy\A B'eY VY =By,Y{A B') =dy,Y{B'Ä) =B'6y,YiA) showing that

6y,y-iA) lies in M" = M tor all 7, 7'£r, and hence A lies in M. Therefore,

we have proved that M=M" is a ring of operators on the Hubert space 77

such that M' is isomorphic to M'. Also, it is clear that for each 7£r, Vy is

a linear isometry mapping Meyfj onto M.

To complete the proof of the theorem it is necessary only to show the con-
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tinuity properties of <p and <p_1. From the computations of the previous page

we have <p(-l')= X7gr eyVyA'Vy^ey, and thus for xGH, yGH,

i<t>iA')x, y) =   X ieyVyA'V'y eyx, y)

= X i^'Vy eyx, Vy eyy)

plus the equation

Ik04')x||2 = X IM'f^^xII2.
7£r

Now, letting {x„}, {y„}, n an integer, be collections of vectors in H such

that   X"-i ll*n||2< °°>   X"-i lly»!!2*^ °°> we &et by the above equations that

ZUiA'^W* = i   X \[A'V?ey*4'
n-l n=l   7_r

and
CO oo

X i4>iA')x„, yn) = X   X  iA'Vy eyxn, Vy eyyn);
n-,1 n=l    7GT

which proves that <p is continuous in both the strongest and the er-weak topolo-

gies. (Since clearly X^-i _L/76r || F~1e7x„||2= Xn-i ||xn||2< co, with the same

computation for {yn}.)

Now let {x„}, {yn}, n an integer, be collections of vectors in II such that

X"=i ||x„||2<=o,  Xn-i IW|2< x- By the above equations,

00 00

X i<PÍA')VyXn, Vyyn) = X (AZ*m yn)
n=l n=l

and

X ||<p(^1')Ftx„||2 = X IM'x„||2,
H-.1 n=l

showing that <p_1 is continuous in the strongest and <r-weak topologies. By

specialization of the previous equations, ||<p(-10 F7x||2 = ||-l'x|[2 and iA'x, y)

= i<f>iA')VyX, Vyy), and <p_1 is clearly continuous in the strong and weak

topologies. This completes the proof of the theorem.

Chapter ILA representation theorem for linear functionals

2.1. Introduction. In [2, p. 30] is proved a representation theorem for

positive linear functionals on countably decomposable, "essentially finite"

rings of operators. In this chapter, this theorem is generalized to semifinite

rings, and is applied to problems of continuity of the trace.
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2.2. The representation theorem.

Definition 2.1. A positive linear functional co on a ring M will be called

strictly positive if co(£) =0, for £ a projection in M, implies £ = 0.

Lemma 2.1.1. Let a be a strictly positive countably additive, linear functional

on a ring M. If there is a vector z such that [M'z] =H and if M' is finite, then

there exists a vector y such that co(--) = iAy, y) for all A in M.

Proof. By Lemma 1.1.2, M is countably decomposable, so that we can

proceed as in Lemma 1.2.1 to obtain countable sequences {£„}, {£„' }, n

an integer, of orthogonal projections such that co~(£„, xn) for vectors {xB}.

By hypothesis M' is finite and hence [Mz] is finite. But Lemma 1.2.4 implies

that [M'z] is finite, and with it M is finite.

Continuing as in Lemma 1.2.1, we obtain 7= X»-i En. Define Fn

— X*=i Ek and assume that the vectors {yk} have been defined for k^n,

with Xi = yi, Fkyk+P = yk for k+p^n, w~iFn, yn). Also, if P„' = P[Ar¡,n],

F: ±E'n+p, p>0.
We now proceed to the induction step. As in [2, p. 34] we get, for arbitrary

A in M:

o>iFn+iA*AFn+i) = «((F. + En+i)A*AiFn + En+i))

= œiFnA*AFn) + uiEn+iA*AFn) + uiF,A*AEn+i)

+ co(£n+1/l*yl£n+i)

^ uiF^AFn) + co(£n+i^*^£B+1) + 2 | o>iFnA*AEn+i) |

= i»iFnA*AFn) + o,iEn+iA*AEn+i)

+ 2iu,iFnA*AFn)o,iEn+iA*AEn+i)yi2

g 2[co(P„.4*^Fn) + co(£n+i.l*^£B+i)]

^ 2[iAyn, Ayn) + iAxn+u Axn+i)]

g 2iAiyn + xn+i), Aiyn + xn+i)).

(The cross terms like (_lx„+i, Ayn) vanish since [My„]C£n'.í_J_£B=1iI

= [Mxn+i].) Thus, if yn+i = 2(y„+xB+1), then co«(Pn+i, y'n+i) by Definition

1.2. Clearly Fn+iy'„+i=y'n+i=iF¿+E'n+i)y'„+i, and by Lemma 1.2.2, there

exists a vector y" satisfying co~(FB+i, y") and lying in the manifold

[FB+iMFB+iyB+i] n [M'P„+iy;+i] = P„+i { [My'n+i]r\[M'y'n+i]} = [My'n+i]

r\ [M'y'n+i] Ç { [MxB+i] + [Myn]} C\ { [M'xn+i] + [M'yn]} Ç (£n+i + Pn' )(£B+i

+ Fn)H= Pn+i(Pn'+£B+i)7i. Then, if A is arbitrary in M, co(P„/l*/lPB)

UA*Ayn, yn) = \\Ayn\\2=iFnA*AFny", y")=\\AFny"\\2, showing that the

mapping V defined as VA Fny" =Ay„ can be extended to a partial isometry in

M' taking [MFny"] into [Myn]. Also, since [MPny"]çj [My"]C(Pn' +£B+i)ii

and [Myn] = P„' J7Cj(£n' +£n+i)i7, V can be extended to the partial isometry

V'n+i such that F;*iFb+i= F^+iF;=ti=£;+i + Pn' (M' is finite).
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Now let y„+i=F„+iy", Fn+i = PlMvn+1). Then, {Ayn+i, y„+i) = iA V^+iy",

V'n+iy") = iAV'*+iV'n+iy", y") = {A{F¿ + E'n+i)y", y") = {Ay", y")

= ú){Fn+iAFn+i), or

o ~ {Fn+i, yn+i).

Also, K+177= [il7yn+1] = [MV'n+iy"] = I/¿+1(üiy"]C(P.' +Pn+1)77, and7^nyn+1

= FnVñ+iy" = V'n+iFny" = yn, proving that T^+iLPn+i+p, p>0, and com-

pleting the induction step.

We now have, by the above induction argument, a sequence of vectors

{yn} and a sequence of projections {F„} such that 0)~{Fn, yn) and Fn

— 22*-1 Ek. But the computation

\\yn+P — Vn||2 = \\Fn+pyn+p - Fny„+P\\2 = \\{Fn+p - Fn)yn+P\\2

= {{Fn+P — Fn)yn+P, yn+p) = u{Fn+p — F„)

(n+p \ n+p

22 p*) = 22 «ce»)
k=n+l / A=n+1

shows that the sequence {yn} is cauchy, and thus there exists a vector y such

that {y„} converges to it. Also, we have, for A in M:

| «(¿) - u{FnAFn) | ig | «(¿) - o>{AFn) | + | u{AFn) - a{FnAFn) \

è {a{AA*)w{I - F»))1'2 + {a{FnA*AFn)-u{I - Fn)y2

^ [{w{AA*)yi2 + (co(7'^*^„))1/2].(co(7 - Fn)yi2

^ [{o,{AA*)y'2 + \\Ayn\\ ] (co ( jt ■ ÍEi)))1'1

^  [(co(^*))"2+myn||]Y   ¿ „{Et))   '
\ fc=n+l '

which implies (^4y, y)=lim„=M {Ayn, yn)=lim„=00 w{FnAFn) =co{A).

Lemma 2.1.2. 7/co is a countably additive, positive linear functional on a

countably decomposable ring M, then there exists a projection E in M such that

co(Px) =0 and such that co is strictly positive on the ring MEfl.

Proof. Choose, by Zorn's Lemma, a maximal collection \Fn\, w£T, of

orthogonal projections in M such that 0){Fn) are all zero. Because of countable

decomposability of M we may assume that T is the set of positive integers.

Let F= 22.-1 Fn- Using countable additivity of co, u{F) = 22«-i co(F„) =0.
We now can show that {I—F) is the P of the lemma.

Assume that G is a projection in M^-E)h such thatco(G) =0. But then G

could be added to our maximal collection {Fn], thus contradicting our argu-

ment and proving co is strictly positive.
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Theorem 5. Let co be a countably additive, positive linear functional on a

ring M. If there exists a vector z such that [Mz] is finite and if, for A in M,

Az = 0 implies coiA) =0, then there exists a vector x in the manifold [Mz](~\[M'z]

such that co ~(J, x).

Proof. Let G=P[m>z] and consider the linear functional iAz, z) on the ring

Mqh. If iFz, z) =0 for F a projection in Mqh, then clearly Pz = 0 and conse-

quently FG = F = 0, showing that M0H is countably decomposable by Lemma

1.1.2. Now, invoking Lemma 2.1.2, there is a projection £ in Mqh such that

co(G —£)=0 and such that co is strictly positive on Meh- Also, notice that

Gxz = 0 implies that co(l7x)=0 by hypothesis. Thus we have a projection £

in M such that co is strictly positive on Meh and such that co(£x) =co(67 —£)

+co(Gx)=0.

Let £' =P[mez] (finite, by hypothesis) and consider the ring Mee-h- The

mapping A—>AE' is an isomorphism of Meh onto Mee'h, since if AE' = 0,

then AE'Ez = AEz = 0 which in turn implies A =0 by A GMehQM0H. There-
fore we can introduce the linear functional <p on Mee'h by <piAE') = coC4).

<p is clearly a strictly positive, countably additive, linear functional on

Mee'h, with M'evh finite, and [M'EE,HEz] = [E'M'E'Ez] =EE' [M'z] =EE'GH
= EE'H.

Now, using Lemma 2.1.1, we get a vector y lying in the mani-

fold EE'HQE'GH = [MEz]i\ [M'z]Q [Mz]C\ [M'z], such that 0(_i_.')=->(-_)
= {AE'y, y) = iAy, y) for A in Meh- But then the inequality |co(/l£x)|2

^coL4_l*)co(£x) =0 (plus a similar one for (£x-l)) proves that for A in M,

_.(.!) = co(£4£) + co(£4£-l) + co(£i-,4£) + u(£vl£x) = co(£4£)

= iEAEy, y)

= (Ay, y),

thus completing the proof of the theorem.

2.3. Applications of Theorem 5.

Theorem 6. Let (M, M') and (M, M') be finite rings on the spaces H and H,

with joint cyclic vectors z and z. If <p is a *-isomorphism of M onto M, then there

exists a linear isometry W mapping H onto H with <p(/l) = WA W~l, for A in M.

Proof. Consider the linear functional co defined on M by coL4) = i<j>iA)z, z)

for A in M. If ^4z = 0, then A =0 by [M'z] =H, showing that co satisfies all

the hypotheses of Theorem 5. Let y be the vector in H such that coL4)

= iAy, y). Then jj_4y¡|2 =c_.(_4*_4) =||<p(_l)z||2, and Ay = 0 implies <p(__)_ = 0,

with finally A=0. Thus [M'y] =H= [M'z] and [My]~[Mz] =H by Lemma

9.3.3, p. 179 of [5].
Let V be the partial isometry in M' defined by F'[My]= [MV'y]=H

and define x= V'y. Now [Mx]=i7 and \\Ax\\2 = \\AV'y\\2=iA*AV'*V'y, y)
= iA*Ay, y) =\\Ay\\2 = \\<piA)z\\2 proves that we can define a linear isometry
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W from 77 onto 77 such that WAx=<j>{A)z. Furthermore, if B arbitrary in

M, then WAW-xBz=WA<i>-\B)x=<j>{A)Bz proves that <¡>{A) = WAW'1 tor

A in M.

Theorem 7. Let co be a countably additive, positive, linear functional on a

finite ring M. If the coupling operator C of the pair {M, M') is bounded (G is

bounded), then there exists a finite set zu z2, • • • , z„ of vectors such that co(4)

= 22"-i {Azk, zk) for A in M. In fact, if the G of Definition 1.6 is bounded
above by mPi,i, m an integer, then n^m.

Proof. We first consider the case where G^Pi.i. As in the proof of Theo-

rem 1, we use Lemma 1.2.7 and Lemma 1.2.8 to get a collection {P~ }, a£r,

of orthogonal projections in the center of M such that either [M'xa] = P~ 77or

[Mxa]=P«'77 with 22«Gr pá =L But by the definition of G, if [Mx„]
= PJH then P¿ áP14 by Lemma 1.2.4, and [M'xaf = Cíl[MxaY = CíiP¿
èP« , proving that Pá = [Af'xa] and yielding us a collection of operators

[P¿ } in the center of M such that 22aGr P« —I and such that each is

generated by a vector xa and M'.

Let T' be the set of a£r such that co(Pa' ) f^O. It follows from linearity of

co that I1' is countable and thus there is obviously no loss in generality in

assuming 22aGi" IWI2"^ °°- In tact, by the orthogonality of the [Pá],
a£r, there exists a vector x= 22aGr' xa. If P'= 22aGr Pá, then, for A in

M, o>{A)=o){P'A)+ù>{AP'x)=w{AP'), by |co(^P'x)| 2^co{AA*MP'±) =0.

Also, ^4x = 0 implies 0=^4Pa'x = v4P„'x (a£r') which in turn implies APÍ =0

for a£r'. But APá =0, a£r', yields ¿P' = 0 and finally u{A) =u{AP')=0.

Thus we have proved that co and x satisfy the requirements of Theorem 5,

once we notice that [Mx] is finite by Lemma 1.2.4. This completes the proof

of the case GáPi,i-

We now consider the case Ci^mPi,i for m an integer. Again we pick

orthogonal projections {P„ }, a£r", in the center of M such that 22aGr' P"

= 7 with either Pa'77= [M'xa] or Pa'77= [Mxa]. Now, with Y equal to the

positive integers less than ra + 1, apply Theorem 4 to M', obtaining rings

M' and M with equivalent projections ek, &£r, in M' such that 22?-1 ek = I,

ekM'ek= VkM'Vkek via the isometries Vk. We also get an isomorphism c/> of

M onto M such that

<t>iA) = ¿ VkAV~kek
k~i

tor A in M.

Let Fa = Piu'xa], Fa = P[M'Vixa], Pá =P[MVi*ai- From the proof of Theo-

rem 4, di,i{Fa)=<t>-1{Fa)=VrleiFaeiVi, and thus 4>-l{Pa)H=VTie1FaeiHi

= VïxeiFaË = Vïxei [M'Vixa ]=Vîl [aM'ei ViXa ] = Ff1 [ VXM' Vïl VíXa] = [M'xa ]

= FaII, proving that

4>iFa)   =  Fa.
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We now consider the xa such that [Mxa] = Pá H. <f>iPá )exP? = FiPa' V^dH

= ViPáH= Vi [Mxa] and £„' H = [M Vixa] = [ FiMFfV ViXa] = Fi [Mx„],
showing that

<p(P'„)ei = P'a.

But by definition of the coupling operator, Pa' = [MxoJ^CifM'xa]11

= Ci(Pa)1'; and by the continuity properties of <p, <PÍPá) =<p(Ci) ■<p((F«)'')

=<p(Ci)-((F«)0. Also, if C is the coupling operator for M, M', then (Pa')"

= [MFiXa]l' = Ci[M'FiXa]'l = Ci(Pa)1', and we get, by combining these two

equations (using (_?a')*=0(P„')(e.)l = (l/m)0(Pa')), (l/w)<p(Pa') = C\(Pa)*

= il/m)<piCi) ■ iPa)*. But clearly (F«)1" has an inverse with respect to (p(P„)

and we get finally that

Ci<p(p'a) = <j>iCi)<t>iP'a)-— = 0(p'a).

For those o¡Gr such that [M'xa] = FJ7 = Pa'-7, we get <piFa)=Fa

= <PÍPá) or <p(Pa')P = Fa/í= [M'FiXa]. It is now clear from Lemma 1.2.5

that here too Ci0(P« ) ^<p(P„). Combining this result with the preceding

paragraph, we obtain finally the inequality

Ci = Pi.i,

as X_er«p(P-)=P
We now introduce the linear functional w on M by defining co(-l)

= co(fp_1(/l)). This functional clearly satisfies all the requirements of the first

paragraph of the proof of this theorem, and hence there exists a vector x in

H such that co(yl) = iÄx, x). Then, for A in M,

t»iA) = «(*(-!)) = i<PÍA)x, x)

= Í X VkAVk ekx, xj

m

=   X iAVk ekx, Vk ekx),
k-l

and the nonzero members of the set { F^'e^x} form our set Si, z2, ■ • • , z„,

with n^m.

Theorem 8. Let M be a finite ring. The mapping A-^A* is continuous in

the strong iweak) topology if and only if the coupling operator C is bounded.

Proof. First, assume C is bounded. For any vector x, the linear functional

iA*x, x) on M clearly satisfies all the requirements of Theorem 7, and there-

fore there exists a finite collection of vectors {za} such that iA^x, x)

— Xt-i iAzk, zk). This proves that the trace is weakly continuous. Then, by
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Lemma 8.1, p. 254 of [l], {A*)* {A*) ̂ {A*A)* for all A in M, and we get the

inequality |U»x||2 = {{A*)*{A*)x, x)£{{A*A)*x, x)=22ï-i {A*Azk, zk)
^ 22ï-i IM2*||2> which proves that the trace is strongly continuous.

Now, assume Cis unbounded. As this means that G is unbounded, there is

clearly no loss of generality in assuming that Afand M' are both finite. Then,

by the spectral theorem, there exists a sequence {Pk}, k an integer, of projec-

tions in the center of M such that 7 = P0>Pi>P2> • • • , with CPn^nPn.

Also, we can choose vectors z„£(P„ — P„_i)77such that ||z„||2 = l/w2, and since

22»°-1 Ilzn||2= 22»-1 (l/«2) < °°. there exists a vector z= 2JT-i z».
For x arbitrary in 77, define P(x) =P[m'x]. Clearly P(x)P„ = P(P„x) for all

n, and by the definition of C, E{Pnx)* = C-1[MPnx]*eC-1Pnú{l/n)P„.

Also, let fl be the collection of all finite sets of vectors {(xi, x2, • • ■ , x„)},

n some integer, which is made into a directed set by defining (for n, r2£fi)

tiíStüÍí TiÇr2.

If r(£í2) consists of the above vectors {xk\, define PT = supa,tgT P(Pn+iXt)

and FT = Pn+i — Er. Now, by Theorem 5.4 [4, p. 244] for arbitrary projec-

tions P, F in M, EKJF-F~E-E(~\F or {E\JF)* = E* + F*-{Er\F)*
láp^ + P1. Then, by a trivial induction argument, we obtain {Er)*

^ 22Li (P(Pn+1x*)^(«/(«+l))P„+1 and thus (P)"èPn+i-(«/(« + l))Pn+i
è(l/(« + l))Pn+i. Clearly FTxk = 0 and for t'^t, FT>xk = 0.

Now, with the above notation, we get a directed set of operators {v4Tj,

r£ß, by letting AT = (« + 1)3P, with the following property: If x is arbitrary

in 77, let to = (x) in 12, and consider A Tox = (« + l)3P0x = 0. As in the above para-

graph, ^4Tx = 0 for r ==:ro, proving that AT converges to 0 in the strong topol-

ogy. But A\= {n + lfF)^ {n + l)3- (l/(« + l))Pn+iè (ra + l)2(P„+1-P„) shows

that, using the vector z defined above, {A\z, z) ^ (w + 1)2- ||(P„+i — Pn)z||2

^ (w + l)2||zn+i||2 = l; and thus the directed set \A\\ does not converge to

zero in the weak topology.

Thus we have succeeded in constructing a directed set of operators \AT\

in M which converge to zero in the strong (and thus in the weak) topology,

but with the set [AT\ not converging to zero in the weak (and thus not in

the strong) topology. This success proves that the mapping A—*A* is con-

tinuous in neither the strong nor the weak topology, and the proof of this

theorem is complete.

Chapter III. Continuity properties of *-isomorphisms of rings

3.1. Introduction. The main result of this chapter is a condition which

determines when a *-isomorphism between semifinite rings is given by a spa-

tial isometry, thus generalizing a result of von Neumann in §3.3 of [7]. Then,

growing out of this result, we obtain conditions for various of the standard

topologies to be purely algebraic. Our final result is a theorem on the rela-

tionship of a semifinite ring to its commutant.

3.2. Spatial isomorphism of semifinite rings.
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Definition 3.1. Let (M, M'), (M, M') be finite rings with coupling opera-

tors C, C respectively, and let <p be a *-isomorphism of M onto M. Further,

as in the proof of Theorem 1, let the coupling operators have the form:

C= X«£r iCa+DZ1), C= X«er iCa + Dâ1). If there exist decompositions of

C and C such that <p(Ca) = Ca and <piDa) = Da, then we write 4>iC) = C.

Lemma 3.2.1. Let (M, M'), (M, M') be finite rings on Hubert spaces H, H

with coupling operators C, C respectively. Further, let z, z be vectors in H, H

respectively such that [Mz] =77, [Mz] = 77. If <j> is a *-isomorphism of M onto

M such that 4>iC) = C, then there exists an isometry W of H onto 77 such that

WA IF-1 =4>iA)for A in M.

Proof. If G = PUi<2], then G*C=C[M'z]*=[Mz]* = I, and thus 7 = <p(7)

= <p(G")<p(C)=<p(G)l'C. But, since [Mz\^ = C[M'z]* = I, we get <piG)* = [Mz]*.

Thus we can select a vector x in 77 such that [M'x] =<p(G)77 and [Mx] = 77.

Also, [M[jf.l]_]= [m;m.2]z]=G77 and [M^.]*] = [M'^x] =<p(G)77, show-

ing that, by Theorem 6, there exists a linear isometry IFo mapping GH onto

<p(G)77 with <¡>iA) = WoAWö1 for /l in M[Ar-2l.

Now, by Lemmas 4.11, p. 231, 4.9, p. 230, and 6.4, p. 235 of [l], we can se-

lect a nonzero proj ection £ in M such that £ ^ G and such that E* = ( 1 /n)P for

some projection P in the center of M. Further, one can choose orthogonal

projections [£*}, l^k^n, such that each Ek is equivalent to £ and with

X*-i Eh=P. Let Vk,l^k^n, be partial isometries in M such that F* Vk = Ek

and F_V?~2_.
Clearly, the mappings 4>iVk)*WoVk are isometric from £t77 to </>(£*)77,

since<p( Ft*)<p( Ft) =<p(£*) andcp( F4)<p( F?) = <p(£). Thus we can define the map-

ping W= X"=i <piVk)*W0Vk as an isometric map of P77 onto ç4(P)77. For

A in MP consider

n

IF^IF-1 = X <t>iVk)*W0VkAVs*W^4>iVs)
A,8-1

=  X <p(F,*)<p(F^F*)rp(F.) (since VkAV* in ME„)
s,fc-l

=  X <PÍVk*VkAV*Vs) = <p( X iEkAE.)
s.k-l \lc,»-l

= <fiAP) = <piA).

Thus we have constructed an isometry implementing <p on MP, for a projec-

tion P in the center of M. From this result, an obvious transfinite induction

argument yields a collection {Pa}, aGT, of orthogonal projections in the

center of M, such that X<*er P« = 7 and such that there exist linear isom-

etries Wa mapping Pa77 onto <p(P„) 77 and implementing <p on MPa.  Let

w= X_er w«.

)
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For r' any finite subset of T, we notice that

w(a       22    PaW"1     =       ̂ 2    Wa{APa)Wa-1   =       22    4>{APa)   =4>\A   22    P.)
\     «£r      / «er' «er \   «Sr'     /

=   4>{A)4>(     22   P.)
\ «er'      /

=   *{A)-    22    *(^a).
«ei"

But 22«Gr (P-) - 7=<6(7) ; and thus by the continuity of W{ ■ ) W~\ WA W~l
= 4>{A).

Lemma 3.2.2. Let {M, M'), {M, M') be finite rings on Hubert spaces II,

77, with coupling operators C, C respectively. Further, let z, z be vectors in II,

77 respectively such that [M'z] =77, [M'z] = 77. If <j> is a *-isomorphism of M

onto M such that <¡>{C) = C, then there exists an isometry W of H onto 77 such that

WAW~l=4>{A),for A in M.

Proof. Let G' = P[Mz\, and, as in the previous lemma, select a projection

E' ^G' in M' such that {E')il = {l/n)P tor some projection P in the center of

M. Also, pick an orthogonal collection of projections {El ], l^k^n, such

that each is equivalent to E' and 22"-1 El =7, as well as partial isometries

VI in M' with Vi*Vl =>E¿, VI V'k* = E'.
Now let E = P[M'E'z] and notice that we have the equation [MF/z]1*

= {E'[Mz])* = iE'G'y = {E')* = C[M'E'z]* = C{E)\ Thus we get the result

(£')* = (1/»)P = C{E)\ and consequently, (l/w)c6(P) =c6(C) ^(P)" = C-(b{E)\

But [Af'c6(P)z] =<b{E)H, by hypothesis; and if we define Ê' = P[m^E)¡\, then

by the definition of C, {Ë')h> = C<t>{E)'*={\/n)<p{P). Again we can choose or-

thogonal projections {ÈI } such that 22"-1 -Ê* —<b{P) and with each P*'

equivalent to Ê'. Let TV be partial isometries in M' such that V'k*Vl = ËI

and ?itm*-&.

But now the map ^4—>AE' is an isomorphism of Í17P onto ME<n, since if

AE'=0, then, for all jfe, AVl V'k* = 0=AVl V't*Vl =AV¿ =AV'k*Vl =AE¿
and finally 22*=i ElA=AP = A=0. A similar computation shows that the

mapping A—+AÈ' is an isomorphism of M(p{P) onto Mè'h- We now are in a

position to define the isomorphism </>' of ME'h onto Mfyñ by <¡>'{AE')

= <I>{A)Ë' tor A in MP.

Next, we observe that [M'KHE'z]= [E'M'E'z] =E'[M'E'z] =EE'H,

[Me'hE'z] = [ME'z]=E' [Mz]=E'G'H = E'H, [M'e-h<I>{E)z] = [Ë'M'<t>{E)z]
= Ë'<b{E)[N'z] = Ë'<t>{E)H, [ME,H(b{E)z]=Ë'[M(j>{E)z] = Ê'H; and thus, if
C, C' are the coupling operators for the rings {ME'n, M'E'H), {MEq¡, M'E/]j)

respectively and if the symbol ° denotes the trace in the above reduced rings,

then (P,)° = G(PP,)° and (P')° = C'(73'0(P))°. But this implies that c6'(P')°
= C'<t>'{EE')0=<f>'{C')<i>'{EE')0 and proves that c/>'(C")=C'. This fact, plus



494 E. L. GRIFFIN [November

Lemma 3.2.1, yields a linear isometry IFo of £'77onto £'77 such that <p'iAE')
= W0AE'Wöl.

As in the proof of Lemma 3.2.1, we can define a linear isometry from P77

onto cp(P)77such that W=J%„1?¿*W0V¿ and compute (for A  in MP),

n

if^if-1 = X v¿*wbv¿av:*w^v:
k,s=l

n

=  X V¿*WoiV¿ V¿*A)W^Vk' (since ViVi* = 0 for k * s)
k=l

=  X Vl*W,iE'A)W^Vl   =  X Vi*-<p'iE'A)Vk'
k=l k=l

= X V¿*E'<piA)Vk' = X VÍ*VUiA) = X £¿<¡>iA)
k=l k=l h=l

= <¡>iP)<PÍA) = <piAP) = 4>iA).

Thus we have proved that there is a linear isometry implementing <p on MP,

for some projection P in the center of M. The remainder of the proof is

identical with the last part of the proof of Lemma 3.2.1.

Lemma 3.2.3. Let (M, M'), (M, M') be finite rings on Hubert spaces H, 77,
with coupling operators C, C respectively. If <p is a ^-isomorphism of M onto M

such that 4>iC)=C, then there exists a linear isometry W of H onto 77 such

that WAW~1=<piA)forA in M.

Proof. By Definition 3.1 and the proof of Theorem 1, we have collections

of orthogonal projections {P_}, {£_}, {P*}, {Ëa} iaGT) in the center of

M, MPa, M, MPa respectively with vectors xa,i, x„,2, xa,i, xa,2 in 77, 77 such

that  X<*er Pa = I,

[MXa.l]  =  £„PJ7, [M'Xa.l]*  = Da,

[MXa,2]*   =  Ca, [M'Xa.2]   =   £XPa77,

[MXa.l] = £«Pa77, [M'xa,i]^ = Da,

[Ii.i = Ca, [M'Xa,2] = 72_P_77,

and finally

CßiCa)   =  Ca, ïiDâ1)   =   TV1-

Clearly, <f>iPa) = P_, <¡>iEa) = Ëa and we can apply Lemmas 3.2.1 and 3.2.2

to get linear isometries IFa,k, aÇr, k = l, 2, implementing <j> on the rings

MEaPa, MEaPa- Having done this, we get an isometry IF in the large by

the method of Lemma 3.2.1, thus completing the proof of this lemma.

Lemma 3.2.4. 7,e/ M, M' be of types Si, Sa (Í2 infinite) respectively. There
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exists a collection of orthogonal, equivalent, finite projections {£_"}. «Gr,

such that X«er Eá =I; the Me<h are all isomorphic to M, and the coupling

operator for iMEa<p, M'Ea>H) is the identity.

Proof. We first consider the case when there is a vector x such that [M'x]

= 77. The projection F¿ =P[m2] is finite by Lemma 1.2.4. Now, by Zorn's

Lemma, pick a maximal family {Fá}, «GT, of orthogonal projections

equivalent to F¿ and let F' = X<*er Fá ■ Comparing F¿ with iF')L, we notice

that F¿ <(P)X is false by the maximality of our family {Fá}; and thus

there exists a projection P in the center of M such that P(F')x-<PFo

(proper).

We now have P- X_er Ppá +PiF')± and the set T is clearly of infinite

cardinality (by finiteness of F¿). Further, the projections PFá are all equiva-

lent to PPo. Let a0 be any element of V and consider the fact that

X«er-a0 PEá ~ Xa£r PFá as each of the index sets has the same cardinal-

ity. But this obviously leads to the equation X_Er PEá > X-er-oro-PP«*'

+PiFT> X«er PFá +PiFT=P or P~X«er PFá.
Next, select a partial isometry V in M' such that V'*V' = P

and F'F'*= XcGr PFá- Then, P= V'*V'V'*V'= F'*( X«er PFá)V
= X«Gr PV'*Fá V, where the PV'*Fá V are clearly equivalent to PF¿.

Thus we have expressed a central projection P as a sum of orthogonal projec-

tions equivalent to PF¿.

Again apply Zorn's Lemma to obtain a maximal family of orthogonal

projections {P_}, «GA, such that Pa= XTer P_,7> the F'a¡y being orthogonal

projections equivalent to PaF¿ (the same index setT can be used for the F'a¡y

since all have the cardinal Q). Form P= X«eA P«> and consider Px. If

Px 5^0, then the process described in the first part of the proof of this lemma

shows that there is a nonzero projection in the center of MiP1) which is a

sum of projections equivalent to P0' cut down to that central projection. This

contradiction of maximality of the family {Pa} proves that P = 7.

Now, form the projections £7 = X«eA E'a,y. These projections are ob-

viously equivalent to ^2a^i.PaF¿ = Po' and 7= X7£r Ey . Furthermore, the

rings Me'h are isomorphic to MFo'n- Also, the mapping A—*AF¿ is an iso-

morphism of M onto Mfo'h, since if AF¿ =0, then Ax — 0 and hence A =0.

Finally, [Míyi/x] = [M¡¡-0'hx] = F¿ 77 shows that the coupling operator for the

rings Mf0'h, M'p<¡'h is the identity. This completes the proof of the case when

[M'x] =77 for some x in 77.

In the general case, we use Lemmas 1.2.7 and 1.2.8 to obtain a family

{Pa}, a GA, of orthogonal projections in the center of M such that X«»e a P-

= 7 and with either [Mxa] =PaH or [M'xa] =PaH for vectors xa in 77. But

if [Mxa]=Pa77 for some aGA, then, by Lemma 1.2.4, [Mxa] and thus Pa

would be finite in M', contradicting the fact that M' is of type Sa- Thus all

the Pa satisfy [M'xa]=P„77,
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Applying our previous results to the rings MPa, we obtain a set of equiva-

lent, finite, orthogonal projections £á,7, «GA, yGV, such that Pa

= 2J~£r E'ay and the rings MPaE'a,y-H, M'PaE'a,yH have the identity as a

coupling operator. But finally, defining £7 = X«ga £á,7, we see that the

£7 are a family of orthogonal, equivalent, finite projections with XïGr Ey'

= 7. Since P„£7' = E'a,y, (#_%_■,.*, M'Pa¿¿s) -<J_fP«».w_r, M'P.ä^ji) ;

thus the coupling operator of ÍMb-h, M'e'h) on Pa£7 is the identity. But

piecing together the coupling operators on Pa£7 we obtain finally that the

coupling operator of iM'g >e, M'e^h) is the identity.

To complete the proof of this lemma, notice that the mapping A—*AEy'

is a *-isomorphism of M onto Mb-'h', since if ^4£7 =0, APaEy =0 which

yields ^4Pa = 0 for all a, by the first part of this proof. Then, A=Q follows

from  X«eA Pa = F.

Lemma 3.2.5. £e/ M, M', M, M', be rings of types Si, Sa, Si, Sa respectively

(ñ an infinite cardinal). If <p is a*-isomorphism of M onto M, then there exists

a linear isometry W mapping II onto 77, such that <piA) = WA W^1 for A in M.

Proof. Applying the preceding lemma to the above rings, we get the fami-

lies {Eá }, {Ëa}, a£r, of ß equivalent, finite, orthogonal projections in

M', M' respectively such that X«er Eá =7, X<«er Eá =/ and such

that the coupling operators of the rings iMEa'H, M'ejh), (¿_I.'_& MEa'H)

are the identity operators. Further, one can define the *-isomorphism <p' of

ME„ 'h onto MÊa„'Ti by <f>'iAE'a0) =<piA)Ê'aoior A in M. Lemma 3.2.3 can now

be invoked to yield a linear isometry Wo of E'aoH onto Ë'aoH such that

WoiAE'a0)Wôl=<piA)Ë'a<,.

Pick partial isometries { Vá }, [Vá}, aGV, in M', M' respectively such

that Vá * Vá = Eá , Vá Vá * = E'a0, Vá * Vá = Eá, Vá Vá * = £_,. As in the proof
of Lemma 3.2.2, we define the linear isometry W= X<*Er Vá*W0Vá of 77

onto 77; and, if T' is any finite subset of Y (by the same computation as in

Lemma3.2.2),(X«Gr<Fa'*IFoF_"M(X«er' V¿ *W0~1Vá ) =<p(-l)(X*er' &' )
= -FXaei" EáAW~\ Thus by continuity of IF, WAW-x=<t>iA).

Lemma 3.2.6. Let M, M', M, M' be rings of types Sa, Sa-, Sa, Sw respec-

tively (Í2, Í2' being infinite cardinals). If <p is a *-isomorphism of M onto M,

then there exists a linear isometry W mapping II onto 77, such that <¡>iA)

= WAW-1 for A in M.

Proof. Since M is of type Sa, there exists a family {£«}, aGT, of fi

orthogonal, finite, equivalent projections in M such that X«er Ea = I. If

we let (/>(£„)=£„, the family {£<*}, aGT, is a family of projections in M

with properties similar to those of {£«}. For a0 a particular element of T,

there exist partial isometries { Va}, aGT, in M such that V*Va = Ea, VaV*

= F

We notice that <p induces a *-isomorphism of MEa n onto Mßa H- Further,

the map A'-+A'Eao is an isomorphism of M' onto MBau\ since if A'Eao = 0,
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then by the same argument as the third paragraph of the proof of Lemma

3.2.2, this implies ^4'Pa = 0 for all a£r and hence A' would vanish. A similar

argument shows that M'u^fi is isomorphic to M'. Thus the rings MEa¡¡H,

M'Eaon, MÊaoH, M'Eafi are of types Su Sa>, Si, Sa', and we can apply Lemma

3.2.5 to get a linear isometry Wo with the property: WoA W0~l = {A) for A in

the ring MEaaH.

Now, we can define the linear isometry W= ^2a^r4>i V%) Wo Va, and if V is

any finite subset of Y then, by the same computation as that of the third

paragraph of the proof of Lemma 3.2.1,

w(   22   P-W    Z   Ea)w-*=    22     (EaAEß)=    Il {Ea){A) T, (Eß).
\ «er      /     \ «ef      / a,0Gr' «er' 0Gi"

But now, by the continuity properties of W, we get finally: <f>{A) = WA W~l.

Definition 3.2. Let M, M', M, M' be semifinite rings of operators on

Hubert spaces 77, 77, with coupling operators C, C respectively. If, as in Defi-

nition 1.6, we write

C   =  Cj +        2~i ~ Pa,a', C   =  Cl +        ¿-J —J Pa,a',
a,»via    a «,«V1,1    OL

then a *-isomorphism <j> mapping M onto M is said to take C into C, it

<b{Pa,a') = Pa,a' for all a, a' and if </>(Ci) = G- C is said to be essentially bounded

it all the {Pa,i}, a > 1, are zero.

Theorem 9. Let M, M', M, M' be semifinite rings of operators on Hubert

spaces 77, 77, with essentially bounded coupling operators C, C respectively.

If (p is a *'-isomorphism of M onto M taking C into C, then there exists a linear

isometry W mapping 77 onto 77 such that <b{A) = WA W~l for A in M.

Proof. Let C=G+ ^{a/a')Pa,a'. By Lemma 3.2.3, there exists a linear

isometry implementing <f> on Plti. By Lemma 3.2.5, there exists a linear isom-

etry implementing<p on the Pi,«, a> 1 ; and by Lemma 3.2.6, there is a linear

isometry implementing <p on the Pa,a' for a, a'> 1.

Thus we have a collection of orthogonal projections in the center of M such

that on each one <p is implemented by a linear isometry. But now by the

argument at the end of the proof of Lemma 3.2.1, there exists a linear

isometry implementing c6 in the large. This completes the proof of the

theorem.

Theorem 10. Let M, M' be semifinite rings with an essentially bounded

coupling operator C. If <f> is a *-automorphism of M leaving C fixed, then there

exists a unitary operator W on the Hubert space 77 such that <p{A) = WAW*

for A in M.

Proof. (j> is clearly a *-isomorphism of M onto itself, which takes the
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coupling operator C into the coupling operator of its image. Thus we can

apply Theorem 9, obtaining a linear isometry IF of 77 onto itself such that

<j>{A) = WA W~l for A in M. But such a IF is unitary on 77, and consequently

IF-1 = IF*.

3.3. Continuity properties of *-isomorphisms.

Lemma 3.3.1. Let M be a semifinite ring on the Hilbert space 77. If tc and

[Pa] are the cardinals, projections respectively of Theorem 3, let Q, be an in-

finite cardinal larger than any of the cardinals in ir. If T is an abstract set of

cardinal Í2, then the ring M of Theorem 4 is of type Sa-

Proof. Let <j> be the isomorphism of M' onto iff' given in Theorem 4. With

the notation of the proof of that theorem, consider the family <p{Pa)ey, y£T

{a fixed). These projections are clearly all equivalent, and since the Meyfi

are unitarily equivalent to M, each <f>{Pa)ey of the above family is the sum of

a orthogonal, equivalent, finite projections in M. Thus <f>{Pa) is the sum of

ßa = n such projections, and M<p{Pa) is of type 5a.

But 22ae» 4>{Pa) =<p{I) =1 proves that M is of type Sa, and the proof

of this lemma is complete.

Theorem 11. The strongest and a-weak topologies are purely algebraic in

semifinite rings; that is, any *-isomorphism between semifinite rings is bicon-

tinuous in the strongest and a-weak topologies.

Proof. Let <f> be a *-isomorphism of the semifinite ring Mi onto Af2. Pick

an abstract set T with infinite cardinality Í2 larger than that of the Hilbert

spaces on which the rings Mk, k = l, 2, act, and apply the process outlined in

Theorem 4 to the rings Ml. Let c6i, <£2 be the isomorphisms of Mi, M2 onto Mi.

Ñ2 respectively, and form the isomorphism <p=^>2(M>ï1.

<j> is now a *-isomorphism of Mi onto M2. In Mi form the family { P„}, as

in Theorem 3. But, from our selection of Í2, and by Lemma 3.3.1, it is clear

that the Ml are of type Sa, and thus our coupling operator G for Mi has the

form: G = Z^e^i (a/ß)Pa. Since the types Sa are preserved under *-iso-

morphism, we also get the coupling operator G of Af2 in the form: G

= 22«Gn (a/O^ÍP.).
Thus we see that 4, takes G into ¿\ with each being essentially bounded.

Applying Theorem 9, we see that there exists a linear isometry implementing

0. But now (j> is obviously bicontinuous in both the strongest and <r-weak

topologies; and since the <f>k, k = l, 2, are bicontinuous in these topologies by

Theorem 4, we get finally the result that <p=<f>21%<pi is bicontinuous in the re-

quired topologies. This completes the proof of the theorem.

Lemma 3.3.2. If M, M' are purely infinite semifinite rings on a Hilbert

space 77, then the strongest and strong topologies are equivalent and the c-weak

and weak topologies are equivalent.
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Proof. Let T be the set of positive integers, and apply Theorem 4 to M',

obtaining rings M, M' and an isomorphism 0 of M onto M. If the projec-

tions {Pa,a-}, a, a'Gir, are the ones in the standard decomposition of the

coupling operator for (M, M'), consider the rings <j>iPa,a')M, <piPa,a')M'. As <p

is an isomorphism, the ring <piPa,a')M is of type Sa like Pa,a'M. Also, as in the

proof of Lemma 3.3.1, the family <piPa,a')en, «GT (a fixed), are all equivalent;

and as each member of that family is the sum of a' orthogonal, equivalent,

finite projections, we get finally that <p(Pa,a0 is the sum of a'-_$o = a' such

projections. This proves that <piPa,a')M' is of type Sa>.

Thus we see that if {Pa,a'|, a, a'Gir, is a decomposition of the coupling

operator of (M, M'), then <p(Pa,aO is the corresponding decomposition of the

coupling operator of (M, M'). Since both operators are obviously essentially

bounded, we may apply Theorem 9 to obtain a linear isometry IF implement-

ing <p.

Now let {x„} be a sequence of vectors in 77 such that X»T-i |lx»||2< °°,

and, using the notation of Theorem 4, define xB= F„xB. Clearly we

may define a vector x= X^-i xn in 77; and, by the proof of Theorem

4, for A in M, X"-i iAV~lxn, F"1*,,) = ¿Xi C¿*». xn) = (<pL4)x, x)

= iWAW~xx, x), or X"-i (Axn, xn) = iAW~lx, W~xx). That the strongest

and the strong, the weak and the <r-weak topologies are equivalent is now clear<

Theorem 12. Let M, M' be semifinite rings on a Hilbert space 77, with

coupling operator C. If C is bounded, the strongest and the strong, the weak and

the a-weak topologies are equivalent pairs of topologies.

Proof. Let C=Ci+2_Xa/a')P_,_' be the standard decomposition of the

coupling operator. By boundedness of C, the Pa,i, a>l, are all zero and Ci

is a bounded operator. Thus (?x= X(«,«')*i Pa,a' has the property that

M(QX) and M'(QX) are purely infinite semifinite rings, and we see that the

theorem is true on (<2)x77, by Lemma 3.3.2.

Now, let {x„} be a sequence of vectors in QH such that Xn-i II*»!!2< °° >

and form the linear functional <-(._) = X»-i iAxn, xB) on MQ. This functional

clearly satisfies all the conditions of Theorem 7, and thus there exists a finite

set {zk}, l^k^m, with co(-l)= Xt-i i-Azk, «*). But this proves that the

theorem is true on QH. Combining this result with that of the first para-

graph, we finally complete the proof.

Theorem 13. The trace function in a finite ring is continuous in the strong-

est and a-weak topologies.

Proof. Let M be the finite ring, and with T as the positive integers, apply

Theorem 4 to M', getting rings M, M' and an isomorphism <p of M onto M.

Since M' is purely infinite, the coupling operator for (M, M') satisfies the

conditions of Theorem 12, proving that the strong and the strongest, the weak

and <r-weak topologies are equivalent pairs of topologies on M.
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Now, let [Aa] be a directed set of operators in M which converge to zero

in the strongest topology. By the continuity properties of <p, 4>{Aa) converges

to zero in the strongest (and thus the strong) topology on M. Again using the

fact that M' is purely infinite, Theorem 8 can be applied, yielding <p{Aa)^

—>0 in the strong (and thus the strongest) topology. Then, applying c6_1, we

get Aa converging to zero in the strongest topology. This proves that the

trace is continuous in the strongest topology, and a similar argument does the

same for the cr-weak topology.

Theorem 14. The notion of subring is purely algebraic with respect to semi-

finite rings; that is, if <j> is a *-isomorphism of the semifinite ring M onto the

ring M and if N is a semifinite subring of M, then 4>{N) is a subring of M.

Proof. If Ñ is defined as the strongest closure ot<j>{N), it is clearly sufficient

for the proof of the theorem to prove that NÇZ<j>{N). Therefore, let Ä be in

Ñ and pick a directed set [Äa\ of operators in <p{N) converging to Ä in the

strongest topology. But by Theorem 11, c6_1 is strongest continuous from M

to M, so that we have the directed set <p~l{Äa) converging to <j>~l{Ä) in M.

Furthermore, the <b~1{Äa) are in N; and by the closure properties of N,

c6-1(^4) lies in N. Now, applying tf>, we get finally that A lies in <b{N), and the

proof of the theorem is complete.

3.4. Standard rings.

Definition 3.3. Let M be a semifinite ring on a Hilbert space 77. If there

exists a conjugation 7 of 77 such that JMJ=M' and such that for A in the

center of M, JAJ = A*, then M is said to be a standard ring.

Lemma 3.4.1. If M is a finite ring on the Hilbert space 77, then M is standard

if and only if the coupling operator is the identity.

Proof. First, assume that the coupling operator is the identity operator.

By Lemmas 1.2.7 and 1.2.8, there exists a family (P«}, ct£r, of orthogonal

projections in the center of M such that ^.„c rPa = 7 and with vectors xa, a£T,

such that either [il7xtt]=Pa77, or [M'x«]=Pa77. However, since 7 is the

coupling operator, we always get both: [M'xa] =PaH= [Mxa]- But now we can

apply Lemma 1.2.2 and get conjugations Ja, a£r, on Pa77, such that il7P„

is standard with respect to Ja. That 22«Gr J<* 1S tne conjugation of our

lemma now follows immediately.

Next, assume that M is standard. As above, pick a family [Pa}, a£T, of

orthogonal projections in the center of M such that 22*gt P« = ^ and such

that either [Mxa]=PaH or [M'xa]=PaH. Suppose [Afxa]=P„77, and con-

sider [M'x«]= [JMJxa]=J[MJxa]. By the proof of Lemma 1.2.3, [MJxa]

~PaH or [Af7x«]=P„77. But then [M'xa] =JPaH=PaJH = PaH, or

[lPxa] =PaH. A similar computation for the case [il7'x„] —PaH shows that

for all a£r, [Afxa] =Pa77= [M'xa]. It is now clear that the identity operator

is our coupling operator and the proof of the lemma is complete.
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Lemma 3.4.2. 7/ M is a purely infinite ring of type S a on the Hubert space 77,

with coupling operator C, then M is standard if and only if G= (ß/£2)7.

Proof. Let C=(ö/ß)7. As M is of type Sa, there exists a family {£«},

«GT, of orthogonal, equivalent, finite projections in M such that X«Gr Ea

= 7. Let ao be a fixed element of V, and pick partial isometries { Va}, aGT,

in M such that V*Va = Ea, VaV* = Eao.

Notice that the mapping A'—>A'Eao is an isomorphism of M' onto M'Ea h

since if A'Eao = 0, then A'Ea = 0 for all a with finally A' = 0. Thus we get

Msa h finite with M'Ea h of type Sa- Now, Lemma 3.2.4 gives us a family

{£ao£7 }, 7Gr, of orthogonal, equivalent, finite projections in M'e^h such

that the rings iME>aoEailH, M's>a e h) have the identity as a coupling operator.

Furthermore, the family {£„' } in M' is a collection of equivalent, finite pro-

jections; and since for a^a', 0 = £a'EaoE'a>, it follows that EáE^ =0 or that

the above collection is orthogonal. In a similar fashion, X«f=r Eá =7.

Apply Lemma 3.4.1 to iMEaE'aH, M'EaE'aH) and let the corresponding

conjugation of £„0£¿077 be J0- Picking partial isometries { Vá }, aGT, in M'

such that V'*Vá =£«', Vá V'* = E'a¡¡, we define Ja.ß = V'*VpoVaV'ß. Ja,ß is

clearly a norm preserving mapping of £«£/ onto Eá Eß acting like a conju-

gation from EaEß to EáEß. Since Xa,/ser EaE¿ = ( X«Gr P«)(X/S£r E¿)

= 7, we can form J = X_,0£r P_.u-

Now for any finite subsets V, T" of T, we have:

/(        X       EaE¿)A(        X       £T£i'V
Verier- /     \ agréer" /

Z JafiAJt.y   =   X-/«'*WF£tF/MFJ'*F7*7„FiF7'
«.T£r",fl,äei''

X Vá^fJ&aLiVaAVnJlVfVá

since F/ Ff = 0 for ß ^ S and equals E'a<i for (3 = 0. Also, since 70£á0 ( VaA F*)70

lies in M'e^e^h, represent it by the operator B'a¡yEaa for B'a¡y in ME'aoH. Then

/(       X       EaE0' iA)      X       £-£» V

X Va*Vß*Ba.yEa,VßV'y    =     (     X     KÄ^V X       F'/T^X)
«,7er",<¡er< \/ser- /\ a,7GT" /

= ( x Eß)( x v^v/X

Then, by arbitrariness of V and continuity of J,

j(   X   P«W   X   Ey)j =      X    Fl*7i:,7F'7 = S.»
\ «g-r-'     /     \ 7GT"     / «,TGr»
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in M'. But the left-hand side of this equation converges to 7.47 in the strong

topology, and thus S'T" converges to JAJ, proving that JAJ lies in M'.

If A lies in the center of M, then B'a¡yEaa = JoAE'a FaF*70 = 0 for a ¿¿y,

= JoAE'aEa0Jo = A*E'aEao tor a=y. We now get J{ 22aGr" Ea)A{ 22-rGr" Ey)

- Z«Gr" V'*A*V¿ =(22aGr"£a')^*. Again by continuity of 7, JAJ = A*,
and M is shown to be a standard ring.

Now assume that M is standard of type 5a. If {P«}, «£r, is a collec-

tion of orthogonal, equivalent, finite projections such that 22aGr-£« = 7, then

22aGr 7P„7 = 7 with the family {/Pa7}, a£r, consisting of orthogonal,

equivalent, finite projections in M'. Thus M' is of type 5a and the proof of

the lemma is complete.

Theorem 15. Let M be a semifinite ring with coupling operator C. M is

standard if and only if C has the form Z«G» ia/a)P«,a.

Proof. Let C= ZaG* ia/a)P<*,<*. By Lemma 3.4.1, JlfPi.i is standard with

respect to a conjugation 7i, and by Lemma 3.4.2, the rings MPa, a>\, are

standard with respect to the conjugations Ja. But now the conjugation J

= 22aGT J" dearly makes M a standard ring.

Let M be standard with respect to /. If {Po}, «£r, is the decomposition

of 7 into homogeneous parts given in Theorem 3, then {/Pa7} is clearly the

decomposition of M' into homogeneous parts. But JPaJ=Pa, as the projec-

tions are in the center of M; and thus Pa,a' =PaPa' =0 or P„. Also, since

M Pi is standard with respect to 7, CPi = Pi, and C= Z<«G»- ia/a)P«.<*-

Added in proof. It will be noted that the condition "essentially bounded"

occurs in several of our theorems, and it would be of interest if perhaps the

condition might be removed for some. In the case of Theorem 9, however, the

following example shows that here the condition cannot be removed.

Let M be the ring of all bounded operators on an infinite-dimensional

Hilbert space. Now, letting V consist of two elements, apply Theorem 4 to

il7' obtaining rings M, M' with M ""-isomorphic to M. This *-isomorphism

clearly preserves the coupling operator which is not essentially finite. But, if

4> could be implemented by a linear isometry IF, then M' and M' would be

*-isomorphic—clearly an impossibility since M' is abelian and M' is non-

abelian.

Appendix. Weak and strong continuity of *-isomorphisms

In Theorem 9 we obtained a condition for unitary equivalence, depending

upon the coupling operator. In this appendix we shall obtain a condition for

strong (weak) continuity of *-isomorphisms also depending upon the coupling

operator.

Lemma 1. Let M be a finite ring of operators on a Hilbert space 77, with

coupling operator C. If <¡> is a ^-isomorphism mapping M onto a ring M acting
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on the Hilbert space 77, and if C is bounded, then <f> is weakly and strongly

continuous.

Proof. This lemma clearly follows from Theorems 11 and 12, plus the fact

that the strong (weak) topology is weaker than the strongest (<r-weak)

topology.

Lemma 2. Let M, M', M, M' {M finite), be semifinite rings of operators on

Hilbert spaces 77, 77, with coupling operators C, C, respectively. If <j> is a '"-iso-

morphism mapping M onto M, and if C is bounded, then <p is strongly {weakly)

continuous if and only if C is bounded.

Proof. Assume that c& is strongly (weakly) continuous. We consider the

mapping A—>A* in M as a composite of the mappings A—xj>{A)—*¡>{A)*

= <j>{A]{)-^A^. By hypothesis, <j> is continuous; and the continuity of the other

maps follows from Lemma 1, Theorem 8, and the fact that C is bounded.

This shows that the mapping A-+A* is continuous and finally that C is

bounded, by Theorem 8.

Theorem A. 7,ei M, M', M, M' be semifinite rings of operators on Hilbert

spaces 77, 77, with essentially bounded coupling operators C, C respectively.

Further, let Co and Co be the ordinary operator parts of the coupling operators,

plus S = L.U.B. (Co, /)• Now, if(j> is a *-isomorphism mapping M onto M, then

<b is strongly {weakly) continuous if and only if the operator T=Ccrf>~1{S~1) is

bounded.

Proof. Let C = Ca+ Z(l/a')Pi.a'+ Z,a>i {a/a')Pa.a', be the canonical

form for the coupling operator, and define (52= Z^i.a'i Q%= Z«>i 7„,0-.

Further, we write G>= Z/sGr (G+T)^1) as in Theorem 1. Clearly, 5

= ZoGr iPßPß+^ß^ + Qt+Qi; and thus we have for Ë= Zí¡Gr A*%<
&= Zí»er PßPß> öo = ZßGr PßPß, that S"»- ZLi Ö*+ ZoGr A> and
hence5-1=22ï-iO*+^-

Now let Qk=<t>~1{Qk) and E=<b~1{Ê), and assume that the operator

P= Co4>~1{§~1) = Co{E* + Qi-t-Qi) is bounded (G(?3 is zero by the assumption

of essential boundedness). The continuity of <f> on MQ3 follows from Lemma

3.3.2, and continuity on MQX and MQ2 is implied by Lemma 1 above. To prove

the continuity of <j> on MQ0, consider the linear functional co on MQ0 defined

by the equation co{A) = {<j>{A)x, x) for x arbitrary in 77. It is clearly a linear

functional on the ring MFH, where /?= P[mÇ], F=<f>~1{P), and F' = P[m7]- Since

Co&=Qo, we get F*=F>C0&=F*&£&, and we see that CP" is dom-

inated by the bounded operator CoE* ̂  T. But the operator CoF^F is the

coupling operator for the rings Mfh, M'Fh by an argument similar to that of

the proof of Lemma 1.2.5, and thus the functional co has the form given in

Theorem 7. The continuity of <j> now follows easily.

Finally, assume that <j> is strongly (weakly) continuous. The boundedness
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of CoiQi + Q2) clearly follows from Lemma 2 and so it remains to prove the

boundedness of C0E*. But the boundedness simply follows from Lemma 2

applied to the rings Meh, Meh, Mêh, Meh with coupling operators CoE*E, Ë;

and the proof of the theorem is complete.
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