
FUNCTIONS OF POTENTIAL TYPE

BY

MAYNARD G. ARSOVE(')

1. Introduction. It is well known(2) that the bounded signed measures on

a Boolean algebra of sets form a Banach lattice, the norm being taken as the

total variation. This order of ideas is clearly applicable to potential theory,

since the signed Borel measure, or mass distribution, corresponding to a po-

tential w has finite total variation $(w). However, one is at once confronted

with the unpleasant fact that a sequence {wk} of potentials may diverge uni-

formly to + » while {$iwic)} converges to 0: e.g., in the plane, wkiz)

= max [k, (1/^) log \z\ ]. Thus, normed by the total variation alone, the

space P of potentials admits sequences whose terms ultimately disappear out

of sight, but which none the less converge strongly to zero.

To avoid this situation, we employ a definition of norm making use of the

values of the potentials as well as their mass distributions. In what follows

we deal only with potentials on the finite plane £, although generalizations

to higher-dimensional spaces are inevitable. The norm is defined in terms of a

certain class of linear functionals F as

(l.i) IMI = \F(w) I + #(w).

A suitable choice of Fiw) would be the areal mean of w over a fixed disc in £,

but it is essential for the full generality of results to allow a much wider selec-

tion (according to Definition 5 of §7). Under this norm the space P is incom-

plete, since for c any positive constant the sequence of potentials

(1.2) Wkiz) = max [c, (l/¿) log \ z\ ]

converges strongly to the (nonpotential) function identically c. Moreover,

even with the adjunction of all constant functions P remains incomplete, so

that its metric completion Pf is nontrivial.

Another concept which we examine is that of the order of an entire ô-sub-

harmonic function, i.e. a function representable on the entire plane £ as the

difference of two subharmonic functions(3). This is developed along classical

lines in terms of a characteristic function Triw,z) introduced previously [(I),
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Definition 8]; for brevity we denote the characteristic function for z = 0by

Triw), rather than Triw, 0). It is easily shown that all potentials are of order

zero, and one is then led by way of generalization to the study of complete

[(I), Definition 4] entire ô-subharmonic functions of order zero whose mass

distributions have finite total variation. These functions, which we refer to as

functions of potential type, can be characterized as the complete entire ô-sub-

harmonic functions w for which lim,.,», [Pr(w)/log r] exists finitely. Although

they share many of the properties of potentials, functions of potential type are

more numerous, and we show in fact that the class Í3 of all functions of po-

tential type coincides with P'. The upper and lower envelopes of two func-

tions of potential types are themselves of potential type, and we thus have

the rather striking result that metric completion of P results also in lattice

completion.

In spite of being nonseparable, the Banach space 'P has important proper-

ties, appearing in terms of a type of convergence weaker than the usual weak

convergence. This mode of convergence, which we designate as convergence iA ),

is defined by convergence of linear functionals of a certain class along with

weak(4) convergence of the mass distributions^). With the aid of a lemma

asserting that every set of positive interior capacity supports a distribution

of the unit mass having a continuous potential, we are able to establish a

number of convergence theorems for 5-subharmonic functions and to show

that the exceptional sets which arise are of zero interior capacity. However,

Choquet has proved, by means of a postulational approach to the theory of

capacity, that all Borel sets are capacitable. Using this result (the details of

which have not yet appeared in print), we find in fact that the exceptional

sets are of zero exterior capacity. In this form our convergence theorems con-

tain as special cases those due to Brelot and Cartan for monotone increasing

sequences of subharmonic functions (6).

While a detailed study of the Banach space and (L) space properties of <P

promises to be fruitful, we defer a study of this sort to a later paper and

concern ourselves here primarily with the analytical aspects of the theory.

We include also an outline of the theory of entire 5-subharmonic functions,

slightly more comprehensive than is actually needed for the theory of func-

tions of potential type. This has been done, not only because of the intrinsic

interest in extending the classical theory of entire functions to the 5-sub-

harmonic case, but also because a number of authors(7) have had use for

isolated topics in this theory. Moreover, work has been done by Brelot along

these lines, but independent of the classical development and without explicit

use of the notions of order, exponent of convergence, and genus.

(4) See Definition 7 and subsequent remarks in (I).

(6) An exact description of convergence (A) is to be found in Definition 7 of §8.

(•) See Cartan [l;2].

(') E.g. Transue [l], Heins [l], Inoue [l].
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In the final section (§9) we indicate a correlation between functions of

potential type and functional analysis. Essentially, the space <P can be identi-

fied abstractly as the conjugate of the Cartesian product space TX — RXCX,

where R is the real line and C„ is the space of all continuous functions on £

vanishing at infinity. Convergence (A) then appears as weak convergence of

linear functionals on V„.

2. Entire 5-subharmonic functions. Order. Exponent of convergence.

The theory of entire 5-subharmonic functions is a direct generalization, via

the characteristic function of (I), of the classical theory of entire analytic

and meromorphic functions. Accordingly, our discussion parallels closely the

standard treatments(8). Proofs can for the most part be reconstructed from

the classical arguments (with integrals replacing infinite products) and are

therefore largely omitted (9)-

We establish first a few preliminary results. For w an entire 5-subharmonic

function we denote the total mass by Miw) and the total variation of the mass

distribution by <£(w). Attaching a subscript r to these functions will indicate,

respectively, the total mass and the total variation of the mass distribution,

both taken over the disc 5r(0) of radius r and center 0(10). Further, we use

¡Xriw) for the integral mean of w over the circumference Cr(0) of SriO).

The quantity $r(w) for an entire subharmonic function u can be estimated,

by using a formula of F. Riesz (Radó [l, 5.18 and 5.14]), as

Pr2iu)   - Mr,(«)    ^   ^  .   .      .   Puiu)   - pniu)
- S $r(w) è ->
log r2 - log n log r4 - log r3

where ri<r2<r<rt<rt. There results the elementary, but fundamental,

Theorem 1. If u is an entire subharmonic function, then (*« the extended

sense)

lim [Mr(«)/log r] = 3>(m).
r—*oo

Corollary 1.1. If u and v are entire subharmonic functions such that u

dominates v a.e. in the sense of angular measure on Cr(0) for all sufficiently large

r, then i>(w) =4>(y).

The interrelationship between characteristic functions and canonical

envelopes [(I), Definition 8] then leads to

Corollary 1.2. If w is an entire 8-subharmonic function, X any canonical

(8) E.g. Titchmarsh [l], Valiron [l], Nevanlinna [l].

(9) Brief proofs of some of the theorems are given in Arsove [2 ].

(10) For the sake of simplicity we shall carry over the same notation (omitting the symbol

w) whenever we have occasion to deal with a mass distribution independently of a 5-subhar-

monic function.
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envelope for w, and TT(w) any characteristic function, then

(1/2) $(«>) <. lim [Tr(w)/logr] = *(X).
r-*oo

Adapting from Nevanlinna [l], we define the "order" of an entire 5-sub-

harmonic function as follows.

Definition 1. By the order of an entire 5-subharmonic function w we

mean the quantity piw) defined in the extended sense as

p(w) =lim sup,...» [log Triw)/los r]-

Since the characteristic function is uniquely determined by w to within

an additive constant, it is immaterial which characteristic function we use.

Moreover, setting aside the trivial case of w identically constant, we have

limr^oo Triw) = + », so that in all cases 0 ¿p(w) ¿ + ».

As noted by Nevanlinna [l,pp. 207-208], there are two fundamental prop-

erties of piw) each of which serves to characterize it completely.

Theorem 2. An entire 8-subharmonic function w has order p if and only if

either of the following conditions holds:

(1) for any a>p and all sufficiently large r, TTiw) <r", while for any ß<p

there exist arbitrarily large r such that Triw) >rß;

(2) the integral f" [Triw)/r'+1]dr converges for «>p and diverges for K<p.

Corollary 2.1. If w is an entire 8-subharmonic of finite order and n>p(w),

then irelative to infinity) &r(w) = 0(r").

Proof. Sweeping out the mass on Ni(0), the neighborhood of radius 1 about

0, we find from Corollary 42.1 of (I) that

/[$t(w)/t]dl = 2Triw) - nri\w\) + const. < 2r"
o

holds for large r. The rest of the argument is classical.

This result is closely related in the subharmonic case to (C) of Lemma 4 in

Brelot's paper on the growth of subharmonic functions (Brelot [l ]), although

the characteristic function is there replaced by the circumferential mean.

Additional elementary properties of the order function follow from prop-

erties of the characteristic function noted in Theorem 35 of (I).

Theorem 3. If w, wi, and Wt are entire 8-subharmonic functions of finite

order and c any nonzero real number, then (1) picw) = p(w) awd (2) piwi+Wt)

¿max [piwi), p(w2)], equality holding whenever p(wi) 9ip(w2).

The equality case of (2) is established by assuming p(wi) <p(w2) and ap-

plying the inequality p(w2) ¿max [p(wi+w2), p(w{)].

We show next that in problems dealing with entire subharmonic functions

it is permissible to interchange the characteristic function and the maximum
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function in the definition of order and in the computation of the total mass of

canonical envelopes.

Theorem 4. If u is an entire subharmonic function and ar(u) the maximum

of u on the circular circumference Cr(0), then

(1) lim sup [log <rr(«)/log r] = lim sup [log 7V(w)/log r],
r—»oo r—»«

(2) lim [<rr(«)/log r]  = lim [ZV(«)/log r].
T—» CO T—» «

Proof. It is obvious that Tr(u) =pr(u+) ¿ov(w), while a familiar inequality

on the Poisson kernel yields for c > 1 the estimate in the reversed direction

0>(«)   =   [(C+1)/(C-   l)]pcr(u+).

Since the maximum function for a polynomial behaves at infinity like

that for the term of highest degree, we have

Corollary 4.1. If u is a subharmonic polynomial of degree n, then p(u) =».

It then follows from Theorem 31 of (I) that every polynomial has finite

order.

Corresponding to the concept of order of an entire 5-subharmonic func-

tion there is the notion of "exponent of convergence " of its mass distribution.

Definition 2. By the exponent of convergence of (the mass distribution of)

an entire 5-subharmonic function w we mean the quantity pi(w) defined in

the extended sense as

Pi(w) = lim sup [log $>r(w)/log r],
T—.05

The choice of terminology here is made clear by (3) of

Theorem 5. ^4« entire 8-subharmonic function w has exponent of convergence

Pi if and only if any one of the following conditions holds :

(1) for any a>pi and all sufficiently large r, <f>r(w) <r", while for any

ß <pi there exist arbitrarily large r such that $r(w) >rß;

(2) the integral f" [&r(w)/r"+1]dr converges for «>pi and diverges for K<pi;

(3) the integral Jîr-*d$r(w) converges^) for K>pi and diverges for K<pi.

Assertions (1) and (2) have been proved by Nevanlinna [l, pp. 207-208],

and for (3) we integrate by parts between the limits 1 and R (>l) and ob-

serve that the terms which result are those considered in (1) and (2). Combin-

ing Corollary 2.1 with Theorem 5 shows that in all cases pi(w) ¿p(w).

3. The Weierstrass representation theorem. Genus. Canonical integrals.

Corresponding to the Weierstrass theorem asserting the existence of an en-

tire function with prescribed zeros (not clustering at any finite point), we

have Theorem 1 of (I), due to Brelot. However, more explicit information is

(") The integration here is, of course, to be carried out with respect to r.
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at hand in the integral representation of entire 5-subharmonic functions

analogous to the Weierstrass infinite product representation for entire func-

tions(12).

Let us denote by LH.(z) the real part of z, and by the integral sign,

without indication of the set of integration, the integral over the entire

plane £. If m is a mass distribution of finite total variation, vanish-

ing on some neighborhood N$(0), then for p any positive integer the function

H defined on £ by

Biz) = f<t\iWt) + (l/2)(s/r)2 + • • • + il/p)iz/í)']dmi¡;)

is clearly a harmonic polynomial of degree not exceeding p. Applying this

fact leads, just as in the classical case, to

Theorem 6. // m is a mass distribution vanishing on some N¡(0), then

there exists a nondecreasing integral-valued step function s on (0, ») such that

fi(r/t)sW+1d$i converges for all r>0. For s any such function the integral

- j {log | 1 - z/t | + <R.[iz/{) + (l/2)(2/f)2 + ■ • ■

(3-D t

*CuJ)
with the polynomial part replaced by 0 wherever s(\c\)=0, converges uniformly

for z on compact sets and defines a complete entire 8-subharmonic function having

the mass distribution m. Moreover, the corresponding integral with respect to

\dm(Ç)\ converges absolutely, so that the integral in (3.1) can be interpreted

either as an improper integral or as an actual Radon-Stieltjes-Lebesgue integral

over £.

The expression (3.1), yielding an entire 5-subharmonic function in terms

of a step function s and a prescribed mass distribution m, will be called the

Weierstrass integral for m and 5. Its integrand, the Weierstrass kernel, will be

denoted by E(z/Ç, s).

Corollary 6.1. (Weierstrass representation theorem). // w is an

entire 8-subharmonic function with mass distribution m, then to each 5>0

there correspond a step function s and an entire harmonic function h such that

w(z) = hiz) -  f       log I z - f I dmiS) -  \ Eiz/Ç, j)¿»(f)

holds on the domain of w.

(12) A representation of this sort has been given by Transue [l] for entire subharmonic

functions.
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Closely related to the concept of exponent of convergence is that of

"genus" of a mass distribution.

Definition 3. By the genus of a mass distribution m on £ we mean the

least non-negative integer p (in the extended sense) for which the integral

fîr~p~1d^r converges.

If the mass distribution m is that of an entire 5-subharmonic function w,

we shall denote the genus also by piw).

Theorem 7. For w any entire 8-subharmonic function,

Piiw) — lá piw) á pi(w) ^ piw).

Although the function s of Theorem 6 is not unique, we see that it can

be specified as the genus whenever the given mass distribution has finite

exponent of convergence.

For m a mass distribution of finite genus p and vanishing on some N¡iO)

we shall refer to —/E(z/fi p)dmiÇ) as the canonical integral for m. The

classical inequality | £(z/f, p)\ ^2|z/f|J,+1 which holds for |z/f| ál/2 then

leads to the following inequality for canonical integrals: for z on 5b/2(0)

f | £(z/f, p)\-\ dmii) ¡ á 2 | * |p« f   r^»d*,.
J E-Nr(0) Jr

With this at our disposal it is not difficult to prove

Theorem 8. Let m be a mass distribution possessing a finite exponent of

convergence and vanishing on some ivj(O). // w is the function defined by the

canonical integral for m, then w is a complete entire 8-subharmonic function for

which piw) =pi(w).

A mass distribution on £ admits a potential if and only if /" log r d«í>r

converges. Hence, if a mass distribution admits a potential, its exponent of

convergence must vanish, and there follows

Theorem 9. For w a potential, piw) =pi(w) =piw) =0.

Applying the Weierstrass representation theorem, we then have

Theorem 10. If m is a mass distribution having exponent of convergence pi,

there exists an entire 8-subharmonic function having m as its mass distribution

and pi as its order.

In particular, a necessary and sufficient condition that there exist an

entire 5-subharmonic function of finite order having a prescribed mass dis-

tribution m is that m have finite exponent of convergence.

4. Functions of finite order. The Hadamard decomposition theorem. Em-

ploying the terminology of the theory of entire functions, we refer to the

special case of the Weierstrass representation theorem for functions of finite



1953] FUNCTIONS OF POTENTIAL TYPE 533

order as the "Hadamard decomposition theorem." This theorem and its

corollaries play a central role in the theory of functions of potential type.

It is readily shown that the coefficients in the Fourier expansion

00

hire'1) = 22 (a* cos kQ + bk sin kd)rk (b0 being taken as 0)

of an entire harmonic function h satisfy the inequalities

( | at | + | bk | )r* = ^rih+) - 4A(0) (* - 0, 1, 2, • • • ).

In conjunction with Corollary 4.1 this yields

Theorem 11. If h is an entire harmonic function of finite order, then h is a

polynomial of degree pQi).

Hence, from the Weierstrass representation theorem we obtain at once

Theorem 12 (Hadamard decomposition theorem). If w is an entire

8-subharmonic function of finite order, having mass distribution of genus p, then

to each 5 > 0 there corresponds a harmonic polynomial h of degree not exceeding

piw) such that

(4.1)  wiz) = hiz) -  f       log | z - r | dmit) -  f E(z/{, p)dmH)
J If¡10) J £-Ns(0)

holds on the domain of w.

A simple characterization for the order, provided it is not an integer,

follows by invoking Theorem 3.

Corollary 12.1. // w is an entire 8-subharmonic function of finite non-

integral order, then piw) = pi(w).

Observe also that Theorem 12 shows that whenever an entire 5-subhar-

monic function w of finite order has a mass distribution m admitting a po-

tential, then w is to within an additive harmonic polynomial the potential of

m.

In general the order does not coincide with the exponent of convergence

(e.g. harmonic polynomials). However, we call attention to the following

theorem of Brelot [l ] and indicate an alternative proof.

Theorem 13. // u is a non-negative entire subharmonic function of finite

order, then p(u) =pi(w).

Proof. Writing (4.1) for u as u = h+U, we have 77=—Ä and therefore

PÍU) ~^p(h). But by Theorem 3, p(u) ^p(U) =pi(w), forcing p(u) =pi(u).

A further application of the Hadamard decomposition theorem results

in a representation theorem for entire 5-subharmonic functions of order less
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than one. This has been established for subharmonic functions by Heins [l]

directly from the Riesz decomposition theorem (13).

Theorem 14. If w is an entire 8-subharmonic function of order less than 1

with mass distribution m, then to each 5>0 there corresponds a constant c such

that

w(z) = c —   I log | z — f | dw(f) —   I log | 1 — z/f | dmit)
J JVj(O) Jg_2Vi(0)

holds on the domain of w.

Whenever w is finite at the origin, the potential term can be omitted, the

remaining integral being extended over £. The constant c is then evaluated

as w(0).

5. Some remarks on the notion of order in the neighborhood of a point.

As noted by Brelot [l], a function 5-subharmonic outside of a disc 5r(0) can,

by modification of its values in the neighborhood of Cr(0), be extended to be

5-subharmonic on the entire plane. Thus, the preceding theory of entire

5-subharmonic functions becomes applicable to functions 5-subharmonic in

the neighborhood of infinity, or (by an appropriate inversion) in the neigh-

borhood of any finite point.

A general extension theorem of the sort mentioned above can be readily

derived.

Theorem 15. // w is a function 8-subharmonic on an open set ß awd ß*

is an open set with closure in ß, then there exists an entire 8-subharmonic func-

tion coinciding with w on ß*. ,,

Proof. Let ß' and ß" be open sets such that the closure of each of the sets

ß*, ß', ß", ß lies in the succeeding one. The index k applied to any of these

sets will denote its intersection with NkiO).

It is an easy matter to find a function w2*, 5-subharmonic on N2(0) and

coinciding with w on ß2*. For this we take w2 as the potential of the mass dis-

tribution for w on ß4" and h2 as the harmonic function for which w = w2+A2

holds on ß4". Since A2 is continuous on ßs', there is a continuous function

Hi on A73(0) coinciding with h2 on 0/. The function hi* formed by taking a

double areal mean of H2 with sufficiently small radius is 5-subharmonic on

Af2(0) and coincides with Â2 on fi¡¡*- Hence, the function w* = W2+h2* has the

desired properties.

The theorem will follow by induction if we can show that there exists a

function w*, 5-subharmonic on Nz(0), coinciding with w on ß3* and with

w2* on Ni(0). Such a function can, in fact, be constructed in a fashion analo-

gous to that for w2*.

(13) See also Brelot [l].
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Although the extension of a function w 5-subharmonic in the neighbor-

hood of infinity to an entire 5-subharmonic function can be accomplished in

a variety of ways, it is evident that any two such extensions differ only by the

potential of a mass distribution on a bounded set. Hence, all such extensions

have the same order, and it is as this common value that we define the order

of w. When the point in question is a finite point, rather than the point at in-

finity, we can without loss of generality take it as the origin. In this case the

order is defined as the order of the function obtained from the given function

w by a simple inversion.

6. Definition and elementary properties of functions of potential type.

Two salient properties of potentials are that they have order zero and that

their mass distributions have finite total variation on £. It would then seem

natural to examine the class of functions determined by these two properties.

Definition 4. By a function of potential type we mean a complete entire

5-subharmonic function of order zero whose mass distribution has finite total

variation on £.

The class of all functions of potential type will be denoted by CP.

In this connection we note that there exist entire 5-subharmonic functions

of order zero whose mass distributions do not have finite total variation: for

example, the canonical integral of the mass distribution of linear density 1/x

on the interval (1, »). Furthermore, the class P of all potentials is a proper

subclass of CP, since the latter contains not only all constant functions, but

also functions whose mass distributions do not admit potentials. We remark

in passing that functions of potential type (other than those which reduce to

potentials plus constants) have no proper analogue in complex function

theory.

The general theory of entire 5-subharmonic functions leads at once to a

representation theorem for functions of potential type.

Theorem 16. ^4 necessary and sufficient condition that a function w be of

potential type is that there exist a constant c and a mass distribution m of finite

total variation on £ such that

(6.1) w(z) = c+ x(z, m),

where

(6.2) x(z, m) = -  f      log | z - f | dm(f) -  f log | 1 - z/f | dm(f).
J N^O) J t-NiW

Moreover, both c and m are uniquely determined by w.

This theorem serves essentially to reduce the study of functions of poten-

tial type to that of the functions x(z, tn).

In the course of our investigations use will be made of the following two

theorems of Heins [l].
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Theorem 17. Let m be a positive mass distribution of genus zero, vanishing

on some N$(0), and let u be the entire subharmonic function defined by u(z)

=flog 11 -z/f | <Mf). H we set £7(s) =/0" log 11 +z/t\dMt, then
(1) for all z

E7(-   «   ) =  1    , 1  = £^(   »   ).    aw¿
1 w(z);

(2) forallr>0

M,
rriu) =g Uir) = r f

■J 0
d/.

o     /(/ + r)

The second theorem of Heins is an extension to subharmonic functions of

the classical Wiman theorem.

Theorem 18. Let u be an entire subharmonic function not identically con-

stant, and let tir) be defined as infcr(o> u. If i is bounded above on (0, »), then

p(w) = l/2.

Theorem 17 furnishes an important estimate for the characteristic func-

tion of an entire 5-subharmonic function of order less than one.

Theorem 19. If w is an entire 8-subharmonic function of order less than

one and harmonic on some N¡(0), then there exists a constant c such that

/"»   <PAw)■   , dt+c
o    tit + r)

$((w) fm $¡(w)rr $i(w) rZ vtiw)
^   I      -dt + r I f-dt + c.

Jo        t Jr M    t2

Proof. We are assured by Theorem 35 of (I) of the existence of a constant

C such that Triw)^Triu) + Triv) + C, where (m, v) is a canonical representa-

tion of w. An application of Theorem 17 completes the argument.

This result is immediately applicable to functions of potential type(14)-

Theorem 20. // w is a function of potential type harmonic on some N¡i0),

then there exists a constant c such that for r > 0

Triw) £  f ' {$tiw)/t\dt + c.
Jo

Proof. It suffices to note that an integration by parts yields

/0O /» 00[$«(w)//2]d/ = 3>r(ii0 + r I    (l//)d<Pí(w) ^ 3>(w).

(") Nothing is gained by using instead functions of order less than one having mass distribu-

tions of finite total variation, since any such function (if complete) is of potential type.
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Thus, for functions of potential type, Corollary 1.2 can be strengthened as

Corollary 20.1. // w is a function of potential type, then

(1/2) *(w) g lim [Triw)/logr] Ú Hw).
T—»«

We recover at once the following two theorems of Privaloff [l ].

Corollary 20.2. Let w be a complete entire 8-subharmonic function whose

mass distribution m admits a potential. A necessary and sufficient condition

that w be to within an additive constant the potential of m is that Triw) = O(log r)

relative to infinity.

Corollary 20.3. If w is a complete entire 8-subharmonic function for which

lim,,«, [Pr(w)/log r]=0, then w is identically constant.

A further consequence of Corollary 20.1 is a fundamental criterion for a

function to be of potential type.

Theorem 21. A necessary and sufficient condition that a complete entire

8-subharmonic function w be of potential type is that limr_oo [Triw)/log r] exist

finitely, or alternatively that Pr(w) = O(log r) relative to infinity.

By virtue of Theorem 4 this leads to a majorization principle in the sub-

harmonic case.

Corollary 21.1. Let u and v be entire subharmonic functions. If u is of

potential type and dominates v, then v is likewise of potential type.

From the trivial case of v identically constant it is clear that a cor-

responding theorem is not available for potentials. We can, in fact, make

a much stronger statement:

Example 1. There exists an entire subharmonic function v dominated by

a potential, but such that the mass distribution for v does not admit a poten-

tial. To construct such a function, we start with a mass distribution m defined

by distributing uniformly on the circles Crt(0) of radius rk = ek the mass

mk= — l/k2. Then m has finite total variation but does not admit a potential,

and it is obvious that the function v defined by

00

V(Z)   ■    22 I mk |   (l°g    |   Z |   —   k) +
*-l

is a subharmonic function of potential type having m as its mass distribu-

tion. Furthermore, v is dominated by the potential u due to the uniform

distribution on &(0) of the total mass 22t-i m*-

It is thus evident that functions of potential type are essential for the

solution of the potential theoretic problem of determining the class of entire

subharmonic functions dominated by a given subharmonic potential.



538 M. G. ARSOVË [November

In general, the inequalities of Corollary 20.1 are the best possible, as we

find by taking w first as the potential of a unit mass at the origin and then

as the potential of the mass distribution consisting of the mass +1 concen-

trated at the origin and —1 distributed uniformly on Ci(0). However, for

subharmonic functions the result is considerably sharper.

Theorem 22. If u is a subharmonic function of potential type, then

lim [rr(«)/logr] =*(«).
r —to

Proof. Immediate from pr(u+) ^/ir(w), which implies limr_oo [Triu)/log r]

£$(«)•

As a consequence we have a criterion for an entire subharmonic function

to be of potential type.

Corollary 22.1. A necessary and sufficient condition for an entire sub-

harmonic function u to be of potential type is that the total mass of u and the total

mass of u+ have a common finite value.

Insight into the situation of Theorem 22 can be gained from the Wiman-

Heins theorem (Theorem 18), which we reword as follows: if « is a non-

constant entire subharmonic function of order less than 1/2 and ß(c), for c

any constant, is the open set on which m(z) <c, then there exists a sequence

{rk\ of positive numbers diverging to + » such that Cri(O)nQ(c)=0. In

particular, the components of ß(c) are all bounded regions. Since u+ is ob-

tained from u by sweeping out the mass of u on the component regions of

ß(0), it follows that u and w+ have the same total mass.

Pursuing this topic still further, we use Theorem 4 in conjunction with

the identity o\[max (w, v)] =max [o-r(w), <rr(î»)] to infer

Theorem 23. The upper envelope of two subharmonic functions u and v of

potential type is also of potential type, and

"ifmax («, v)] = max ^(m), $(0)].

The 5-subharmonic case then follows directly by means of the lattice

identity max («i — vi, w2— z>2)=max (mi+z>2, U2+V1) — (vi+Vi).

Corollary 23.1. If wi and w2 are functions of potential type, then so is their

upper envelope, and

$[max (wi, wi)] ;S 2[$(wi) + $(w2)]..

7. Vector lattice and Banach space properties. It is clear from Theorem 21

that the class of all functions of potential type is closed under multiplication

by reals and under addition, provided the ordinary sum is replaced by its

complete extension. Hence, <P is a linear space. That <P is closed under the

operations of taking upper envelopes, lower envelopes, and absolute values

follows from Corollary 23.1, and we can summarize our findings as
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Theorem 24. The family <P of all functions of potential type constitutes a

vector lattice over the real field with respect to (i) the operations of multiplication

of functions by reals and of addition of functions (followed by taking the com-

plete extension) and (ii) the usual ordering (3:) for functions.

A general norm on Í3 can now be defined in terms of a class of linear func-

tionals.

Definition 5. We denote by J the class of all linear functionals F on <P

satisfying

(1) P(l) = l, and

(2) for W/dz) =x(2> mk), {mk} being any sequence of mass distributions of

finite total variation on £, limj;,«, $(«;*) =0 implies linu,«, F(wk)=0.

Since the choice of F(w) as the constant c in the representation (6.1)

yields an admissible functional, the class J is trivially nonvacuous.

It is readily verified that the expression (1.1) for FEJ defines a valid

norm on <P. The norm depends, of course, on the particular functional F

employed, and in the event of possible ambiguity will be referred to as the

P-norm and denoted by ||w][/?. However, the following theorem, a direct con-

sequence of Definition 5, shows that convergence in one norm implies con-

vergence in all norms.

Theorem 25. A necessary and sufficient condition for {wk\ to converge

strongly in <P to w is that linu..oo &(wk — w) =0 and lim*,« ck — c, the c's being

those of the representation (6.1) for wk and w.

In what ensues we shall (as above) suppose i5 to be normed according to

(1.1) for some FEJ-
Before undertaking the proof of our main theorem, asserting that cP = Pf,

we state two thoroughly elementary preliminary lemmas. The first deals

with a lower semi-continuity property of the functional $ and is a special

case of formula (19), p. 123, of Banach [l].

Lemma 1. // \wk\ is a sequence of entire 8-subharmonic functions whose

mass distributions converge weakly to that of an entire 8-subharmonic function

w, then

lim inf $(wk) ^i>(w).
&-»

The second lemma results from a trivial computation.

Lemma 2. If w is the potential of a mass distribution m, then the correspond-

ing constant c in (6.1) is given by

c = -  I log |f \dmii),
j e-tfi(o)

and conversely,
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With these lemmas in hand we are in a position to prove that the comple-

tion in the metric induced by (1.1) of the space of potentials (in fact, of the

space of potentials of mass distributions on bounded sets) is exactly the space of

functions of potential type.

Theorem 26. f is a Banach space, and moreover CP = P*.

Proof. Let \wk\ be a Cauchy sequence in the norm, so that

limJii;,M $>(wj — wk) =limy,t,M F(wj — wk)=0. Then (Birkhoff [l, p. 253])

there is a mass distribution m such that linu..oo mk = m and a constant C

such that lim*,,» F(wk) = C. Since Lemma 1 ensures that m has finite total

variation on £, we can define a function w by (6.1), where c is a constant

subject to later determination. Use of a similar representation for wk leads at

once to lim*,n (ck — c) =linu,oo F(wk — w) = C—F(w), and there remains but to

fix c as lim*,«, ck to establish lim*,OT ||wi — w\\ =0. Hence f is a Banach space.

As indicated in (1.2), any constant is the strong limit of a sequence of

potentials. Moreover, any function of the form w(z) =x(z, m) is likewise the

strong limit of a sequence {wk\ of potentials, since such a sequence can be

constructed by taking wk as the sum of the potential of m confined to Sk(0)

and the potential of the uniform distribution of total mass +l/k on some

appropriate circle CTk(0), r*=l (note Lemma 2). It follows that ePEPf,

proving the second assertion.

Non-separability of î1 is evinced from the fact that for w>i and w2 the

potentials of distinct point unit masses \\wi — w2|| ̂ 2.

To give an idea of the abundance of functionals F, we call attention to

the following rather general subclass of J.

Theorem 27. Let f be a bounded Bor el measurable function on £, E a

bounded set, and q a distribution of the unit mass on E giving rise to a potential

bounded on compact sets. Then

F(w) =   I   wdq +  I fdm,

where m is the mass distribution for w, defines a linear functional in J.

Proof. Using the representation (6.1) for w and applying Fubini's theo-

rem, we get

(7.1) F(w) = c + f (V - X + f)dm,

where V is the potential of q and X is the potential of the uniform distribu-

tion of the unit mass on Ci(0). The theorem follows at once from the evident

boundedness of the integrand.

The natural ordering of <P according to functional values does not result
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in a Banach lattice (Birkhoff [l, p. 246]), since functional domination does

not imply a corresponding domination for the total variations of the mass

distributions^6). For this reason we introduce an ordering (>) defined by

(7.2)       w > 0 provided w has a positive mass distribution and F(w) = 0.

The functional F appearing here will be taken as that employed in defining

the norm.

Theorem 28. Ordered according to (7.2), <P is a Banach lattice and, in fact,

an (L) space in the sense of Birkhoff (u).

Proof. The space Î5 is clearly partially ordered by ( > ), so that to prove it a

lattice we need only show that each w£<P has a l.u.b. (>■ ) with 0. For this

we choose the constant c in W(z) =c+x(z, m+) to yield F( W) = max [F(w), 0 ].

Then evidently W=w+(>), and *P is a lattice. That "P is actually a Banach

lattice follows from the evaluation of \w\ (>) as the function of potential

type whose mass distribution is the total variation function for w and for

which F(\ w\ (> )) = | F(w) |. Finally, it is obvious that <P is an (L) space, i.e.

thatwi>0 and w2>0 imply ||wi+w2|| =||wi|| +||w2||.

A theorem of Kakutani [2] then assures us that the conjugate of "P is an

(M) space.

8. Convergence and closure properties. The sweeping out process. Strong

convergence is in general much too restrictive for the problems arising in

potential theory. It implies convergence of the mass distributions on all

Borel sets, whereas we are usually concerned only with weak convergence of

the mass distributions.

Fortunately, however, a suitable modification of the underlying class of

functionals permits us to define a mode of convergence in Í3 based on weak

convergence of the mass distributions.

Definition 6. We denote by Ç the class of all linear functionals G on fP

satisfying

(1) G(l) = l,and

(2) for wk(z)=x(z, mk), {mk} being any sequence of mass distributions

of finite total variation on £, weak convergence of \mk\ to 0 implies

lim*,«, G(wk)=0.

Clearly, Ç is a subclass of J and is nonvacuous (we can again take G(w)

as the constant c in (6.1)).

Definition 7. A sequence {wk\ of functions in <P will be said to converge

(A) to a function wE'P provided the mass distributions for \wk\ converge

weakly to that for w and lim*,«, G(wk) =G(w) for some GEÇ-

(15) A more elementary example of a Banach space which is a lattice, but not a Banach

lattice, under the natural ordering is the space of functions / of bounded variation on [O, 1 ]

with/(0) =0, normed by their total variations.

(>«) Birkhoff [l, p. 252]. See also Kakutani [l].
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That the functional G can be chosen with indifference, as regards con-

vergence (A), is an easy consequence of the representation (6.1).

Theorem 29. // {wk\ converges (A) to w, then lim*,,» G(wk)=G(w) for

every G EC-

It follows by taking G(w) =c according to (6.1) that the limit of a given

sequence under convergence (A) is unique.

Proceeding now to the development of properties related to convergence

(A), we agree that all norms used are to be defined in terms of a functional G in

Ç. With this convention it is clear that strong convergence implies con-

vergence (A), and we show in fact that convergence (A) is weaker than the

usual weak convergence.

Theorem 30. If a sequence {wk} converges weakly in <P to w, then {wk}

converges (A) to w, but not conversely.

Proof. For E any Borel subset of £ let us denote by \J/e(w) the total mass

of w on E. Then clearly li/^w)] ^||w||, so that ipE is a bounded linear func-

tional on "P. Hence, weak convergence of \wk] tow yields weak convergence

of the corresponding mass distributions. Since every G EC is a bounded

linear functional, convergence (A) of {wk} to w is immediate.

To show the converse false, we construct a sequence [wk] converging

(A), but not converging weakly, to a function w. This is accomplished by

setting wk(z)=x(z, mk), where mk is the uniform distribution of the unit

mass on Ci_i/*(0), and defining w similarly as w(z) =x(z> in) for m the uniform

distribution of the unit mass on Ci(0). It is apparent that the sequence so

constructed converges (A) to w. However, choosing £ = ^(0), we have

^e(vüic) = 1 and ^e(w) =0, so that {wk\ cannot converge weakly to w.

The counterexample incorporated in the proof of the foregoing theorem

actually implies the stronger conclusion that Ç is not even dense in the

conjugate space of <P.

Among the elementary properties of convergence (A) we remark first of

all a familiar lower semi-continuity of the norm, which follows directly from

Lemma 1.

Theorem 31. // {wk} converges (A) to w, then

lim inf ||wk\\ ïï ||w\\.
k—*a>

A further elementary property is that of sequential (A)-compactness of

the unit sphere in <P.

Theorem 32. Every sequence {wk\ of functions in <P with |w*||^l has a

subsequence converging (A) to a corresponding function w with \\w\\ £1.
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Proof. By the boundedness of {^(wi)} there is a subsequence {w*\

of {wk} such that the corresponding mass distributions {m*} converge

weakly to a mass distribution m of finite total variation. Also, since \G(wk)}

is bounded, we can assume that {G(w*)} converges to some number C. De-

termination of the constant c in w(z) = e+x(z, m) to yield G(w) = C then en-

sures convergence (A) of {w*} to w.

The utility of the notion of convergence (A) depends in large measure on

the availability of suitable functionals G, and it is therefore desirable to have

at our disposal an extensive subclass of Ç. To arrive at such a subclass(17), we

have only to observe that the function V—X in equation (7.1) tends to zero

at infinity.

Theorem 33. Let f be a continuous function on £ vanishing at infinity, E a

bounded set, and q a distribution of the unit mass on E admitting a continuous

potential. Then

= j   wdq + j .(8.1) G(w) =  I   wdq+ j fdm,

where m is the mass distribution for w, defines a linear functional in Ç.

In particular, the choice of q as proportional to Lebesgue measure a (and

/ as 0) gives rise to

Corollary 33.1. If \wk\ is a sequence of functions of potential type con-

verging (A) to w, then

lim        wkda =   I   wda
it—» m J w Je

for every bounded Lebesgue measurable set E.

It is important in the applications of Theorem 33 to be able to take E as

any Borel set of positive (interior) capacity, and we show in the following

lemma that this is possible.

Lemma 3. Every set of positive interior capacity supports a distribution of

the unit mass having a continuous potential.

Proof. By virtue of the fact that every set of positive interior capacity

contains a compact subset of positive capacity, it suffices to assume the given

set E compact. We then take m as the equilibrium distribution(18) of the unit

mass on E. As is well known, the equilibrium potential is constant on E — J,

(17) As we show in §9, the subclass constructed below is actually all of Ç. This fact, how-

ever, is not nearly as important as the particular form of the functionals (8.1).

(ls) The classical theory of the equilibrium distribution for compact sets, as developed by

Frostman [l, p. 56], plays a fundamental role here.
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where J is a subset of E for which m(J) =0. It then follows from the regu-

larity of Borel measures on £ that there exists an open set G containing J

for which m(E — G)>0. The mass distribution q obtained by restricting m to

the compact set E — G has a potential continuous on this set(19), and a theo-

rem of Evans (Frostman [l, p. 26]) allows us to conclude that the potential

of q is continuous throughout £.

A basic convergence theorem for almost 5-subharmonic functions [(I),

Theorem 23 ] has as a special case the theorem : if {wk} is a bounded sequence

of functions 5-subharmonic on a region ß and having mass distributions of

uniformly bounded total variation, then pointwise convergence of {wk} to a

function w implies almost 5-subharmonicity of w. One might expect from the

generalizations of Brelot and Cartan ([Cartan [l]) of the theorem of Radó

[l, p. 22 (3.37)] that more can be said about the set E on which w differs

from its regularizing 5-subharmonic function than merely that E has measure

zero. We shall show, in fact, that the set E has capacity zero. This draws

heavily on a result of Choquet [l] to the effect that all Borel sets are ca-

pacitable, the proof of which is based on Choquet's elegant abstract develop-

ment of the theory of capacity.

Our convergence theorem is essentially a fusion of Theorems 29 and 33

with Theorem 23 of (I).

Theorem 34. Let {wk\ be a sequence of quasi 8-subharmonic functions on a

region ß, having mass distributions of uniformly bounded total variation. If the

functions wk all lie between two 8-subharmonic functions(2a) and converge point-

wise quasi everywhere on ß to a function w, then there exists a 8-subharmonic

function w* (the regular ization of w) differing from w at most on a set of capacity

zero. Moreover, the mass distributions for \wk\ converge weakly to that for w*.

If, further, all wk are of potential type, then so is w*, and \wk) converges (A)

to w*.

Proof. By Theorem 23 of (I) we know that {wk} converges almost every-

where to a function w* 5-subharmonic on ß and that the corresponding se-

quence {mk\ of mass distributions converges weakly to the mass distribu-

tion m for w*. Let us now take « as any neighborhood with ¿3Cß and apply

the Riesz decomposition theorem to obtain wk = Wk+hk and w* = W+h on w,

where the W's are the potentials of the mass distributions confined to u and

the h's are harmonic. Denoting by ar the areal mean operator, we have

arwk—arWk+hk and arw* = aTW+h. Then the dominated convergence hy-

pothesis yields lim*,«, arwk = arw*, and the weak convergence of the mass dis-

tributions entails lim*;,,*, arWk=arW. Hence, hk—>h, so that Wk—*W almost

(") If the sum of two lower semi-continuous functions is continuous, then each of the func-

tions must be continuous.

(î0) Actually, all that is required of those functions is that they be summable on all com-

pact sets with respect to all mass distributions admitting continuous potentials.
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everywhere on u. We see further that if a is any closed disc Cw, then the

functions hk (—arwk—arWk) are uniformly bounded on a, so that the po-

tentials Wk all lie between two functions 5-subharmonic on a.

Let us suppose that w and w* differ on a set of positive (exterior) ca-

pacity. In view of the fact that w and w* are Baire functions, this set is a

Borel set and therefore, by the Choquet theorem, has positive interior ca-

pacity. A routine argument shows that ±(w* — w) must exceed some e>0

on a compact set E of positive capacity, and Lemma 3 then ensures the exist-

ence of a distribution q of the unit mass on E having a continuous potential.

As is clearly permissible, we shall assume the disc cr (introduced above) to

contain E.

It is obvious from the choice of G as G(<j>) = (l/a(cr))Ja <j>da, where a de-

notes Lebesgue plane measure, that {Wk} converges (A) to W. Hence, by

Theorems 29 and 33 (with/=0)

lim   f Wkdq =   f Wdq =   f w*dq -   f hdq.
t—>oo »Je Je Je Je

On the other hand, application of the Lebesgue convergence theorem re-

sults in

lim   11   Wkdq =   j   wdq —   I   hdq,
k—>»o J e Je Je

and we are thus confronted with the untenable conclusion that fs(w* — w)dq

= 0. This proves that w can differ from w* only on a set of capacity zero.

Our final assertion, that w* is of potential type whenever the functions wk

are, follows without difficulty from Theorem 32.

In the special case when {wk\ is monotone increasing and bounded above,

the inclusion hypothesis is, of course, automatically fulfilled. Restricting the

functions wk still further to be subharmonic yields the theorem of Brelot-

Cartan (Cartan [l, pp. 99, 105]).

Corollary 34.1. If \uK\ is a monotone increasing sequence of subharmonic

functions uniformly bounded above on a region ß, the limit function is quasi sub-

harmonic on ß.

Proof. It remains to be verified that the total variations of the mass dis-

tributions are, at least locally, uniformly bounded. This is readily shown,

however, by presuming that Sr(0)E&, fixing 0O<P, and computing the

total variation on 5r(0) of the mass distribution for uk as d+p.r(uk)/dlog r.

Since the functions ptt(uk) are convex in log / for / on [O, R] and are uni-

formly bounded above, it is evident that {d+pr(uk)/d log r\ is bounded.

The case in which \wk\ is a decreasing sequence of subharmonic functions

of potential type is also of interest, since it furnishes a generalization of

theorems of Evans and M. Riesz.
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Corollary 34.2. If {uk} is a monotone decreasing sequence of subharmonic

functions of potential type for which the limit function u is not identically — »,

then u is a subharmonic function of potential type and {uk\ converges (A) to u.

Proof. The boundedness of {<£(%)} is an obvious consequence of Corol-

lary 1.1. (Note that the fact that u is of potential type follows from Corollary

21.1, as well as from Theorem 34.)

We see by taking w4(z)=max [l, (l/k) log |z| ] that the analogue of

Corollary 34.2 for potentials is not a theorem. However, a classical result

due to Evans [l, p. 231] states that if the functions uk are all potentials of

negative mass distributions on a compact set K, then u is likewise the poten-

tial of a negative mass distribution on K. In the present context this appears

as a direct consequence of Corollary 34.2 and Lemma 2.

M. Riesz [l, p. 32] has generalized the theorem of Evans by allowing the

uk to be potentials of arbitrary negative mass distributions, in which case u

is the sum of a subharmonic potential and a non-negative constant. Here

also, the proof can be based on Corollary 34.2, and for this we note

Lemma 4. // {uk ] is a sequence of subharmonic potentials converging (A )

to u, then u is the sum of a subharmonic potential and a non-negative constant.

Proof. Denoting the corresponding mass distributions by mk and m and

applying Lemma 2, we find from the weak convergence of {mk} to m that

-  f log | f | dmit) g lim I -  f log | f | ¿«*(r)l = c,
J £-if¡(0) »-»«o |_     J £-if¡(0) J

where c is the constant in the representation (6.1) for u. Thus, m admits a

potential, so that u is to within an additive constant Cthe potential of m. That

C is non-negative follows from its evaluation as C = c+/g_A-,(o) log | f | dmiX)-

It should be remarked that the theorems of Evans and M. Riesz can be

established also by means of criteria due to Brelot [2, p. 308].

One might hope to generalize the theorem of Evans still further by allow-

ing the uk to be subharmonic functions of potential type whose mass distribu-

tions admit potentials, but this evanesces.

Example 2. There exists a decreasing sequence \uk\ of subharmonic

functions of potential type such that (i) the mass distribution for each uk

admits a potential and (ii) the limit function u is not identically — » but

has a mass distribution not admitting a potential. For this we set m¡=l/j2

and define the functions uk by

ukiz) = £ «,-(log \z\ -}")+ + (   22 m¡] [log \z\- ik+l)]+.
j=l \ j'-M-l       /

A review of the present status of the sweeping out process for potentials

reveals that it is customary to sweep out the mass either on bounded sets
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or on sets having bounded complements. The superfluous nature of this re-

striction is made evident in the following theorem, which serves also to ex-

tend the sweeping out process to functions of potential type.

Theorem 35. Let u be a subharmonic function of potential type and ß an

open set with non-polar complement. Then u admits a least harmonic majorant h

on ß, and there is a unique subharmonic function u* of potential type such that

(1) u* coincides with h on ß and

(2) u* coincides with u outside of ß and on the set of regular boundary

points of ß.

Further, $(«*) ;S <!>(«), and whenever u is a potential, u* is the sum of a poten-

tial and a non-negative constant.

Proof. Since the complement of ß is non-polar, it contains a compact set

K of positive capacity, and this set supports a distribution q of the unit

mass admitting a continuous potential. We denote by uk the subharmonic

function of potential type obtained by sweeping out the mass of u on ß

r)A74(0) and observe that each uk coincides with u quasi everywhere on K.

Hence, with norms defined in terms of the functional G(w) = Jnwdq, we have

||wí|| =||m|| for all k. Theorem 32 then ensures the existence of a subsequence

{u*\ of  \uk) converging (A) to a function u*, and there follows

(a) /u*da = lim   J   ukda (a = Lebesgue plane measure)
E t—.»   J e

for every bounded Lebesgue measurable set E.

Now, from the classical theory of balayage(21) we know that {uk\ in-

creases monotonically to a function U which (i) coincides with u outside of

ß and on the set of regular boundary points of ß and (ii) is either harmonic

or identically + » on ß. The monotoneity yields

(b) I   Uda  = lim   I   ukda
Je í-"> Je

and allows us to strengthen (a) as

(c) |   u*da = lim   I   ukda,
J E *-* °°   J E

thereby ruling out the second possibility in (ii). U is therefore identical on ß

to the least harmonic majorant of u, and an argument of Brelot [4; 5] shows

that, except for possible modification on the set J of irregular boundary

points of ß, U is subharmonic on £. But, from (b) and (c) we perceive that

U and u* are equal almost everywhere, so that by subharmonicity they must

(21) See Brelot [3, p. 433].
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coincide on E — J. The remaining assertions are easy consequences of the

convergence (A) and Lemmas 1 and 4.

Note that this theorem leads at once to the existence of a generalized

Green's function for an arbitrary region having non-polar complement.

One further closure property in <F seems worth mentioning. By combining

Theorem 4 with the criterion of Theorem 21, we find that if m is a subhar-

monic function of potential type, then the function aru, where oru(z)

= maxer(z) u, is likewise of potential type. Moreover, since aru dominates the

corresponding functions \xru and aru formed by taking circumferential and

areal means, respectively, these also must be of potential type. All of these

functions converge downward to u as r decreases to 0, so that we have

convergence (A). There follows

Theorem 36. If w is a function of potential type and W a k-fold iteration of

the circumferential ior areal) mean of w over circles of radius r, then W is a

function of potential type. Moreover, if { Wk\ is a sequence of such functions cor-

responding to a sequence \rk\ of radii decreasing to 0, then { Wk\ converges iA)

to w.

9. Functional analysis and potential theory. Although there is an iso-

morphism between the linear space P of all potentials and the linear space of

all mass distributions admitting potentials, so that they are abstractly the

same, one cannot thereby dismiss potential theory as simply a phase of meas-

ure theory. Potential theory deals with the behavior of potentials as point

functions, and this behavior cannot be deduced from the algebraic structure

of P.
An analogous situation is at hand in the theory of functions of potential

type. Thus far, our study of i* has been undertaken from the potential theo-

retic viewpoint, but we proceed to show that, as a Banach space, <P can be

identified with spaces long familiar in functional analysis.

The Banach space Cx consisting of all continuous functions/on £ vanish-

ing at infinity, normed by ||/|| =max |/|, is one of the fundamental spaces of

classical functional analysis. Spaces of this sort have been exhaustively

studied, particularly in recent years (under the more general hypothesis that

£ be a topological space) by E. Hewitt [l]. Among the familiar properties of

Ç«, is the fact that its conjugate space CZ is comprised of all linear functionals

L of the form

L(f) =ffdm,

where m is a mass distribution of finite total variation on £, uniquely de-

termined by L. Since

\\L\\ =M(£)
(Hewitt [2, p. 459]), C* can be regarded as the space of all mass distributions
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of finite total variation on £, normed by their total variations. Weak con-

vergence of mass distributions {mk} to m, defined by

im   I fdmk =   I fdm for all f EC*lim
i

is then just weak convergence of linear functionals on C„ (Banach [l, p. 122]).

Let us now consider the Cartesian product space TX, = RXCX, where R

is the real line. The elements of T„ are ordered pairs </> = (/,/), / being a real

number and / a function in Coo, and we take as norm

H^ll = max ( | /1, max \ f\).

There results a separable Banach space, whose conjugate space T* is the set

of all linear functionals A of the form

\(<p) = cl +  J fdm,

where c is a real number and m is a mass distribution of finite total variation

on £. Both c and m are uniquely determined by A, so that we have FZ

= PXC*. Moreover, it is plain that the norm on T* is given in terms of a

generic element p = (c, m) as

y = |C| + |«|(£).

From the representation (6.1) we see at once that the space <P normed by

||w|| = | c\ +<3?(w) is isomorphic and isometric with T*. That is to say, "P and

r* are structurally indistinguishable. Weak convergence of a sequence

{A*.} of linear functionals on Too to a linear functional A is characterized by

lim I ckl + | fdmk J = ct + j fdm       for all (/, /) E

which implies ck-^c and mk—*m [weakly]. Thus, under the identification of <P

with r*, convergence (A) is equivalent to weak convergence of linear func-

tionals on Too.

We conclude our remarks with a demonstration that the subclass of Ç

constructed in Theorem 33 is actually all of Ç. This is based on Theorem 8, p.

131 of Banach [l], which ensures that every weakly continuous linear func-

tional ip on T* can be expressed as

\¡/(n) = et +  j fdm for some (/, /)

With <P identified as Y*,, Ç appears as the set of all weakly continuous linear

functionals \p on T* satisfying the normalizing condition that \p(p) = I when

p = (l, 0). Hence, G consists of all linear functionals of the form
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\¡/(y.) = c +  I  fdm for some / E Cx.

The functionals constructed according to Theorem 33 have the representation

(7.1):

\f/(p.) = c +  I   (V — X + g)dm for some g E Cx.

Our initial assertion now follows from the fact that V—X is a function in CK.
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