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Introduction. One of the most interesting applications of the theory of

lattices is point set topology. Beginning with the work of Stone [6], the close

connection between the topological structure of a space 5 and the algebraic

structure of the lattice of open (or closed) sets of S has been carefully investi-

gated. A standard procedure in these investigations has been to represent the

points of a space as ideals (or dual ideals) of a lattice. In the present paper,

we shall use this technique to study the set of all coverings of a topological

space.

The paper is in four parts. The first contains the topological preliminaries

and definitions. In the second part, the concept of a covering ideal is intro-

duced and the correspondence between covering ideals and topological spaces

is proved. Part three shows how continuous mappings can be interpreted in

terms of homomorphisms of covering ideals. Finally, in part four, two simple

applications of the theory are presented.

Notation. Set operations will be denoted by rounded symbols. Thus

W, f\ Ç will stand for set union, intersection, and inclusion respectively.

The symbol C is reserved for proper inclusion. If A and B are sets, A —B

= {a EA | a GP} • The complement (in some fixed set) of a set A is written Ac.

Finally, the empty set is denoted 0.

Sharp cornered symbols will be used to denote lattice operations or rela-

tions. Thus V, A, á denote respectively the lattice join, meet, and order.

The zero and unit of a lattice will be represented by o and u. In a Boolean

algebra, the complement of an element a is written a'.

A mapping tj> of elements of some set A to the elements of a set B induces

a mapping (again denoted by tj>) oí 2Á to 2B as follows: tp(Ai) = {c6a|aG^4i|

for AiQA.
If 5 is a topological space and A is any subset of S, the closure and in-

terior of A are respectively denoted A~ and A". We observe that (AC\B)~°

= A~°C\B~° if A and B are open sets. An open set A which satisfies^! =A~°

is called regular. The collection of all regular open sets of S forms a complete

Boolean algebra which will be denoted by B(S). Any space with a neighbor-

hood basis composed of regular open sets is called semi-regular.

0. Algebraic introduction.

It is convenient to collect some algebraic definitions which can not be

found in [l ] or other standard references.
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Definition 0.1. A subset 7 of a partially ordered set is called a terminal

subset if aEI implies bEI for all b^a.

Definition 0.2. Let P be a set which is partially ordered by _î. Define

a quasi-ordering of the set of all subsets of P by A <B if, for any aEA, there

exists bEB satisfying a^b.

Some elementary properties of < which will be used often are:

(1) if AQB, then/1<P,
(2) A<0 if and only if A = 0,
(3) if C is a terminal subset of P and A <B, then Ar\C<Br\C.

Definition 0.3. Let P be a partially ordered set with a zero o. A subset

P' of P is called dense in P, if for any a^o in P, b?±o exists in P' with b^a.

Definition 0.4. A semi-lattice (abbreviated s.l. is a partially ordered set

with a zero element in which every pair of elements has a g.l.b. A mapping

■k of one semi-lattice into another is a homomorphism if it satisfies ir{af\b)

= ira/\Tvb and tto = o.

Remark 1. In the literature, the existence of a zero is not included in

the definition of a s.l.

Remark 2. It is possible to define a dual ideal of a s.l. just as a dual ideal

of a lattice is defined. In speaking of these, the adjective "dual" will often be

omitted. Since lattice ideals in the usual sense will never be considered, this

can cause no confusion.

Definition 0.5. Let P be a semi-lattice. Define the commutative and asso-

ciative operation A on the set of all subsets of P by A/\B= {a/\b\aEA,

bEB}.
(4) If A, B and C are subsets of P, then A <B/\C if and only if A <B

and A< C.

Definition 0.6. A semi-lattice P is disjunctive if, whenever a^b, cEP

exists satisfying a Ac ^ o and bf\c = o.

Remark. If P' is a dense sub-s.l. of the disjunctive s.l. P, then P' is also

disjunctive. In particular, any dense sub-s.l. of a Boolean algebra is disjunc-

tive.

Proposition 0.7 (Stone-Glivenko-Büchi). Let P be a disjunctive semi-

lattice. Then there exists a complete Boolean algebra Q and an isomorphism tr

of P onto a dense subset of Q. Moreover, w is unique in the sense that if Q0 is a

complete Boolean algebra and ir0 is an isomorphism of P onto a dense subset of

Qo, then 7r07r_1 cow be extended to an isomorphism of Q onto Co-

Proof. See [2].

Part I. P-spaces

In part one we shall define a class of topological spaces—the P-spaces.

These are the spaces which will be studied in the remainder of the paper.

1. Fundamental definitions.
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Proposition 1.1. Let P={o,a,b, ■ ■ ■ ] be a semi-lattice with a zero o. Let

S = {X, Y, ■ ■ ■ } be a (possibly empty) set of proper (not empty and not all of P)

dual ideals of P. Then S becomes a Ta topological space (whose points are the dis-

tinct ideals X, Y, ■ ■ ■ ) if the sets of the form

(1) S(a) = {X ES\aEX}

are taken as an open neighborhood basis. Moreover, S(a)H\S(b)=S(aAb) and

S(o) = 0. The mapping a—>,S(a) is one-to-one if and only if the following is

satisfied whenever a^b:

(M0,¡,) there exists X ES with a G X and b É X.

Remark. In general S(a\/b)?¿S(a)\JS(b). (See 2.2 below.)

Proof of 1.1. It will be sufficient to show that S(a)f~\S(b) =5(aA&). If

XES(a)i\S(b), then aEX and bEX. Since X is a dual ideal, aAbEX and
XES(aAb). Therefore S(a)r\S(b)QS(aAb). On the other hand, if aAbEX,
then aGA" and bEX, so S(aAb)QS(a)i\S(b).

Definition 1.2. Let P be a semi-lattice. A space S whose points are proper

dual ideals of P will be called a P-space if the topology of S is obtained by

taking all the sets of the form (1) as a neighborhood basis. If, in addition. S

satisfies condition Ma¡b whenever a = ¿>, then S is called a representative P-

space.

A characterization of those Po spaces which are homeomorphic to P-

spaces is given by 1.1 and its converse:

Proposition 1.3. Let P be a semi-lattice. Let S' be a T0 space and P' a col-

lection of open sets of S' such that (i) P' is a basis for the open sets of S', (ii) P'

is closed under intersection and contains the empty set, and (iii) there is a homo-

morphism t of P onto P'. Let S be the P-space whose points are the proper dual

ideals

Xx = {a E P\ x Eva], where x E S'.

Then the mapping Xx-^x is a homeomorphism of S onto S', mapping the open

set 5(a) = {XxES\aEXx} 077/0 7ra. Finally, if ir is an isomorphism, S is a

representative P-space.

The following simple results will be needed later.

Lemma 1.4. Let T be an arbitrary subset of the P-space S. Then the closure

ofTis T-={XES\XÇZ[)T} (where UP=U{f| YET}).

Proof. If XQÖT, and if aEX, then aGF for some YET. Thus every

neighborhood of X contains a point of T so that XET~. Conversely, if

XET~, every neighborhood of X contains a point of T. Hence if aEX, then

Y exists in T so that aGF; that is, XQ[)T.
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Lemma 1.5. A P-space Sis a Ti space if and only if XE Y never holds for X

and Y in S.

Lemma 1.6. A representative P-space S is a Hausdorff space if and only if

for any X and Y of S with X^Y, there exists aEX and bEY such that
©Ae = 0.

Lemma 1.7. Let 5X and S2 be P-spaces. Define 5i_^52 if, for any XiESu

there exists X2ES2 such that X2Ç,Xi. Then g is a quasi-ordering on the set of

all P-spaces and a partial ordering on the set of all Ti P-spaces.

In parts two and three of this paper, we shall be concerned mostly with

P-spaces which are compact and 7\. It is convenient to introduce some nota-

tion for the set of all such spaces.

Definition 1.8. Let P be a semi-lattice. Denote by SP the set of all com-

pact Pi P-spaces (including the empty space). Two spaces of Zp are equal if

and only if they consist of the same dual ideals. The relation 5Í of 1.7 partially

orders Z¿>.

2. Semi-regular P-spaces. In this section, we shall examine those

P-spaces for which P is a complete Boolean algebra.

Theorem 2.1. Let P be a complete Boolean algebra and let S be a representa-

tive P-space. Then the regular open sets of S are precisely those of the form 5(o).

Proof. From the assumption that 5 is a representative P-space, it follows

that Sia)~= {XES\aAb^0 all bEX}. Thus 5(0)-"= {XES\aAb = 0 some
ôGX} = {XG5|0'GA'}=5(a,)• Hence 5(0)-<- = 5(0)-<;-<: = 5(0')-': = 5((0')')

= 5(0), that is, 5(0) is a regular open set.

Thus the mapping a—>5(o) is a meet isomorphism of the complete Boolean

algebra P onto a dense subset of the complete Boolean algebra of regular

open sets of 5. By 0.7, this mapping must be onto. That is, every regular open

set of 5 is of the form 5(0) for some aEP-

Corollary 2.2. Let P be a complete Boolean algebra. Then any representa-

tive P-space is a semi-regular P0 topological space whose Boolean algebra of

regular open sets is isomorphic to P. Conversely, if P is isomorphic to the

Boolean algebra of regular open sets of the semi-regular T0 space 5, then S is

homeomorphic to a representative P-space.

Proof. By 2.1, 1.1, and 1.3.

Remark. When P is a complete Boolean algebra, Definition 1.2 can be

simplified. In fact, if P is a disjunctive semi-lattice, then a P-space 5 is

representative if and only if condition Ma,0 is satisfied for all a^o.

Example 2.3. Let 5 be a (nonempty) semi-regular Pi space which satisfies

the second countability axiom and has no isolated points. Then it is proved

in [l, p. 177] that BiS) (the Boolean algebra of regular open sets of 5) is iso-
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morphic to the completion by cuts of the free Boolean algebra with countably

many generators.

Lemma 2.4. Let S be a dense sub space of the topological space S0. If A is a

regular open set of 50, then Ai~\Sis regular open in S and the mapping A —*A (~\S

is an isomorphism of BiS0) onto BiS).

Proof. Obvious.

Corollary 2.5. Let S be a space in which the isolated points are dense.

Then BiS) is isomorphic to the Boolean algebra of all subsets of the set of isolated

points in S.

By combining 2.3 and 2.5, it is possible to characterize BiS) whenever

5 is a semi-regular Pi space which satisfies the second countability axiom.

Part II. Covering ideals

The chief object of part two is to formulate and prove the main theorem

of the paper (Theorem 4.5). In the first section, we introduce the concept of

a covering ideal and show how P-spaces give rise to covering ideals. The pre-

cise relation between P-spaces and covering ideals is established in the next

section. Finally, the covering ideals which correspond to compact Hausdorff

spaces are characterized.

Throughout part two, P will denote a fixed semi-lattice. In the notation,

explicit indication of dependence on P will be omitted when there is no

danger of confusion.

3. Covering ideals.

Definition 3.1. A finite, nonempty subset a of P is called a P-covering

(or simply a covering). The collection of all P-coverings will be denoted £

(=P>). For a, ßE£, define a<ß and a Aß as in 0.2 and 0.5.

A nonempty subset a of „(Ms called a P-covering ideal (or just a covering

ideal) if it has the properties:

(i) cti, a2Ea implies «îA^Ga,

(ii) «Get and ß>a implies ßEa.

The set of all P-covering ideals will be denoted T i = TP). Let T be partially

ordered by inclusion.

Definition 3.2. Let 5 be a P-space. If aG=Ç satisfies 5=U{5(0)|0Ga},

or equivalently, Xi\a9^0 for all XES, then a is called a covering of 5.

Denote by o(5) the set of all coverings of 5.

Our first lemma is an obvious consequence of the definitions.

Lemma 3.3. For any P-space 5, a(5), if it is not empty, is a covering ideal.

If Si^S2 isee 1.7), then a(5i)3a(52). If S is the empty space, aiS) =£.

Definition 3.4. Let a be a covering ideal and let (0, b) he an ordered pair
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of elements of P. Then a is called a representative covering ideal if the follow-

ing condition is satisfied whenever a = o:

(N„,í) there exists aEa such that a, bEa and a— {a} G<i-

For convenience, N0,0 can be replaced by the equivalent

(No) there exists «Get such that a— {a} G<*.

Lemma 3.5. Let SE^p (see 1.8), and let (a, b) be an ordered pair of elements

of P. Then a(S) satisfies N0,& if and only if S satisfies M0,6 of 1.1. 7t7 particular

a(S) satisfies N„ if and only if aEX for some XES.

Proof. If S satisfies M„,¡„ XES exists so that aGA, &GA. Suppose F is a

point of 5 different from X. Since 5 is a Pi space, there exists cEY with

cGA. By compactness, choose Ci, ■ ■ ■ , cn so that c¿GA for all i and a

= {a, b, Ci, • • • , cn] is a covering of 5. Since C;GA and o G A, a— {a}

= {b, Ci, • • • , cn\ E&iS). Hence a(S) satisfies N0i0.

Conversely, if a(S) satisfies N0,0, then ctEa(S) exists with a, bEa and

a — {a] Gß(S). This means {a — {a])C\X = 0 for some XES. In particular

oGA. Since aEo.{S), aEX. Thus S satisfies M0,¡,.

Corollary 3.6. If SE%, a{S) is a representative covering ideal if and only

if S is a representative P-space {Definition 1.2).

Now we shall determine the algebraic relation between a(S) and the points

(dual ideals) of the compact Pi P-space S.

Definition 3.7. Let a be a covering ideal. A dual ideal 7 of P is said to be

under a if aC\Iy^0 for all «Get.

Lemma 3.8. Let SE% and assume S is not empty. Suppose I is a dual ideal

of P which is under a(S). Then there is a point X of S with AC7.

Proof. Otherwise, for each XES, there exists aGA with aG7. By com-

pactness, it would be possible to choose a= {ai, ■ • ■ , a„] (nonempty)

covering 5 with a¿G7 for all i. Then a£a(5) and aC\I=0, contrary to the

assumption that 7 is under a(S).

Lemma 3.9. Let 5G2. Then every point of S is minimal in the set of dual

ideals under a(S).

Proof. Clearly, every point of S is under a(S). Let XES. Suppose 7 is

under a(S) and 7 ÇA. By 3.8, there is a point Fin 5 with YQIQX. Since 5

is a Pi space, this implies A= F=7. Thus X is minimal under a(S).

Corollary 3.10. The proper dual ideals of P which are minimal under a(S)

are precisely the points of S.

Proof. By 3.9, every point of S is minimal under a(S). Conversely, if

St^0, and if 7 is minimal under a(S), there is a point X of 5 with ACj7.

By minimality, this implies A = 7. If S is empty, a(S) =.£and no proper ideal

is under d(S).
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4. The fundamental theorem.

Definition 4.1. For aGr, denote by 5(a) the P-space of all proper dual

ideals of P which are minimal under a.

Corollary 3.10 shows that for any S0E2, 5(u(50)) =50. The remainder of

this section will be devoted to showing that for any ct0Gr, a(5(a0)) = a0. First

we will prove an existence theorem for dual ideals of P.

Proposition 4.2. Suppose aGr and a^j(\ Let y be a collection of coverings

such that (i) if p\, ß2Ey, then ßi<Jß2Ey, and (ii) aP\y = 0. PAew a proper dual

ideal X exists which is minimal under a and satisfies XC\ß = 0 for all ß Ey.

Proof. By the maximal principle, extend 7 to a collection of coverings 70

which is maximal satisfying (i) and (ii). Since {o}Gi, 7o^0- Define

J=\J{ß\ßEy0}.
If a= {öi, • • • , 0„] Ea, put a*= {0¿Go;| at^b, all . GP}. Then <x*¿¿0,

since otherwise, for each aiEa, .< and /3¿ exist with -¿_s-iG/3.-G7o. This im-

plies a <ßi\J • • • ^Jßn, contrary to afYy0 = 0.

Put X = P. Then XC\ß = 0 for all ßEy and a*QX for all „Ga. Conse-

quently, XC\a7£0 for all aEa. It must be shown that X is a dual ideal.

If aEX, {a} G7o, so by the maximality of 70, aEa and ßEyo exist satis-

fying a<ß*U{a}. This is possible only if a*<{a}. Conversely, a*<{a}

obviously implies aEX.

If O_t0 and o£Z, then a*< {0} < {b} for some aEa. Hence bEX. If

0i, a2EX and «i, a2Ga satisfy a* < {01}, a*< {02}, then {xiAai)*<a*A«*

< {01} A{02J = {01A02}. Hence aiA<hEX and 7_ is a proper ideal.

Finally, to show that X is minimal under a, suppose / is a dual ideal

under a which is contained in X. Let 71 = {/3G-Q ßC\I=0}. Then 71 satisfies

(i) and (ii) and 7i__7c Since 70 is maximal, 7i=7o- If aEX, {a} G7o = 7i, so

aEI- Thus XÇ7 and the proof is complete.

Corollary 4.3. Suppose aET and a^J^. Let I be a dual ideal which is

under a. Then there exists a proper dual ideal JÇ7 which is minimal under a.

Proof. Put y={ßEJl\ßr\I=0}. Then 7 satisfies (i) and (ii) of 4.2.
Hence a proper ideal X exists which is minimal under a and satisfies XC\ß

= 0 for all ßEy. If aEX, then {0} Gy, so aEI. Therefore XQI.

Lemma 4.4. If ais a covering ideal, then 5(a) GS.

Proof. If a =jQ>, then Sia) is the empty space. Suppose then that a^P^.

It must be shown that 5(a) is a compact Pi space. If Xi and X2 are minimal

under a, then ATiCA^ is impossible; thus, by 1.5, 5(a) is a Pi space.

To prove that 5(a) is compact, it is sufficient to show that if Q is any sub-

set of P with the property Sia) = U {5(0) | aEQ} (where 5(0) = ¡IG5(a) | a

G-Xj), there is a finite subset of Q which is in a. Suppose otherwise : ar>y = .0,

where 7 denotes the collection of all nonempty finite subsets of Q. Then
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7&£ and y is closed under finite unions, so by 4.2 there is a proper ideal X

which is minimal under a and satisfies XC\ß — 0 for all ßEy. Thus XES{a),

and aGA for all aEQ. This contradicts S{a) = U {5(a) |aG(?} and shows

that some finite subset of Q covers S {a). Hence S {a) is compact.

Theorem 4.5. The mapping 50—Ht(50) and a0-^S(a0) defines a Galois con-

nection (see [l]) between 2 a77á V. Moreover, if SoE^ and ctoGr, then S(a(S0))

= So and a(S(ai)) =tto-

Proof. The first assertion follows from 3.3, 4.4, and Definitions 3.2 and

4.1. By 3.10, S(a(So)) =50. The only thing left to prove is a(5(a0))Ça0. As-

sume do^-O If aGûo, then by 4.2 there exists A which is minimal under a0

and satisfies ctC\X = 0. Hence AG5(a0) and o¡Gi(5(a0)). Thus a(5(a0))

Ça0. If a0 =-0, then 5(a0) = 0 and a(S(ct0)) =£=a0.

Example 4.6. Let P be a Boolean algebra and define ct= {aG=Ci»| Va = w}

(where Va denotes V{a| aEa]). Suppose 7 is a proper dual ideal of P which

is under a. Then if aEP, {a, a'JGa, so {a, a'}C\I^0. That is, either

aG7 or a'El- Hence 7 is maximal. Conversely, if 7 is a maximal proper

dual ideal of P, then 7 is prime. Thus if a Go, Va = 7iG7 and therefore a(~\I

9^0. This proves that the ideals which are minimal under a are precisely

the maximal dual ideals of P. Consequently S(a) is the Boolean space asso-

ciated with P.

5. Normal covering ideals. In this section, we shall formulate a sufficient

condition on a covering ideal a in order that S(a) be a Hausdorff space. The

results contained in 5.2 and 5.4 below follow directly from Theorems VI 4.4

and V 8.9 in [7] and proofs will be omitted.

Definition 5.1. Let a, ßEa. Then a is a star-refinement of ß (a*<ß) if

for any aG«, there exists bEß such that if cEa and a Ac 5^0, then c = 0.

A sequence of coverings a0, «i, a2, ■ • • is called normal if aj+i*<a¡ for all

/. If a is a covering ideal, then a is called normal in a if a is the first term of a

normal sequence of coverings in ct. A covering ideal is called normal if every

«Get is normal in a.

Proposition 5.2. Let a be a representative covering ideal. Then S(a) is

Hausdorff if and only if a is normal.

Proposition 5.3. Let a be a representative covering ideal. Then S(a) satisfies

the second countability axiom if and only if there is a countable subset A of P

such that if ßEa, there exists aEa with a<ß and aQA.

Proof. The sufficiency of this condition is obvious. The necessity follows

from 1.1 and 4.5 by an easy compactness argument.

Proposition 5.4. Let a be a representative covering ideal. Then S(a) is a

compactum if and only if there is a normal sequence of coverings which is co-

initial in a.
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Part III. Mappings

By Theorem 4.5, the coverings rather than the points can be considered

as the primitive elements of a compact Pi space. This shift of viewpoint can

be useful, as the examples of part four will show. It is natural then to try to

relate the topological properties of a space directly to the algebraic properties

of its covering ideal. With this aim, we have already considered the concepts

of Hausdorff separation and perfect separability. In part three the com-

parison between topology and algebra will be continued with studies of sub-

spaces, homeomorphisms, and continuous mappings of P-spaces.

6. Closed subspaces of a P-space.

Definition 6.1. Let SE?>. Denote

(1) 7(5) = U{X| XG5} = (0 G P|u(5) satisfies//«}.

(See 3.4 and 3.5.)

It is evident that 7(5) is a terminal subset of P (see 0.1). If P is a dis-

junctive semi-lattice, 7(5) =P— {o} if and only if 5 is a representative

P-space.

Lemma 6.2. Let S0E%- Suppose S is a closed subspace of So- Put a = a(50).

PAew SE2 and

(2) if 0G7(5), there exists aEa satisfying a— {a} >/3fV(5) for all ßEa,

(3) aiS) = {aEJZ\o:>ßiMiS), some ßEa}.

Proof. Obviously 5is a compact Pi P-space, i.e., SE%. Suppose 0G7(5),

Then aEX for some XES. By compactness, aEa exists satisfying X

(~\ia-{a})=0. But X is under a, soif ßEa, a- {a}>ßf\X. Since __Ç/(5),

this implies (2).

To prove (3), note that if a>/3rV(5) for some ßEa, and if XES, then

ar\X>ßr\IiS)r\X=ßC\X^0. Hence aEaiS). Conversely, suppose

aEaiS). Let YESa — S. Since 5is closed, aEP exists with YES0ia)Ç:So — S.

Thus oG7(5). By compactness, ax, ■ ■ ■ , an exist with 0;G7(5) all j and ß

= {ai, • ■ • , an}VaEa. Then a=/_rV(5).

Lemma 6.3. Let S0E%. Suppose Si and S2 are two closed subspaces of 50.

Then 7(5i)ÇT7(52) if and only if 5iÇ52.

Proof. Suppose 5iÇ£52. Let ATG5i, ATG52. Since 52 is closed, aEP exists

satisfying ArG5o(0)__5o-52. Then oG7(5i), oG7(52). Thus 7(5i)_E7(52).

The converse is obvious.

Definition 6.4. Let aGr and suppose 7 is any terminal subset of P.

Then aEP is called essential in I with respect to a if aEa exists such that

a— {a} >|8n/ for all ßEa. If every aEI is essential in 7 with respect to a,

then 7 is called an a-closed subset of P.
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If 5 is a closed subspace of S(a), then 7(S) is a-closed by (2). The converse

is a corollary of the next lemma.

Lemma 6.5. Let aEF and suppose I is a terminal subset of P. Define

(4) S = S{a, I) = {XES(a)\XQl}.

Then S is a closed subspace of S (a) and 7(5) = {aGP| a is essential in I with

respect to a}.

Proof. By 1.4, 5 is closed in S(a). If aEI(S), then by (2), a is essential in

7(5) with respect to a. But 7(5) ÇJ by (1) and (4), so a is essential in 7 with

respect to a.

Suppose aG7(5), that is, aGA for all AG5. Let aEa. Then (a— {a})
r\X = oLC\X^0 for all AG5. If AG5, X%I by (4), so bEX exists with
ÔG7. By compactness, ß={bi, ■ • • , bn]VJ(a— {a}) exists in ct(5(a))=ct

with ô3G7 for all/. Then a— {a} >ßf~\I. This proves that a is not essential

in 7 with respect to a.

Corollary 6.6. If S is a closed subspace of S(a), then S(a, 7(5)) =5. 7/ 7

is an a-closed subset of P, I(S(a, I)) =7.

7. Homeomorphisms.

Lemma 7.1. Let w be an isomorphism of the semi-lattice Pi into the semi-

lattice P2. Suppose ais a Pi-covering ideal. Denote by [ira ] the P2-covering ideal

{aE£p2\a>irai, aiEa}. Then w*: X—»7r-1A maps 52 = 5([7ra]) homeo-

morphically onto Si = S(a).

Proof. A dual ideal 7 of P2 is under [7ra] if and only if 7r_17 is under a. In

particular, if AG52, then 7r_1A is a point of Si. Thus 7r* maps 52 into 5i. If

FiG5i, then [7rFi]= {a2GP2|a2=7rai, aiGFi} is a dual ideal of P2 which is

minimal under [ira]. Since 7r*[7rFi] =7r_1[7rFi] = Y%, 7r* is onto. Also, if

AG52,

(1) W{**X)] = A

(because A is minimal under [7rct]). Thus 7r* is one-to-one. Finally, if aEPi,

x*52(7ra) = {*rlX | A G 52(7ra)} = { Fx G Si | a G Fi} = S,(a).

By (1), the sets 52(7ra) form a basis for 52. Hence 7r* is a homeomorphism.

Theorem 7.2. Let Pi and P2 be complete Boolean algebras and suppose Oi

and ct2 are representative Pi- a77á P2-covering ideals respectively. If it is an iso-

morphism of Pi onto P2 such that 7rai = ct2, then t induces a homeomorphism tt*

of 52 = S(ai) onto Si = 5(ai) ; x* is uniquely determined by the condition ir(ir*X)

= A. If tp is a homeomorphism of 52 077/0 Si, then 4> induces an isomorphism <f>+

of Pi onto P2 with <6+cti = a2; <p+ is uniquely determined by the condition tp+(tpX)

= X. Finally (ir*)+=Trand (</>+)* = <p.
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Proof. The theorem follows easily from 7.1.

Corollary 7.3. Let P be a complete Boolean algebra and let at and a2 be

representative P-covering ideals. Then 5(ai) is homeomorphic to Sia2) if and only

if there is an automorphism ir of P such that 7rai = a2.

Corollary 7.4. Let Pbea complete Boolean algebra and lei abe a representa-

tive covering ideal. If <p is a homeomorphism of 5(a) onto itself, then <f>+a = a.

Conversely, if ir is an automorphism of P satisfying ira = a, then ir* is a homeo-

morphism of 5(a) onto itself.

Proof. If ira = a and X is minimal under a, then 7r*X = 7r_1Ar is minimal

under 7r_1a = a. Hence ir* maps Sia) onto itself.

8. Continuous mappings.

Theorem 8.1. Let Pi and P2 be semi-lattices. Suppose ai and a2 are repre-

sentative Pi- and P2-covering ideals respectively. Denote Si = 5(ai) and S2 = Sia2).

Assume that Si is a Hausdorff space. Finally, let ir be a homomorphism of Pi

into P2 which satisfies

(1) «h __ a2.

Then there is a unique continuous mapping ir* of S2 into 5i such that

(2) x(ir*X) QX,       X E 52.

Moreover,

(3) i^-'Siia) £ S2ira) Ç (»*)-1(5i(«)-)

for all aEPi- Finally, 7r*52 = 5(ai, 7) isee 6.5), where 7= {0GPi|7T0?iO}.

Proof. Let XES2. Then ir~xX is a proper dual ideal of Pi which is under

cii. For if «Gai, 7raGa2, so TraC\X^0. Thus aC\ir-1X^0. By 4.3, FG5i
exists satisfying YcZ-n-1X. This Fis unique. Indeed, suppose Yu Y2Qir~lX,

where Fi and F2 are distinct points of 5i. By 1.6, o = aAb for some aE Yi and

bEY2. Hence oEir~lX—a contradiction since 7t0 = oGA'". Thus (2) defines a

unique mapping ir*: S2—hS_.

To prove (3), notice that (7r*)_15i(0)Ç52(7ra) follows directly from (2).

If iraEX, then aEir~lX so that aAb^H for all bEir*X. Consequently,

tt*XG5i(0)-, and therefore 52(7r0)Ç(7r*)-1(5i(0)-).

Now suppose N is any open set of 5i. By (3) and the normality of 5i,

(t*)-W= U { (ir*)-15i(0) |5i(0)-Ç//} ÇU {52(tt0) |5i(0)-__//} ÇU {(tt*)-1

• (5i(0)-) 15i(0)-C//} = (tt*)-W. Thus (tt*)"1// is open and ir* is continuous.

It remains to show that ir*52 = 5(ai, /)=*{ Yi&-i| YiQl}. If XES2,

ir*XQir-1X={aEPi\iraEX}Q{aEPi\ira^o}=I. Thus r*5,__5(ai, 7).
If FiG?r*52, then since 7r*52 is closed and 5i is normal, aE Yi exists satisfying

5!(0)-n7r*52 = 0.   By    (3),   52(7T0)Ç(7r*)-1(5i(a)-) = (7r*)-1[51(0)-nx*52]
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= 0, so wa = o. Consequently FiÇT-7, that is, FiGS(ai, 7). Since Fx was arbi-

trary, S(cti, 7) Ç.7t*Si.

Remark. If P2 is a complete Boolean algebra, (3) can be sharpened to

(4) [(7r*)-1S1(a)]-C:52(7ra).

In order to prove a converse of 8.1, it is necessary to assume that P2 is a

complete Boolean algebra. In compensation, it need not be assumed that Si

is a Hausdorff space.

Theorem 8.2. Let Pi be a semi-lattice and P2 a complete Boolean algebra.

Let Si and S2 be representative Pi- and P2-5pace5 respectively. Denote Oi = ct(Si)

and a2 = ct(S2). Suppose <p is a continuous mapping of S2 into Si. Then the rela-

tion

(5) S2(<6+a) = {4>-iSi{a))-°, a E Pi,

defines a unique {semi-lattice) homomorphism tp+ of Pi into P2 such that

tp+ax Ç a2

a77á

<P+(<pX) QX, A G S2.

The kernel of tp+ is the complement of I(tpSi) (see 6.1).

The proof of 8.2 is straightforward and will be omitted.

Theorems 8.1 and 8.2 are converses when the following conditions are

fulfilled: Pi is a disjunctive semi-lattice, P2 is a complete Boolean algebra,

ai and a2 are representative covering ideals, and Si = S(cti) is a Hausdorff

space. If these are satisfied, 8.1 and 8.2 imply (<p+)*=tj> for any continuous

mapping tj> of S2 into Si. However, in general, not all homomorphisms 7r of cti

into a2 satisfy (7r*)+ = 7r (see 9.4).

Proposition 8.3. Let Pi, P2, a77¿ P3 be semi-lattices. Suppose tti, a2, and a3

are representative Pi-, P2-, a77á Ps-covering ideals respectively. Assume S(ai) and

S(ai) are Hausdorff spaces. Finally, suppose iri: Pi—»P2 and ir2: P2—»P3 are

homomorphisms which satisfy 7TiOiÇZa2 a776Í 7r2a2ÇTa3. Then (ir2Tri)* = Tr*ir*.

This follows directly from 8.1. The analogous equation (tp2<pi)+=<p'Í<pÍ is

usually false. (Compare (4) and (5).)

9. Homeomorphisms into a compact Hausdorff space.

Lemma 9.1. Let Pi and P2 be semi-lattices. Let Si = S(di), S2 = S(ai) be repre-

sentative compact Hausdorff Pi- and P2-spaces respectively. Suppose it is a homo-

morphism of Pi into P2 with 7rair=a2, such that tt* is a one-to-one mapping of S2

777/0 Si. Then irai is coinitial in a2.

Proof.  Let  cEP2-  Suppose  cEXES2.  Then   7r*AG7r*S2(c)  and  since
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ir* is a homeomorphism, ir*52(e) is an open set of ir*S2 in its relative topology.

Hence, because 5i is normal, 0GP1 exists satisfying ir*ATG5i(0)Pi7r*52

çz5i(0)-fV*52ç:7r*52(c). By 8.1 (3), 52 («OÇOr*)-1^«)-) = iir*)~1[Siia)-

Cwr*52]__(ir*)-1[ir*52(c)] =52(c). Putting c = o in this last equation also

shows that if 5i(0)~nir*52 = 0, then ira = o.

Now suppose j3Ga2. By the result of the above paragraph and the com-

pactness of 7t*52, it is possible to choose ai, ■ ■ • , a„ in Px so that 7r*52

__5i(0i)W • • • W5i(0„) and {irai, • • • , ira«} <ß. Since 5i is compact Haus-

dorff, bi, ■ ■ ■ , ¿>m exist so that 5i(öJ)_rN\7r*52 = 0 for all/and a= {01, • ■ •, an,

bi, • • ■ , bm} Eai. Then by the last statement of the first paragraph, ira

<{7T0i,   •   •   •  , 7T0„} <ß.

Corollary 9.2. Let Pi be a semi-lattice and P2 a complete Boolean algebra.

If d> is a one-to-one continuous mapping of the representative P2-space Sia2)

into the compact Hausdorff representative Pi-space Siai), then <t>+ai is coinitial

in a2.

Combining 9.1 with the following theorem, we get a precise characteriza-

tion of those homomorphisms ir (with 7r0i__a2) for which ir* is one-to-one.

Theorem 9.3. Let Pi and P2 be semi-lattices. Let 5i = 5(ai), S2 = Sia2) be

representative Pi- and P2-spaces respectively. Assume Si is compact Haus-

dorff. Suppose ir is a homomorphism of Pi into P2 such that irai is a coinitial

subset of a2. Then

(i) ir maps Pi onto a dense subset of P2,

(ii) ir* is a one-to-one mapping of S2 into Si and

(iii) if P2 is a complete Boolean algebra, (ir*)+ = ir if and only if I

= {aEPi\ira^ö} is an ai-closed subset of Pi isee 6.4).

Proof. The assumption that irai is coinitial in the representative P-cover-

ing ideal a2 obviously implies (i).

Let XES2. Denote by [X] the dual ideal {c_GP2|ô2 = ir0, aEir*X}. By

8.1 (2), [._]____. It will now be shown that [X] is under a2 and therefore

(since X is minimal under a2) X= [__ ]. Let ßEa2. Then by hypothesis, «Gai

exists so that ira<ß. Since ir*AT is under Hi, ir*__H«5^0. Hence 09e [X]í~\ira

< [X]C\ß. Because ß was arbitrary, [X] is under a2 and [__]=__■. Now if X

and Fin 52 are such that ir*AT = ir*F, then [X]= [Y]. Consequently X=Y.

This proves that ir* is one-to-one. By 8.1, ir*52 = 5(ai, 7) (see 6.5), where /

= {a\wa^0}.

Suppose / is üi-closed. By 6.6, 7 = 7(5(ai, 7)), so irb^o implies bEir*X

for some XES2. Let 0GP1. Suppose bEPi satisfies o^irb^ira. Then for some

XES2, bEir*X and „■_■£[__]=__. Therefore (ir*)-15i(ö)Pi52(ir0)?i0. Since

irPi is dense in the complete Boolean algebra P2, it follows that ((7r*)_15i(0))~

__52(ira), so by 8.1 (4), $,(„■_■) = ((ir*)-15i(0))-° = 52((ir*)+0). Thus (ir*)+ = ir.

Conversely, if (ir*)+ = ir, S2{rra) = ((7r*)-15i(_))-° for every aEPi- Thus
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way^o implies S2(7ra)n(7r*)_1Si(a);¿0, so AGS2(7ra) exists with aGir*A.

Therefore, 7ÇU{tt*A| AGS2} =7(S(0i, 7)). By 6.5, it follows that 7 is en-
closed. The proof of the theorem is complete.

Example 9.4. We shall use 9.3 to construct a homomorphism 7r which does

not satisfy (7r*)+ = 7r.

Let Si be the real closed interval [ —1, l]. Let Pi be the Boolean algebra

of regular open sets of this interval. According to 1.3 and 4.5, Si is homeo-

morphic to the compact Hausdorff representative Pi-space S(ai), where di

is the set of Pi-coverings of Si. Define A0= {aGPi| OGSi(a)} and let 7 be

a (proper) maximal dual ideal of Pi with A0C7. Since A = A0 is the only

point of S(cti) satisfying AC7, it follows from 6.6 that 7 is not Oi-closed.

Let P2 be the two-element Boolean algebra {o, «}. Define 7r to be the

unique homomorphism of Pi on P2 with the kernel Ie. This 7r maps ax onto the

representative P2-covering ideal a2= { {u], {o, u\ }. Thus the hypotheses of

9.3 are satisfied. By 9.3 (iii), 7r cannot satisfy (7r*)+ = 7r.

Part IV. Applications

Two applications of the theory developed in the preceding parts will now

be presented. First, we shall study compactification, the process of imbedding

a topological space as a dense subset in a compact space. The second applica-

tion is a method of obtaining a topological space from a ring or a lattice. No

special effort will be made to obtain new results. Our only aim is to exhibit

typical applications of Theorem 4.5. ^

10. Compactification.

The basic theorem on which most of the discussion of this section depends

is

Theorem 10.1. Let S be a Ti P-space {not necessarily compact). Let a be a

P-covering ideal. Then S is a subspace of S (a) if and only if (i) aÇo(S) and

(ii) for any XES and any aEX, there exists aEa such that (a— {a])C\X = 0.

If S is a representative and (i) and (ii) are satisfied, then S is dense in 5(a).

Proof. Suppose (i) and (ii) are satisfied. Let AGS. Then Zna^0 for

all aEa(S), so by (i), A is under a. If D is a dual ideal of P with T>CA,

there exists aEX with aQD. By (ii), aEa exists satisfying DC\(a— {a})

ÇAn(a-{a})=0. But aGA so aC\D = 0. It follows that A is minimal
under a and therefore AGS(a). Since A was arbitrary, SQS(a).

Conversely, suppose S is a subset of S(a). Then a covering of S(a) is also

a covering of S, so (i) is satisfied. By 4.5, any point of S(a) (and hence of S)

has the property (ii). The last statement of the theorem is obvious.

Remark. The P-space topology of a subset S of a P-space S0 is precisely

the relative topology of S induced by S0.

Example 10.2. Let P be the s.l. of open sets of the Pi space 5. Let a be the

set of all open coverings of S. The conditions of 10.1 are satisfied and it can be
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shown (see Example 11.7) that S(a) is homeomorphic to the Wallman com-

pactification of S.

Example 10.3. Suppose again that P is the s.l. of open sets of the Pi space

5, but now let a be the set of all (finite) normal coverings of S. Then (see [7])

a satisfies 10.1 (ii) if and only if 5 is completely regular. In this case, S(a) is

a Hausdorff compactification and, in fact, it is not hard to prove that S(a) is

homeomorphic to the Tychonoff compactification of S.

Example 10.4. By taking P = B(S) and a = all P-coverings of 5, Theorem

10.1 gives the following result: in order that a space S be homeomorphic to a

dense subset of a semi-regular compact Ti space, it is necessary and sufficient

that S be a semi-regular Pi space which satisfies:

(1) if xEAQS, where A is a regular open set, then regular open sets

Bi, ■ ■ ■ , Bn exist such that xQBj for all/, and S = ^4UPiU • • • UP„.

It is obvious that (1) is satisfied if 5 is a regular space. However, examples

of semi-regular Hausdorff spaces which do not satisfy (1) can be given.

Example 10.5. Suppose S is a locally compact Hausdorff space. Let P

be the s.l. of all open sets A such that either A~ or Ac is compact. If a is the

set of all P-coverings of 5, the conditions of 10.1 are satisfied, so S(ct) is a

compactification of 5. It is evident that S(a) has the same P-covering ideal

as 5, the one-point compactification of 5. Thus, by 4.5, S(a) is homeo-

morphic to S.

Example 10.6. Theorem 10.1 can be used to prove the following theorem

of Hurewicz [3]:

A separable metric space of dimension =w can be imbedded as a dense

subset in a compactum of dimension ¿n.

Proof. Let P be the collection of all open sets of S. By 1.3, it can be as-

sumed that S is a P-space. Choose a countable neighborhood basis

Ai, A2, • ■ ■ . For each A¡, let B¡i be a sequence of open sets such that f)» B¡t

= (A,)C. Let «i, «2, • • • be a simple enumeration of the coverings {A¡, Bj¡}.

Put j3i=ai and by induction choose ßk (k>l) so that (i) ßk is a P-covering of

S, (ii) ßk is a star refinement of ßk^iAak, and (iii) ßk has order =77. Let a be the

covering ideal generated by the normal sequence {ßk}. Then a fulfills (i)

and (ii) of 10.1 by the choice of the a's. Hence S(a) is a compactum (by 5.4)

of dimension =77 and 5 is homeomorphic to a dense subset of S (a).

Proposition 10.7. Let S be a representative Ti P-space. Let a and b be P-

covering ideals satisfying aÇbÇa(S). If a satisfies (ii) of 10.1, so does b.

Moreover, if a is a normal covering ideal and -w is the identity isomorphism of P,

then 7T* (see 8.1) is a continuous mapping of S(b) onto S(a) which satisfies

tt*A = Xfor XESandT*(S(b) -S) =S(a) -S.

Proof. By 4.5 and 8.1.

11. Rings and lattices. In this section, we shall show how a topological

space can be obtained from a ring or distributive lattice. Instead of consider-
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ing rings and lattices separately however, it is convenient to treat them both

as special cases of semi-rings. A semi-ring 'R. is an algebra with two binary

operations, addition (written +) which is associative and commutative, and

multiplication (indicated by juxtaposition) which is associative and satisfies

the distributive laws/(g-f-A) = ifg)+ifh) and (g+A)/= igf)+{hf). An element
o E%. is called a zero if it satisfies f+o =f and fo = of = o for all fE%.- An ele-

ment 1 E% is called a unit if it satisfies /l = 1/=/ for all fE%..

Lemma 11.1. Let i\Pe 0 semi-ring and suppose iris a product homomorphism

of 1{ into a semi-lattice P. Assume that P has a unit u. Let Uïibe a multiplicative

system in %_, that is, a nonempty subset of CR. which is closed under multiplication.

Define

a{M) = a{M; ^, ir, P)

= {„GP>|«> {«/„ ■■■ ,irfn},fi+ ■■■ +fnEM}.

Then a(5frt) is a P-covering ideal.

Proof. 7//i+ • • • +fnEMandgi+ ■ ■ ■ +gmEW, then fxgx+ ■ ■ ■ +fngm

= (A + ■ ■ • +/.)(_!+ • • • +gm)EM. Hence {ir/i, • • ■ , ir/n} A{irgi, ■ • • ,

irgm} = Wifigi), ■ • • , Trifngm)}Ea{M). Consequently, a(SW) is a covering

ideal which always contains {„}. (In particular, a{M) is nonempty.)

Lemma 11.2. If "Mi and M2 are multiplicative systems in f\, and if 'MiÇlcM.2,

thena{Mi)Ça{M2).

Proof. Obvious.

Lemma 11.3. Let Mi and 7á2 be multiplicative systems in _\ such that for

anyfEJrti, there exists gEt{ satisfyingfgE'Mi or gfE^i- Then aiMi) Ç,a{M2).

Proof. If aEaiMi), then a> {irfu ■ ■ ■ , irfn} where /i+ • • • +/»£%.

By hypothesis, gE%. exists so that (for instance) fig+ ■ ■ ■ +fng

-(/_+'••■ +/„)_G^2. But a> {irfiAirg, ■ ■ ■ , irfnA^g} = Wifig), • • • ,
irifng)}, and therefore aEa(%).

Corollary 11.4. If % contains a unit 1, then a( {1} ) çza(f7yf) for any multi-

plicative system JïC.

Definition 11.5. Let _\ be a semi-ring and suppose 7r is a product homo-

morphism of fr\. into a semi-lattice P. Assume that P has a unit. Put

(2)     a(<r\., ir, P) = n {a{M; _\, t, P)\*M is a multiplicative system in _\J.

The space S{a{R,, ir, P)) will be called the (ir, P)-space of f\.

Lemma 11.6. If %_is a semi-ring with a unit 1 and ir is a product homo-

morphism of f\. onto a sub-s.l. of P, then a{R_, ir, P) =a({ 1} ; f\, ir, P). More-

over, the {ir, P)-space of _v is homeomorphic to the (ir, i^Rij-space of f\..



1954] COVERINGS OF A TOPOLOGICAL SPACE 297

Proof. By 11.4 and 7.1.

Example 11.7. Let P be a distributive lattice with a zero and a unit.

Then P is also a semi-ring with the operations V and A as sum and product

respectively. If 7r0 is the identity mapping of P onto itself, a = a(P, 7r0, P)

= a({7<}; P, 7r0, P) = {«G»Cp| Va = u}. Suppose Ais minimal under a. If

aVoGA, there exists aEa such that XH(a- {a\/b}) =0. But (a-{a\/b})

^{a, b] Ea, so aGA or bEX. Thus A is prime. Conversely, if A is prime,

Va = tí G A implies APia?¿0. Consequently, S(a) is the P-space of all

minimal prime ideals of P. This space is homeomorphic to the Wallman space

associated with the dual of P (see [8]).

Example 11.8. Let T\ be the lattice of all real-valued continuous functions

on a compact Hausdorff space 5. Then i\ is a semi-ring with the lattice opera-

tions (/Vu)0«) = max {f(x), g(x)] and (/Ag) 0*0 = min {f(x), g(x)} as sum

and product respectively. Let 7r be the product homomorphism of %_ into

B(S) defined byf-^{xES\f(x)>0}~°. We shall show that the (tt, B(S))-space
of T\ is homeomorphic to S.

By 11.2 and 11.3,

(3) a(<R, r, B{S)) = ñ a«»»,
n=1

where (77) denotes the multiplicative system whose only element is the func-

tion on 5 which is equal everywhere to 77. If /iV • • • VfmE(n), then S

Ql)T-i{xES\fk(x)>0}, so {7t/i, • • • , 7r/m} is a covering of S. Conversely,

by the well known "partition theorem," if {Au • • • , Am] is any covering of

S by regular open sets, real-valued continuous functions fi, ■ ■ • , fm exist so

that {xES\fk(x)^0]czAk and /iV • • • V/«G(»>. Then {tt/i, • • ■ , Trfm\
< {Ai, • ■ • , Am\. Thus a({n)) is the set of all P(S)-coverings of 5. By (3),

et OP., 7T, B(S)) is also the set of all B (S) -coverings of 5. It follows from 1.3 and

4.5 that the (7r, B(S))-space of R. is homeomorphic to S.

Remark. The homomorphism 7r of 11.8 is uniquely determined by its

kernel {/GRj/isO} (see [5]). Thus 7r depends on the zero function. However,

it is clear that the result of 11.8 is the same if 7r is replaced by any homo-

morphism of the form /—*{xES\f(x) >fo(x)}~°, where /oGR. is fixed. Conse-

quently, 11.8 gives a new proof of the theorem of Kaplansky [4] that a

compact Hausdorff space is determined to within homeomorphism by its

lattice of real-valued, continuous functions.

Example 11.9. Let iPv be a commutative ring which contains a unit. Let

5 be the space of maximal proper ideals of R with the "hull-kernel" topology.

Then S is a compact Pi space and the collection P of all sets Af

= { AGS|/GA} is a basis for the open sets of S. The mapping 7r: f—>Aj is

obviously a product homomorphism of R. onto the semi-lattice P. We shall

show that the (7r, P)-space of R. is homeomorphic to S.

If/i+ • • • +/n = L and if AGS, then/.GA for at least one i. For other-
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wise, l=/i+ • • • +fnEX, contrary to the assumption that X is proper.

Thus Afl\J ■ ■ ■ yJAfn = S. Conversely, if Ah\J ■ • ■ \JAfn = 5, then the ideal
generated by {fu ■ • • ,fn\ is contained in no maximal proper ideal of <r\..

Hence {/i, • • • ,/„} generates the unit ideal and gi, • ■ ■ , gn exist such that

gifi+ • ■ • +gnfn = l. This shows that a (il, ir, P) =a({ 1} ; _{., ir, P) is the set

of all P-coverings of 5. Thus, by 4.5, the (ir, P)-space of f\ is homeomorphic

to 5.
Example 11.10. Let î\ be a ring of functions on a locally compact Haus-

dorff space 5. Assume that the functions of 1{ take their values in an integral

domain with a unit. Finally suppose:

(i) for any/Gîl, the set {„G5|/(x)^0} is open,

(ii) if A is open in 5 and xEA, then fE%. exists so that f(y) =0 if yG^4c

and fiy) = 1 for all y in some neighborhood of x.

Let ir be the mapping of f\ into BiS) defined by f-+{xES\fix)¿¿0}~°.
Because of (i) and (ii), ir is a product homomorphism which can be defined

intrinsically in terms of the ring structure of %. (see [5]). Suppose P is a

sub-algebra of BiS) which contains ir%.. Then it is possible to show that

(4) tti __ 0(31, ir, P) S oo,

where a0 is the set of all P-coverings of 5 and ai is the collection of P-coverings

which contain at least one regular open set whose complement is compact.

Consequently, the (ir, P)-space of _\ is a compactification of 5. If 5 is com-

pact, then by 7.1, the (ir, P)-space of iR. is homeomorphic to 5. Finally, if

every element of 1{. has a compact carrier, and if P is the Boolean algebra of

those regular open sets A such that either A~ or Ac is compact, then the

(ir, P)-space of % is homeomorphic to 5.
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