COVERINGS OF A TOPOLOGICAL SPACE

BY
R. S. PIERCE(Y)

Introduction. One of the most interesting applications of the theory of
lattices is point set topology. Beginning with the work of Stone [6], the close
connection between the topological structure of a space S and the algebraic
structure of the lattice of open (or closed) sets of S has been carefully investi-
gated. A standard procedure in these investigations has been to represent the
points of a space as ideals (or dual ideals) of a lattice. In the present paper,
we shall use this technique to study the set of all coverings of a topological
space.

The paper is in four parts. The first contains the topological preliminaries
and definitions. In the second part, the concept of a covering ideal is intro-
duced and the correspondence between covering ideals and topological spaces
is proved. Part three shows how continuous mappings can be interpreted in
terms of homomorphisms of covering ideals. Finally, in part four, two simple
applications of the theory are presented.

Notation. Set operations will be denoted by rounded symbols. Thus
U, N, C will stand for set union, intersection, and inclusion respectively.
The symbol C is reserved for proper inclusion. If 4 and B are sets, 4 —B
= {aEA | a&B } The complement (in some fixed set) of a set 4 is written A4°.

“Finally, the empty set is denoted .

Sharp cornered symbols will be used to denote lattice operations or rela-
tions. Thus V/, /\, £ denote respectively the lattice join, meet, and order.
The zero and unit of a lattice will be represented by o and %. In a Boolean
algebra, the complement of an element a is written a’.

A mapping ¢ of elements of some set 4 to the elements of a set B induces
a mapping (again denoted by ¢) of 24 to 22 as follows: ¢(4;) = {qba] aEAI}
for A, CA.

If S is a topological space and A is any subset of S, the closure and in-
terior of 4 are respectively denoted 4~ and 4°. We observe that (ANB)—
=A"MNB™ if A and B are open sets. An open set 4 which satisfies 4 =4~
is called regular. The collection of all regular open sets of S forms a complete
Boolean algebra which will be denoted by B(S). Any space with a neighbor-
hood basis composed of regular open sets is called semi-regular.

0. Algebraic introduction.

It is convenient to collect some algebraic definitions which can not be
found in [1] or other standard references.
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DEeFINITION 0.1. A subset I of a partially ordered set is called a terminal
subset if a €I implies b& T for all b=a.

DerFinITION 0.2. Let P be a set which is partially ordered by =. Define
a quasi-ordering of the set of all subsets of P by A <B if, for any a €A, there
exists bE B satisfying a =b.

Some elementary properties of < which will be used often are:

(1) if ACB, then A <B,

(2) A<Zifandonlyif A =¢,

(3) if Cis a terminal subset of P and 4 <B, then ANC<BNC.

DEeFINITION 0.3. Let P be a partially ordered set with a zero o. A subset
P’ of P is called dense in P, if for any a0 in P, b0 exists in P’ with b=a.

DEeFINITION 0.4. A semi-lattice (abbreviated s.l. is a partially ordered set
with a zero element in which every pair of elements has a g.l.b. A mapping
w of one semi-lattice into another is a homomorphism if it satisfies 7w (a/\b)
=ma/\wb and wmo=o.

REMARK 1. In the literature, the existence of a zero is not included in
the definition of a s.l.

REMARK 2. It is possible to define a dual ideal of a s.l. just as a dualideal
of a lattice is defined. In speaking of these, the adjective “dual” will often be
omitted. Since lattice ideals in the usual sense will never be considered, this
can cause no confusion.

DEFINITION 0.5. Let P be a semi-lattice. Define the commutative and asso-
ciativ}e operation /\ on the set of all subsets of P by A AB= {a/\b]aEA,
bEBY{.

(4) If A, B and C are subsets of P, then 4 <BAC if and only if 4 <B
and 4 <C.

DEFINITION 0.6. A semi-lattice P is disjunctive if, whenever a £b, cEP
exists satisfying a /\c>0 and b A\c=o.

REMARK. If P’ is a dense sub-s.l. of the disjunctive s.l. P, then P’ is also
disjunctive. In particular, any dense sub-s.l. of a Boolean algebra is disjunc-
tive.

ProposiTION 0.7 (STONE-GLIVENKO-BUCHI). Let P be a disjunctive semi-
lattice. Then there exists a complete Boolean algebra Q and an isomorphism w
of P onto a dense subset of Q. Moreover, m is unique in the sense that if Qo is a
complete Boolean algebra and m, is an isomorphism of P onto a dense subset of
Qo, then wor! can be extended to an isomorphism of Q onto Q,.

Proof. See [2].

PART I. P-SPACES

In part one we shall define a class of topological spaces—the P-spaces.
These are the spaces which will be studied in the remainder of the paper.
1. Fundamental definitions.
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ProposITION 1.1. Let P={o0,a,b, - - - } be a semi-lattice with a zero o. Let
S={x,7,--- } be a (possibly empty) set of proper (not empty and not all of P)
dual ideals of P. Then S becomes a T, topological space (whose points are the dis-
tinct ideals X, YV, « - - ) if the sets of the form

1) S(e) = {x €S|a € X}

are taken as an open neighborhood basis. Moreover, S(a)M\S(b) =S(a/\b) and

S(0) =&. The mapping a—S(a) is one-to-one 1f and only if the following is
satisfied whenever a£b:

(Ma,») there exists X €S witha & X and b & X.

REMARK. In general S(a\V/b)#S(a)\JS(b). (See 2.2 below.)

Proof of 1.1. It will be sufficient to show that S(a)N\S(b) =S(aAb). If
XeES(@)NS(b), then e€X and bEX. Since X is a dual ideal, a AbEX and
X e&S(a/N\b). Therefore S(a)NS(b) &S(a/\b). On the other hand, if e ADEX,
then ¢ €X and bE X, so S(a/\b) CS(a)NS(d).

DEFINITION 1.2. Let P be a semi-lattice. A space S whose points are proper
dual ideals of P will be called a P-space if the topology of S is obtained by
taking all the sets of the form (1) as a neighborhood basis. If, in addition, S
satisfies condition M, ; whenever a£bd, then S is called a representative P-
space.

A characterization of those Ty spaces which are homeomorphic to P-
spaces is given by 1.1 and its converse:

PRrROPOSITION 1.3. Let P be a semi-lattice. Let S’ be a Ty space and P’ a col-
lection of open sets of S’ such that (i) P’ is a basis for the open sets of S, (i) P’
1s closed under intersection and contains the empty set, and (iii) there is a homo-
morphism w of P onto P’'. Let S be the P-space whose points are the proper dual
ideals

= {aeplxeﬂ-a}, where x € S’.

Then the mapping X ,—x is a homeomorphism of S onto S’, mapping the open
set S(a) = { X.eS laEX ,} onto wa. Finally, if © is an isomorphism, S is a
representative P-space.

The following simple results will be needed later.

LEMMA 1.4. Let T be an arbitrary subset of the P-space S. Then the closure
of Tis T-={XES|XCUT} (where UT=U{Y|YET}).

Proof. If XCUT, and if aE€X, then e €Y for some Y&T. Thus every
neighborhood of X contains a point of T so that X&T—. Conversely, if
X ET-, every neighborhood of X contains a point of T. Hence if a€X, then
Y exists in T so that a € Y; that is, XCUT.
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LemMA 1.5. 4 P-space S is a T space if and only if X C Y never holds for X
and Y in S.

LEMMA 1.6. A representative P-space S is a Hausdorff space if and only if
for any X and Y of S with X#Y, there exists a&SX and bEY such that
a/\b=0.

LeEmMA 1.7. Let S, and S, be P-spaces. Define Si<.S, if, for any X, ES,,
there exists X, &S, such that X, ©X,. Then < is a quasi-ordering on the set of
all P-spaces and a partial ordering on the set of all Ty P-spaces.

In parts two and three of this paper, we shall be concerned mostly with
P-spaces which are compact and 7. It is convenient to introduce some nota-
tion for the set of all such spaces.

DEFINITION 1.8. Let P be a semi-lattice. Denote by Zp the set of all com-
pact T; P-spaces (including the empty space). Two spaces of Zp are equal if
and only if they consist of the same dual ideals. The relation < of 1.7 partially
orders Zp.

2. Semi-regular P-spaces. In this section, we shall examine those
P-spaces for which P is a complete Boolean algebra.

THEOREM 2.1. Let P be a complete Boolean algebra and let S be a representa-
tive P-space. Then the regular open sets of S are precisely those of the form S(a).

Proof. From the assumption that .S is a representative P-space, it follows
that S(a)~= { X ES|aAbs0 all b€ X }. Thus S(a)—°={ X ES|aAb=0 some
bEX}={XES|a’EX}=S(a). Hence S(a)—=S(a)~=S(a')~°=S5((a")")
=S(a), that is, S(a) is a regular open set.

Thus the mapping a—S(a) is a meet isomorphism of the complete Boolean
algebra P onto a dense subset of the complete Boolean algebra of regular
open sets of S. By 0.7, this mapping must be onto. That is, every regular open
set of Sis of the form S(a) for some a EP.

COROLLARY 2.2. Let P be a complete Boolean algebra. Then any representa-
tiwve P-space is a semi-regular T, topological space whose Boolean algebra of
regular open sets is isomorphic to P. Conversely, if P is isomorphic to the
Boolean algebra of regular open sets of the semi-regular T, space S, then S is
homeomorphic to a representative P-space.

Proof. By 2.1, 1.1, and 1.3.

REMARK. When P is a complete Boolean algebra, Definition 1.2 can be
simplified. In fact, if P is a disjunctive semi-lattice, then a P-space S is
representative if and only if condition M,, is satisfied for all a#o.

ExaMPLE 2.3. Let S be a (nonempty) semi-regular T space which satisfies
the second countability axiom and has no isolated points. Then it is proved
in [1, p. 177] that B(S) (the Boolean algebra of regular open sets of S) is iso-
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morphic to the completion by cuts of the free Boolean algebra with countably
many generators.

LEMMA 2.4. Let S be a dense subspace of the topological space So. If A is a
regular open set of So, then ANS is regular open in S and the mapping A—ANS
is an isomorphism of B(Sy) onto B(S).

Proof. Obvious.

COROLLARY 2.5. Let S be a space in which the isolated points are dense.
Then B(S) is isomorphic to the Boolean algebra of all subsets of the set of isolated
points in S.

By combining 2.3 and 2.5, it is possible to characterize B(S) whenever
S is a semi-regular T; space which satisfies the second countability axiom.

PartT II. COVERING IDEALS

The chief object of part two is to formulate and prove the main theorem
of the paper (Theorem 4.5). In the first section, we introduce the concept of
a covering ideal and show how P-spaces give rise to covering ideals. The pre-
cise relation between P-spaces and covering ideals is established in the next
section. Finally, the covering ideals which correspond to compact Hausdorff
spaces are characterized.

Throughout part two, P will denote a fixed semi-lattice. In the notation,
explicit indication of dependence on P will be omitted when there is no
danger of confusion.

3. Covering ideals.

DEFINITION 3.1. A finite, nonempty subset « of P is called a P-covering
(or simply a covering). The collection of all P-coverings will be denoted .
(=Lp). For o, BEL, define a<p and a/\B as in 0.2 and 0.5.

A nonempty subset a of . is called a P-covering ideal (or just a covering
ideal) if it has the properties:

(1) a1, as€a implies oy Aoz Ea,

(ii) «€a and 8>« implies SE€a.

The set of all P-covering ideals will be denoted I' (=Tp). Let I be partially
ordered by inclusion.

DEFINITION 3.2. Let S be a P-space. If a €L satisfies S=U{S(a)|aEa},
or equivalently, XNa> & for all XES, then « is called a covering of S.
Denote by a(S) the set of all coverings of S.

Our first lemma is an obvious consequence of the definitions.

LeMMA 3.3. For any P-space S, a(S), if it is not empty, is a covering ideal.
If S1£S; (see 1.7), then a(S1) 2a(S,). If S is the empty space, a(S) =L,

DEFINITION 3.4. Let a be a covering ideal and let (e, b) be an ordered pair
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of elements of P. Then a is called a representative covering ideal if the follow-
ing condition is satisfied whenever a £5:

(N,,) there exists a€a such that a, b€a and a— {a} &a.

For convenience, N, , can be replaced by the equivalent

(Ng) there exists «&a such that aa— {a} &a.

LeMMA 3.5. Let SEZp (see 1.8), and let (a, b) be an ordered pair of elements
of P. Then a(S) satisfies Nq,» if and only if S satisfies M, of 1.1. In particular
a(S) satisfies N, if and only if a EX for some X ES.

Proof. If S satisfies M, 5, X €S exists so that e € X, b X. Suppose Vis a
point of S different from X. Since S is a T3 space, there exists c€Y with

¢ X. By compactness, choose ¢, + + -, ¢, so that ¢;&X for all ¢ and «
={a, b, ¢, - - -, c,.} is a covering of S. Since ¢;&¢X and b&EX, a—{a}
= {b, cl, o, cn} &a(S). Hence a(S) satisfies Ng,s.

Conversely, if a(S) satisfies Ng,5, then a€a(S) exists with ¢, bEa and
a— {a} &a(S). This means (a— {a})f\X=,®’ for some XES. In particular
be€EX. Since a€a(S), a&EX. Thus S satisfies M, ;.

COROLLARY 3.6. If SEZ, a(S) is a representative covering ideal if and only
if S is a representative P-space (Definition 1.2).

Now we shall determine the algebraic relation between a(S) and the points
(dual ideals) of the compact T P-space S.

DEFINITION 3.7. Let a be a covering ideal. A dual ideal I of P is said to be
under a if aNI#J for all aCa.

LeEMMA 3.8. Let SEZ and assume S is not empty. Suppose I is a dual ideal
of P which is under a(S). Then there is a point X of S with X 1.

Proof. Otherwise, for each X €., there exists a €EX with a&I. By com-
pactness, it would be possible to choose a={a, - - -, a,.} (nonempty)
covering S with ;& for all 2. Then a€a(S) and aNI =, contrary to the
assumption that [ is under a(S).

LeEMMA 3.9. Let SEZ. Then every point of S is minimal in the set of dual
ideals under a(S).

Proof. Clearly, every point of S is under a(S). Let X&S. Suppose I is
under a(S) and ICX. By 3.8, there is a point Y in S with YCICX. Since S
is a T; space, this implies X = ¥ =1. Thus X is minimal under a(S).

COROLLARY 3.10. The proper dual ideals of P which are minimal under a(S)
are precisely the points of S.

Proof. By 3.9, every point of S is minimal under a(S). Conversely, if
S# &, and if I is minimal under a(S), there is a point X of S with XC&1I.
By minimality, this implies X =I. If S is empty, a(S) =. and no proper ideal
is under a(S).
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4. The fundamental theorem.

DEFINITION 4.1. For a €T, denote by S(a) the P-space of all proper dual
ideals of P which are minimal under a.

Corollary 3.10 shows that for any So&E2, S(a(So)) =So. The remainder of
this section will be devoted to showing that for any a, &I, a(S(as)) =ao. First
we will prove an existence theorem for dual ideals of P.

PROPOSITION 4.2. Suppose a &I" and a=.L. Let v be a collection of coverings
such that (i) if B, B2 €7, then Bi\IB:Ex, and (ii) aMNy = &. Then a proper dual
ideal X exists which is minimal under a and satisfies XMB= & for all BE.

Proof. By the maximal principle, extend v to a collection of coverings %,
which is maximal satisfying (i) and (ii). Since {0} &a, yo#F. Define
T=U{B|BEr.}.

If a={ay, - - -, as} €q, put a*={a:Ca|a; b, all bET}. Then a*= &,
since otherwise, for each a;E«, b; and §; exist with a;=b;EB;E7y,. This im-
plies a<B/\J - - - UB,, contrary to aMNy,= .

Put X=J°. Then XN\B= for all €y and a*C X for all a&a. Conse-
quently, XNa= & for all a€a. It must be shown that X is a dual ideal.

Ife€X, {a} €7, so by the maximality of v,, «Sa and 8 &%y, exist satis-
fying a«<BU{a}. This is possible only if a*<{a}. Conversely, a*<{a}
obviously implies e EX.

If b=a and a€X, then a*<{a} <{b} for some aCa. Hence bEX. If
a1, EX and oy, 0, Ea satisfy of <{a1}, af <{a:}, then (s Aew)*<af Ao
< {al} A {ag} = {al/\az}. Hence a; A\a; X and X is a proper ideal.

Finally, to show that X is minimal under a, suppose I is a dual ideal
under a whichis contained in X. Let y; = { 6€,C| BN\I= } Then v, satisfies
(i) and (ii) and 41 2v,. Since 7, is maximal, y1="%,. If e EX, {a} &vo="1, so
a€I. Thus XCI and the proof is complete.

CoROLLARY 4.3. Suppose aCT' and a=L. Let I be a dual ideal which is
under o. Then there exists a proper dual ideal X CI which 1s minimal under a.

Proof. Put v={BE.L|BNI=F}. Then v satisfies (i) and (i) of 4.2.
Hence a proper ideal X exists which is minimal under a and satisfies XM\3
= for all BEx. If aEX, then {a} &+, so a& 1. Therefore XC1I.

LeEMMA 4.4. If a is a covering ideal, then S(a) EZ.

Proof. If a=., then S(a) is the empty space. Suppose then that a#=.(,
It must be shown that S(a) is a compact T space. If X; and X, are minimal
under a, then X;C X, is impossible; thus, by 1.5, S(a) is a T3 space.

To prove that S(a) is compact, it is sufficient to show that if Q is any sub-
set of P with the property S(a)=U{S(a)|aEQ} (where S(a)={XES(@)|a
(9.4 } ), there is a finite subset of Q which is in a. Suppose otherwise: aMN\y = &,
where v denotes the collection of all nonempty finite subsets of Q. Then
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vyC&.L and v is closed under finite unions, so by 4.2 there is a proper ideal X
which is minimal under a and satisfies XMN\3 = for all 3&y. Thus X ES(a),
and a&X for all a€Q. This contradicts S(a) =U{S(a)|aE€Q} and shows
that some finite subset of Q covers S(a). Hence S(a) is compact.

THEOREM 4.5. The mapping So—u(So) and a;—S(a,) defines a Galois con-
nection (see [1]) between = and T'. Moreover, if So©Z and ao &L, then S(a(Sy))
=Sy and a(S(ap)) =a,.

Proof. The first assertion follows from 3.3, 4.4, and Definitions 3.2 and
4.1, By 3.10, S(a(Sy)) =S,. The only thing left to prove is a(S(as)) Ca,. As-
sume ao#L. If a€ao, then by 4.2 there exists X which is minimal under a,
and satisfies aNX =. Hence X&S(ao) and a&a(S(as)). Thus a(S(as))
Ca,. If ao=¢c, then S(ao) =,@ and Q(S(ao)) =,C=ao.

EXAMPLE 4.6. Let P be a Boolean algebra and define a= {aELr| Va=u}
(where Va denotes V{a|aEa}). Suppose I is a proper dual ideal of P which
is under a. Then if a€P, {a, o’} Eq, so {a, o’} NI=F. That is, either
a&I or a’E€1. Hence I is maximal. Conversely, if I is a maximal proper
dual ideal of P, then I is prime. Thus if «€a, Va=uETI and therefore aMNI
# (¥, This proves that the ideals which are minimal under a are precisely
the maximal dual ideals of P. Consequently S(a) is the Boolean space asso-
ciated with P.

5. Normal covering ideals. In this section, we shall formulate a sufficient
condition on a covering ideal a in order that S(a) be a Hausdorff space. The
results contained in 5.2 and 5.4 below follow directly from Theorems VI 4.4
and V 8.9 in [7] and proofs will be omitted.

DEeFINITION 5.1. Let o, B€a. Then « is a star-refinement of 3 (a* <B) if
for any aEeq, there exists b& such that if cEa and a A\c#0, then ¢=b.

A sequence of coverings ay, a1, o, - - - is called normal if a;1* <e; for all
4. If a is a covering ideal, then « is called normal in a if @ is the first term of a
normal sequence of coverings in a. A covering ideal is called normal if every
a&a is normal in a.

PROPOSITION 5.2. Let a be a representative covering ideal. Then S(a) is
Hausdorff if and only if a is normal.

ProPOSITION 5.3. Let a be a representative covering ideal. Then S(a) satisfies
the second countability axiom if and only if there is a countable subset A of P
such that if BEa, there exists aSa with a<B and aCA.

Proof. The sufficiency of this condition is obvious. The necessity follows
from 1.1 and 4.5 by an easy compactness argument.

PROPOSITION 5.4. Let a be a representative covering ideal. Then S(a) is a
compactum if and only if there is a normal sequence of coverings which is co-
initial in a.



1954] COVERINGS OF A TOPOLOGICAL SPACE 289

Part III. MAPPINGS

By Theorem 4.5, the coverings rather than the points can be considered
as the primitive elements of a compact T space. This shift of viewpoint can
be useful, as the examples of part four will show. It is natural then to try to
relate the topological properties of a space directly to the algebraic properties
of its covering ideal. With this aim, we have already considered the concepts
of Hausdorff separation and perfect separability. In part three the com-
parison between topology and algebra will be continued with studies of sub-
spaces, homeomorphisms, and continuous mappings of P-spaces.

6. Closed subspaces of a P-space.

DEFINITION 6.1. Let SEZ. Denote

1) I(S) = U{X| X €5} = {a € P|a(S) satisfies N,}.

(See 3.4 and 3.5.)

It is evident that I(S) is a terminal subset of P (see 0.1). If P is a dis-
junctive semi-lattice, I(S)=P—{o} if and only if S is a representative
P-space.

LEMMA 6.2. Let SoEZ. Suppose S is a closed subspace of So. Put a=a(S,).
Then SEZ and

(2) if a €I(S), there exists aCSa satisfying o — {a} PBNI(S) for all BEna,
B alS)={aCL|a>BNI(S), some BEa}.

Proof. Obviously .S is a compact T; P-space, i.e., SEZ. Suppose e EI(S),
Then ¢€X for some XES. By compactness, a&a exists satisfying X
N(a—{a})=. But X is under g, so if 3€a, a— {a} $BNX. Since X CI(S),
this implies (2).

To prove (3), note that if a>BMNI(S) for some BE&a, and if XES, then
aNX>BNI(S)NX =NX#F. Hence a&a(S). Conversely, suppose
a&a(S). Let YES,—S. Since Sis closed, a € P exists with YESy(a) &S,—S.
Thus a € I(S). By compactness, a;, - - -, @, exist with a;&EI(S) all j and 8
={ay, -+, a.}UaEa. Then a=BNI(S).

LEMMA 6.3. Let SoEZ. Suppose Sy and S, are two closed subspaces of S,.
Then I(S1)CSI(S,) if and only if S;CT.S,.

Proof. Suppose S;LS,. Let XES,, X&S;. Since S; is closed, a &P exists
satisfying X E€Sy(a) SSp—S,. Then a€I(S)), a€EI(S;). Thus I(S)) LI(S:).
The converse is obvious.

DEFINITION 6.4. Let a €T and suppose I is any terminal subset of P,
Then a&©P is called essential in I with respect to a if aEa exists such that
a— {a} PBNI for all B&a. If every aE1 is essential in I with respect to a,
then I is called an a-closed subset of P.
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If Sis a closed subspace of S(a), then I(S) is a-closed by (2). The converse
is a corollary of the next lemma.

LEMMA 6.5. Let aET and suppose I is a terminal subset of P. Define
4 S=501I={X€ESw|xcI}.

Then S is a closed subspace of S(a) and I(S) = {aGPIa s essenttal in I with
respect to a }

Proof. By 1.4, Sis closed in S(a). If a €I(S), then by (2), a is essential in
I(S) with respect to a. But I(S)C1I by (1) and (4), so a is essential in I with
respect to a.

Suppose a € I(S), that is, aEX for all XES. Let a&a. Then (a— {a})
NX=aNX=Z for all X&S. If X&S, XEI by (4), so b&X exists with
be&EI. By compactness, = {bl, I b,,}U(a— {a}) exists in a(S(a)) =a
with b;& I for all 5. Then a— {a}>BNI. This proves that a is not essential
in I with respect to a.

COROLLARY 6.6. If S is a closed subspace of S(a), then S(a, I(S))=S. If I
s an a-closed subset of P, I(S(a, I))=1.

7. Homeomorphisms.

LeEMMA 7.1. Let w be an isomorphism of the semi-lattice Py into the semi-
lattice P,. Suppose a is a Pi-covering ideal. Denote by [ma] the Py-covering ideal
{aE,Cp,Ia>7ral, aIEa}. Then w*: X—r'X maps S;=S([ra]) homeo-
morphically onto S;=S(a).

Proof. A dual ideal I of P, is under [ra] if and only if 7—!I is under a. In
particular, if XES,, then 71X is a point of S;. Thus #* maps S; into S;. If
YleSl, then [7I' Yl] = {aQEle@gral, a1€ Yl} is a dual ideal of Pz WhiCh is
minimal under [ra]. Since 7*[rVi]=7"1[zVi]=V;, 7* is onto. Also, if

XES,,

(1) [r>*X)] = X

(because X is minimal under [ra]). Thus 7* is one-to-one. Finally, if a EP;,
*Se(wa) = {71X | X € Sy(ra)} = {V1 E S1|a € V1} = Si(0).

By (1), the sets Sy(wa) form a basis for S;. Hence 7* is a homeomorphism.

THEOREM 7.2. Let P and P, be complete Boolean algebras and suppose a,
and ay are representative Pi- and Pa-covering ideals respectively. If w is an iso-
morphism of Py onto Py such that woy=as, then w induces a homeomorphism w*
of S:=3S(a;) onto S1=S(a1); m* is uniquely determined by the condition w(w*X)
=X. If ¢ is a homeomorphism of Sy onto Sy, then ¢ induces an isomorphism ¢+
of Py onto Py with ¢tay=ay; ¢+ is uniquely determined by the condition ¢*(dX)
=X. Finally (z*)t=m and (¢p+)*=6¢.
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Proof. The theorem follows easily from 7.1.

COROLLARY 7.3. Let P be a complete Boolean algebra and let a, and a; be
representative P-covering ideals. Then S(a1) is homeomorphic to S(az) if and only
if there is an automorphism w of P such that wa,=a,.

COROLLARY 7.4. Let P be a complete Boolean algebra and let a be a representa-
tive covering ideal. If ¢ is a homeomorphism of S(a) onto itself, then ¢pta=a.
Conversely, if = is an automorphism of P satisfying ma=aq, then w* is a homeo-
morphism of S(a) onto itself.

Proof. If ra=a and X is minimal under a, then 7*X =7-1X is minimal
under m—'a=a. Hence 7* maps S(a) onto itself.
8. Continuous mappings.

THEOREM 8.1. Let P, and P, be semi-lattices. Suppose a, and az are repre-
sentative Pi- and Py-covering ideals respectively. Denote Sy = S(a1) and Sy =S(a,).
Assume that S, is a Hausdorff space. Finally, let m be ¢ homomorphism of P,
into P, which satisfies

¢)) ma; S 0.

Then there is a unique continuous mapping ™ of Sy into Sy such that

2) r(r*X) C X, X € S..
Moreover,
(3) (7*)7181(a) S Sa(ma) S (7*)1(S1(a)7)

for all aEP,. Finally, 7*S,=S(ay, I) (see 6.5), where I={aEP;|ma=0}.

Proof. Let X&S;. Then 7~X is a proper dual ideal of P, which is under
a;. For if a€a;, ma€ay, so mtaNX# . Thus N X#= . By 4.3, YES,
exists satisfying YC#—1X, This ¥ is unique. Indeed, suppose Vi, V,Cn X,
where Y; and ¥, are distinct points of S;. By 1.6, 0 =a Ab for some a € ¥; and
bEY,. Hence o&Er—1X—a contradiction since mo=0&X. Thus (2) defines a
unique mapping 7*: S,—.S,.

To prove (3), notice that (7*)~15;(a) C.Sy(ma) follows directly from (2).
If ma&X, then aE7'X so that a Ab>#0 for all b&7*X. Consequently,
T*X E€Si(a)~, and therefore Sy(wa) S (7w*)~1(Si(a)~).

Now suppose N is any open set of S;. By (3) and the normality of Sy,
(@*)=IN = U { (#%)~1Sy(a) | Si(a)- S N} S U {Sy(wa) | Si(a)~CS N} S U {(z*)—
-(Si(@)7)| Si(@)~C N} = (x*)~'N. Thus (x*)~'N is open and 7* is continuous.

It remains to show that 7*S,=S(a, I)={ V€S| CI}. If XES,,
T*XCr-1X ={a€P|maEX} C{aEP)|mas%0} =1. Thus 7*S,SS(m, I).
If YV1&E7*S,, then since m*S, is closed and S; is normal, a € ¥; exists satisfying
Si(@)~N7*Sy=F. By (3), Sy(wa) S(x*)~1(Si(a)) = (x*)"1[Si(a)~N7*S;]
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=&, so ma=o0. Consequently V11, thatis, Y1&S(a;, I). Since ¥; was arbi-
trary, S(a;, 1) Co*S;.
REMARK. If P, is a complete Boolean algebra, (3) can be sharpened to

(4) [((@*)7251(a) | S Sa(ma).

In order to prove a converse of 8.1, it is necessary to assume that P, is a
complete Boolean algebra. In compensation, it need not be assumed that .S;
is a Hausdorff space.

THEOREM 8.2. Let P, be a semi-lattice and P, a complete Boolean algebra.
Let Sy and S, be representative Pi- and Py-spaces respectively. Denote a,=a(S;)
and a;=a(S:). Suppose ¢ is a continuous mapping of S into Sy. Then the rela-
tion

® Sa(¢ta) = (¢7'51(a))™, ¢ € Py,
defines a unique (semi-lattice) homomorphism ¢+ of P, into P, such that
ota; S a;
and
¢ot(¢X) C X, XS,
The kernel of ¢t is the complement of I(¢S,) (see 6.1).

The proof of 8.2 is straightforward and will be omitted.

Theorems 8.1 and 8.2 are converses when the following conditions are
fulfilled: P; is a disjunctive semi-lattice, P; is a complete Boolean algebra,
a; and a, are representative covering ideals, and S;=.S(a;) is a Hausdorff
space. If these are satisfied, 8.1 and 8.2 imply (¢+)*=¢ for any continuous
mapping ¢ of S; into S;. However, in general, not all homomorphisms 7 of a;
into a, satisfy (7*)*=r (see 9.4).

ProrosiTiON 8.3. Let Py, P,, and Pj be semi-lattices. Suppose a1, az, and as
are representative Py-, P,-, and Ps-covering ideals respectively. Assume S(a;) and
S(az) are Hausdorff spaces. Finally, suppose m: Py—P; and my: P;—P; are
homomorphisms which satisfy w6, a; and ma,Tas. Then (mym)* =nin;.

This follows directly from 8.1. The analogous equation (¢:p1)* =] b7 is
usually false. (Compare (4) and (5).)
9. Homeomorphisms into a compact Hausdorff space.

LeEMMA 9.1. Let P, and P, be semi-lattices. Let Sy =S(a1), Se=S(ay) be repre-
sentative compact Hausdorff Pi- and Psy-spaces respectively. Suppose m is a homo-
morphism of Py into Py with wa, Ca,, such that w* is a one-to-one mapping of S,
into Si. Then ma; is coinitial in as.

Proof. Let ¢&P, Suppose cEXES, Then 7*X&n*S:(c) and since
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m* is a homeomorphism, 7*S,(c) is an open set of 7*S; in its relative topology.
Hence, because S; is normal, a €P, exists satisfying w*X &S;(a)N\71*S;
CSi(a)~Nr*S, Ca*Sy(c). By 8.1 (3), S; (ra) C(7*)~1(Si(a)~) = (7*)![Si(a)~
N*S, | C (r*)~1[7*Sy(c) | = Sa(c). Putting c=o0 in this last equation also
shows that if Si(a)~Nn*S;= ¢, then ma=o.

Now suppose 3€a,. By the result of the above paragraph and the com-
pactness of 7*S,, it is possible to choose ay, - - -, @, in P; so that 7*S,
CSi(a)V - - - USi(a,) and {7ra1, ce e, 1ra,,} <. Since S; is compact Haus-
dorff, by, - - -, bm exist so that S;(b;)~N7w*S;= & forall jand a= {al, <, Qn,
by, - - -, b,,.}EaL Then by the last statement of the first paragraph, ma
<{way, - - -, wa.} <B.

COROLLARY 9.2. Let P, be a semi-lattice and P, a complete Boolean algebra.
If ¢ is a one-to-one continuous mapping of the representative Py-space S(az)
into the compact Hausdorff representative Pi-space S(a1), then ¢tay is coinitial
in (g,

Combining 9.1 with the following theorem, we get a precise characteriza-
tion of those homomorphisms 7= (with 7wa;Ca,) for which n* is one-to-one.

THEOREM 9.3. Let P, and P, be semi-lattices. Let Si=S(a;), S2=S(az) be
representative Pi- and Pi-spaces respectively. Assume S is compact Haus-
dorff. Suppose 7 is a homomorphism of Py into P; such that wa; is @ coinitial
subset of as. Then

(1) m maps P, onto a dense subset of Py,

(ii) 7* is a one-to-one mapping of S, into S; and

(ii) of P, is a complete Boolean algebra, (v*)t=m if and only if I
={aEP,|ma=0} is an a-closed subset of Py (see 6.4).

Proof. The assumption that ma, is coinitial in the representative P,-cover-
ing ideal a; obviously implies (i).

Let X ES;. Denote by [X] the dual ideal {b,EP,|b,=ma, a€n*X}. By
8.1 (2), [X]CSX. It will now be shown that [X] is under a; and therefore
(since X is minimal under a,) X = [X]. Let 8&a,. Then by hypothesis, aE€a,
exists so that ma<@. Since 7*X is under a;, 7*XNa = &. Hence & # [X |Nra
< [X]NB. Because B was arbitrary, [X] is under a, and [X]=X. Now if X
and Y in S, are such that 7*X =7*Y, then [X]=[V]. Consequently X=17Y.
This proves that 7* is one-to-one. By 8.1, 7#*S,=S(a;, I) (see 6.5), where I
={a|ma=0}.

Suppose I is a;-closed. By 6.6, I=1(S(a;, I)), so wbs£0 implies b&ET*X
for some X €S,. Let a €P;. Suppose bE P; satisfies 0= 7b <ma. Then for some
XES,, bEr*X and m1a € [X]=X. Therefore (r*)=1S5:1(b)N\Sy(ra) # &. Since
P, is dense in the complete Boolean algebra P,, it follows that ((z*)~1S:(a))~
2S:(ma), so by 8.1 (4), Sx(mwa) = ((w*)~1S:(a))~°=S:((w*)*a). Thus (z*)+=r.

Conversely, if (7*)*=m, Sy(ra) = ((7*)~1S:(a))~ for every a EP;. Thus
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wa7o0 implies Se(ma)MN\(w*)~151(a) #= &, so X ES.(ma) exists with aEnr*X.
Therefore, ICU{r*X|XES,} =I(S(as, I)). By 6.5, it follows that I is a;-
closed. The proof of the theorem is complete. ‘

ExampLE 9.4. We shall use 9.3 to construct a homomorphism 7 which does
not satisfy (7*)*=m.

Let S; be the real closed interval [—1, 1]. Let P; be the Boolean algebra
of regular open sets of this interval. According to 1.3 and 4.5, S; is homeo-
morphic to the compact Hausdorff representative P;-space S(a;), where a;
is the set of Pj-coverings of Sy. Define X,= {a €P:|0ESi(a)} and let I be
a (proper) maximal dual ideal of P; with X,CI. Since X =X, is the only
point of S(a;) satisfying X C1, it follows from 6.6 that I is not a;-closed.

Let P, be the two-element Boolean algebra {o, u} Define 7 to be the
unique homomorphism of P; on P, with the kernel I°. This = maps a; onto the
representative P,-covering ideal a,={ {#}, {0, #}}. Thus the hypotheses of
9.3 are satisfied. By 9.3 (iii), 7 cannot satisfy (7*)*=m.

PArT IV. APPLICATIONS

Two applications of the theory developed in the preceding parts will now
be presented. First, we shall study compactification, the process of imbedding
a topological space as a dense subset in a compact space. The second applica-
tion is a method of obtaining a topological space from a ring or a lattice. No
special effort will be made to obtain new results. Our only aim is to exhibit
typical applications of Theorem 4.5. .

10. Compactification.
The basic theorem on which most of the discussion of this section depends
18 ’

THEOREM 10.1. Let S be a T, P-space (not necessarily compact). Let a be a
P-covering ideal. Then S is a subspace of S(a) if and only if (i) aZa(S) and
(ii) for any X ES and any a EX, there exists a&a such that (a— {a})f\X= .
If S is a representative and (i) and (ii) are satisfied, then S is dense in S(a).

Proof. Suppose (i) and (ii) are satisfied. Let XES. Then XNa= & for
all «€a(S), so by (i), X is under a. If D is a dual ideal of P with DCX,
there exists ¢ €X with aD. By (ii), aE€a exists satisfying DN\(a— {a})
CXN(a—{a})=. But a&D, so aND=. It follows that X is minimal
under a and therefore X €S(a). Since X was arbitrary, SCS(a).

Conversely, suppose S is a subset of S(a). Then a covering of S(a) is also
a covering of S, so (i) is satisfied. By 4.5, any point of S(a) (and hence of S)
has the property (ii). The last statement of the theorem is obvious.

ReEMARK. The P-space topology of a subset .S of a P-space Sy is precisely
the relative topology of .S induced by S,.

ExaMPLE 10.2. Let P be the s.l. of open sets of the T; space S. Let a be the
set of all open coverings of S. The conditions of 10.1 are satisfied and it can be
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shown (see Example 11.7) that S(a) is homeomorphic to the Wallman com-
pactification of S.

ExaMmpLE 10.3. Suppose again that P is the s.l. of open sets of the T space
S, but now let a be the set of all (finite) normal coverings of S. Then (see [7])
a satisfies 10.1 (ii) if and only if S is completely regular. In this case, S(a) is
a Hausdorff compactification and, in fact, it is not hard to prove that S(a) is
homeomorphic to the Tychonoff compactification of S.

ExampLE 10.4. By taking P =B(S) and a=all P-coverings of S, Theorem
10.1 gives the following result: in order that a space S be homeomorphic to a
dense subset of a semi-regular compact T space, it is necessary and sufficient
that S be a semi-regular T space which satisfies:

(1) if x€ACS, where A is a regular open set, then regular open sets
By, - - -, B, exist such that x&B; for all j, and S=A4AUB,U - - - UB,.

It is obvious that (1) is satisfied if S is a regular space. However, examples
of semi-regular Hausdorff spaces which do not satisfy (1) can be given.

ExamPLE 10.5. Suppose S is a locally compact Hausdorff space. Let P
be the s.l. of all open sets 4 such that either A~ or 4¢ is compact. If a is the
set of all P-coverings of .S, the conditions of 10.1 are satisfied, so S(a) is a
compactification of S. It is evident that S(a) has the same P-covering ideal
as S, the one-point compactification of S. Thus, by 4.5, S(a) is homeo-
morphic to $.

ExAMPLE 10.6. Theorem 10.1 can be used to prove the following theorem
of Hurewicz [3]:

A separable metric space of dimension =# can be imbedded as a dense
subset in a compactum of dimension =Z#.

Proof. Let P be the collection of all open sets of S. By 1.3, it can be as-
sumed that S is a P-space. Choose a countable neighborhood basis
Ay, Ay, - - - . For each 4, let Bj; be a sequence of open sets such that N; Bj
=(4,)°. Let ay, ez, + - * be a simple enumeration of the coverings { A;, .Bji}.
Put B1=0; and by induction choose 8; (¢>1) so that (i) B« is a P-covering of
S, (ii) B is a star refinement of Br_; Ac, and (iii) 8 has order <. Let a be the
covering ideal generated by the normal sequence {Bk}. Then a fulfills (i)
and (ii) of 10.1 by the choice of the o’s. Hence S(a) is a compactum (by 5.4)
of dimension =# and S is homeomorphic to a dense subset of S(a).

ProrosiTiON 10.7. Let S be a representative Ty P-space. Let a and b be P-
covering ideals satisfying aCbCa(S). If a satisfies (ii) of 10.1, so does b.
Moreover, if a is a normal covering ideal and w is the identity isomorphism of P,
then w* (see 8.1) is a continuous mapping of S(b) onto S(a) which satisfies
7*X =X for XS and v*(S(b) —S) =S(a) —S.

Proof. By 4.5 and 8.1.
11. Rings and lattices. In this section, we shall show how a topological
space can be obtained from a ring or distributive lattice. Instead of consider-
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ing rings and lattices separately however, it is convenient to treat them both
as special cases of semi-rings. A semi-ring R is an algebra with two binary
operations, addition (written +) which is associative and commutative, and
multiplication (indicated by juxtaposition) which is associative and satisfies
the distributive laws f(g+k) = (fg) + (f%) and (g+k)f = (gf) + (%f). An element
0ER is called a zero if it satisfies f+o=f and fo=of =0 for all fER. An ele-
ment 1 ER is called a unit if it satisfies f1 =1f=f for all fER.

LeMMA 11.1. Let R be a semi-ring and suppose w is a product homomorphism
of R into a semi-lattice P. Assume that P has a unit u. Let M be a multiplicative
system in R, that is, a nonempty subset of R which is closed under multiplication.
Define

(I(M) = a(m; R, m P)
={a€Lrla>{nfi, -, 7ful, i+ - + fa ENM}.
Then a(M) is a P-covering ideal.

Proof. If fi+ - - - +fuEMand g1+ - - - + g ENM, then figi+ - - - +fugn
=(h+ - )@t - - - Fgn) EM. Hence {xfy, - - -, wfu} Afmgs, - - -,
7rg,,,} = {1r(f1g1), cee, w(fngm)}Ea(fM). Consequently, a(M) is a covering
ideal which always contains {u} (In particular, a(90) is nonempty.)

M

LeEMMA 11.2. If I, and M, are multiplicative systems in R, and if N TN,
then a (M) Sa(Ny).

Proof. Obvious.

LeEMMA 11.3. Let MM, and I, be multiplicative systems in R such that for
any fEM,, there exists gER satisfying fg EM, or gf ENM,. Then a(N;) Ca(NL,).

Proof. If a€a(MMy), then a> {nfy, - - -, wfn} where fi+ - - - +f, ENM,.
By hypothesis, g&R exists so that (for instance) fig+ - - - +fag
=(fi+ - - - +f)gEM. But a>{mfiArg, - - -, 7faA1g} = {7(frg), - - -,

7(fag) }, and therefore a Ca(N0).

COROLLARY 11.4. If R contains a unit 1, then a({ 1 })Qa(?ﬂ) for any multi-
plicative system .

DerFINITION 11.5. Let R be a semi-ring and suppose 7 is a product homo-
morphism of R into a semi-lattice P. Assume that P has a unit. Put

2 aoR,mP)=0N {a(fm; R, m, P) I M is a multiplicative system in ‘R}
The space S(a(R, w, P)) will be called the (r, P)-space of R.

LEMMA 11.6. If R is a semi-ring with a unit 1 and 7 is a product homo-
morphism of R onto a sub-s.l. of P, then a(R, 7, P) =a({ 1 } i R, m, P). More-
over, the (w, P)-space of R is homeomorphic to the (w, #R)-space of R.



1954] COVERINGS OF A TOPOLOGICAL SPACE 297

Proof. By 11.4 and 7.1.

ExampPLE 11.7. Let P be a distributive lattice with a zero and a unit.
Then P is also a semi-ring with the operations \/ and A as sum and product
respectively. If my is the identity mapping of P onto itself, a=a(P, m, P)
=a({u}; P, m, P)= {aE,Cp|Va=u}. Suppose X is minimal under a. If
a\V/bEX, there exists a€a such that XN(a— {a\Vb}) = . But (a— {a\Vb})
U{a, b} €a,s0 a&EX or b&X. Thus X is prime. Conversely, if X is prime,
Va=uEX implies XNas= . Consequently, S(a) is the P-space of all
minimal prime ideals of P. This space is homeomorphic to the Wallman space
associated with the dual of P (see [8]).

ExamPLE 11.8. Let R be the lattice of all real-valued continuous functions
on a compact Hausdorff space .S. Then R is a semi-ring with the lattice opera-
tions (fVg)(x) =max {f(x), g(x)} and (fAg)(x) =min {f(x), g(x)} as sum
and product respectively. Let v be the product homomorphism of R into
B(S) defined byf—»{xES]f(x) >0 }"’. We shall show that the (w, B(S))-space
of R is homeomorphic to S.

By 11.2 and 11.3,

@3) &R, =, B(S)) = ﬁla«n»,

where (n) denotes the multiplicative system whose only element is the func-
tion on S which is equal everywhere to n. If fi\/ - - - \/fu&(n), then S
cUr, {xES|fi(x)>0}, so {xfy, - - -, 7fm} is a covering of S. Conversely,
by the well known “partition theorem,” if {4, - - -, A} is any covering of
S by regular open sets, real-valued continuous functions fi, - - + , fm exist so
that {xES|fu(x)#0}CA4x and £iV - - - \V/fuEm). Then {afy, - - -, 7fm}
<{A4y, -+, An}. Thus a((n)) is the set of all B(S)-coverings of S. By (3),
a(R, m, B(S)) is also the set of all B(S)-coverings of S. It follows from 1.3 and
4.5 that the (r, B(S))-space of R is homeomorphic to S.

REMARK. The homomorphism 7 of 11.8 is uniquely determined by its
kernel {fER|f <0} (see [5]). Thus = depends on the zero function. However,
it is clear that the result of 11.8 is the same if 7 is replaced by any homo-
morphism of the form f—>{x€S| Fx) >fo(x) }"°, where foER is fixed. Conse-
quently, 11.8 gives a new proof of the theorem of Kaplansky [4] that a
compact Hausdorff space is determined to within homeomorphism by its
lattice of real-valued, continuous functions.

ExamPLE 11.9. Let R be a commutative ring which contains a unit. Let
S be the space of maximal proper ideals of R with the “hull-kernel” topology.
Then S is a compact T space and the collection P of all sets A,
= {XESIfGEX} is a basis for the open sets of S. The mapping w: f—A4, is
obviously a product homomorphism of R onto the semi-lattice P. We shall
show that the (w, P)-space of R is homeomorphic to S.

If i+ - - - +fu=1, and if XES, then f;&E X for at least one <. For other-
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wise, 1=fi+ - - - +f,EX, contrary to the assumption that X is proper.
Thus 4, - - - U4, =S. Conversely, if 4,\J - - - UA,, =S, then the ideal
generated by {fy, - - -, f,.} is contained in no maximal proper ideal of R.
Hence { S, f,.} generates the unit ideal and g, - + -, g, exist such that
gfi+ - - - +gafa=1. This shows that a(R, =, P)=a({1}; R, 7, P) is the set
of all P-coverings of S. Thus, by 4.5, the (w, P)-space of R is homeomorphic
to S.

ExampLE 11.10. Let R be a ring of functions on a locally compact Haus-
dorff space S. Assume that the functions of R take their values in an integral
domain with a unit. Finally suppose:

(i) for any fER, the set {xES[f(x);éO} is open,

(i1) if 4 is open in S and x €4, then fER exists so that f(y) =0 if y&A4°
and f(y) =1 for all y in some neighborhood of x.

Let 7 be the mapping of R into B(S) defined by f—{xES | f(x) =0},
Because of (i) and (ii), 7 is a product homomorphism which can be defined
intrinsically in terms of the ring structure of R (see [5]). Suppose P is a
sub-algebra of B(S) which contains 7#R. Then it is possible to show that

(4) 185 .g a(R) ™, P) .g o,

where a, is the set of all P-coverings of .S and q; is the collection of P-coverings
which contain at least one regular open set whose complement is compact.
Consequently, the (w, P)-space of R is a compactification of S. If S is com-
pact, then by 7.1, the (w, P)-space of R is homeomorphic to S. Finally, if
every element of R has a compact carrier, and if P is the Boolean algebra of
those regular open sets 4 such that either 4~ or 4¢ is compact, then the
(w, P)-space of R is homeomorphic to S.
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