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1. Introduction. Many of the results concerning power-associative com-

mutative rings and algebras carry the restriction that the characteristic be

prime to 30 [l; 2; 3](2). We shall study the cases where the characteristic is

3 or 5 and shall show that the results are those of the general case if we make

a slight modification of the definition of power-associativity. However, our

proofs require the use of the associativity of fourth, fifth, and sixth powers,

while the results for characteristic prime to 30 use only the associativity of

fourth powers.

It is known that there exist simple commutative power-associative alge-

bras of degree two and characteristic p>5 which are not Jordan algebras

[4; 5]. We shall obtain the important property of algebras of degree two and

characteristic zero given in Theorem 6. It is hoped that this result may lead

to a proof of the conjecture that a simple power-associative commutative

algebra of degree two and characteristic zero is necessarily a Jordan algebra.

We shall assume from the outset that the system under consideration is

commutative and has characteristic not two.

2. Definitions and identities. If xaxß = xa+ß for every x of 21 and integers

a and ß, then (x+-'Ky)a(x+-'Ky)ß = (x+-\y)a+ß for all x and y in 21, where X is

any integer in case 21 is a ring, and X is any element of the base field if 21 is an

algebra. The result obtained by this substitution is a polynomial Zííf A^«'

= 0 in X. Each Ai is called an attached polynomial of 21 and further lineariza-

tion yields other attached polynomials. We use these facts in the following

definitions.

Definition 1. A commutative ring 21 will be said to be strictly power-

associative if xaxß — xa+ß for every x of 21 and all integers a and ß and if every

attached polynomial of 21 is zero.

When 21 is an algebra, Definition 1 is equivalent to

Definition 2. A commutative algebra 21 over a field % is called strictly

power-associative if x"xß = xa+ß for all positive integers a and ß, and every x

of 2Ijf where $ is any scalar extension of fj.

Let us now consider the associativity of fourth powers; that is, the

identity A(x)=x2xi— (x2x)x = 0. Linearization of A(x) gives the identity

(1) 4(xy)xi = 2[(xy)x]x + (x2y)x + x3y
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for a ring 21 whose characteristic is greater than 3 and for an algebra 21 over a

field % whose characteristic is 3 and which contains more than three elements.

We also obtain

(2)

and

4(yz)x2 + 8(xy)(xz) = 2[(yz)x]x + 2[(xy)z]x + 2[(xy)x]z

+ 2[(xz)y]x + 2[(xz)x]y + (x2y)z + (x2z)y

(3)

4[(xy)(zw) + (xz)(yw) + (xw)(yz)]

= x[y(zw) + z(wy) + w(yz)] + y[x(zw) + z(wx) + w(xz)]

+ z[x(yw) + y(wx) + w(xy)] + w[x(yz) + v(zx) + z(xy)]

without any restrictions on the ring 21.

At this point we note that when the characteristic is prime to 30, strict

power-associativity is equivalent to power-associativity. This follows from

the fact that associativity of fourth powers implies the associativity of all

higher powers [l ], and fourth power associativity is equivalent to the multi-

linear identity (3).

To show that strict power-associativity is not equivalent to power-

associativity we consider the commutative free algebra 2Í of all polynomials

in x and y over the field g of three elements. Restrict 21 by defining all prod-

ucts to be zero except x, x2, x3, y, y2, yz, xy, (xy)x, (xy)y, x2y, y2x, (y2x)y, x3y,

and let (y2x)y= — xsy. Computation shows that 21 is power-associative, but,

since (1) is not satisfied, is not strictly power-associative.

The assumption of the associativity of fifth powers gives the identity

2[(xy)x]x2 + (x2y)x2 + 2(xy)x3

(4)
= xiy + (x3y)x + [(x2y)x]x + 2{ [(xy)x]x}x

under the restrictions that applied to relation (1). Relation (4) yields

2[(xy)z + (yz)x + (zx)y]x2 + 2[2(xy)x + x2y](xz)

+ 2[2(xz)x + x2z](xy) + 2(yz)x3

(5) = {2[(xy)z + (yz)x + (xz)y]x + [2(xz)x + x2z]y

+ [2(xy)x + x2y]z}x+ {2 [(xz)x]x + (x2z)x + x3z}y

+ {2[(xy)x]x + (x2y)x + x3y}z

and a relation which may be summarized by

(6) Z [(*i*2)*3](*4*b) = Z { [(xiX2)x3]x4}xs

with two factors of each summand equal to x and the remaining factors one

each to y, z, and w.

It will be necessary to use an identity derived from the equality x4x2 = x6x.

This identity is obtained with the same restrictions that apply to (1) and
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may be written as

(7) Z   { [(*1*2)X3]X4}(X5X6)   =   Z ({ [(.XiXi)x3]xi}x6)Xt

with three factors of each summand equal to x and the remaining factors one

each to y, z, and w.

3. Conditions for the associativity of powers. Albert has shown [l] that

the associativity of fourth powers implies the associativity of all higher

powers in a commutative ring whose characteristic is prime to 30. Further-

more he has given examples of commutative rings of characteristic 3 and of

characteristic 5 which satisfy x2x2 = x3x but with not all higher powers associa-

tive. The additional conditions which must be imposed on rings of character-

istic 3 or 5 are given in the following two theorems.

Theorem 1. Let 21 be a commutative algebra over afield $ whose character-

istic is 3, g have more than three elements, and x2x2 = x3x, x3x2 = x4x/or every x

in 21. Then 21 is power-associative.

For proof we first observe that the hypotheses imply (2), (4), and (5).

Now let y = x*-1 and z = x"_*~1 in (2) for k = 2, 3 and obtain, after using

xxx" = xx+" for X+ji¿<«, xn_4x4 = xn_3x3 = xn_2x2. Next replace y in (4) by x"-4

and then have 2x"_3x3 = xn_4x4+xB_1x. Thus xn_2x2 = xn_1x.

The equality xn~"xv = xn_1x clearly holds for v = \, 2, 3, 4. Assume it for

r-1, 2, • • •, k. Then take y = x*-2, z = xn-<*+1) in (5) so that 2x"-3x3

= xn-(íH-2)x*-2_j_xn-(i+i)xí;+i yje use the hypothesis of the induction and then

have x"_(*+1)x(,:+1) = xn_1x as desired.

The proof depends on the fact that when 21 is a commutative algebra

over a field $ of more than three elements, x3x2 =x4x implies (4) which in turn

implies (5). For rings we assume (4) and obtain the following result.

Corollary. Let 21 be a commutative ring whose characteristic is 3 and let

x2x2 = x3x and (4) hold. Then 21 is power-associative.

Theorem 2. Let 21 be a commutative ring whose characteristic is 5 and let

x2x2 = x3x and x4x2 = x5x. Then 21 is power-associative.

Replace the variables in (3) by powers of x with positive exponents a, ß,

y, 8 and obtain

4\xn-^+ß)xa+ß + xn-^a+y'>xa+y + xn-w+y'> xf+y]

(8) r
= 3[xn-"xa + xn~ßxß + %"-"tx,t + xn-*-a+ß+''')xa+ß+-<\

whenever xxx" = xx+" for X+ju<«=a+/3+7 + ô.

The values a = ß = y = \ in (8) give

(9) 2x"-2x2 = 4x"-1x + 3x"-3x3.

Let w = 5 so that 2x3x2 = 4x4x + 3x3x2, x3x2 = x4x, and thus the associativity of
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fourth powers implies the associativity of fifth powers in a commutative ring

whose characteristic is 5. If we set « = 6 in (9), 2x4x2 = 4x6x + 3x3x3, and our

hypothesis on sixth powers implies the associativity of all sixth powers. We

now have xxx" = xx+f' for \-\-¡i<n, «g7.

The substitution a = 2, 0=7 = 1 in (8) yields

(10) x"-4x4 = xn~3x3 + 2x"-2x2 + 3X"-1:*;,

and the result of setting a —3, j3=7 = l is

(11) xn~&xs = x"-4x4 + 4x"-3x3 + 3x"-2x2 + 3xn~1x.

Since we have assumed the associativity of sixth powers we may take a+ß+y

= 6. We use the values a=ß=y—2 and a = 3, ß — 2, 7 = 1 to obtain xn_6x6

= 4x"~4x4 + 2xn~2x2 = 3xn-6x6+3xn~4x4+2xn-3x3+4xn-2x2+4xn-1x.   Then   use

(11) and (10) to successively eliminate xn~6x5 and xn-4x4 from the last expres-

sion and have xn~*x3 = xn~lx. Relation (9) implies xn_2x2 = x"_1x.

Clearly xn~"x" = x" for v = \, 2, 3. Assume the equality for v = 1, 2, • • • ,k

and then let a =k — l, ß = y=i in (8). This substitution gives 3x"~*xÄ;+4xn-2x2

= 3x"-<-k-1'>xk-1+xn-1x+3xn-<-k+Vxk+1. By the induction hypothesis xn-<-k+l'>xk+l

= xn and this completes the proof.

4. Decomposition relative to an idempotent. In a commutative strictly

power-associative ring 21 with an idempotent e we have relation (1). Let y =e

in (1) to obtain a result which, when written in terms of right multiplications,

is

(12) 2R\ - 37c2 + Re = Re(Re - I)(2Re - I) = 0.

As in the general case [2] the relation (12) implies the decomposition of 21

into the supplementary sum 2Í = 2Ie(l)+2Ie(l/2)+2Ie(0). We may then obtain

the following theorem giving multiplicative relations between the modules

2Ie(X) for rings with characteristic 3 or 5. The statement is that of the general

case [2] and, since much of the proof is the same, we shall prove only the

parts for which the general proof does not hold.

Theorem 3. The modules 2Ie(l) and 2le(0) in a commutative strictly power-

associative ring 21 are zero or orthogonal subrings of 21. They are related to

2L(l/2) by the inclusion relations

2L(l/2)2L(l/2) ç 2L(1) + 2ie(0),

(13) a.(l)«.(l/2) £ ».(1/2) + 2L(0),

2ïe(0)2L(l/2) çï,(l/2)+a,(l).

We first consider the case where 2Í has characteristic 3. The values z = w

— e, xe=Xx, ye=ny in (3) give a relation which may be written as

(14) (xy) [27c! + (2X + 2M - 4)7^ + (2\2 + 2ß  + X + u - 8Xju)7] = 0.
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The substitution x = e, ze=\z, ye = \iy in (5) results in a relation which, after

writing x for z, is

(xy) [2R.I + (2X + 2ß - 2)r\ + (2x' + 2// - X - n - 2)7?,
(J-^J ^ ^ 2 2 2 2

+ (2X  + 2u  + X  + m  + X + m - 4X ju - 4\¡i  - 4XM)7] = 0.

When X=m = 1, (14) and (15) become (xy) [27?2-2/] = (xy) [27?e3 + 27?^-4J]

= 0. By (19), R3e=Re so (xy) [R2-l] = (xy) [R2e+Re+l] =0. Consequently

(xy) [Re — I] =0 and 2L(1) is a subring of 21. The values X=ju = 0 in (15) yield

(xy) [27?3-27?2-27?e] =0 = (xy)7?2 and therefore 21,(0) is a subring of 21. Next

letX = 0, ju= 1 in (14) and (15) to obtain (xy) [27c2-27?e] = (xy) [2R3e-Re+4l]

= 0. It follows that (xy) [Re+l] =0, (xy) [R2e+-Re] =0 and, since (xy) [7?2-7?e]

= 0, (xy)7?e = 0. Thus (xy)J = 0; that is, 2I8(1) and 2L(0) are orthogonal.

Let 21 have characteristic 5. It is only necessary to show the orthogonality

of 2Ie(l) and 2L(0). To this end set w = x = e, ye=y, ze = 0 in (7) and so obtain

(xy) [2Rt+R2-Re] =0 where we have replaced z by x. By (12), 2R*e=R2+R,

so (xy)7?2 = 0, (xy)7?e = 0. If X=0, m = 1 in (14), (xy)[2R2e-2Re+3l]=0 and

consequently xy = 0 as desired.

5. On certain mappings and their properties. The purpose of the next

part of our work is to show that the results of [3 ] on certain mappings hold

for rings and algebras of characteristic 3 or 5. The statements of the results are

exactly those given for rings or algebras with characteristic prime to 30, ex-

cept that we shall be working with strictly power-associative systems. How-

ever, some of the proofs given in [3] are not valid when the characteristic is

3 or 5, and we shall concern ourselves with furnishing proofs in these cases.

Furthermore, we shall adopt the notations of [3].

Much of our work will depend on the mappings So(xi), Si/i(xi), Ti(x0),

and ri/2(xo) defined in [3] and relations (5), (6), (7), and (8) of [3]. Of these

relations the first of (5), the first of (6), and all of (8) must be shown for a

ring whose characteristic is 3. Also, (7) must be proved when the character-

istic is 5.

These relations are obtained in a straightforward manner from the

identities of §2, so there is no need to give details. The substitution x — u = u2,

y=yi, z = zi, w = ww in (6), where a\ is in 2IU(X), gives the following pair of

relations when the characteristic is 3.

,_, SU2(ziyi) = 5i/2(zi)5,i/2(yi) + 5,i/2(yi)5i/2(zi),
(1°)

So(ziyi) = 2S1/2(z1)S0(yi) + 2Si/2(yi)So(zi).

A corresponding pair of relations is obtained by setting x = w,y=y0,z = z0, and

w = Wi/2 in (6). These are

Tifi(z0yo) = T,i/2(zo)7'i/2(3'o) + 7,i/2(yo)7,i/2(so),

7.\(z0yo) = 2TVÏ(za)Ti(y^) + 2Tín(ya)T1(za).
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It is necessary to set x = u, y = ylt z = z0, w = wi/2 in both (6) and (7) to ob-

tain the remaining relations for both characteristics 3 and 5. We write these

as

(18) S1/2(y1)r1/2(zo) = r1/2(zo)51/2(yi),

[wuiTi(z0)]yi = 2wi/25i/8(yi)2,i(zo),

[w1/2S0(yi)]zo = 2w1/2T1/i(zo)S0(y1).

Relations (16) to (19) now hold for any characteristic prime to 2.

We may remark that Lemmas 1 and 2 of [3 ] now follow without change.

6. Development of the essential machinery. In this section we shall

derive the machinery needed to obtain the major results of [3 ] in our cases.

Some of the relations we shall derive are used in [3] but our cases will require

a more complete development of this theory.

If 21 is a strictly power-associative ring we have relation (1). Let u be an

idempotent in 21 and let y = w in (1). It then follows as in [3] that

2

(20) xi/25i/2(wi) = Xi/2Ti/i(wo),        x1/2 = wi + wo,

and that the quantities of 2íu(l/2) are nilpotent if m is a principal idempotent.

We now proceed to obtain other relations for later use. Consider yi/2 in

2L(l/2) and g0 in 2L(0). Define products by

yi/2go = bi/2 + bu       6i/2 = yi/2Ti/2(gQ),        bi = yi/2Ti(g0);

bi/2go = Ci/2 + ci,        ci/2 = èi/2Î\/2(go), Ci = bmTi(gc¡);
2

(21) y1/2 = wi+ w0,

yi/2^1/2   =   Zl + ZOi

yi/2Ci/2 = si + So-

Then   y = z = y1/2,   and   x = g0   in   (2)   yields   2y2/2go+4(yi/2go)2 = (y2/2go)i;o

+ 2[(yi/2go)yi/2]go+2[(yi/2go)go]yi/2 + (yi/2g?)yi/2 from which we obtain three

identities by considering components. We use (17) to write the component in

««(1/2) as

(22) yi/23r'i/2(go)5'i/2(ôi) = yi/íSi/üfo).

The above substitution gives (22) only for characteristic prime to 6. When 21

has characteristic 3 it is necessary to make the substitution x = g0, y = z=yi/2,

w = u in (6) to obtain (22). The relation (19) is used to simplify the 2IU(0) and

2I„(1) components and we then have

(23) 2w0go + 4(¿i/2)o + 2[y1/2So(h)]go = (w0go)go + 2z0go + 4s0 + 6yU2So(ci),

2 2

(24) 4(by2)u + 3ôi = 4(yi/2c1/2)M,
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where (b2/2)o is the component of b\/2 in 2lu(0).

It will be frequently useful to have identities obtained by making the sub-

stitutions x = y=yi/2, z = go, w = u and x = y=yi/2, z = g2, w = u. These are

(25) 2z0 + yi/2So(bi) = w0go

and

(26) 4io + 4yi/250(ci) = w0go.

Finally we obtain a relation which is crucial in proving two of our most

important theorems. Let x=yi/2, y = z = g0 in (5) to obtain 4[(y1/2g0)go]y2/2

+ 2 (ymà) yl/2 + 8 [ (yungo) ym ] (ywgo) + 4 (y\/2go) (ywgo) + 2y3/2g2, = 4 { [ (yi/2go)

• ji/2]yi/2} go+4 {[ (yi/2go)yi/2ko} yi/2+4 {[ (ywgo)go]yw}ym+2 [(yi/2g20)yi/2]yw

+ 2 [(yi/2go)yi/2]go+2(y?/2go)go+2 [(y2/2go)go]yi/2- Then compute the component

of this expression in 2lti(l/2), apply the transformation Si/2(bi)T^go) to it,

use (17) to (22), (25), (26) and write the result as

bi + 2(ciz1)ii + 8[yi/27;i/2(go)ri/2(ie)o)ri(go)]ci

+ 2[y1/2T1/2[y1/2So(b1)]T1(go)]c1

= 2(w1c1)c1 + 4(b1s1)b1 + 4[yi/2T1/2[y1/2So(b1)]T1/2(go)T1(go)]b1

+ 4 [y1/2r1/2 [yV2So(ci) ]Ti(g0) ]h.

This completes our set of relations.

7. Decomposition relative to a set of idempotents. The decomposition of

a ring relative to a set of pairwise orthogonal idempotents depends on

Lemma 1. Let u and v be orthogonal idempotents of a power-associative ring

21. Then (au)v = (av)u for every a of 21.

For proof write 2Í = 2t«(l) +3X^(1/2) +2I«(0), a = ai+-a1/2+a0, and awv

= &i+6i/2. Using these relations it is seen by direct computation that 27?^7<!„

= 7?u7?„, 2RuRvRu = RvRu, and 2RvRl = 3RVRU — 2RUR„ and, by the symmetry of
u and v, 2R2RU = 2RVRU, 2RVRURV = RURV and 2RUR2,=3RURV-2RVRU. We also

have RuRvRuRv = 7?27?2 and, using the preceding relations, 47?,i(7?c7?,17?„)

= 2RURV = RuRv, 4RURC = 2RuRt = 3RURV — 2RVRU. Thus RURV = 3RURV — 2RVRU,

2RVRU — 2RURV as desired.

The proof of Lemma 1 also implies

Lemma 2. Let u and v be orthogonal idempotents. Then (au)v = (av)u is

contained in the intersection of 2tM(l/2) and 2I„(l/2) for every a of 21.

The remainder of the work in [3 ] is now valid without change for the case

when the characteristic is 5. When the characteristic is 3, the material in [3]

from Lemma 4 to Lemma 10 holds, and there is no need for us to repeat those

results here.
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8. Simple algebras. If 21 is a commutative power-associative algebra with

unity quantity e = u+v where u and v are orthogonal idempotents, we may

write 2í = 2íi+2í12+2I2 where & = H»(1) =81,(0), 2Ii2 = 2I„(l/2) = 2l„(l/2), 2I2
= 2I„(0) = 21,(1) and make corresponding changes in the subscripts of the ele-

ments of 21 and transformations Sx, Tß as in [3]. It is known(3) that 2Ii = mö:

+ ®i, 2I2=î|5 + @2 where ® = ©i + ®2 is a nilalgebra. Also, xy = ae+g for every

x and y of 2I12 where a is in % and g is in ®.

We are now in a position to prove Theorem 3 of [3 ] for algebras of char-

acteristic 3. The result may then be stated as

Theorem 4. Every simple commutative strictly power-associative algebra of

characteristic not two is either an algebra of degree one or two with a unity quan-

tity or is a Jordan algebra.

Since the decomposition relative to an idempotent and relations (16) to

(19) have been shown for algebras of characteristic 5, the proof of [3] is now

valid for these algebras. When the characteristic is 3 it is necessary only

to provide a proof for the following important lemma.

Lemma 3. Let yi2S2(xi) be in ®2 for every Xi of 2li and y12 of 9ii2. Then

y\2T\(x2) is in &ifor every x2 of 2t2 and y12 of 2Ii2.

Suppose the lemma were not true. Since yi27\(i>) =0, we may then assume

that there exist a yi2 and a g2 such that ynTl(g2) is not in ®x. As in [3] we may

take yi2Ti(g2) =u. Then with &i = u and with appropriate changes in subscripts

to fit the notations of this section, relation (27) becomes

u+■ 2dZ! + 2[y1/2T12(g2)T12(w2)Ti(g2)]ci

(28) r -,
= 2(wiCi)ci + ii + yi2ri/2[3)1252(ci)jri(g2).

We shall arrive at a contradiction by showing that u is in ®.

From (26) and the hypothesis of the lemma, s2 is in ®2 and it follows that

Si is in ©i. Using b\ = u in (22) we obtain

(29) yitTin(g2) = 2y125i/2(ci).

This implies C\ is in ®i. For if cx=yu-\-c( with c{ in @i, then (l/2)7yi2

= y12[(l/2)ri/2(g2) -S1/2(c{ ) ]. Since (l/2)ri/2(g2) -S1/2(c{ ) is a nilpotent trans-

formation, we must have 7 = 0. The component in 2ii of the relation obtained

by letting x = bi2, y=y\2, z = C\, w = v in (3) gives

yi2Tii2[yi2S2(c1)]Tx(g2) = 2&12« + yi2r1/2(g2) Ti [yi2S2(ci) ] + 2si + 2ziCi.

The term b22u is in Gi by (23) and y12ri/2(g2)ri[yi25'2(ci)] =2yi25i/2(ci)

• T-i [yi2S2(ci) ] = {y^rjy^ici)]}^ is in &. Thus yi2ri/2[y1252(ci)]r1(g2) is in

@i and u is in ©j. This completes the proof.

(3) [3, Lemma 10].
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9. The general structure theory. The general structure theory for power-

associative algebras depends on Theorem 7 of [3 ] and its consequences. After

we prove it for algebras of characteristic 3 we may state the complete re-

sult as

Theorem 5. Let e be a principal idempotent of a commutative strictly power-

associative algebra 21 of characteristic not two. Then 21,(1/2) +2L(0) is contained

in the radical of 21.

When the characteristic is 3 all of the proof given in [3] is valid except

that part where 21 is assumed to be semisimple and 3)^21 is a nonzero ideal

of 2Í. It is then only necessary to prove 3) is semisimple and to show this

we need to demonstrate that 3X(l/2)2l„(0)ç:a)î where ffl is the radical of

3) and « is a principal idempotent of 3). And then it is sufficient to prove

bi=yi/2T1(go) is in $D? for y1/2 in 3),(l/2) and g0 in 21,(0). We shall show that

b\ is in SDÎ since then it will follow as in [3] that &i is in 9)?.

With products defined as in (21), except that the subscripts are relative to

e, we have (27). Next let x = y =yi/2, z = go,w = b, in (3) to obtain the two rela-

tions

yii2T1/2(go)T1/2[y1/2Sa(bi)] = yi/2T1/2[yi/2S0(bi)]T1/2(go),

(30) yi/2T1/2(go)T1[yi/2So(bi)] + [fti/i(yi/sSi/s(öi))]e

= 2[yi/2(&i/25i/2(ôi))]e + yi^ri/Jyi^o^i) JT^go) + (yi/2&i/2)*i-

The element yi/2 is in Qi^Cffl and Ci is in 3)i so yi/2S0(ci) is in 50?. Since

33i/23)i/2Ç9J? the last relation implies yi/27\/2[y1/2.So(£>i)]7\(go) is in 90?. Simi-

larly a relation obtained by the substitution x=y = yi/2, z = go, w = c, in (3)

implies yinTwly^So^T^go) is in 2tt. Also (30), (19), (18), and (22) give

[yi/22r,i/2[yi/25'o(&i)]7;i/2(go)2ni(go)]Ji = [yi/2Ti/2[yi/2>So(bi)]Ti(go)]c1 in 9K.

Finally we need the relation

(31) 2yi/2r1/2(go)7,i/2(w0) = yi/2Ti/2[y1/2So(bi)] + 2yi/25i/2(zi)

which is obtained by setting x=y = yi/2, z = bi/2, w = e in (3). After observing

that Zi, Wi, and Si are in S^S^ÇjuDÎ, it follows from (27) that b\ is in W as

desired.

The associativity of fifth powers was used twice in the proof of Theorem

5; namely, in obtaining (22) and (27). To show the necessity of using fifth

power associativity when the characteristic is 3 we give an example. Let 21

be a commutative algebra over a field % whose characteristic is 3 with a basis

of three elements e, y, g. Define multiplication in 21 by e2 = e, ey — 2y, yg = e,

and eg = y2 = g2 = 0. Then 21,(1) = e%, 21,(1/2) =yg, and 21,(0) =gg. Direct
computation shows that fourth powers are associative but the example

contradicts the conclusion of the theorem since 2I,(l/2)2íe(0) =21,(1). Of

course fifth powers cannot be associative.
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10. Algebras of degree 2 and characteristic 0. We go back to algebras of

degree 2 and shall again use the notations of §8. Since simple commutative

power-associative algebras of degree greater than two are classical Jordan

algebras, it seemed natural to conjecture that simple algebras of degree two

are also Jordan algebras. It has been shown by the construction of examples

[4; 5] that this conjecture is false for algebras of characteristic p. However,

it is known [4] that stable simple algebras of degree two and characteristic 0

are Jordan algebras. No decisive result has been obtained for algebras of

characteristic 0 and not necessarily stable, but, in attempting to prove that

they are Jordan algebras, some interesting results have been found. If

9Dí = @ + 2íi2Si/2(®1)+2íi2ri/2(®2) can be shown to be an ideal of a simple

algebra 21, it would follow that 21 is a classical Jordan algebra. We are not

able to show ST7Î is an ideal but in the attempt to do so have obtained a

stronger form of Lemma 3 for algebras of characteristic zero. This result is

false when the characteristic is p [5].

We now prove the preliminary

Lemma 4. Let 21 be a commutative strictly power-associative algebra whose

characteristic is prime to 6. 7fy127^i(g2) —ufor some yu in 2Ii2 and some g2 in 2I2,

then yi2S2[yi2T1/2(g2)Ti(g2)] is either 0 or ( — 1/2)?/.

By hypothesis we have (21) and (29). These and relations (18) and (19)

imply

yi2Ci = (l/2)oi¡¡ + b2,       bi2d = (l/2)ci2 + (l/2b)2g2,

(32) 2
yuci = (l/2)ci2 + b2g2.

Let x=y=yi2, z = d in (3). Then taking w = ci and w = g2 in turn we obtain

(33) 2bl2v = 2s2 - 6Z>2 = s2 + (l/2)z2g2 + 262.

Eliminating b\2v between (23) and (33) yields 2s2-+2b2+z2g2-\-(w2g2)g2 — 2w2g\

= 0 which, when combined with (25) and (26), gives (w2g2)g2 = w2g\. It fol-

lows from this fact and (25), (26), (33) that 6i>2+3ö2 = 0 and -2Z*2 is either 0

or an idempotent of 2I2. But v is an absolutely primitive idempotent of 2I2 so

— 2è2 = 0 or v.

It is possible to prove Lemma 4 for an algebra whose characteristic is 3,

but, since we shall not use the result, we shall not prove it.

The hypothesis of Lemma 3 was necessary because we needed to have b2

in ®2. Thus when b2 = 0 the hypothesis of Lemma 3 is satisfied and so we

may assume b2= —(1/2)» in the proof of the following stronger result.

Theorem 6. Let 21 be a power-associative algebra of degree 2 and character-

istic 0. Then yi2Tx(x2) is in ®i for every y12 of 21i2 and x2 of 2l2. 73y symmetry

yuS2(xi) is in @2for every y12 of 2Ii2 and xx of 2Ii.
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Suppose the theorem were not true. Then there exist a yi2 and a g2 such

that yi22~i(g2) =u, Lemma 4 applies, and, as we have observed, we may take

b2=yi2S2(ci) = — (l/2)w.

The element g2 is nilpotent so there exists a least integer k such that gh = 0.

Consequently, by (17), (29), and (19), y12r1/2(g*) =0 = 2*-1y12[r1/2(g2)]t

= yi2ri/2(g2)]*r1(g2)=2*yi2[5'i/2(ci)]*r1(g2)=cf. Furthermore, 4 = 0 implies

yuS2(ci) = 0 = k-2    y\i[Syi(ci)\    S2(ci)

= ky12[Ti/î(gi)\     52(ci) - — k2   g2

by (16), (29), and (19). The algebra has characteristic 0 so g2-1=0 contra-

dicting the fact that k was chosen to be the index of nilpotency of g2.

It is evident that the proof of Theorem 6 breaks down for characteristic p

since g2=0 implies &g2_1 and it maybe thatfc is a multiple of p. In other words,

it is not possible to find y12 and g2 such that yi2Ti(g2) =w'unless the index of

nilpotency of g2 is a multiple of the characteristic. These facts were used in

constructing simple power-associative commutative algebras of degree 2

and characteristic p which are not Jordan algebras [5].
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