AREAS OF k-DIMENSIONAL NONPARAMETRIC SURFACES IN $k+1$ SPACE

BY
ROBERT N. TOMPSON
Introduction. Suppose $X \subset E_{k}(k \geqq 2)$ is a k cell, g is a real-valued continuous function on E_{k}, j is a positive integer not greater than k, and f is the mapping defined by the relation

$$
f(x)=\left(x_{1}, \cdots, x_{j-1}, g(x), x_{j+1}, \cdots, x_{k}\right) \quad \text { for } x \in E_{k}
$$

For this class of mappings on E_{k} into E_{k} (denoted by Ω_{k}) we concern ourselves with the validity of the formula

$$
\int_{X}\left|D_{j} g(x)\right| d \mathcal{L}_{k} x=L(f \mid X)=\int_{E_{k}} S(f, X, y) d \mathcal{L}_{k} y=\int_{E_{k}} N(f, X, y) d \mathcal{L}_{k} y
$$

where $D_{j} g$ is the partial derivative of g in the direction of the j th base vector, $L(f \mid X)$ is the Lebesgue area of the surface $f \mid X, S(f, X, y)$ and $N(f, X, y)$ are respectively the stable multiplicity and multiplicity of f on X, and \mathcal{L}_{k} denotes the k-dimensional Lebesgue measure.

The main results, which comprise a complete theory of area for the class Ω_{k}, are embodied in Theorems 2.6, 2.13, 2.14, and 2.15.

For $k=2$ the results are in most part known (see [T1], [T2], and [R]).
The theory of area of the class Ω_{k} is intimately connected with the theory of area of k-dimensional nonparametric surfaces in E_{k+1}. In fact if \bar{g} is the function defined by

$$
\bar{g}(x)=\left(x_{1}, x_{2}, \cdots, x_{k}, g(x)\right) \quad \text { for } x \in E_{k}
$$

and π is an orthogonal projection of E_{k+1} onto E_{k}, then

$$
\bar{g} \mid X
$$

is a k-dimensional nonparametric surface in E_{k+1}, and

$$
\pi \circ \bar{g}
$$

is a mapping of E_{k} into E_{k}. For some, but not all, orthogonal projections π, $\pi \circ \bar{g}$ is a member of Ω_{k}.

A reduction procedure is devised whereby the theory of area of the class Ω_{k} extends, in great part, to the mappings $\pi \circ \bar{g}$. A theory of area for k-dimensional nonparametric surfaces in E_{k+1} evolves; a theory in which complete information is obtained concerning the validity of the relation

[^0]\[

$$
\begin{aligned}
\int_{X} J \bar{g}(x) d \mathcal{L}_{k} x & =L(\bar{g} \mid X) \\
& =\beta(k+1, k)^{-1} \int_{G_{k+1}} \int_{E_{k}} S\left(p_{k+1}^{k} \circ R \circ \bar{g}, X, y\right) d \mathcal{L}_{k} y d \phi_{k+1} R \\
& =\beta(k+1, k)^{-1} \int_{G_{k+1}} \int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{g}, X, y\right) d \mathcal{L}_{k} y d \phi_{k+1} R
\end{aligned}
$$
\]

where $J \bar{g}$ is the Jacobian associated with \bar{g} by means of its approximate differential, and where the last two members of the string are respectively the stable integralgeometric and integralgeometric areas of the surface $\bar{g} \mid X$.

The main results are contained in Theorems 3.8, 3.11, 3.15, 3.16, and 3.17.
For $k=2$ the theory of area for k-dimensional nonparametric surfaces in E_{k+1} is well established (see [F4, 6] and [S, V]).

1. Definitions.

1.1 Definition. If f is a function, then inv f is its inverse, and for any set $A, f \mid A$ is the function with domain ($A \cap \operatorname{domain} f$) for which .

$$
(f \mid A)(x)=f(x) \quad \text { whenever } x \in(A \cap \operatorname{domain} f)
$$

Furthermore

$$
N(f, A, x)
$$

is the number (possibly ∞) of elements of the set $A \cap\{z \mid f(z)=x\}$, and

$$
f^{*}(A)=\{x \mid x=f(z) \text { for some } z \in A\}
$$

If g is also a function, then

$$
f \circ g
$$

the superposition of f on g, is defined by the formula

$$
(f \circ g)(x)=f(g(x)) \quad \text { for all } x
$$

1.2 Definition. Euclidean n space will be denoted by E_{n}. The usual metric and inner product (denoted by \bullet) are assumed for this n-dimensional vector space. We write

$$
x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \quad \text { for } x \in E_{n}
$$

For m and n positive integers we shall often identify $E_{m} \times E_{n}$ with E_{m+n}. Lebesgue n dimensional measure over E_{n} is denoted by \mathcal{L}_{n}.

$$
\alpha(n)=\mathcal{L}_{n}\left(E_{n} \cap\{x| | x \mid<1\}\right)
$$

1.3 Definition. If f is a function on E_{n} to E_{1} and $x \in E_{n}$, then we define

$$
\lim _{z \rightarrow x} \sup \operatorname{ap} f(z)
$$

to be the infimum of the numbers of the form

$$
\lim _{z \rightarrow x} \sup _{z \in A} f(z)
$$

where A is a Lebesgue measurable subset of E_{n} with density one at x.
1.4 Definition. For m and n positive integers a function L on E_{m} to E_{n} is linear if and only if

$$
\begin{aligned}
L(x+y) & =L(x)+L(y) & \text { for } x \in E_{m}, y \in E_{m} \\
L(\lambda x) & =\lambda L(x) & \text { for } x \in E_{m} \text { and } \lambda \text { a real number }
\end{aligned}
$$

For $1 \leqq i \leqq m$ let ${ }^{m} I^{i}$ denote the i th unit vector of E_{m}. Then if L is a linear function on E_{m} to E_{n}

$$
L\left(^{m} I^{i}\right)=L^{i}=\left(L_{1}^{i}, L_{2}^{i}, \cdots, L_{n}^{i}\right) \in E_{n} .
$$

The matrix of L, which we identify with L, is the n by m matrix whose entry in the j th row and i th column ($1 \leqq j \leqq n, 1 \leqq i \leqq m$) is L_{j}^{ℓ}. If $m \leqq n$ the square root of the sum of the squares of the determinants of all m by m minors will be denoted by $\Delta(L)$.

If $1 \leqq m \leqq n, f$ is a function on E_{m} to E_{n}, and L is a linear function on E_{m} to E_{n} for which

$$
\lim _{z \rightarrow x} \sup \operatorname{ap} \frac{|f(z)-f(x)-L(z-x)|}{|z-x|}=0,
$$

then L is unique and is termed the approximate differential of f at x. If x is a point at which f has the approximate differential L we denote

$$
J f(x)=\Delta(L) .
$$

If f is a function on E_{1} into E_{n} and $a<b$, then $T_{i-a}^{b} f(t)$ is the supremum of the numbers of the form

$$
\sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|
$$

where $a=t_{0} \leqq t_{1} \leqq \cdots \leqq t_{n}=b$.
If f is a function on E_{n} to E_{1} and j is a positive integer no greater than n, then $D_{j} f$ is the function on E_{n} such that

$$
D_{i} f(x)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \cdots, x_{i-1}, x_{i}+h, x_{j+1}, \cdots, x_{n}\right)-f(x)}{h} \quad \text { for } x \in E_{n} .
$$

1.5 Definition. If $m \leqq n$ are positive integers, then p_{n}^{m} is the function on E_{n} onto E_{m} defined by

$$
p_{n}^{m}(x)=\left(x_{1}, \cdots, x_{m}\right) \quad \text { for } x \in E_{n}
$$

1.6 Definition. If n is a positive integer, then G_{n} will denote the set of all linear transformations R on E_{n} to E_{n} for which

$$
|R(x)|=|x| \quad \text { whenever } x \in E_{n}
$$

With respect to the topology of uniform convergence and the operation of superposition, G_{n} is a compact topological group, in fact, the orthogonal group of E_{n}.

The identity element of G_{n} will be designated by ${ }^{n} I$, and ϕ_{n} will be the unique Haar measure over G_{n} for which $\phi_{n}\left(G_{n}\right)=1$.

The following fact may be inferred (see [W, 8]):
If f is a ϕ_{n} measurable function on G_{n} then

$$
\int_{G_{n}} f(R) d \phi_{n} R=\int_{G_{n}} f(\mathrm{inv} R) d \phi_{n} R=\int_{G_{n}} f(R \circ S) d \phi_{n} R=\int_{G_{n}} f(S \circ R) d \phi_{n} R
$$

whenever $S \in G_{n}$.
1.7 Definition. If $m \leqq n$ are positive integers, then

$$
\beta(n, m)=\frac{\alpha(m) \cdot \alpha(n-m)}{\alpha(n) \cdot\binom{n}{m}}
$$

1.8 Definition. A function g on E_{n} is said to be a gauge over E_{n} if and only if domain $g \subset\left\{X \mid X \subset E_{n}\right\}$, range $g \subset\{t \mid 0 \leqq t \leqq \infty\}$.

If g is a gauge over E_{n} and $0<r \leqq \infty$, the function \dot{g}_{r} is defined by the relation

$$
\ddot{g}_{r}(A)=\inf _{F \in B} \sum_{S \in F} g(S) \quad \text { for } A \subset E_{n}
$$

where $F \in B$ if and only if F is a countable subfamily of domain g for which

$$
A \subset \bigcup_{S \in F} S, \quad \text { diameter } S<r, \text { whenever } S \in F
$$

One says that ϕ is generated by g if and only if g is a gauge over E_{n} and ϕ is the function defined by

$$
\phi(A)=\lim _{r \rightarrow 0+} \dot{g}_{r}(A) \quad \text { for } A \subset E_{n}
$$

It may be shown that ϕ is a (Carathéodory outer) measure over E_{n} and that closed subsets of E_{n} are ϕ measurable.
1.9 Definition. If $m \leqq n$ are positive integers and $\gamma_{n}^{m}, \zeta_{n}^{m}$, and χ_{n}^{m} are the gauges over E_{n} defined by

$$
\gamma_{n}^{m}(S)=\sup _{R \in G} \mathcal{L}_{k}\left[\left(p_{n}^{m} \circ R\right)^{*}(S)\right]
$$

whenever S is a Borel subset of E_{n},

$$
\zeta_{n}^{m}(S)=\beta(n, m)^{-1} \int_{G_{n}} \mathcal{L}_{k}\left[\left(p_{n}^{m} \circ R\right)^{*}(S)\right] d \phi_{n} R
$$

whenever S is an analytic subset of E_{n},

$$
\chi_{n}^{m}(S)=\alpha(m) 2^{-m}(\text { diameter } S)^{m} \quad \text { whenever } S \subset E_{n}
$$

then \mathfrak{C}_{n}^{m} generated by $\chi_{n}^{m}, \mathfrak{F}_{n}^{m}$ generated by ζ_{n}^{m}, and Γ_{n}^{m} generated by γ_{n}^{m} are respectively the Hausdorff, the integralgeometric, and the Gross k-dimensional measures over n space (see [F4], [H], [C]).

One may easily check that $\mathscr{F}_{n}^{m}, \mathcal{F}_{n}^{m}$, and Γ_{n}^{m} are invariant under isometries of E_{n} and that any subset of E_{n} is contained in a G_{δ} set of equal \mathscr{F}_{n}^{m} measure, in an analytic set of equal \mathcal{F}_{n}^{m} measure, and in a Borel set of equal Γ_{n}^{m} measure. The equality of \mathcal{f}_{n}^{n} and \mathcal{L}_{n} is apparent from the definition. It is also true that $\mathcal{H}_{n}^{n}=\mathcal{L}_{n}$ (see [SD]).
1.10 Definition. If $m \leqq n$ are positive integers and $X \subset E_{m}$ is an m cell or its interior, then $C_{n}(X)$ will denote the set of continuous functions on X to E_{n}.

If $g \in C_{n}(X)$, then g is a polyhedron if and only if X can be so triangulated that g maps each simplex baracentrically onto a rectilinear simplex of E_{n}.

It is to be noted that relative to the topology of uniform convergence the class of polyhedra is dense in $C_{n}(X)$, and also that all areas used in this paper are equivalent on the class of polyhedra.
1.11 Definition. Suppose $m \leqq n$ are positive integers and f is a continuous function on E_{m} to E_{n}.

If $X \subset E_{m}$ is an m cell, then

$$
L(f \mid X) \text {, the } m \text {-dimensional Lebesgue area of } f \mid X
$$

is the lower limit of the areas of polyhedra approximating $f \mid X$.
If $X \subset E_{m}$ is the interior of an m cell, then

$$
L(f \mid X) \text {, the } m \text {-dimensional Lebesgue area of } f \mid X
$$

is the supremum of $L(f \mid Y)$ for all subsets Y of X which are m cells.
If $X \subset E_{m}$ is either an m cell or its interior, then
the m-dimensional Hausdorff area of $f \mid X=\int_{E_{n}} N(f, X, y) d \mathcal{C}_{n}^{m} y$; the m-dimensional integralgeometric area of $f \mid X=\int_{E_{n}} N(f, X, y) d \mathcal{F}_{n}^{m} y$

$$
=\beta(n, m)^{-1} \int_{G_{n}} \int_{E_{m}} N\left(p_{n}^{m} \circ R \circ f, X, x\right) d \mathcal{L}_{m} x d \phi_{n} R
$$

the m-dimensional integralgeometric stable area of $f \mid X$

$$
=\beta(n, m)^{-1} \int_{G_{n}} \int_{E_{m}} S\left(p_{n}^{m} \circ R \circ f, X, x\right) d \mathcal{L}_{m} x d \phi_{n} R ;
$$

where $S(f, X, x)$ is the stable multiplicity as defined in [F7].
1.12 Definition. If n is a positive integer exceeding one, j is a positive integer no greater than $n, A \subset E_{n}, z \in E_{n}$, and $u \in E_{n-1}$, then

$$
\begin{aligned}
A_{z} & =E_{n} \cap\{x+z \mid x \in A\} \\
A_{(j)} & =E_{n-1} \cap\left\{w \mid\left(w_{1}, \cdots, w_{j-1}, v, w_{j+1}, \cdots, w_{n}\right) \in A \text { for some } v\right\}, \\
A_{(j)}^{u} & =E_{1} \cap\left\{v \mid\left(u_{1}, \cdots, u_{j-1}, v, u_{j+1}, \cdots, u_{n}\right) \in A\right\}
\end{aligned}
$$

If f is a continuous real-valued function on E_{n} and i is a positive integer, then

$$
K_{i}=E_{n} \cap\left\{x| | x \mid \leqq i^{-1}\right\}
$$

and f_{i}, the i th integral mean, of f, is the real-valued function on E_{n} defined by the formula

$$
f_{i}(x)=\alpha(n)^{-1} i^{n} \int_{K i} f(x+z) d \mathcal{L}_{n} z \quad \text { for } x \in E_{n}
$$

2. On a certain class of mappings of E_{k} into $E_{k}(k>1)$. Let Ω_{k} denote the class of mappings on E_{k} into itself defined by: $f \in \Omega_{k}$ if and only if for some positive integer j not exceeding k and for some continuous real-valued function g on E_{k}, f is defined by the formula

$$
f(x)=\left(x_{1}, \cdots, x_{j-1}, g(x), x_{i+1}, \cdots, x_{k}\right) \quad \text { for } x \in E_{k}
$$

For such a function $f \in \Omega_{k}$ and i a positive integer, \dot{f}_{i} will be defined as that element of Ω_{k} for which

$$
\dot{f_{i}}(x)=\left(x_{1}, \cdots, x_{j-1}, g_{i}(x), x_{j+1}, \cdots, x_{k}\right) \quad \text { for } x \in E_{k}
$$

2.1 Sectional assumption. In the development of a theory of area for the class Ω_{k} it will be convenient to fix a function $f \in \Omega_{k}$ which will be defined by $f(x)=\left(x_{1}, \cdots, x_{k-1}, g(x)\right)$ for $x \in E_{k}$, where g is a (fixed) real-valued continuous function on E_{k}.

No restriction in generality will be effected by this assumption (see Remark 2.20).
2.2 Lemma. If $Y \subset E_{k}$ is a bounded open convex set and i is a positive integer, then

$$
\int_{E_{k}} N\left(\dot{f}_{i}, Y, x\right) d \mathcal{L}_{k} x \leqq \alpha(k)^{-1} i^{k} \int_{K_{i}} \int_{E_{k}} N\left(f, Y_{z}, x\right) d \mathcal{L}_{k} x d \mathcal{L}_{k} z .
$$

Proof. We let

$$
a(u)=\inf Y_{(k)}^{u}, \quad b(u)=\sup Y_{(k)}^{u} \quad \text { for } u \in Y_{(k)}
$$

and for each $u \in Y_{(k)}$ we define the function

$$
\begin{aligned}
& h_{u} \text { : } \operatorname{closure} Y_{(k)}^{u} \rightarrow E_{1}, \\
& h_{u}(v)=g\left(u_{1}, u_{2}, \cdots, u_{k-1}, v\right) \quad \text { for } v \in \operatorname{closure} Y_{(k) .}^{u} .
\end{aligned}
$$

The remainder of the proof is divided into four parts.
Part 1. $N(f, Y,(u, v))=N\left(h_{u}, Y_{(k)}^{u}, v\right)$ for $(u, v) \in E_{k-1} \times E_{1}$.
Proof. If A is a subset of E_{k} we shall denote by $q(A)$ the number (possibly $\infty)$ of elements of A. Whence

$$
\begin{aligned}
N(f, Y,(u, v)) & =q\left[\left(E_{k-1} \times E_{1}\right) \cap\{(w, t) \mid f(w, t)=(u, v)\}\right] \\
& =q\left[\left(E_{k-1} \times E_{1}\right) \cap\left\{(w, t) \mid w=u, t \in Y_{(k)}^{w}, h_{v}(t)=v\right\}\right] \\
& =q\left[E_{1} \cap\left\{t \mid t \in Y_{(k)}^{u}, h_{u}(t)=v\right\}\right] \\
& =N\left(h_{u}, Y_{(k)}^{u}, v\right) .
\end{aligned}
$$

PaRt 2. $\int_{E_{k}} N(f, Y,(u, v)) d \mathcal{L}_{k}(u, v)=\int_{Y(k)} T_{v=a(u)}^{\delta(u)} g(u, v) d \mathcal{L}_{k-1} u$.
Proof. Using Part 1 and [F1, 4.3] we compute:

$$
\begin{aligned}
\int_{E_{k}} N(f, Y,(u, v)) d \mathcal{L}_{k}(u, v) & =\int_{E_{k-1}} \int_{E_{1}} N(f, Y,(u, v)) d \mathcal{L}_{1} v d \mathcal{L}_{k-1} u \\
& =\int_{Y(k)} \int_{E_{1}} N\left(h_{u}, Y_{(k)}^{u}, v\right) d \mathcal{L}_{1} v d \mathcal{L}_{k-1} u \\
& =\int_{Y_{(k)}} \int_{E_{1}} N\left(h_{u}, \text { closure } Y_{(k),}^{u} v\right) d \mathcal{L}_{1} v d \mathcal{L}_{k-1} u \\
& =\int_{Y(k)} T_{v=a(u)}^{b(u)} h_{u}(v) d \mathcal{L}_{k-1} u \\
& =\int_{Y_{(k)}} T_{v=a(u)}^{b(u)} g(u, v) d \mathcal{L}_{k-1} u .
\end{aligned}
$$

Part 3. If c and d are real numbers with

$$
c<d \quad \text { and } \quad z=\left(z^{\prime}, z^{\prime \prime}\right) \in E_{k-1} \times E_{1}
$$

then

$$
T_{v=c}^{d} g_{i}(u, v) \leqq \alpha(k)^{-1} i^{k} \int_{K_{i}} T_{v=c}^{d} g\left(u+z^{\prime}, v+z^{\prime \prime}\right) d \mathcal{L}_{k} z
$$

Proof. Let $c=v_{0}<v_{1}<\cdots<v_{m}=d$. Then

$$
\begin{aligned}
\sum_{p=1}^{m} \mid g_{i}(u, & \left.v_{p}\right)-g_{i}\left(u, v_{p-1}\right) \mid \\
& =\sum_{p=1}^{m}\left|\alpha(k)^{-1} i^{k} \int_{K_{i}}\left\{g\left(u+z^{\prime}, v_{p}+z^{\prime \prime}\right)-g\left(u+z^{\prime}, v_{p-1}+z^{\prime \prime}\right)\right\} d \mathcal{L}_{k} z\right| \\
& \leqq \alpha(k)^{-1} i^{k} \int_{K_{i}} \sum_{p=1}^{m}\left|g\left(u+z^{\prime}, v_{p}+z^{\prime \prime}\right)-g\left(u+z^{\prime}, v_{p-1}+z^{\prime \prime}\right)\right| d \mathcal{L}_{k} z \\
& \leqq \alpha(k)^{-1} i^{k} \int_{K_{i}} T_{v=c}^{d} g\left(u+z^{\prime}, v+z^{\prime \prime}\right) d \mathcal{L}_{k} z .
\end{aligned}
$$

Part 4. $\int_{E_{k}} N\left(\dot{f_{i}}, Y, x\right) d \mathcal{L}_{k} x \leqq \alpha(k)^{-1} i^{k} \int_{K_{i}} \int_{E_{k}} N\left(f, Y_{z}, x\right) d \mathcal{L}_{k} x d \mathcal{L}_{k} z$.
Proof. Suppose $z=\left(z^{\prime}, z^{\prime \prime}\right) \in E_{k-1} \times E_{1}$. We know that

$$
Y=\left(E_{k-1} \times E_{1}\right) \cap\left\{(u, v) \mid v \in Y_{(k)}^{u}\right\}
$$

It is easy to check that

$$
Y_{z}=\left(E_{k-1} \times E_{1}\right) \cap\left\{(u, v) \mid v-z^{\prime \prime} \in Y_{(k)}^{u-z^{\prime}}\right\}, \quad\left[Y_{(k)}\right]_{z^{\prime}}=\left[Y_{z}\right]_{(k)}
$$

Letting $x=(u, v) \in E_{k-1} \times E_{1}$ and applying Part 2 to \dot{f}_{i} we infer with the help of Parts 3 and 2 that

$$
\begin{aligned}
\int_{E_{k}} N\left(\dot{f}_{i}, Y, x\right) d \mathcal{L}_{k} x & =\int_{Y(k)} T_{v=a(u)}^{b(u)} g_{i}(u, v) d \mathcal{L}_{k-1} u \\
& \leqq \int_{Y(k)} \alpha(k)^{-1} i^{b} \int_{K_{i}} T_{v=a(u)}^{b(u)} g\left(u+z^{\prime}, v+z^{\prime \prime}\right) d \mathcal{L}_{k} z d \mathcal{L}_{k-1} u \\
& =\alpha(k)^{-1} i^{k} \int_{K_{i}} \int_{Y(k)} T_{v=a(u)}^{b(u)} g\left(u+z^{\prime}, v+z^{\prime \prime}\right) d \mathcal{L}_{k-1} u d \mathcal{L}_{k} z \\
& =\alpha(k)^{-1} i^{k} \int_{K_{i}} \int_{[Y(k)] z^{\prime}} T_{v=a\left(u-z^{\prime}\right)}^{b\left(u-z^{\prime}\right)} g\left(u, v+z^{\prime \prime}\right) d \mathcal{L}_{k-1} u d \mathcal{L}_{k} z \\
& =\alpha(k)^{-1} i^{k} \int_{K_{i}} \int_{\left[Y_{s}\right](k)} T_{v=a\left(u\left(u z^{\prime}\right)+z^{\prime \prime}\right.}^{b\left(u-z^{\prime}\right)+z^{\prime \prime}} g(u, v) d \mathcal{L}_{k-1} u d \mathcal{L}_{k} z \\
& =\alpha(k)^{-1} i^{k} \int_{K_{i}} \int_{E_{k}} N\left(f, Y_{z}, x\right) d \mathcal{L}_{k} x d \mathcal{L}_{{ }_{k}} z .
\end{aligned}
$$

2.3 Lemma. If $X \subset E_{k}$ is a k cell with boundary $\dot{X}, F \in C_{k}(X), G \in C_{k}(X)$, and if $F \mid \dot{X}$ is homotopic to $G \mid \dot{X}$ where

$$
\begin{aligned}
& F \mid \dot{X} \text { is a map of } \dot{X} \text { into } E_{k}-\{y\} \\
& G \mid \dot{X} \text { is an essential map of } \dot{X} \text { into } E_{k}-\{y\}
\end{aligned}
$$

then y is a stable value of $F \mid X-\dot{X}$.

Proof. Let $r=\inf _{x \in \dot{X}}|F(x)-y|$, and let π denote the function on $E_{k}-\{y\}$ into the $k-1$ sphere defined by the formula

$$
\pi(x)=\frac{x-y}{|x-y|} \quad \text { for } x \in E_{k}-\{y\}
$$

The proof will be divided into three parts.
Part 1. If degree $(\pi \circ F \mid \dot{X}) \neq 0$, then there exists a $p \in X-\dot{X}$ for which $F(p)=y$.

Proof. Since X is a k cell, for $q \in X$ we may define a continuous contraction ϕ of X into $\{q\}$:

$$
\begin{array}{ll}
\phi:\{t \mid 0 \leqq t \leqq 1\} \rightarrow\{H \mid H \text { is a continuous function on } X \text { into } X\}, \\
(\phi(0))(x)=x & \text { for } x \in X, \\
(\phi(1))(x)=q & \text { for } x \in X .
\end{array}
$$

Suppose that the statement is false. Then for $0 \leqq t \leqq 1$

$$
\begin{aligned}
& F \circ \phi(t) \mid \dot{X}: \dot{X} \rightarrow E_{k}-\{y\} \\
& F \circ \phi(t) \mid \dot{X} \text { is homotopic to } F \circ \phi(0) \mid \dot{X}, \\
& \pi \circ F \circ \phi(t) \mid \dot{X} \text { is homotopic to } \pi \circ F \circ \phi(0) \mid \dot{X} .
\end{aligned}
$$

Accordingly we arrive at the contradiction
$0=$ degree $(\pi \circ F \circ \phi(1) \mid \dot{X})=\operatorname{degree}(\pi \circ F \circ \phi(0) \mid \dot{X})=\operatorname{degree}(\pi \circ F \mid \dot{X}) \neq 0$.
Part 2. If $H \in C_{k}(X)$ and $|H| \dot{X}-F|\dot{X}|<r$, then

$$
\text { degree }(\pi \circ H \mid \dot{X})=\text { degree }(\pi \circ F \mid \dot{X})
$$

Proof. Since for $x \in \dot{X}$

$$
|F(x)-H(x)|<|F(x)-y|
$$

it follows that

$$
y \notin E_{k} \cap\{z \mid z=F(x)+t(H(x)-F(x)) \text { for } 0 \leqq t \leqq 1\}
$$

Hence it suffices to define the continuous function

$$
\begin{aligned}
& \phi: \dot{X} \times\{t \mid 0 \leqq t \leqq 1\} \rightarrow E_{k}-\{y\} \\
& \phi(x, t)=F(x)+t(H(x)-F(x)) \quad \text { for }(x, t) \in \dot{X} \times\{t \mid 0 \leqq t \leqq 1\}
\end{aligned}
$$

to establish that $F \mid \dot{X}$ and $H \mid \dot{X}$ are homotopic. Consequently $\pi \circ F \mid \dot{X}$ and $\pi \circ H \mid \dot{X}$ are homotopic and

$$
\text { degree }(\pi \circ F \mid \dot{X})=\text { degree }(\pi \circ H \mid \dot{X})
$$

Part 3. y is a stable value of F.

Proof. We infer from the hypothesis that

$$
\text { degree }(\pi \circ F \mid \dot{X})=\text { degree }(\pi \circ G \mid \dot{X}) \neq 0
$$

If $L \in C_{k}(X)$ and $|L-F|<r$, we may use Part 2 to establish that

$$
\text { degree }(\pi \circ L \mid \dot{X})=\text { degree }(\pi \circ F \mid \dot{X})
$$

and Part 1 to show the existence of a $p \in X-\dot{X}$ for which $L(p)=y$.
2.4 Theorem. If Y is a bounded open convex subset of E_{k}, then

$$
N(f, Y, x)=S(f, Y, x) \quad \text { for } \mathcal{L}_{k} \text { almost all } x \in E_{k} .
$$

Proof. We assume h_{u} to have the same meaning as in Lemma 2.2. Let C be the set of points (u, v) in Y for which h_{u} has either a relative maximum or a relative minimum at v. We may check that C is a F_{σ} set and

$$
h_{u}^{*}\left(C_{(k)}^{u}\right) \text { is countable for } u \in Y_{(k)} .
$$

If follows that $f^{*}(C)$ is \mathcal{L}_{k} measurable and

$$
\mathcal{L}_{k}\left[f^{*}(C)\right]=0 .
$$

We know that

$$
\begin{aligned}
N(f, Y-C, x) & =N(f, Y, x) & & \text { for } x \in f^{*}(Y-C)-f^{*}(C), \\
N(f, Y, x) & =S(f, Y, x) & & \text { for } x \notin f^{*}(Y),
\end{aligned}
$$

hence we may complete the proof by showing that f is stable $[F 4,6.6]$ at every point of $Y-C$. For if this were so, then

$$
S(f, Y, x) \leqq N(f, Y, x)=N(f, Y-C, x) \leqq S(f, Y, x)
$$

whenever $x \in f^{*}(Y-C)-f^{*}(C)$.
Let $\epsilon>0$.
If $\left(u^{0}, v^{0}\right)=\left(u_{1}^{0}, u_{2}^{0}, \cdots, u_{k-1}^{0}, v^{0}\right) \in Y-C$, then using the continuity of g we can select

$$
u^{1} \in Y_{(k)}, \quad u^{2} \in Y_{(k)}, \quad v^{1} \in E_{1}, \quad v^{2} \in E_{1}
$$

satisfying

$$
\begin{array}{ll}
u_{i}^{0}-\epsilon<u_{i}^{1}<u_{i}^{0}<u_{i}^{2}<u_{i}^{0}+\epsilon & \text { for } i=1,2, \cdots, k-1, \\
v^{0}-\epsilon<v^{1}<v^{0}<v^{2}<v^{0}+\epsilon, &
\end{array}
$$

and such that if we denote

$$
\begin{aligned}
& P=E_{k-1} \cap\left\{u \mid u_{i}^{1} \leqq u_{i} \leqq u_{i}^{2} \text { for } i=1,2, \cdots, k-1\right\} \\
& X=\left(E_{k-1} \times E_{1}\right) \cap\left\{(u, v) \mid u \in P \text { and } v^{1} \leqq v \leqq v^{2}\right\}
\end{aligned}
$$

then $X \subset Y$ and either

$$
\begin{equation*}
h_{u}\left(v^{1}\right)<h_{u}\left(v^{0}\right)<h_{u}\left(v^{2}\right) \quad \text { whenever } u \in P \tag{1}
\end{equation*}
$$

or else

$$
\begin{equation*}
h_{u}\left(v^{1}\right)>h_{u}\left(v^{0}\right)>h_{u}\left(v^{2}\right) \quad \text { whenever } u \in P \tag{2}
\end{equation*}
$$

Observe that X is a k cell with diameter less than $2 k^{1 / 2} \epsilon$ and, denoting its boundary by \dot{X} and $f\left(u^{0}, v^{0}\right)$ by y, that $f \mid \dot{X}$ is a map of \dot{X} into $E_{k}-\{y\}$.

If (1) occurs we can define the function G on \dot{X} into $E_{k}-\{y\}$ by

$$
G(u, v)=\left(u, y_{k}+v-v^{0}\right) \quad \text { for }(u, v) \in\left(E_{k-1} \times E_{1}\right) \cap \dot{X}
$$

and the function ϕ on $\dot{X} \times\{t \mid 0 \leqq t \leqq 1\}$ into $E_{k}-\{y\}$ by

$$
\phi(u, v, t)=\left(u,(1-t)\left(y_{k}+v-v^{0}\right)+t h_{u}(v)\right)
$$

for $(u, v, t) \in\left(\left(E_{k} \times E_{1}\right) \cap \dot{X}\right) \times\{t \mid 0 \leqq t \leqq 1\}$, and infer that
G is an essential map of \dot{X} into $E_{k}-\{y\}$,
G is homotopic to $f \mid \dot{X}$.
Lemma 2.3 implies that y is a stable value of $f \mid X-\dot{X}$, and from the arbitrary nature of ϵ we conclude that f is stable at (u^{0}, v^{0}).

Whenever (2) occurs a similar treatment is employed. The proof is complete.
2.5 Lemma. If $X \subset E_{k}$ is a k cell with boundary \dot{X}, then $\mathcal{L}{ }_{k}\left[f^{*}(\dot{X})\right]=0$.

Proof. Let

$$
h(x)=\left(x_{1}, x_{2}, \cdots, x_{k}, g(x)\right) \quad \text { for } x \in X
$$

Then observing that \dot{X} lies on $2 k k-1$ cells $A_{i}(i=1,2, \cdots, 2 k)$ it is apparent that the h image of each such $k-1$ cell lies on a k plane in E_{k+1}, and that

$$
\mathfrak{K}_{k+1}^{k}\left[h^{*}(\dot{X})\right] \leqq \sum_{i=1}^{2 k} \mathfrak{C}_{k+1}^{k}\left[h^{*}\left(A_{i}\right)\right]
$$

If j is a positive integer no greater than $2 k$, let π be an isometric projection onto E_{k} of the k plane containing A_{j} and $h^{*}\left(A_{j}\right)$, which satisfies

$$
\pi^{*}\left(A_{j}\right) \subset E_{k} \cap\left\{x \mid x_{k}=0\right\}
$$

It follows that

$$
\text { the number of elements in }\left[(\pi \circ h)^{*}\left(A_{j}\right)\right]_{(k)}^{u}=1
$$

for $u \in\left[(\pi \circ h)^{*}\left(A_{j}\right)\right]_{(k)}$. We apply Fubini's theorem to obtain

$$
\begin{aligned}
\mathscr{H}_{k+1}^{k}\left[h^{*}\left(A_{j}\right)\right] & =\mathcal{L}_{k}\left[(\pi \circ h)^{*}\left(A_{j}\right)\right] \\
& =\int_{\left[\left(\pi_{0} h\right)^{*}(A j)\right](k)} \mathcal{L}_{1}\left\{\left[(\pi \circ h)^{*}\left(A_{j}\right)\right]_{(k)}^{u}\right\} d \mathcal{L}_{k-1} u=0 \\
\mathcal{C}_{k+1}^{k}\left[h^{*}(\dot{X})\right] & =0
\end{aligned}
$$

Finally letting R be the element of G_{k} for which

$$
R(w)=\left(w_{1}, \cdots, w_{k-1}, w_{k+1}, w_{k}\right) \quad \text { for } w \in E_{k+1}
$$

we conclude from the Lipschitzian character of $p_{k+1}^{k} \circ R$ that

$$
\mathcal{L}_{k}\left[f^{*}(\dot{X})\right]=\mathcal{L}_{k}\left[\left(p_{k+1}^{k} \circ R \circ h\right)^{*}(\dot{X})\right]=0
$$

2.6 Theorem. If $X \subset E_{k}$ is a k cell, then

$$
\int_{E_{k}} N(f, X, x) d \mathcal{L}_{k} x=\int_{E_{k}} S(f, X, x) d \mathcal{L}_{k} x=L(f \mid X)=\lim _{j \rightarrow \infty} L\left(\dot{f_{j}} \mid X\right)
$$

Proof. Let Y denote the interior of X and let A be an open interval of E_{k} for which

$$
\text { closure } A \subset Y
$$

Select a positive integer i so large that

$$
A_{z} \subset Y \quad \text { for } z \in K_{i}
$$

Then using [F4, 6.13], [F2, 4.5] and Lemma 2.2 we compute

$$
\begin{aligned}
L\left(\dot{f_{i}} \mid \text { closure } A\right) & =\int_{A} J \dot{f}_{i}(x) d \mathcal{L}_{k} x \\
& =\int_{E_{k}} N\left(\dot{f}_{i}, A, x\right) d \mathcal{L}_{k} x \\
& \leqq \alpha(k)^{-1} i^{k} \int_{K_{i}} \int_{E_{k}} N\left(f, A_{z}, x\right) d \mathcal{L}_{k} x d \mathcal{L}_{k} z \\
& \leqq \int_{E_{k}} N(f, Y, x) d \mathcal{L}_{k} x .
\end{aligned}
$$

It follows using the lower semi-continuity of L on $C_{k}(X)$ that

$$
L(f \mid \text { closure } A) \leqq \liminf _{i \rightarrow \infty} L\left(\dot{f}_{i} \mid \text { closure } A\right) \leqq \int_{E_{k}} N(f, Y, x) d \mathcal{L}_{k} x
$$

From the arbitrary nature of A and Theorem 2.4 we may conclude

$$
L(f \mid Y) \leqq \int_{E_{k}} N(f, Y, x) d \mathcal{L}_{k} x=\int_{E_{k}} S(f, Y, x) d \mathcal{L}_{k} x \leqq L(f \mid Y)
$$

In view of Lemma 2.5 it is seen that this relation holds with Y replaced by X.

For the other part of the statement we recall in general that

$$
L(f \mid X) \leqq \lim _{j \rightarrow \infty} \inf L\left(\dot{f_{j}} \mid X\right)
$$

Therefore under the assumption that $L(f \mid X)$ is finite we need to prove that

$$
\limsup _{j \rightarrow \infty} L\left(\dot{f_{j}} \mid X\right) \leqq L(f \mid X)
$$

Pick $\epsilon>0$. Utilizing the foregoing results we can select an open interval U of E_{k} such that

$$
X \subset U, \quad L(f \mid U) \leqq L(f \mid X)+\epsilon
$$

Let j be so large a positive integer that

$$
\text { (interior } X)_{z} \subset U \quad \text { whenever } z \in K_{j}
$$

Then we can show just as before that

$$
L\left(\dot{f}_{j} \mid X\right) \leqq \int_{E_{k}} S(f, U, x) d \mathcal{L}_{k} x \leqq L(f \mid U) \leqq L(f \mid X)+\epsilon
$$

Accordingly

$$
\limsup _{j \rightarrow \infty} L\left(\dot{f}_{j} \mid X\right) \leqq L(f \mid X)+\epsilon .
$$

Since ϵ was arbitrary this completes the proof.
2.7 Remark. Using the results of the preceding theorem and the notation of [F 6] we find for $X \subset E_{k}$ a k cell that

$$
\begin{aligned}
L(f \mid X) & =M^{* *}(f \mid X)=M^{*}(f \mid X)=S^{* *}(f \mid X)=S^{*}(f \mid X) \\
& =V^{* *}(f \mid X)=V^{*}(f \mid X)=U^{* *}(f \mid X)=U^{*}(f \mid X) \\
& =N^{* *}(f \mid X)=N^{*}(f \mid X)
\end{aligned}
$$

2.8 Definition. If $X \subset E_{k}$ is a k cell and $h \in C_{1}(X)$, then
(i) for i a positive integer no greater than k, h is said to be of bounded variation (i) in the sense of Tonelli (BVT (i)) on X if and only if

$$
\int_{X(i)} T_{v=\inf X(i)^{u}}^{\sup X\left(u_{1}, \cdots, u_{i-1}, v, u_{i+1}, \cdots, u_{k}\right) d \mathcal{L}_{k-1} u<\infty ; ~ ; ~}
$$

(ii) h is said to be of bounded variation in the sense of Tonelli (BVT) on X if and only if h is BVT (i) on X whenever $i=1,2, \cdots, k$.
2.9 Definition. If $X \subset E_{k}$ is a k cell and $h \in C_{1}(X)$, then
(i) for i a positive integer no greater than k, h is said to be absolutely continuous (i) in the sense of Tonelli (ACT (i)) on X if and only if h is BVT (i) on X and the function

$$
v \rightarrow h\left(u_{1}, \cdots, u_{i-1}, v, u_{i+1}, \cdots, u_{k}\right)
$$

is absolutely continuous in the classical sense on $X_{(t)}^{u}$, for \mathcal{L}_{k-1} almost all $u \in X_{(i)}$;
(ii) h is said to be absolutely continuous in the sense of Tonelli (ACT) on X if and only if h is ACT (i) on X whenever $i=1,2, \cdots, k$.
2.10 Definition. If $X \subset E_{k}$ is a k cell and $h \in C_{k}(X)$, then h is said to be absolutely continuous on X if and only if

$$
\int_{E_{k}} N(h, X, y) d \mathcal{L}_{k} y<\infty,
$$

and h transforms subsets of X of \mathcal{L}_{k} measure zero into sets of \mathcal{L}_{k} measure zero.
2.11 Sectional assumption. For the rest of this section $X \subset E_{k}$ will denote a k cell.
2.12 Lemma. If g is $B V T(k)$ on X, then

$$
\begin{aligned}
\int_{Y}\left|D_{k} g(x)\right| d \mathcal{L}_{k} x & =\int_{Y_{(k)}} \int_{Y_{(k)}}\left|D_{k} g(u, v)\right| d \mathcal{L}_{1} v d \mathcal{L}_{k-1} u \\
& \leqq \int_{Y_{(k)}} T_{v=\text { in } \mathrm{Y} Y_{(k)}{ }^{u} g(u, v) d \mathcal{L}_{k-1} u} \quad \\
& =\int_{E_{k}} N(f, Y,(u, v)) d \mathcal{L}_{k}(u, v) \\
& =\int_{E_{k}} N(f, Y, y) d \mathcal{L}_{k} y
\end{aligned}
$$

whenever $Y \subset X$ and Y is a k cell.
Proof. This statement follows directly from Definition 2.8 and Part 2 of Lemma 2.2.
2.13 Theorem. The following statements are equivalent:
(i) g is $B V T(k)$ on X,
(ii) $L(f \mid X)<\infty$.

Proof. By virtue of Part 2 of Lemma 2.2 and Theorem 2.6

$$
\int_{X(k)} T_{v=\inf X(k)}^{\sup X(k) u} g(u, v) d \mathcal{L}_{k-1} u=L(f \mid X) .
$$

The theorem is an immediate consequence of this equality.
2.14 Theorem. If g is $B V T(k)$ on X, U is the set of those points x in X for which $D_{k} g(x)$ exists, Y is an \mathcal{L}_{k} measurable subset of X and Z is an analytic subset of E_{k} contained in X, then
(i) U is a Borel subset of E_{k} and $\mathcal{L}_{k}(X-U)=0$,
(ii) $\int_{Y}\left|D_{k} g(x)\right| d \mathcal{L}_{k} x=\int_{E_{k}} N(f, Y \cap U, y) d \mathcal{L}_{k} y<\infty$,
(iii) $\int_{Z}\left|D_{k} g(x)\right| d \mathcal{L}_{k} x \leqq \int_{E_{k}} N(f, Z, y) d \mathcal{L}_{k} y<\infty$.

Proof. We know from [S, V4.1] that $D_{k} g$ is a Borel measurable function. We may infer that

$$
U \text { is a Borel subset of } E_{k} \text {, }
$$

and since

$$
\mathcal{L}_{1}\left[(X-U)_{(k)}^{u}\right]=0 \quad \text { for } \mathcal{L}_{k-1} \text { almost all } u \in X_{(k)},
$$

may use Fubini's theorem to conclude that

$$
\mathcal{L}_{k}(X-U)=0 .
$$

Using the notation of Lemma 2.2 the statement

$$
\left|D_{k g}(u, v)\right|=\left|D_{1} h_{u}(v)\right|=J h_{u}(v) \quad \text { for } v \in U_{(k)}^{u}
$$

is true for $u \in X_{(k)}$. Also we know that

$$
(Y \cap U)_{(k)}^{u}
$$

is an \mathcal{L}_{1} measurable subset of E_{1} for $u \in X_{(k)}$.
Upon combining these facts and using [F2, 5.2] (applied to h_{u}), Part 1 of Lemma 2.2, and Theorem 2.13, we find that

$$
\begin{aligned}
\int_{Y}\left|D_{k} g(x)\right| d \mathcal{L}_{k} x & =\int_{Y \cap U}\left|D_{k g} g(x)\right| d \mathcal{L}_{k} x \\
& =\int_{(Y \cap U)_{(k)}} \int_{\left(Y \cap U_{)_{(k)}}\right.}\left|D_{k} g(u, v)\right| d \mathcal{L}_{1} v d \mathcal{L}_{k-1} u \\
& =\int_{(Y \cap U)_{(k)}} \int_{\left(Y \cap U_{U_{(k)}}\right.} J h_{u}(v) d \mathcal{L}_{{ }^{1} v} v d \mathcal{L}_{{ }_{k-1} u} u \\
& =\int_{(Y \cap U)_{(k)}} \int_{E_{1}} N\left(h_{u},(Y \cap U)_{(k)}^{u}, v\right) d \mathcal{L}_{1} v d \mathcal{L}_{k-1} u \\
& =\int_{E_{k-1}} \int_{E_{1}} N(f, Y \cap U,(u, v)) d \mathcal{L}_{1} v d \mathcal{L}_{k-1} u \\
& =\int_{E_{k}} N(f, Y \cap U, y) d \mathcal{L}_{k} y<\infty .
\end{aligned}
$$

For (iii) it is only necessary in addition to observe that

$$
\begin{gathered}
N(f, Z, y) \text { is } \mathcal{L}_{k} \text { measurable in } y, \\
\int_{E_{k}} N(f, Z, y) d \mathcal{L}_{k} y<\infty .
\end{gathered}
$$

2.15 Theorem. If g is $B V T(k)$ on X, then the following statements are equivalent:
(i) f is absolutely continuous on X,
(ii) $\int_{Y}\left|D_{k} g(x)\right| d \mathcal{L}_{k} x=\int_{E_{k}} N(f, Y, y) d \mathcal{L}_{k} y<\infty$ whenever Y is an \mathcal{L}_{k} measurable subset of X,
(iii) $\int_{X}\left|D_{k} g(x)\right| d \mathcal{L}_{k} x=\int_{E_{k}} N(f, X, y) d \mathcal{L}{ }_{k} y<\infty$,
(iv) g is $A C T(k)$ on X.

Proof. The proof is divided into five parts.
Part 1. (i) implies (ii).
Proof. Let U be the set of points x in X for which $D_{k} g(x)$ exists, and Y be an \mathcal{L}_{k} measurable subset of X. Then

$$
\begin{gathered}
N(f, Y, y) \text { is } \mathcal{L}_{k} \text { measurable in } v, \\
\mathcal{L}_{k}(Y-U)=0,
\end{gathered}
$$

and we may infer, using the preceding theorem, that

$$
\begin{aligned}
\int_{Y}\left|D_{k} g(x)\right| d \mathcal{L}_{k} x & =\int_{E_{k}} N(f, Y \cap U, y) d \mathcal{L}_{k} y \\
& =\int_{E_{k}} N(f, Y, y) d \mathcal{L}_{k} y<\infty .
\end{aligned}
$$

Part 2. (ii) implies (iii).
Part 3. (iii) implies (iv).
Proof. Lemma 2.12 implies that

$$
T_{v=\operatorname{in} \mathrm{X} X(k)^{u}}^{\sup X(k} \mathrm{u}^{u} g(u, v)=\int_{X_{(k)^{u}}}\left|D_{k} g(u, v)\right| d \mathcal{, 1}
$$

for \mathcal{L}_{k-1} almost all $u \in X_{(k)}$. Whence

$$
g \text { is } A C T(k) \text { on } X
$$

Part 4. (iv) implies (ii).
Proof. If $Y \subset X$ and Y is a k cell, then (iv) being true means

$$
T_{v=\inf Y(k)^{u}}^{\sup Y(k) u} g(u, v)=\int_{Y(k)^{u}}\left|D_{k} g(u, v)\right| d \mathcal{L}_{1} v
$$

for \mathcal{L}_{k-1} almost all $u \in Y_{(k)}$,

$$
\int_{E_{k}} N(f, Y, y) d \mathcal{L}_{k} y<\infty .
$$

We infer from Lemma 2.12 that

$$
\int_{Y}\left|D_{k} g(x)\right| d \mathcal{L}_{k} x=\int_{E_{k}} N(f, Y, y) d \mathcal{L}_{k} y<\infty .
$$

This equality may be extended to hold whenever Y is a Borel subset of E_{k} contained in X.

Now suppose W is an \mathcal{L}_{k} measurable subset of X. Borel subsets S and T of E_{k} may be chosen in such a way that

$$
S \subset W \subset T \subset X, \quad \mathcal{L}_{k}(T-S)=0
$$

Since

$$
\begin{aligned}
N(f, S, y) & \leqq N(f, W, y) \leqq N(f, T, y) \quad \text { for } y \in E_{k} \\
\int_{E_{k}} N(f, S, y) d \mathcal{L}_{k} y & =\int_{S}\left|D_{k} g(x)\right| d \mathcal{L}_{k} x=\int_{W}\left|D_{k} g(x)\right| d \mathcal{L}_{k} x \\
& =\int_{T}\left|D_{k} g(x)\right| d \mathcal{L}_{k} x=\int_{E_{k}} N(f, T, y) d \mathcal{L}_{k} y<\infty
\end{aligned}
$$

it follows that

$$
\begin{aligned}
& N(f, S, y)=N(f, T, y) \quad \text { for } \mathcal{L}_{k} \text { almost all } y \text { in } E_{k} \\
& N(f, W, y) \text { is } \mathcal{L}_{k} \text { measurable in } y, \\
& \int_{W}\left|D_{k} g(x)\right| d \mathcal{L}_{k} x=\int_{E_{k}} N(f, W, y) d \mathcal{L}_{k} y<\infty .
\end{aligned}
$$

Part 5. (ii) implies (i).
2.16 Remark. A combination of Theorems 2.6, 2.14, and 2.15 reveals that g is $B V T(k)$ on X implies

$$
\int_{X}\left|D_{k} g(x)\right| d \mathcal{L}_{k} x \leqq L(f \mid X)=\int_{E_{k}} S(f, X, y) d \mathcal{L}_{k} y=\int_{E_{k}} N(f, X, y) d \mathcal{L}_{k} y
$$

equality holding if and only if g is $A C T(k)$.
2.17 Theorem. If h is an \mathcal{L}_{k} measurable function satisfying

$$
-\infty \leqq h(x) \leqq \infty
$$

for \mathcal{L}_{k} almost all x in E_{k}, then

$$
\begin{gathered}
g \text { is } A C T(k) \text { on } X \text { implies } \\
\int_{Y}(h \circ f)(x) \cdot\left|D_{k} g(x)\right| d \mathcal{L}_{k} x=\int_{E_{k}} h(y) \cdot N(f, Y, y) d \mathcal{L}_{k} y
\end{gathered}
$$

whenever Y is an \mathcal{L}_{k} measurable subset of X.
Proof. This statement is an immediate consequence of Theorem 2.15 and [F3, 2.1].
2.18 Theorem. If for $x \in E_{k}$ and $r>0$

$$
C(x, r)=E_{k} \bigcap\{z| | z-x \mid \leqq r\}
$$

then

$$
g \text { is } B V T(k) \text { on } X \text { implies }
$$

$$
\lim _{r \rightarrow 0+} \frac{L[f \mid C(x, r)]}{\alpha(k) r^{k}}=\left|D_{k} g(x)\right| \quad \text { for } \mathcal{L}_{k} \text { almost all } x \in \text { interior } X
$$

Proof. If U is the set of those points x in X for which $D_{k} g(x)$ exists, we know that U is a Borel subset of E_{k} and may define functions β, γ, and δ as follows:

$$
\begin{aligned}
\beta(Y) & =\int_{E_{k}} N(f, Y, y) d \mathcal{L}_{k} y \\
\gamma(Y) & =\int_{Y}\left|D_{k} g(x)\right| d \mathcal{L}_{k} x \\
\delta(Y) & =\int_{E_{k}} N(f, Y-U, y) d \mathcal{L}_{k} y
\end{aligned}
$$

for Y a Borel subset of E_{k} contained in X.
Employing the terminology of Saks [S, p. 30], β, γ, and δ are additive set functions on the class of Borel subsets of E_{k} contained in X,

$$
\gamma \text { is } \mathcal{L}_{k} \text { absolutely continuous, }
$$

and since $\mathcal{L}_{k}(X-U)=0$

$$
\delta \text { is } \mathcal{L}_{k} \text { singular. }
$$

Because of Theorem 2.14

$$
\beta=\gamma+\delta
$$

Hence using Theorem 2.6 and [S, IV 5.4, 6.3, 7.1] we conclude that

$$
\begin{aligned}
\lim _{r \rightarrow 0_{+}} \frac{L[f \mid C(x, r)]}{\alpha(k) r^{k}} & =\lim _{r \rightarrow 0+} \frac{\beta[C(x, r)]}{\alpha(k) r^{k}} \\
& =\lim _{r \rightarrow 0+} \frac{\gamma[C(x, r)]}{\alpha(k) r^{k}}+\lim _{r \rightarrow 0+} \frac{\delta[C(x, r)]}{\alpha(k) r^{k}} \\
& =\left|D_{k} g(x)\right|
\end{aligned}
$$

for \mathcal{L}_{k} almost all $x \in$ interior X.
2.19 Remark. If g is BVT, then a computation shows that

$$
J f(x)=\left|D_{k} g(x)\right| \quad \text { for } \mathcal{L}_{k} \text { almost all } x \text { in } X
$$

In this case the validity of Theorems $2.14,2.15,2.17$, and 2.18 and Remark
2.16 holds whenever $\left|D_{k} g\right|$ is replaced by $J f$.
2.20 Remark. If $f \in \Omega_{k}$ were of the form

$$
f(x)=\left(x_{1}, \cdots, x_{j-1}, g(x), x_{j+1}, \cdots, x_{k}\right) \quad \text { for } x \in E_{k}
$$

for j some positive integer less than k and g a continuous real-valued function on E_{k}, then the foregoing theory would hold, provided only that the conditions $\operatorname{BVT}(k)$ and $\operatorname{ACT}(k)$ be replaced by $\operatorname{BVT}(j)$ and $\operatorname{ACT}(j)$, and the function $D_{k} g$ be replaced by $D_{j} g$.
3. k dimensional nonparametric surfaces in $E_{k+1}(k>1)$. Each orthogonal projection of E_{k+1} onto E_{k} is of the form

$$
p_{k+1}^{k} \circ R
$$

for some $R \in G_{k+1}$. In fact $p_{k+1}^{k} \circ R$ maps the k-dimensional subspace of E_{k+1} spanned by the k tuple of vectors

$$
\left\langle(\operatorname{inv} R)^{1}, \cdots,(\operatorname{inv} R)^{k}\right\rangle
$$

onto E_{k}, transforming (inv $\left.R\right)^{i}$ into ${ }^{k} I^{i}$ for $i=1,2, \cdots, k$.
Since for $x \in E_{k+1}$ and $R \in G_{k+1}$,

$$
\left(p_{k+1}^{k} \circ R\right)(x)=\left(x \bullet(\operatorname{inv} R)^{1}, \cdots, x \bullet(\operatorname{inv} R)^{k}\right)
$$

two orthogonal projections $p_{k+1}^{k} \circ S$ and $p_{k+1}^{k} \circ T$ are equal if and only if

$$
(\operatorname{inv} S)^{i}=(\operatorname{inv} T)^{i} \quad \text { for } i=1,2, \cdots, k
$$

For m a positive integer greater than two, Λ_{m} will denote the set of all those elements R of G_{m} for which there exists some $S \in G_{2}$ satisfying

$$
\begin{array}{ll}
R^{i}={ }^{m} I^{i} & \text { for } i=1,2, \cdots, m-2 ; \\
R_{j}^{i}=0 & \text { for } i=m-1, m ; j=1,2, \cdots, m-2 \\
R_{j}^{i}=S_{j-m+2}^{i-m+2} &
\end{array}
$$

If f is a continuous real-valued function on E_{k} and i is a positive integer, then \bar{f} and \bar{f}_{i} will be the functions defined by the relations

$$
\begin{aligned}
\bar{f}(x) & =\left(x_{1}, x_{2}, \cdots, x_{k}, f(x)\right) & & \text { for } x \in E_{k} \\
\bar{f}_{i}(x) & =\left(x_{1}, x_{2}, \cdots, x_{k}, f_{i}(x)\right) & & \text { for } x \in E_{k}
\end{aligned}
$$

3.1 Sectional assumptions. We let f be a fixed continuous real-valued function on E_{k}, and for j a positive integer no greater than $k+1,{ }^{i} R$ will denote that element of G_{k+1} for which

$$
{ }^{i} R(x)=\left(x_{1}, \cdots, x_{j-1}, x_{k+1}, x_{j+1}, \cdots, x_{k}, x_{j}\right) \quad \text { for } x \in E_{k}
$$

Observe that
${ }^{k+1} R$ is the identity element of G_{k+1},

$$
p_{k+1}^{k} \circ{ }^{j} R \circ \bar{f} \in \Omega_{k} \quad \text { for } j=1,2, \cdots, k+1
$$

3.2 Lemma. If Y is a bounded open convex subset of E_{k} and i is a positive integer, then

$$
S \in \Lambda_{k+1} \text { implies }
$$

(i) $\int_{E_{k}} N\left(p_{k+1}^{k} \circ S \circ \bar{f}_{i}, Y, x\right) d \mathcal{L}{ }_{k} x$

$$
\leqq \alpha(k)^{-1} i^{k} \int_{K_{i}} \int_{E_{k}} N\left(p_{k+1}^{k} \circ S \circ \bar{f}, \quad Y_{z}, x\right) d \mathscr{L}_{k} x d \mathcal{L}_{k} z
$$

(ii) $N\left(p_{k+1}^{k} \circ S \circ \bar{f}, Y, x\right)=S\left(p_{k+1}^{k} \circ S \circ \bar{f}, Y, x\right)$ for \mathcal{L}_{k} almost all x in E_{k}.

Proof. We know that

$$
\begin{aligned}
\left(p_{k+1}^{k} \circ S\right)(w) & =\left(w \bullet(\operatorname{inv} S)^{1}, \cdots, w \bullet(\operatorname{inv} S)^{k}\right) \\
& =\left(w_{1}, w_{2}, \cdots, w_{k-1}, w_{k} \cdot S_{k}^{k}+w_{k+1} \cdot S_{k}^{k+1}\right)
\end{aligned}
$$

for $w \in E_{k+1}$. Thus

$$
\begin{aligned}
\left(p_{k+1}^{k} \circ S \circ \bar{f}\right)(x) & =\left(p_{k+1}^{k} \circ S\right)\left(x_{1}, x_{2}, \cdots, x_{k}, f(x)\right) \\
& =\left(x_{1}, x_{2}, \cdots, x_{k-1}, S_{k}^{k} \cdot x_{k}+S_{k}^{k+1} \cdot f(x)\right)
\end{aligned}
$$

whenever $x \in E_{k}$.
We may infer then that $p_{k+1}^{k} \circ S \circ \bar{f} \in \Omega_{k}$. Moreover upon letting $F(x)$ $=S_{k}^{k} \cdot x_{k}+S_{k}^{k+1} \cdot f(x)$ for $x \in E_{k}$, a check reveals that

$$
\begin{aligned}
F_{i}(x) & =S_{k}^{k} \cdot x_{k}+S_{k}^{k+1} \cdot f_{i}(x) & \text { for } x \in E_{k}, \\
\cdot\left(p_{k+1}^{k} \circ S \circ \bar{f}\right)_{i} & =p_{k+1}^{k} \circ S \circ \bar{f}_{i}, &
\end{aligned}
$$

for every positive integer i. Accordingly statements (i) and (ii) follow from Lemma 2.2 and Theorem 2.4.
3.3 Lemma. If $R \in G_{k+1}$, then there exist functions S, T and U for which

$$
\begin{gathered}
S \in \Lambda_{k+1}, \quad T \in G_{k+1}, \quad U \in G_{k}, \\
T\left({ }^{k+1} I^{k+1}\right)={ }^{k+1} I^{k+1}, \\
p_{k+1}^{k} \circ R=U \circ p_{k+1}^{k} \circ S \circ T .
\end{gathered}
$$

Proof. We know for any two vector subspaces of a vector space that the sum of their dimensions is equal to the sum of the dimensions of the vector spaces generated respectively by their union and intersection.

Accordingly if Z is the subspace of E_{k+1} spanned by the k-tuple of vectors

$$
\left\langle{ }^{k+1} I^{1},{ }^{k+1} I^{2}, \cdots,{ }^{k+1} I^{k}\right\rangle
$$

and K the subspace of E_{k+1} spanned by the k-tuple of vectors

$$
\left\langle(\operatorname{inv} R)^{1},(\operatorname{inv} R)^{2}, \cdots,(\operatorname{inv} R)^{k}\right\rangle
$$

then the dimension of the subspace $K \cap Z$ equals either k or $k-1$.
If dimension $(K \cap Z)=k$, then K coincides with Z, and we may select $T \in G_{k+1}$ so that T is the rotation of Z which transforms (inv $\left.R\right)^{i}$ into ${ }^{k+1} I^{i}$ for $i=1,2, \cdots, k$. Letting U denote the identity map of E_{k} and S the identity map of E_{k+1} we may easily check that

$$
\begin{gathered}
p_{k+1}^{k} \circ R=U \circ\left(p_{k+1}^{k} \circ R \circ \operatorname{inv} T\right) \circ T, \\
p_{k+1}^{k} \circ R \circ \operatorname{inv} T=p_{k+1}^{k} \circ S .
\end{gathered}
$$

Now suppose that the dimension of $K \cap Z$ is $k-1$.
Using the transitivity of the orthogonal group, we can choose functions A, U, and T for which

$$
A \in G_{k+1}, \quad A^{*}(K)=K,
$$

$$
\begin{aligned}
& \left\langle(A \circ \operatorname{inv} R)^{1},(A \circ \operatorname{inv} R)^{2}, \cdots,(A \circ \operatorname{inv} R)^{k-1}\right\rangle \text { spans } K \cap Z, \\
& U \in G_{k}, \\
& U\left[\left(p_{k+1}^{k} \circ R\right)\left((\operatorname{inv} A \circ \operatorname{inv} R)^{i}\right)\right]={ }^{k} I^{i} \quad \text { for } i=1,2, \cdots, k, \\
& T \in G_{k+1}, \quad T^{*}(Z)=Z, \\
& T\left[(A \circ \operatorname{inv} R)^{i}\right]={ }^{k+1} I^{i} \quad \text { for } i=1,2, \cdots, k-1 .
\end{aligned}
$$

Since $(T \circ A \circ \text { inv } R)^{k}$ lies in the orthogonal complement of the space generated by $\left\langle{ }^{k+1} I^{1},{ }^{k+1} I^{2}, \cdots,{ }^{k+1} I^{k-1}\right\rangle$, an element B of G_{2} may be picked such that

$$
(T \circ A \circ \text { inv } R)_{k-1+i}^{k}=B_{i}^{1} \quad \text { for } i=1,2 .
$$

Then defining S to be the element of G_{k+1} satisfying

$$
\begin{array}{ll}
(\operatorname{inv} S)^{i}={ }^{k+1} I^{i} & \text { for } i=1,2, \cdots, k-1 ; \\
(\operatorname{inv} S)_{j}^{i}=0 & \text { for } i=k, k+1 ; j=1,2, \cdots, k-1 ; \\
(\operatorname{inv} S)_{i}^{i}=B_{j-k+1}^{i-k+1} & \text { for } i=k, k+1 ; j=k, k+1 ;
\end{array}
$$

we may infer that S (along with inv S) is an element of Λ_{k+1}.
Inasmuch as

$$
\begin{aligned}
(\operatorname{inv}(S \circ T))^{i} & =(\operatorname{inv} T \circ \operatorname{inv} S)^{i} \\
& =\operatorname{inv} T\left[(\operatorname{inv} S)^{i}\right] \\
& =\operatorname{inv} T\left[(T \circ A \circ \operatorname{inv} R)^{i}\right] \\
& =(A \circ \operatorname{inv} R)^{i} \\
& =(\operatorname{inv}(R \circ \operatorname{inv} A))^{i} \quad \text { for } i=1,2, \cdots, k,
\end{aligned}
$$

it follows that

$$
p_{k+1}^{k} \circ S \circ T=p_{k+1}^{k} \circ R \circ \operatorname{inv} A
$$

Let i be a positive integer no greater than k. To complete the proof it is sufficient to show the equality of the functions $p_{k+1}^{k} \circ R$ and $U \circ p_{k+1}^{k} \circ S \circ T$ on the vector

$$
(\operatorname{inv} R)^{i}
$$

We compute:

$$
\begin{aligned}
\left(U \circ p_{k+1}^{k} \circ S \circ T\right)\left[(\operatorname{inv} R)^{i}\right] & =\left(U \circ p_{k+1}^{k} \circ R \circ \operatorname{inv} A\right)\left[(\operatorname{inv} R)^{i}\right] \\
& =U\left[\left(p_{k+1}^{k} \circ R\right)\left((\operatorname{inv} A \circ \operatorname{inv} R)^{i}\right)\right] \\
& ={ }^{k} I^{i} .
\end{aligned}
$$

3.4 Lemma. If Y is a bounded open convex subset of E_{k} and i is a positive integer, then

$$
\begin{gathered}
R \in G_{k+1} \text { implies } \\
\int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}_{i}, Y, x\right) d \mathcal{L}_{k} x \\
\leqq \alpha(k)^{-1} i^{k} \int_{K_{i}} \int_{E_{k}} N\left(p^{k}{ }_{k+1} \circ S \circ \bar{f}, Y_{z}, x\right) d \mathcal{L}_{k} x d \mathcal{L}_{k} z
\end{gathered}
$$

Proof. Suppose $R \in G_{k+1}$. We use the preceding lemma to select functions U, S, T, t such that

$$
U \in G_{k}, \quad S \in \Lambda_{k+1}, \quad T \in G_{k+1}, \quad t \in G_{k},
$$

if $w \in E_{k}, z \in E_{k}$, and $v \in E_{1}$, then $t(z)=w$ if and only if $T\left(z_{1}, z_{2}, \cdots, z_{k}, v\right)$ $=\left(w_{1}, w_{2}, \cdots, w_{k}, v\right)$,

$$
p_{k+1}^{k} \circ R=U \circ p_{k+1}^{k} \circ S \circ \operatorname{inv} T .
$$

We shall denote

$$
\operatorname{inv} t(z)=z^{\prime} \quad \text { whenever } z \in E_{k}
$$

and for i a positive integer, we define the functions $F, F_{i}, \bar{F}, \bar{F}_{i}$ by the formulae

$$
\begin{aligned}
F & =f \circ t, \quad F_{i}=f_{i} \circ t, & & \\
\bar{F}(x) & =\left(x_{1}, x_{2}, \cdots, x_{k}, F(x)\right) & & \text { for } x \in E_{k}, \\
\bar{F}_{i}(x) & =\left(x_{1}, x_{2}, \cdots, x_{k}, F_{i}(x)\right) & & \text { for } x \in E_{k .}
\end{aligned}
$$

The rest of the proof is divided into three parts.

Part 1. If $V \in G_{k}, B \subset E_{k}$, and $z \in E_{k}$, then

$$
\left[(\operatorname{inv} V)^{*}(B)\right]_{z}=(\operatorname{inv} V)^{*}\left[B_{V(z)}\right] .
$$

Proof.

$$
\begin{aligned}
(\operatorname{inv} V)^{*}\left[B_{V(z)}\right] & =(\operatorname{inv} V)^{*}(\{y \mid y-V(z) \in B\}) \\
& =\{x \mid V(x)-V(z) \in B\} \\
& =\left\{x \mid x-z \in(\operatorname{inv} V)^{*}(B)\right\} \\
& =\left[(\operatorname{inv} V)^{*}(B)\right]_{z .} .
\end{aligned}
$$

Part 2. (i) $p_{k+1}^{k} \circ R \circ \bar{f}=U \circ p_{k+1}^{k} \circ S \circ \bar{F} \circ$ inv t,
(ii) $p_{k+1}^{k} \circ R \circ \bar{f}_{i}=U \circ p_{k+1}^{k} \circ S \circ \bar{F}_{i} \circ$ inv t.

Proof. It is sufficient to verify (ii). Let $z \in E_{k}$, then

$$
\begin{aligned}
\left(p_{k+1}^{k} \circ R \circ \bar{f}_{i}\right)(z) & =\left(p_{k+1}^{k} \circ R\right)\left(z_{1}, z_{2}, \cdots, z_{k}, f_{i}(z)\right) \\
& =\left(U \circ p_{k+1}^{k} \circ S \circ \text { inv } T\right)\left(z_{1}, z_{2}, \cdots, z_{k}, f_{i}(z)\right) \\
& =\left(U \circ p_{k+1}^{k} \circ S\right)\left(z_{1}^{\prime}, z_{2}^{\prime}, \cdots, z_{k}^{\prime}, f_{i}(z)\right) \\
& =\left(U \circ p_{k+1}^{k} \circ S\right)\left(z_{1}^{\prime}, z_{2}^{\prime}, \cdots, z_{k}^{\prime}, F_{i}\left(z^{\prime}\right)\right) \\
& =\left(U \circ p_{k+1}^{k} \circ S \circ \bar{F}_{i}\right)\left(z^{\prime}\right) \\
& =\left(U \circ p_{k+1}^{k} \circ S \circ \bar{F}_{i} \circ \operatorname{inv} t\right)(z) .
\end{aligned}
$$

Part 3.

$$
\left.\begin{array}{rl}
\int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}_{i}, Y, x\right) d \mathcal{L}_{k} x
\end{array}\right] .
$$

Proof. With the aid successively of Part 2, Lemma 3.2 applied to \bar{F}_{i}, Part 1 , the fact that

$$
J t(z)=1 \quad \text { whenever } z \in E_{k}
$$

and Part 2 again, we check that

$$
\begin{aligned}
\int_{E_{k}} N\left(p_{k+1}^{k} \circ R\right. & \left.\circ \bar{f}_{i}, Y, x\right) d \mathcal{L}_{k} x \\
& =\int_{E_{k}} N\left(U \circ p_{k+1}^{k} \circ S \circ \bar{F}_{i} \circ \operatorname{inv} t, Y, x\right) d \mathcal{L}_{k} x \\
& =\int_{E_{k}} N\left(p_{k+1}^{k} \circ S \circ \bar{F}_{i} \circ \operatorname{inv} t, Y, x\right) d \mathcal{L}_{k} x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{E_{k}} N\left(p_{k+1}^{k} \circ S \circ \bar{F}_{i},(\operatorname{inv} t)^{*}(Y), x\right) d \mathcal{L}_{k} x \\
& \leqq \alpha(k)^{-1} i^{k} \int_{K_{i}} \int_{E_{k}} N\left(p_{k+1}^{k} \circ S \circ \bar{F},\left[(\operatorname{inv} t)^{*}(Y)\right]_{z}, x\right) d \mathcal{L}_{k} x d \mathcal{L}_{k} z \\
& =\alpha(k)^{-1} i^{k} \int_{K_{i}} \int_{E_{k}} N\left(p_{k+1}^{k} \circ S \circ \bar{F},(\operatorname{inv} t)^{*}\left[Y_{t(z)}\right], x\right) d \mathcal{L}_{k} x d \mathcal{L}_{k} z \\
& =\alpha(k)^{-1} i^{k} \int_{K_{i}} \int_{E_{k}} N\left(p_{k+1}^{k} \circ S \circ \bar{F} \circ \operatorname{inv} t, Y_{t(z)}, x\right) d \mathcal{L}_{k} x d \mathcal{L}_{k} z \\
& =\alpha(k)^{-1} i^{k} \int_{K_{i}} J t(z) \int_{E_{k}} N\left(p_{k+1}^{k} \circ S \circ \bar{F} \circ \operatorname{inv} t, Y_{t(z)}, x\right) d \mathcal{L}_{k} x d \mathcal{L}_{k} z \\
& =\alpha(k)^{-1} i^{k} \int_{i^{*}\left(K_{i}\right)} \int_{E_{k}} N\left(p_{k+1}^{k} \circ S \circ \bar{F} \circ \operatorname{inv} t, Y_{z}, x\right) d \mathcal{L}_{k} x d \mathcal{L}_{k} z \\
& =\alpha(k)^{-1} i^{k} \int_{K_{i}} \int_{E_{k}} N\left(U \circ p_{k+1}^{k} \circ S \circ \bar{F} \circ \operatorname{inv} t, Y_{z}, x\right) d \mathcal{L}_{k} x d \mathcal{L}_{k} z \\
& =\alpha(k)^{-1} i^{k} \int_{K_{i}} \int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x d \mathcal{L}_{k} z .
\end{aligned}
$$

3.5 Theorem. If Y is a bounded open convex subset of E_{k}, then

$$
R \in G_{k+1} \text { implies } N\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right)=S\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right)
$$

for \mathcal{L}_{k} almost all $x \in E_{k}$.
Proof. Let $R \in G_{k+1}$. Just as in the preceding lemma we may select functions U, S, t and define functions F and \bar{F} so that

$$
\begin{aligned}
S \in \Lambda_{k+1}, \quad & U \in G_{k}, \quad t \in G_{k}, \\
& F=f \circ t, \\
p_{k+1}^{k} \circ R \circ \bar{f}= & U \circ p_{k+1}^{k} \circ S \circ \bar{F} \circ \operatorname{inv} t
\end{aligned}
$$

Then with the help of Lemma 3.2 we find that

$$
\begin{array}{rlr}
N\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) & \\
& =N\left(U \circ p_{k+1}^{k} \circ S \circ \bar{F} \circ \operatorname{inv} t, Y, x\right) & \\
& =N\left(p_{k+1}^{k} \circ S \circ \bar{F},(\operatorname{inv} t)^{*}(Y), x\right) & \\
& =S\left(p_{k+1}^{k} \circ S \circ \bar{F},(\operatorname{inv} t)^{*}(Y), x\right) & \\
& =S\left(U \circ p_{k+1}^{k} \circ S \circ \bar{F} \circ \operatorname{inv} t, Y, x\right) & \\
& =S\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) & \\
\text { for } \mathcal{L}_{k} \text { almost all } x \text { in } E_{k} \\
\text { for } \mathcal{L}_{k} \text { almost all } x \text { in } E_{k} \\
\text { in }_{k} E_{k}
\end{array}
$$

3.6 REMARK. If $Y \subset E_{k}$ is the interior of $a k$ cell and $R \in G_{k+1}$, then

$$
\begin{aligned}
\int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x & =\int_{E_{k}} S\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x \\
& =L\left(p_{k+1}^{k} \circ R \circ \bar{f} \mid Y\right)
\end{aligned}
$$

For if S, U, t, and F are chosen as in Theorem 3.5, it then follows by Theorems 2.6 and 3.5 and certain invariance properties of the Lebesgue area that

$$
\begin{aligned}
L\left(p_{k+1}^{k} \circ R \circ \bar{f} \mid Y\right) & =L\left(U \circ p_{k+1}^{k} \circ S \circ \bar{F} \circ \operatorname{inv} t \mid Y\right)=L\left(p_{k+1}^{k} \circ S \circ \bar{F} \circ \operatorname{inv} t \mid Y\right) \\
& =L\left(p_{k+1}^{k} \circ S \circ \bar{F} \mid(\operatorname{inv} t)^{*}(Y)\right) \\
& =\int_{E_{k}} N\left(p_{k+1}^{k} \circ S \circ \bar{F},(\operatorname{inv} t)^{*}(Y), x\right) d \mathcal{L}_{k} x \\
& =\int_{E_{k}} N\left(U \circ p_{k+1}^{k} \circ S \circ \bar{F} \circ \operatorname{inv} t, Y, x\right) d \mathcal{L}_{k} x \\
& =\int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x \\
& =\int_{E_{k}} S\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x .
\end{aligned}
$$

3.7 Lemma. If $X \subset E_{k}$ is a k cell with boundary \dot{X}, then

$$
\mathcal{H}_{k+1}^{k}\left[\bar{f}^{*}(\dot{X})\right]=0
$$

Proof. The method of proof selected for Lemma 2.5 included an explicit proof of this statement.
3.8 Theorem. If $X \subset E_{k}$ is a k cell, then

$$
\begin{aligned}
\beta(k+1, k)^{-1} \int_{G_{k+1}} & \int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}, X, x\right) d \mathcal{L}_{k} x d \phi_{k+1} R \\
& =\beta(k+1, k)^{-1} \int_{a_{k+1}} \int_{E_{k}} S\left(p_{k+1}^{k} \circ R \circ \bar{f}, X, x\right) d \mathcal{L}_{k} x d \phi_{k+1} R \\
& =L(\bar{f} \mid X) \\
& =\lim _{j \rightarrow \infty} L\left(\bar{f}_{j} \mid X\right) .
\end{aligned}
$$

Proof. Let $Y=$ interior X. Then from Lemma 3.5 we know that

$$
\int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x=\int_{E_{k}} S\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x
$$

for $R \in G_{k+1}$. Therefore

$$
\begin{aligned}
\beta(k+1, k)^{-1} \int_{G_{k+1}} & \int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x d \phi_{k+1} R \\
& =\beta(k+1, k)^{-1} \int_{G_{k+1}} \int_{E_{k}} S\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x d \phi_{k+1} R .
\end{aligned}
$$

We suppose that A is an open interval of E_{k} for which

$$
\text { closure } A \subset Y
$$

and select a positive integer i so large that

$$
A_{z} \subset Y \quad \text { whenever } z \in K_{i}
$$

Then with the help of [F4, 6.13], [F4, 4.5], and Lemma 3.4 we obtain

$$
\begin{aligned}
& L\left(\bar{f}_{i} \mid \text { closure } A\right)=\int_{A} J \bar{f}_{i}(x) d \mathcal{L}_{k} x \\
& \quad=\beta(k+1, k)^{-1} \int_{G_{k+1}} \int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}_{i}, A, x\right) d \mathcal{L}_{k} x d \phi_{k+1} R \\
& \quad \leqq \beta(k+1, k)^{-1} \int_{G_{k+1}} \alpha(k)^{-1} i^{k} \int_{K_{i}} \int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}, A_{z}, x\right) d \mathcal{L}_{k} x d \mathcal{L}_{k} z d \phi_{k+1} R \\
& \quad \leqq \beta(k+1, k)^{-1} \int_{G_{k+1}} \int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x d \phi_{k+1} R .
\end{aligned}
$$

From the lower semi-continuity of L on $C_{k}(X)$ it follows that $L(\bar{f} \mid$ closure $A) \leqq \underset{i \rightarrow \infty}{\lim \inf } L\left(\bar{f}_{i} \mid\right.$ closure $\left.A\right)$

$$
\leqq \beta(k+1, k)^{-1} \int_{G_{k+1}} \int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x d \phi_{k+1} R .
$$

As a consequence of the arbitrary nature of A

$$
\begin{aligned}
L(\bar{f} \mid Y) & \leqq \beta(k+1, k)^{-1} \int_{G_{k+1}} \int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x d \phi_{k+1} R \\
& =\beta(k+1, k)^{-1} \int_{G_{k+1}} \int_{E_{k}} S\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x d \phi_{k+1} R \\
& \leqq L(\bar{f} \mid Y) .
\end{aligned}
$$

Because of Lemma 3.7 this last relationship holds when Y is replaced by X.
Using the foregoing results the other part of the statement may be proved exactly as the corresponding statement was proved in Theorem 2.6.
3.9 Remark. For $X \subset E_{k}$ a k cell, the results of the last theorem allow us, using the notation of [F6], to state

$$
L(\bar{f} \mid X)=M^{* *}(\bar{f} \mid X)=S^{* *}(\bar{f} \mid X)=U^{* *}(\bar{f} \mid X)=V^{* *}(\bar{f} \mid X)=N^{* *}(\bar{f} \mid X)
$$

3.10 Remark. If Y is an analytic subset of E_{k}, then

$$
\mathcal{f}_{k+1}^{k}\left[\bar{f}^{*}(Y)\right]=\beta(k+1, k)^{-1} \int_{G_{k+1}} \int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x d \phi_{k+1} R
$$

Since $\bar{f}^{*}(Y)$ is an analytic subset of E_{k+1}, the univalence of \bar{f} implies

$$
\begin{aligned}
\mathcal{f}_{k+1}^{k}\left[\bar{f}^{*}(Y)\right] & =\beta(k+1, k)^{-1} \int_{G_{k+1}} \int_{E_{k}} N\left(p_{k+1}^{k} \circ R, \bar{f}^{*}(Y), x\right) d \mathcal{L}_{k} x d \phi_{k+1} R \\
& =\beta(k+1, k)^{-1} \int_{G_{k+1}} \int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x d \phi_{k+1} R
\end{aligned}
$$

3.11 Theorem. If $X \subset E_{k}$ is a k cell and A is a Borel subset of E_{k+1}, then

$$
\mathcal{F}_{k+1}^{k}\left[A \cap \bar{f}^{*}(X)\right]=\Gamma_{k+1}^{k}\left[A \cap \bar{f}^{*}(X)\right]
$$

Proof. Since in general \mathcal{F}_{k+1}^{k} is dominated by Γ_{k+1}^{k}, it is sufficient to assume

$$
\mathcal{f}_{k+1}^{k}\left[A \cap \bar{f}^{*}(X)\right]<\infty
$$

and to show that

$$
\mathcal{f}_{k+1}^{k}\left[A \cap \bar{f}^{*}(X)\right] \geqq \Gamma_{k+1}^{k}\left[A \cap \bar{f}^{*}(X)\right]
$$

We divide the proof of this into three parts.
Part 1. If $R \in G_{k+1}$, then

$$
L(\bar{f} \mid X) \geqq \int_{E_{k}} S\left(p_{k+1}^{k} \circ R \circ \bar{f}, X, x\right) d \mathcal{L}_{k} x
$$

Proof. Let $R \in G_{k+1}$. Select a sequence

$$
P_{1}, P_{2}, \cdots,
$$

of polyhedra of $C_{k}(X)$ for which

$$
\lim _{i \rightarrow \infty} P_{i}=\bar{f} \mid X, \quad \underset{i \rightarrow \infty}{\liminf } L\left(P_{i}\right)=L(\bar{f} \mid X)
$$

For each positive integer $i, p_{k+1}^{k} \circ R \circ P_{i}$ is a polyhedron and

$$
\lim _{i \rightarrow \infty}\left(p_{k+1}^{k} \circ R \circ P_{i}\right)=p_{k+1}^{k} \circ R \circ \bar{f} \mid X
$$

Suppose $\mathrm{U}_{j=1}^{m_{i}} T_{j}$ is the simplicial triangulation of X associated with P_{i}.

From the Lipschitzian character of $p_{k+1}^{k} \circ R$ we may infer that

$$
\begin{aligned}
L(\bar{f} \mid X) & =\underset{i \rightarrow \infty}{\lim \inf } \sum_{j=1}^{m_{i}} \mathscr{C}_{k+1}^{k}\left[P_{i}^{*}\left(T_{i}\right)\right] \\
& \geqq \liminf _{\substack{ \\
m_{i}}} \sum_{j=1}^{m_{i}} \mathscr{C}_{k+1}^{k}\left[\left(p_{k+1}^{k} \circ R \circ P_{i}\right)^{*}\left(T_{j}\right)\right] \\
& \geqq L\left(p_{k+1}^{k} \circ R \circ \bar{f} \mid X\right) .
\end{aligned}
$$

We know that the k-dimensional Lebesgue area and the k-dimensional stable area are lower semi-continuous functions on $C_{k}(X)$, and that both are extensions of the classical area integral over the class of polyhedra. The Lebesgue area being numerically the largest of all such lower semi-continuous extensions, we may conclude that

$$
L\left(p_{k+1}^{k} \circ R \circ \bar{f} \mid X\right) \geqq \int_{E_{k}} S\left(p_{k+1}^{k} \circ R \circ \bar{f}, X, x\right) d \mathcal{L}_{k} x
$$

Part 2. If B is a Borel subset of E_{k} and $R \in G_{k+1}$, then

$$
\mathcal{f}_{k+1}^{k}\left[\bar{f}^{*}(B)\right] \geqq \int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}, B, x\right) d \mathcal{L}_{k} x .
$$

Proof. Using Remark 3.10, Theorem 3.8, and Part 1,

$$
\begin{aligned}
\mathcal{f}_{k+1}^{k}\left[\bar{f}^{*}(Y)\right] & =L(\bar{f} \mid Y) \geqq \int_{E_{k}} S\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x \\
& =\int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}, Y, x\right) d \mathcal{L}_{k} x
\end{aligned}
$$

whenever $Y \subset E_{k}$ is a k cell.
The inequality between the first and last members of this string may be extended (by the customary methods) to hold whenever Y is a Borel subset of E_{k}.

PaRt 3. $\mathscr{F}_{k+1}^{k}\left[A \cap \bar{f}^{*}(X)\right] \geqq \Gamma_{k+1}^{k}\left[A \cap \bar{f}^{*}(X)\right]$.
Proof. Suppose B is a Borel subset of E_{k+1} and $B^{\prime}=(\operatorname{inv} \bar{f})^{*}\left[B \cap \bar{f}^{*}(X)\right]$. Then using Part 2

$$
\begin{array}{rlr}
\mathcal{f}_{k+1}^{k}\left[B \cap \bar{f}^{*}(X)\right] & =\mathcal{F}_{k+1}^{k}\left[\bar{f}^{*}\left(B^{\prime}\right)\right] \geqq \int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}, B^{\prime}, x\right) d \mathcal{L}_{k} x \\
& \geqq \mathcal{L}_{k}\left[\left(p_{k+1}^{k} \circ R \circ \bar{f}\right)^{*}\left(B^{\prime}\right)\right] & \\
& =\mathcal{L}_{k}\left[\left(p_{k+1}^{k} \circ R\right)^{*}\left(B \cap \bar{f}^{*}(X)\right)\right] & \text { for } R \in G_{k+1} \\
\mathcal{f}_{k+1}^{k}\left[B \cap \bar{f}^{*}(X)\right] & \geqq \gamma_{k+1}^{k}\left[B \cap \bar{f}^{*}(X)\right] . &
\end{array}
$$

It follows that

$$
\mathcal{f}_{k+1}^{k}\left[A \cap \bar{f}^{*}(X)\right] \geqq \Gamma_{k+1}^{k}\left[A \cap \bar{f}^{*}(X)\right]
$$

3.12 Lemma. If B is a Borel subset of E_{k} and $R \in G_{k+1}$, then

$$
\begin{aligned}
\int_{E_{k}} N\left(p_{k+1}^{k} \circ R \circ \bar{f}, B, y\right) d \mathcal{L}_{k} y & \leqq \mathcal{F}_{k+1}^{k}\left[\bar{f}^{*}(B)\right] \\
& \leqq \sum_{i=1}^{k+1} \int_{E_{k}} N\left(p_{k+1}^{k} \circ{ }^{i} R \circ \bar{f}, B, y\right) d \mathcal{L}_{k} y
\end{aligned}
$$

Proof. The first inequality is a restatement of Part 2 of the preceding theorem.

Let $Y \subset E_{k}$ be a k cell with boundary \dot{Y}. With the help of [F4, 6.13] we infer that

$$
\begin{aligned}
L\left(\bar{f}_{j} \mid Y\right) & =\int_{Y-\dot{Y}} J \bar{f}_{j}(x) d \mathcal{L}_{k} x \\
& =\int_{Y-\dot{Y}}\left[\sum_{i=1}^{k+1}\left\{J\left(p_{k+1}^{k} \circ \circ^{i} R \circ \bar{f}_{j}\right)(x)\right\}^{2}\right]^{1 / 2} d \mathcal{L}_{k} x \\
& \leqq \int_{Y-\dot{Y}} \sum_{i=1}^{k+1} J\left(p_{k+1}^{k} \circ{ }^{i} R \circ \bar{f}_{j}\right)(x) d \mathcal{L}_{k} x \\
& =\sum_{i=1}^{k+1} L\left(p_{k+1}^{k} \circ{ }^{i} R \circ \bar{f}_{j} \mid Y\right)
\end{aligned}
$$

whenever j is a positive integer. Letting $j \rightarrow \infty$, it follows from Theorems 3.10 and 2.8 that $L(\bar{f} \mid Y) \leqq \sum_{i=1}^{k+1} L\left(p_{k+1}^{k} \circ{ }^{i} R \circ \bar{f} \mid Y\right)$. We see by reference to Theorems 2.6, 3.8, and Remark 3.10 that

$$
\mathcal{f}_{k+1}^{k}\left[\bar{f}^{*}(Y)\right] \leqq \sum_{i=1}^{k+1} \int_{Y} N\left(p_{k+1}^{k} \circ{ }^{i} R \circ \bar{f}, Y, y\right) d \mathcal{L}_{k} y .
$$

The proof is completed by extending this inequality to hold whenever Y is a Borel subset of E_{k}.
3.13 Sectional assumption. For the rest of this section $X \subset E_{k}$ will denote a k cell.
3.14 Lemma. If j is a positive integer not exceeding k, then

$$
\begin{aligned}
& +\mathcal{L}_{k}(X) .
\end{aligned}
$$

Proof. We recall for $i=1,2, \cdots, k$, that

$$
\begin{gathered}
\left(p_{k+1}^{k} \circ \circ^{i} R \circ \bar{f}\right)(x)=\left(x_{1}, \cdots, x_{i-1}, f(x), x_{i+1}, \cdots, x_{k}\right) \quad \text { for } x \in E_{k}, \\
p_{k+1}^{k} \circ{ }^{i} R \circ \bar{f} \in \Omega_{k} .
\end{gathered}
$$

Consequently we may use Part 2 of Lemma 2.2, Theorem 3.8, and the preceding lemma to compute:

$$
\begin{aligned}
& =\int_{E_{k}} N\left(p_{k+1}^{k} \circ{ }^{i} R \circ \bar{f}, X, x\right) d \mathcal{L}_{k} x \leqq \mathcal{f}_{k+1}^{k}\left[\bar{f}^{*}(X)\right] \\
& =L(\bar{f} \mid X) \leqq \sum_{i=1}^{k+1} \int_{E_{k}} N\left(p_{k+1}^{k} \circ{ }^{i} R \circ \bar{f}, X, x\right) d \mathcal{L}{ }_{k} x \\
& \left.=\sum_{i=1}^{k} \int_{X_{(i)}} T_{v=\text { inf } X(i)^{4} f}^{\sup X_{(i)}{ }^{u}} u_{1}, \cdots, u_{i-1}, v, u_{i+1}, \cdots, u_{k}\right) d \mathcal{L}_{k-1} u+\mathcal{L}_{k}(X) .
\end{aligned}
$$

3.15 Theorem. The following statements are equivalent:
(i) f is $B V T$ on X.
(ii) $L(\bar{f} \mid X)<\infty$.

Proof. This statement is an immediate consequence of the preceding lemma.
3.16 Theorem. If f is $B V T$ on X and U is the subset of X on which \bar{f} is approximately differentiable, then
(i) $\mathcal{L}_{k}(X-U)=0$,
(ii) $\int_{Y} J \bar{f}(x) d \mathcal{C}_{k} x=\mathcal{F}_{k+1}^{k}\left[\bar{f}^{*}(Y \cap U)\right] \leqq \mathcal{f}_{k+1}^{k}\left[\bar{f}^{*}(Y)\right]<\infty$
whenever Y is an \mathcal{L}_{k} measurable subset of X.
Proof. Let j be a positive integer no greater than k. Just as in Theorem 2.14 we can show that

$$
D_{i} f(x) \text { exists for } \mathcal{L}_{k} \text { almost all } x \text { in } X
$$

Whence

$$
D_{j} \bar{f}(x) \text { exists for } \mathcal{L}_{k} \text { almost all } x \text { in } X
$$

and Stepanoff's theorem (see [S, IX 12.2]) implies that $\mathcal{L}_{k}(X-U)=0$. We may apply $[\mathrm{F} 2,5.2]$, with the measure Φ replaced by \mathscr{f}_{k+1}^{k} (see $[F 5,5.10]$), and Theorem 3.15 to obtain

$$
\begin{aligned}
\int_{Y} J \bar{f}(x) d \mathcal{L}_{k} x & =\int_{Y \cap U} J \bar{f}(x) d \mathcal{L}_{k} x=\int_{E_{k}} N(\bar{f}, Y \cap U, y) d \mathcal{f}_{k+1}^{k} y \\
& =\mathcal{F}_{k+1}^{k}\left[\bar{f}^{*}(Y \cap U)\right] \leqq \mathcal{F}_{k+1}^{k}\left[\bar{f}^{*}(Y)\right]<\infty
\end{aligned}
$$

3.17 Theorem. If f is BVT on X, then the following statements are equivalent:
(i) $\mathfrak{f}_{k+1}^{k}\left[\bar{f}^{*}(V)\right]=0$ whenever $V \subset X$ and $\mathcal{L}_{k}(V)=0$,
(ii) $\int_{Y} J \bar{f}(x) d \mathcal{L}_{k} x=\mathcal{f}_{k+1}^{k}\left[\bar{f}^{*}(Y)\right]<\infty$ whenever Y is an \mathcal{L}_{k} measurable subset of X,
(iii) $\int_{X} J \bar{f}(x) d \mathcal{L}_{k} x=\mathcal{F}_{k+1}^{k}\left[\bar{f}^{*}(X)\right]<\infty$,
(iv) f is $A C T$ on X.

Proof. Let $V \subset X$ and $\mathcal{L}_{k}(V)=0$. Select a Borel subset A of E_{k} so that

$$
V \subset A \subset X, \quad \mathcal{L}_{k}(A)=0
$$

The proof will be divided into five parts.
Part 1. (i) implies (ii).
Proof. Let Y be an \mathcal{L}_{k} measurable subset of X and U be the subset of X on which \bar{f} is approximately differentiable. Then

$$
\begin{array}{r}
\mathcal{L}_{k}(Y-U)=0, \\
\mathcal{F}_{k+1}^{k}\left[\bar{f}^{*}(Y-U)\right]=0,
\end{array}
$$

and Theorem 3. 16 implies

$$
\begin{aligned}
\int_{Y} J \bar{f}(x) d \mathcal{L}_{k} x & =\mathfrak{f}_{k+1}^{k}\left[\bar{f}^{*}(Y \cap U)\right]+\mathfrak{f}_{k+1}^{k}\left[\bar{f}^{*}(Y-U)\right] \\
& =\mathfrak{f}_{k+1}^{k}\left[\bar{f}^{*}(Y)\right]<\infty .
\end{aligned}
$$

Part 2. (ii) implies (iii).
Part 3. (iii) implies (i).
Proof. Let $\epsilon>0$. Choose on X a non-negative continuous function c and a number M satisfying

$$
\int_{X}|J f(x)-c(x)| d \mathcal{L}_{k} x \leqq \epsilon, \quad M>\sup _{x \in X} c(x) .
$$

We can select an open set G of E_{k} for which

$$
V \subset G, \quad \mathcal{L}_{k}(G)<\epsilon \cdot M^{-1}
$$

and a grating of $k-1$ planes which defines such a family $\left\{X_{i} \mid i=1,2, \cdots\right\}$ of subsets of E_{k} that

$$
V \subset \bigcup_{i=1}^{\infty} X_{i} \subset G \cap X, \quad X_{i} \text { is a } k \text { cell for } i=1,2, \cdots
$$

$$
\text { interior } X_{i} \cap \text { interior } X_{i}=0 \quad \text { for } i \neq j
$$

Then

$$
\begin{aligned}
\mathcal{F}_{k+1}^{k}\left[\bar{f}^{*}(V)\right] & \leqq \mathcal{f}_{k+1}^{k}\left[\bar{f}^{*}\left(\bigcup_{i=1}^{\infty} X_{i}\right)\right] \leqq \sum_{i=1}^{\infty} \mathfrak{f}_{k+1}^{k}\left[\bar{f}^{*}\left(X_{i}\right)\right] \\
& =\sum_{i=1}^{\infty} \int_{X_{i}} J \bar{f}(x) d \mathcal{L}_{k} x=\sum_{i=1}^{\infty} \int_{\text {interior } \mathrm{x}_{i}} J \bar{f}(x) d \mathcal{L}_{k} x \\
& \leqq \int_{G \cap X} J \bar{f}(x) d \mathcal{L}_{k} x \leqq \int_{G \cap \mathrm{X}} c(x) d \mathcal{L}_{k} x+\epsilon<2 \epsilon .
\end{aligned}
$$

Because of the arbitrary nature of ϵ the proof is complete.
Part 4. (ii) implies (iv).
Proof. Suppose j is a positive integer no greater than k.
The truth of (ii) means

$$
\mathcal{f}_{k+1}^{k}\left[\mathrm{f}^{*}(A)\right]=0
$$

and it follows from Lemma 3.12 and Theorem 2.15 that

$$
\begin{gathered}
\mathcal{L}_{k}\left[\left(p_{k+1}^{k} \circ{ }^{j} R \circ \bar{f}\right)^{*}(A)\right]=0, \quad \mathcal{L}_{k}\left[\left(p_{k+1}^{k} \circ{ }^{i} R \circ \bar{f}\right)^{*}(V)\right]=0, \\
p_{k+1}^{k} \circ{ }^{i} R \circ \bar{f} \text { is absolutely continuous on } X, \\
f \text { is ACT }(j) \text { on } X .
\end{gathered}
$$

Consequently
f is ACT on X.
Part 5. (iv) implies (i).
Proof. Using Theorem 2.15 we know that
f is $\operatorname{ACT}(i)$ on X,
$p_{k+1}^{k} \circ{ }^{i} R \circ \bar{f}$ is absolutely continuous on X,

$$
\int_{E_{k}} N\left(p_{k+1}^{k} \circ{ }^{i} R \circ \bar{f}, A, x\right) d \mathcal{L}_{k} x=0
$$

for $i=1,2, \cdots, k$. Recalling that

$$
\int_{E_{k}} N\left(p_{k+1}^{k} \circ{ }^{k+1} R \circ \bar{f}, A, x\right) d \mathcal{L}_{k} x=\mathcal{L}_{k}(A)
$$

we may conclude from Lemma 3.12 that

$$
\mathcal{F}_{k+1}^{k}\left[\mathfrak{f}^{*}(A)\right]=0, \quad \mathcal{f}_{k+1}^{k}\left[f^{*}(V)\right]=0 .
$$

3.18 Remark. If
(i) h is a continuous function on X into X,
(ii) $\int_{E_{k}} N(h, X, x) d \mathcal{L}_{k} x<\infty$,
(iii) f is $A C T$ on X,
then h is absolutely continuous on X if and only if

$$
\mathcal{f}_{k+1}^{k}\left[(\bar{f} \circ h)^{*}(V)\right]=0 \text { whenever } V \subset X \text { and } \mathcal{L}_{k}(V)=0
$$

This is a consequence of Theorem 3.17.
3.19 Remark. Using the notation of [F6] we may restate the results of Theorems 3.8, 3.16, and 3.17:

$$
\begin{aligned}
& L(\bar{f} \mid X)<\infty \text { implies } \\
& \int_{X} J \bar{f}(x) d \mathcal{L}_{k} x \leqq L(\bar{f} \mid X)=M^{* *}(\bar{f} \mid X)=S^{* *}(\bar{f} \mid X)=U^{* *}(\bar{f} \mid X) \\
&=V^{* *}(\bar{f} \mid X)=N^{* *}(\bar{f} \mid X)
\end{aligned}
$$

equality holding if and only if f is $A C T$ on X.
3.20 Theorem. If for $x \in E_{k}$ and $r>0$

$$
C(x, r)=E_{k} \cap\{z| | z-x \mid \leqq r\}
$$

then

$$
\begin{gathered}
f \text { is BVT on } X \text { implies } \\
\lim _{r \rightarrow 0+} \frac{L[\bar{f} \mid C(x, r)]}{\alpha(k) r^{k}}=J \bar{f}(x) \quad \text { for } \mathcal{L}_{k} \text { almost all } x \in \text { interior } X .
\end{gathered}
$$

Proof. Letting Theorems 3.8 and 3.16 play the respective roles of Theorems 2.6 and 2.14 , the proof is similar to that of Theorem 2.18. In fact only the verification of the additivity of the singular part of the decomposition is different. For this the following general property of Carathéodory outer measures proves useful:
if ϕ is a Carathéodory outer measure, A, B, and T are elements of domain ϕ, and A is ϕ measurable, then

$$
\phi(T \cap(A \cup B))+\phi(T \cap A \cap B)=\phi(T \cap A)+\phi(T \cap B)
$$

Bibliography

C. Carathéodory
[C] Über das lineare Mass von Punktmengen-eine Verallgemeinerung des Längenbegriffs, Nachr. Ges. Wiss. Göttingen (1914) pp. 404-426.
H. Federer
[F1] Surface area. I, Trans. Amer. Math. Soc vol. 55 (1944) pp. 420-437.
[F2] Surface area. II, Trans. Amer. Math. Soc. vol. 55 (1944) pp. 438-456.
[F3] The Gauss-Green theorem, Trans. Amer. Math. Soc. vol. 58 (1945) pp. 44-76.
[F4] Coincidence functions and their integrals, Trans. Amer. Math. Soc. vol. 59 (1946) pp. 441-466.
[F5] The (ϕ, k) rectifiable subsets of n space, Trans. Amer. Math. Soc. vol. 62 (1947) pp. 114-192.
[F6] Hausdorff measure and Lebesgue area, Proc. Nat. Acad. Sci. U.S.A. vol. 37 (1951) pp. 90-94.
[F7] Measure and area, Bull. Amer. Math. Soc. vol. 58 (1952) pp. 306-378.
F. Hausdorff
[H] Dimension und äusseres Mass, Math. Ann. vol. 79 (1918) pp. 157-179.
P. V. Reichelderfer
[R] On bounded variation and absolute continuity for parametric representation of continuous surfaces, Trans. Amer. Math. Soc. vol. 53 (1943) pp. 251-291.
S. SAKS
[S] Theory of the integral, Warsaw, 1937.
A. SARD
[SD] The equivalence of n-measure and Lebesgue measure in E_{n}, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 758-759.
L. Tonelli
[T1] Sulla quadratura della superficie, Rendiconti Acc. Lincei (6) vol. 3_{1} (1926) pp. 357362, pp. 445-450, pp. 633-638, pp. 714-719.
[T2] Su un polinomio d'approssimazione e l'area di una superficie, Rendiconti Acc. Lincei (6) vol. 5 (1927) pp. 313-318.
A. Weil
[W] L'intégration dans les groupes topologiques et ses applications, Actualités Scientifiques et Industrielles, vol. 869, Paris, Hermann, 1938.

Brown University,

Providence, R. I.

[^0]: Presented to the Society, June 20, 1954; received by the editors June 8, 1954.

