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Introduction. Suppose XQEk (k^2) is a k cell, g is a real-valued continu-

ous function on Ek, j is a positive integer not greater than ¿, and / is the

mapping defined by the relation

f(x) = (xi, • • • , Xj-i, g(x), Xj+i, • ■ • , xk) for x G Ek.

For this class of mappings on Ek into Ek (denoted by flt) we concern ourselves

with the validity of the formula

f | Djg(x) [ ¿O - L(f\ X) -   f   S(/, X, y)¿0 =   f   #(/, X, y)d£ky

where Djg is the partial derivative of g in the direction of the jth base vector,

L(f\ X) is the Lebesgue area of the surface f\ X, S(f, X, y) and N(f, X, y) are

respectively the stable multiplicity and multiplicity of / on X, and /j, de-

notes the ¿-dimensional Lebesgue measure.

The main results, which comprise a complete theory of area for the class

ß*, are embodied in Theorems 2.6, 2.13, 2.14, and 2.15.

For k = 2 the results are in most part known (see [Ti], [T2], and [R]).

The theory of area of the class ß* is intimately connected with the theory

of area of ¿-dimensional nonparametric surfaces in Ek+i. In fact if g is the

function defined by

|(x) = (xi, x2, • • • , xk, g(x)) for x G Ek,

and 7T is an orthogonal projection of Ek+1 onto Ek, then

i\X

is a ¿-dimensional nonparametric surface in Ek+i, and

TTOf

is a mapping of Ek into Ek. For some, but not all, orthogonal projections it,

w o g is a member of ß*.

A reduction procedure is devised whereby the theory of area of the class

A* extends, in great part, to the mappings w o g. A theory of area for ¿-dimen-

sional nonparametric surfaces in Ek+i evolves; a theory in which complete

information is obtained concerning the validity of the relation
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f Jg(x)dJZkX = L{g | X)

= ß(k + 1, k)~l f       f   S(pl+i oRog, X, y)dJ¿kyd<t>MR

= ß(k + 1, k)-1 f       f   N(p"k+1 oRog,X, y)dJ¿kyd<bk+1R

where Jg is the Jacobian associated with g by means of its approximate dif-

ferential, and where the last two members of the string are respectively the

stable integralgeometric and integralgeometric areas of the surface g\ X.

The main results are contained in Theorems 3.8, 3.11, 3.15, 3.16, and 3.17.

For k — 2 the theory of area for ¿-dimensional nonparametric surfaces in

Ejt+i is well established (see [F4, 6] and [S, V]).

1. Definitions.

1.1 Definition. If/ is a function, then inv/ is its inverse, and for any set

A, f\A is the function with domain (AP\domain f) for which

(/| A)(x) = f(x) whenever x G {A (~\ domain/).

Furthermore

N{f,A,x)

is the number (possibly w) of elements of the set Ar\{z\f(z) =x\, and

f*(A) = {x | x = /(z) for some z G A }.

If g is also a function, then

fog,

the superposition of / on g, is defined by the formula

(fog)(x) =f(g(x)) for all x.

1.2 Definition. Euclidean n space will be denoted by En. The usual

metric and inner product (denoted by •) are assumed for this w-dimensional

vector space. We write

x = (xi, x2, • • • , xn) for x G -En.

For m and n positive integers we shall often identify EmX.En with Em+n.

Lebesgue n dimensional measure over En is denoted by /¿n-

«(») = -G(£nn {*|| x\ < l}).

1.3 Definition. If / is a function on En to Ex and x£-E», then we define

lim sup ap /(z)
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to be the infimum of the numbers of the form

lim sup f(z)
z—*z z^A

where A is a Lebesgue measurable subset of £„ with density one at x.

1.4 Definition. For m and n positive integers a function L on Em to En

is linear if and only if

L(x + y) = L(x) + L(y) for x G Em, y G Em

L(\x) = X£(x) for x G -Em and X a real number.

For i^i^m let "■/* denote the ¿th unit vector of Em. Then if L is a linear

function on Em to £n

£(V) = ¿ = (LÎ, L2, • • • , LÍ) G En.

The matrix of L, which we identify with L, is the w by m matrix whose entry

in the jth row and îth column (1 ^j^n, 1 giijm) is L). If m^n the square

root of the sum of the squares of the determinants of all m by m minors will

be denoted by A(L).

If 1 ̂ m^n, f is a function on Em to En, and L is a linear function on Em

to £„ for which

\f(z)-f(x)-L(z-x)\
hm sup ap-:-i- = 0,
z-*x I Z —  X I

then L is unique and is termed the approximate differential of f at x. If x is a

point at which / has the approximate differential L we denote

Jf(x) = A(£).

If / is a function on E\ into E„ and a <b, then 7?_„/(i) is the supremum of

the numbers of the form

t\m-m-ù\,t-i
where a = /0á<iá ■ ■ ■ útn = b.

If / is a function on En to £t and j is a positive integer no greater than »,

then Djf is the function on En such that

Djf(x) = lim-for x G -En-
»-k» h

1.5 Definition. If má» are positive integers, then p™ is the function on

En onto Em defined by

Pn(x) = (xi, ■ • ■ , xm) for x G -En.
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1.6 Definition. If « is a positive integer, then G„ will denote the set of

all linear transformations R on EH to En for which

| R(x) | = | x | whenever x G En.

With respect to the topology of uniform convergence and the operation of

superposition, Gn is a compact topological group, in fact, the orthogonal group

of £„.
The identity element of Gn will be designated by "/, and <f>n will be the

unique Haar measure over G„ for which 4>n(Gn) =1.

The following fact may be inferred (see [W, 8]):

If / is a <pn measurable function on Gn then

f  f(R)dct>nR =  f  /(inv R)d<t>nR =  f  f(Ro S)d<j>nR =  f  f(S o R)d<l>nR
J G„ J (?„ J an J Gn

whenever 5GG„.

1.7 Definition. If m^n are positive integers, then

aim) -a(n — m)
ß(n, m) = - •

a(M)'C)

1.8 Definition. A function g on En is said to be a gauge over En if and

only if domain gC {^| ^C-En}, range gC{t\0^t^ oo }.

If g is a gauge over En and 0 <r ^ <o, the function gr is defined by the re-

lation

gr(A) =   inf   X   g(S) for A C En,
fGb SE.F

where FÇzB if and only if F is a countable subfamily of domain g for which

A C    U   S, diameter S < r, whenever S GE.

One says that 0 is generated by g if and only if g is a gauge over EH and <f>

is the function defined by

<K¿) =   lim ¿r(il) for A C E„.
f~*0+

It may be shown that 0 is a (Carathéodory outer) measure over En and that

closed subsets of £„ are <f> measurable.

1.9 Definition. If m^n are positive integers and 7™, f™, and x» are the

gauges over En defined by

y~(S) -   sup  J¿k[(p: o R)*(S)]
rGg
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whenever .S is a Borel subset of En,

g (¿S) = ß(n, mf1 f   £k[(pmn o R)*(S)]d<j>nR

whenever 5 is an analytic subset of £„,

Xn (S) = a(m)2      (diameter S) whenever S G En,

then 3C„* generated by %n, Jn generated by C, and T™ generated by 7™ are

respectively the Hausdorjf, the integralgeometric, and the Gross ¿-dimensional

measures over w space (see [F4], [H], [C]).

One may easily check that 3C™, J™, and T™ are invariant under isometries

of En and that any subset of En is contained in a G¡ set of equal 3C™ measure,

in an analytic set of equal 5T measure, and in a Borel set of equal T™ measure.

The equality of J" and J^n is apparent from the definition. It is also true that

JCB=£n (see [SD]).

1.10 Definition. If m^n are positive integers and XÇ_Em is an m cell

or its interior, then Cn{X) will denote the set of continuous functions on X to

En.

If g(E.C„(X), then g is a polyhedron if and only if X can be so triangulated

that g maps each simplex baracentrically onto a rectilinear simplex of E„.

It is to be noted that relative to the topology of uniform convergence the

class of polyhedra is dense in Cn{X), and also that all areas used in this paper

are equivalent on the class of polyhedra.

1.11 Definition. Suppose m^n are positive integers and/ is a continu-

ous function on Em to En.

If XC.Em is an m cell, then

L(f\ X), the m-dimensional Lebesgue area of/| X,

is the lower limit of the areas of polyhedra approximating/] X.

If XQ.Em is the interior of an m cell, then

L(f\ X), the m-dimensional Lebesgue area of/| X,

is the supremum of L(f\ Y) for all subsets Y of X which are m cells.

If XC.Em is either an m cell or its interior, then

the m-dimensional Hausdorjf area of f\ X =  I    N(f, X, y)dX.n y;
J En

the m-dimensional integralgeometric area of f\ X =   I     jV(/, X, y)djn y

= ß(n, m)'1 i     f  JV(/C oRof, X, x)dJ¿mxd^>nR;
^ onJ Em
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the m-dimensional integralgeometric stable area of /1 X

ß(n, m)-1 f    f   S(pZ oRof,X, x)d^mxd<t>rtR;

where S(f, X, x) is the stable multiplicity as defined in [F7].

1.12 Definition. If « is a positive integer exceeding one, j is a positive

integer no greater than n, A <Z.E„, zÇ_En, and wG-En-i, then

A, = Enf\ {x + z|xG^},

Atj) = £„_i r\ {w I (wi, • • • , Wj-u v, Wj+i, • • • , w„) G A for some v},

AU) = Ei r\ [v\ (Ui, • • • , »y_i, V, Uj+i, ■ ■ ■ , un) G A}.

If / is a continuous real-valued function on E„ and i is a positive integer,

then

Ki = £„n {x| | x| g i-1},

and/,-, the ith integral mean, of/, is the real-valued function on En defined by

the formula

fi(x) = a(n)-H" f  f(x + z)d£nz for x G £*

2. On a certain class of mappings of Ek into Ek (¿> 1). Let ß* denote the

class of mappings on Ek into itself defined by : / G ß* if and only if for some

positive integer/ not exceeding ¿ and for some continuous real-valued function

g on Ek, f is defined by the formula

f(x) = (xi, ■ ■ ■ , x,_i, g(x), Xj+i, ■ ■ ■ , Xk) for x G Ek.

For such a function/Gß* and i a positive integer,/¿ will be defined as that

element of ß* for which

fi(x) = (xi, • • • , x,_!, gi(x), Xj+i, • • • , xk) for x G Ek.

2.1 Sectional assumption. In the development of a theory of area for

the class fl* it will be convenient to fix a function /Gß* which will be defined

by/(x) = (xi, • • • , Xi-i, g(x)) for xG-Efc, where g is a (fixed) real-valued con-

tinuous function on Ek.

No restriction in generality will be effected by this assumption (see Re-

mark 2.20).

2.2 Lemma. If Y(ZEk is a bounded open convex set and i is a positive integer,

then

f   N(fh Y, x)d£kx ̂  a(k)-H" f    f   N(f, Yz, x)d£kxd£kz.
J Eh J K{J Ek
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Proof. We let

u U

a{u) = inf Yik),        b{u) = sup Y(Ä0 for u G Y{k),

and for each m G Yac) we define the function

U

A«: closure Y\k) —* Elt

huiy) = g{ui, u2, ■ ■ • , uk-\, v)       for v G closure Y {k).

The remainder of the proof is divided into four parts.

Part 1. N(f, Y, (u, v)) =N(hu, F&, v) for («, v)GEh^XEu
Proof. If A is a subset of £* we shall denote by q(A) the number (possibly

oo ) of elements of A. Whence

N(f, Y, («, »)) = g[(£,_i X £i) H {(w, t) | /(«/, i) = («, »)}]

= g [(£*_i X Ei) r\ {(w, t) | w = w, t G F"*,, A.(i) = t>} ]

= j[£in {/| ¿ GE Y\k), hu(t) = v}]

= N{hn, F**„ »).

Part 2. fEkN(f, Y, («, »))£&(«, ») -/rWIÄwf(«, *<)¿G-i«-
Proof. Using Part 1 and [Fl, 4.3] we compute:

f    N(f, Y, («, !>))£&(«, b) =  f       f   N(f, Y, (u, viïdj&dJb-nt
J Ek J Ek-XJ Et

= I j    N{hu, Y*0it v)dJ¿ivdJ¿k-1u

= I N(hu, closure Y\k), v)d/¿1vd/¿k_1u

= I Tv=aWhu(v)dJ¿k-iU

= I Tv=aMg(u, v)d/¿k-iu.
JY{k)

Part 3. If c and d are real numbers with

c < d    and    z = (z', z") G £*-i X £i,

then

Tt-cgiiu, v) S a(k)-Hh f   rt^(« + *',» + *")*<>

Proof. Let e = z>0<i>i< • • ■ <vm = d. Then
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m

p=l

m    I /»

=  £   a(É)-l¿»  I      {g(M + Z', », + Z")  - g(U + z', Vr-i + z")}djCkZ
p-1 I J K¡

/» mZ U(« + 2'> »p + 3") - *(« + 2'. »P-i + 2") I ¿o
X;    p-1

á a(¿)    *   j     Tv=cg(u + z', v + z")d£kZ.

Part 4. fBhN(fit Y, x)dJ^x^a(k)-HkJKjEkN(f, Y„ x)dJ&cdJ&.
Proof. Suppose z = (z', z") G£*-i X£i. We know that

F = (£*_! X £1) n{(u,v)\vG F"»)}.

It is easy to check that

Fz = (Ek-i X £1) H {(«,») I v - z" G F"*-/'},        [F(t,].. = [F,](fc,.

Letting x=(u, fl)££fc-iX£i and applying Part 2 to/,- we infer with the help

of Parts 3 and 2 that

/,¥(/,-, F, x)dJtjcX =  I      Tv"aWgi(u, v)daQtk-iu
Ek JY(.t)

^  f     a(k)-Hk f   Thv{yaWg(u + z',v + z")d£kzd£k-iu
JY(k) J Ki

/Ç 6(«) /a /aI       Tv=aWg(u + z',v + z")dJ¿k-iudj¿kZ
KiJr<.k)

= a(k)~lik I Tp=a<í-z-)g(u, v + z")d£k-iud£hz
J KiJ [rujif"

= a(k)-li" I      I ï\-«<«-»'>+«"£(«> v)d£k-iud£kz

= «(A)-»*» f     f   #(/, F„ x)d£kxdjfZkZ.
J KfJ Ek

2.3 Lemma. 1/ XÇ_Ek is a k cell with boundary X, FÇ£Ck(X), GE.Ck(X),

and if F\ X is homotopic to G \ X where

F\ X is a map of X into Ek — \y},

G\ X is an essential map of X into Ek — {y},

then y is a stable value of F\X — X.
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Proof. Let r = inflGx | F(x) —y\, and let t denote the function on Ek— \y}

into the k — l sphere defined by the formula

x — y ,   ,
t(x) = -j-¡- for x G Ek — { y J.

| x — y |

The proof will be divided into three parts.

Part 1. If degree (x o F| X)?¿0, then there exists a pGX — X for which

F(p) = y.
Proof. Since X is a k cell, for q(EX we may define a continuous contrac-

tion 0 of X into {q} :

0: {¿ | 0 i= / ^ l\ —* {H\ H is a. continuous function on X into X],

(0(0)) (x) = X ÎOT xG X,

(0(1)) (*) = q îoixGX.

Suppose that the statement is false. Then for O^/^l

Eo0(/)| X:X^Ek- {y\,

F o 0(0 | X is homotopic to F o 0(0) | X,

■¡v o F o <p(t) I X is homotopic to iroFo 0(0) | X.

Accordingly we arrive at the contradiction

0 = degree (x o F o 0(1) | X) = degree (to F o 0(0) | X) = degree (xof| X) ^ 0.

Part 2. If HECk(X) and \h\X-F\X\ <r, then

degree (x o H | X) = degree (x o£1 X).

Proof. Since for xÇ.X

\F(x) -H(x)\ <\F(x)-y\,

it follows that

y&Ekn [z\z =F(x) +t(H(x) - F(x)) for 0 = t ^ l}.

Hence it suffices to define the continuous function

0:1>X {z|0á<á 1} -►£*- {y},

0(x, /) = F(x) + t(H(x) - F(x)) ÎOT (x, t ) G X X {t\ 0 ^ t ^ 1},

to establish that E| X and H\ X are homotopic. Consequently ir o F\ X and

x o H\ X are homotopic and

degree (iroF\ X) = degree (x o ff | X).

Part 3. y is a stable value of F.

Proof. We infer from the hypothesis that
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degree (ir o£ | X) = degree (it o G \ X) ^ 0.

If LÇ_Ck(X) and \L — F\ <r, we may use Part 2 to establish that

degree (x o L | X) = degree (t o£ | X),

and Part 1 to show the existence of a p^X — X for which L(p) =y.

2.4 Theorem. If Y is a bounded open convex subset of Ek, then

N(f, Y, x) = S(f, Y, x)     forJlk almost all x G Ek.

Proof. We assume hu to have the same meaning as in Lemma 2.2. Let C

be the set of points (u, v) in Y for which hu has either a relative maximum

or a relative minimum at v. We may check that C is a Fa set and

hu(C(k)) is countable for u G Y{k).

If follows that/*(C) is £k measurable and

-G[r(QJ = o.
We know that

N(f, Y - C, x) = 2V(/, F, x) for x G /*(F - C) - /*(C),

N(f, Y, x) = 5(/, F, x) for x G/*(F),

hence we may complete the proof by showing that/ is stable [F4, 6.6] at

every point of Y— C. For if this were so, then

S(f, F, *) ^ N(f, Y, x) = N(f, Y-C,x)S S(f, F, x)

whenever x<Ef*(Y-C)-f*(C).
Let e>0.

If (m°, d0) = (m?, u\, • ■ ■ , «*_!, t')£7-C, then using the continuity of g

we can select

u1 G F(4))       »s G F(*>,       s1 G £i,       »2 G Ei,

satisfying

0 10 2 0
Ui — e < Ui < M,- < M, < m,- + e for î = 1, 2, • • ■ , k — 1,

0 10 2 0
v  — t<v<v<v<v+e,

and such that if we denote

/      i      1 2 >

P = £j;_i A [u | «¡ ^ Mi S Ui for i = 1, 2, • • • , k — 1J,

X = (£*_i X £i) H { (m, ») | m G P and v1 ^ v ^ v2},

then JC Fand either

(1) K(vx) < hu(v°) < hu(v2) whenever u G P,
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or else

(2) huiv1) > hu(v°) > hu{v2) whenever u G P.

Observe that X is a k cell with diameter less than 2kll2t and, denoting its

boundary by X and/(w°, v°) by y, that/] X is a map of X into Ek—{y).

If (1) occurs we can define the function G on X into Ek—{y\ by

G(«, ») = («, y* + » - v°) for («, ») G (£*-i X £i) H X,

and the function 0 on IX {¿| 0=i^l} into Ek— {y} by

0(m, », I) = («, (1 - t)(yk + v - v") + thu(v))

for (w, », /)G((£iX£i)nZ)x{z|0=Z^l}, and infer that

G is an essential map of X into Ek — {y},

G is homotopic to /1 X.

Lemma 2.3 implies that y is a stable value of/| X — X, and from the arbitrary

nature of e we conclude that/ is stable at (u°, v").

Whenever (2) occurs a similar treatment is employed. The proof is com-

plete.

2.5 Lemma. If X<ZEk is a k cell with boundary X, then J¿k \f*(X) ] = 0.

Proof. Let

A (at) = (ati, x2, ■ ■ ■ , xk, g(x)) for x G X.

Then observing that X lies on 2k k — 1 cells Ai (i = l, 2, • • ■ , 2k) it is appar-

ent that the h image of each such k — l cell lies on a k plane in £t+i, and that

3ct+1[h*(X)] á D xt+i[h*(Ai)].
i—l

If j is a positive integer no greater than 2k, let x be an isometric projec-

tion onto Ek of the k plane containing A¡ and /z*(i4y), which satisfies

Tr*(Ai) CEkn{x\xk = 0}.

It follows that

the number of elements in [(x o h)*{A ,-)](*> = 1

for mG [(t o h)*{Aj)\k). We apply Fubini's theorem to obtain

rc¡U*%í/)] =-G[(*o*)*(¿,)]

=  r -G { [(» O A)*(¿ í) ](W} ¿O-i« = o,
«^ [(»v>>V/)]u>

X*+i[A*(Z)J = 0.
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Finally letting R be the element of Gk for which

R(w) = (wi, • • • , Wh, Wk+u Wk) for w G Ek+U

we conclude from the Lipschitzian character of pl+1 o R that

&[f*(,X)} =<Ck[(pl+ioRoh)*(X)] = 0.

2.6 Theorem. // X(ZEk is a ¿ cell, then

f   N(f, X, x)d£kx =  f  S(f, X, x)d£kx = L(f\ X) = lim L(f)\ X).
J Ek J Bt J—»

Proof. Let F denote the interior of X and let A be an open interval of Ek

for which

closure A <Z Y.

Select a positive integer i so large that

.4,CF forzG^,-.

Then using [F4, 6.13], [F2, 4.5] and Lemma 2.2 we compute

L(fi | closure A) =   I   Jfi(x)d^Q>kx
Ja

=  f   N(fu A, x)d£kX

á a(k)-H" f    f   N(f,Az, x)d£kxd£kz
J KfJ Ek

^ f   N(f, Y, x)d£kx.
JEh

It follows using the lower semi-continuity of L on Ck(X) that

L(f\ closure A) ^ lim inf !(/< | closure ^) g   f   #(/, F, x)<¿£*x.

From the arbitrary nature of A and Theorem 2.4 we may conclude

L(f\ Y)ú(   N(f, Y, x)d£kx =  f  S(f, Y, x)d£kx ̂  L(f\ Y).
J Ek J Ek

In view of Lemma 2.5 it is seen that this relation holds with Y replaced

byZ.
For the other part of the statement we recall in general that

L(f\ X) ^ lim inf L(fj\ X).
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Therefore under the assumption that L(f\ X) is finite we need to prove that

limsupE(/y| X) ^ L(f\X).

Pick €>0. Utilizing the foregoing results we can select an open interval

U of Ek such that

XCU,       L{f\U)úL{f\X) + t.

Let j be so large a positive integer that

(interior X)z C V whenever z G K¡.

Then we can show just as before that

L(Ji\ X) á  f  S(f, U, x)d£kx ̂  L(f\ U) = L(J\ X) + e.
J Bk

Accordingly

lim sup L(Ji | X) é L(J | X) + e.

Since e was arbitrary this completes the proof.

2.7 Remark. Using the results of the preceding theorem and the notation

of [F 6] we find for X<ZEk a k cell that

L(f\ X) = M**(f\ X) = M*{f\ X) = S**(f\ X) = 5*(/| X)

= V**(f\ X) = V*(f\ X) = U**(f\ X) = U*(f\ X)

= N**(f\ X) = JV*(/| X).

2.8 Definition. If ZCE* is a k cell and AGCi(Z), then
(i) for i a positive integer no greater than k, h is said to be of bounded

variation (i) in the sense of Tonelli (BVT (i)) on X if and only if

/T7=mfx(i)"h(uh ■ ■ ■ , »<_i, v, ui+i, • • • , uk)d/¿k_iu < =° ;
XU)

(ii) A is said to be of bounded variation in the sense of Tonelli (BVT) on X

if and only if h is BVT (i) on X whenever ¿ = 1,2, • • • , k.

2.9 Definition. If XCEk is a A cell and AGCi(X), then
(i) for ¿ a positive integer no greater than A, h is said to be absolutely con-

tinuous (¿) in the sense of Tonelli (ACT (¿)) on X if and only if A is BVT (¿)

on X and the function

v -+ A(«i, • • • , tii-i, v, ui+i, •••,«*)

is absolutely continuous in the classical sense on X"t-¡, for «¿jt-i almost all

mG-X"«)!
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(ii) h is said to be absolutely continuous in the sense of Tonelli (ACT) on

X if and only if h is ACT (i) on X whenever i= 1, 2, • • • , ¿.

2.10 Definition. If X<ZEk is a ¿ cell and h(E.Ck(X), then h is said to be
absolutely continuous on X if and only if

f   N(h, X, y)d£ky < «o,
J Ek

and /i transforms subsets of X of .£* measure zero into sets of j£¿ measure zero.

2.11 Sectional assumption. For the rest of this section X<ZEk will de-

note a ¿ cell.

2.12 Lemma. If gis BVT(k) on X, then

/I Dkg(x) | djj,x =1 I    '   I -DfcgC«. ») I dj^ivd^k-iu
Y J Y(k) J Y(k)"

^    I P8„lPinf y(t)"g(M,  »)<££fc_lW

=   f   A'(/, F, («, «0)aG(«, »)

-   f   iV(/, F, y)áOy

whenever YCZX and Y is a k cell.

Proof. This statement follows directly from Definition 2.8 and Part 2 of

Lemma 2.2.

2.13 Theorem. The following statements are equivalent:

(i) gisB VT(k) on X,

(ii) L(f\X)< co.

Proof. By virtue of Part 2 of Lemma 2.2 and Theorem 2.6

XP»=inf Xihfg(u, v)d£k-iu = L(f\ X).
X(h)

The theorem is an immediate consequence of this equality.

2.14 Theorem. If g is B VT(k) on X, U is the set of those points x in X for

which Dkg(x) exists, Y is an jQj, measurable subset of X and Z is an analytic

subset of Ek contained in X, then

(i)   U is a Borel subset of Ek and J^k(X— U) =0,

(ii) JT| Dkg(x) | ¿O = fEkN(f, Yn U, y)dCky < «,
(iii) MDkg(x)\d£kxufBkN(f, Z, y) d£ky<™.
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Proof. We know from [S, V4.l] that Dkg is a Borel measurable function.

We may infer that

U is a Borel subset of Ek,

and since

/¿i[(X - t0"*>] = 0 for J¿k^ almost all u G X(k),

may use Fubini's theorem to conclude that

„G(x - co - 0.

Using the notation of Lemma 2.2 the statement

I Dkg(u, v) | = | Dihu(v) | = Jhu{v) for i£ V ik)

is true for uGX(i). Also we know that

(f n toT*>

is an ^j measurable subset of £i for uGJ«),

Upon combining these facts and using [F2, 5.2] (applied to A«), Part 1 of

Lemma 2.2, and Theorem 2.13, we find that

/I Dkg{x) | d/¿kx =   I        | Dkg(x) | dj¿kx
y J yDu

=   I I | E>*g(«, v) | d/¿¡vdj¿k-iu
J trnv)m  J (rnc/)(t)

= I j JA„(»)<iCMG-lM

= f f   #(A., (F H U)ïkh v)d/¿1vdj¿k_1u

= r r iva f n u, (u, viïdj&djb-nt
-J Ek-iJ E¡

=  f   N(J,Yr\U,y)djÇJly< «.

For (iii) it is only necessary in addition to observe that

N(f, Z, y) is J(jc measurable in y,

f   N(f,Z,y)djC,ky< co.
J Ek

2.15 Theorem. If gis B VT(k) on X, then the following statements are equiva-

lent:
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(i) / is absolutely continuous on X,

(ii) Jy\ Dkg(x) | djfjcX=fEkN(f, Y, y)dj(jcy < oo whenever Y is an Jj, measur-

able subset of X,

(iii) Jx\Dkg(x)\d^x=fEkN(f, X, y)dj&y<*>,
(iv) gis ACT(k) onX.

Proof. The proof is divided into five parts.

Part 1. (i) implies (ii).

Proof. Let U be the set of points x in X for which Dkg(x) exists, and Y be

an J(\k measurable subset of X. Then

N(f, Y, y) is Xjc measurable in y,

j(lk(Y -U)=0,

and we may infer, using the preceding theorem, that

f | Dkg(x) | d£kx =   f   N(f, YC\U, y)d£ky
J Y J Bk

=   f   N(f,Y,y)djQjky< oo.
J Ek

Part 2. (ii) implies (iii).

Part 3. (iii) implies (iv).

Proof. Lemma 2.12 implies that

sup X(*:)u    . r    i . i
P„=inf X(h)ug(U, V)   =    I I £>ig(M,  l>) |  ¿^ j»

J X<*>"

for^_! almost all mGA^í). Whence

g is ACT(k) on X.

Part 4. (iv) implies (ii).

Proof. If Y(ZX and F is a ¿ cell, then (iv) being true means

T°v=iJ r(*)"g(«, ») =  |       | -D*g(«, ») | ¿C
J r(4)u

for j(jc-i almost all m G Y(k),

f   N(f, Y, y)d£ky < oo.

We infer from Lemma 2.12 that

f | Z?*g(x) | ¿Gx =  f   tf (/, F, y)djCky < oo
J Y J Ek
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This equality may be extended to hold whenever F is a Borel subset of Ek

contained in X.

Now suppose W is an J^k measurable subset of X. Borel subsets 5 and T

of Ek may be chosen in such a way that

5 C W C T C X,       £k(T - S) = 0.

Since

N(f, S, y) S N(f, W, y) ¿ N(f, T, y) for y G £*,

f   N(f, S, y)d/Zky =   f | Dkg(x) | dJ^x =   f   | Dkg(x) \ d/¿kx
J Ek J S J W

=   f  | Dkg(x) | AO =   f   #(/, T, y)¿0 <  »,
«/y i/ Bj

it follows that

-W(/> -S1, y) = N(f, T, y) for J¿k almost all y in Ek,

N(f> W, y) is J^k measurable in y,

f   | Dkg(x) | ¿O* =  f   #(/, IF, y)dLC*y < *■
J W J Ek

Part 5. (ii) implies (i).

2.16 Remark. A combination of Theorems 2.6, 2.14, and 2.15 reveals that

g is BVT(k) on X implies

f  | Dkg(x) | ¿O á £(/l X) -  f   5(/, X, y)¿(> =   f   JV(/, X, y)dj¿ky,
J X J Ek J Ek

equality holding if and only if g is A CT(k).

2.17 Theorem. // A ¿5 an J(^k measurable function satisfying

— co ^ A(at) ^ co

for £k almost all x in Ek, then

g is ACT(k) on X implies

f (hof)(x) • | Dkg(x) | ¿O =   f   h(y)-N(f, Y, y)dj¿ky
J Y J Ek

whenever Y is an J^k measurable subset of X.

Proof. This statement is an immediate consequence of Theorem 2.15 and

[F3, 2.1].

2.18 Theorem. If for xG£* and r>0
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C(x,r) = Ekr\ [z\\z- x\ ^ r),

then

g is BVT(k) on X implies

L[f\C(x, r)]
lim - = | Dkg(x) I for J^j, almost all x G interior X.

i-^oh-        a(k)rk

Proof. If U is the set of those points x in X for which Dkg(x) exists, we

know that U is a Borel subset of Ek and may define functions ß, y, and 5 as

follows:

0(F) =  f   N(f, F, y)djQJcy,
J Ek

7(F) = J" I Dkg(x) | ¿Ox,

«(F) = f  iV(/, F - U, y)d£ky,
J Eu

for F a Borel subset of £¡t contained in X.

Employing the terminology of Saks   [S, p. 30], ß, y, and 5 are additive

set functions on the class of Borel subsets of Ek contained in X,

y is Xjc absolutely continuous,

and since ^(X— U)=0

5 is jÇjt singular.

Because of Theorem 2.14

ß = 7 + 5.

Hence using Theorem 2.6 and [S, IV 5.4, 6.3, 7.1] we conclude that

,.      L[f\C(x,r)\ ß[C(x,r)\
hm -  =   lim -

r->o+        a(k)rh r->o+     a(k)rk

y[C(x,r)) 5[C(x,r)]
=   lim - +   lim -

r—o+     a(k)rk r->o+     a(k)rk

- | Dkg(x) |

for J^k almost all xGinterior X.

2.19 Remark. If g is BVT, then a computation shows that

If(x) = | Dkg(x) | for J(jc almost all x in X.

In this case the validity of Theorems 2.14, 2.15, 2.17, and 2.18 and Remark
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2.16 holds whenever \Dkg\ is replaced by Jf.

2.20 Remark. If /Gß* were of the form

f(x) = (xi, • ■ • , x,_i, g(x), xj+1, ■ ■ ■ , xk) for x G Ek,

for/ some positive integer less than k and g a continuous real-valued function

on Ek, then the foregoing theory would hold, provided only that the condi-

tions BVT(¿) and ACT(¿) be replaced by BVT(/) and ACT(j), and the

function Dkg be replaced by D¡g.

3. ¿ dimensional nonparametric surfaces in Ek+Ï (¿> 1). Each orthogonal

projection of Ek+X onto Ek is of the form

k

pk+i o R

for some R(E.Gk+i. In fact pl+l o R maps the ¿-dimensional subspace of Ek+i

spanned by the ¿ tuple of vectors

<(inv£)\ • • • , (inv£)*>

onto Ek, transforming (inv R)1 into •/* for i = \, 2, • • ■ , k.

Since for xG£fc+i and RÇ.Gk+i,

k Ik
(pk+1 o R)(x) = (x • (inv R) , ■ ■ ■ , x • (inv R) ),

two orthogonal projections pl+1 o 5 and pl+1 o T are equal if and only if

(inv S)1 = (inv T)1 for i = 1, 2, • ■ • , k.

For m a positive integer greater than two, Am will denote the set of all

those elements R of Gm for which there exists some S£zG2 satisfying

R' = mf for i = 1, 2, • • • , m - 2;

Rj — 0 for ¿ = m — 1, ot;/ = 1, 2, • • • , m — 2;
i i—m+2

i?/ = o'¡_m+2 for % = m — 1, m;j = m — 1, m.

If / is a continuous real-valued function on Ek and i is a positive integer,

then / and /,- will be the functions defined by the relations

f(x) = (xi, x2, • • • , xk, f(x)) for x G Ek,

fi(x) = (xj, Xi, ■ ■ ■ , xk, /i(x)) for x G £*.

3.1 Sectional assumptions. We let/ be a fixed continuous real-valued

function on Ek, and for/ a positive integer no greater than ¿ + 1, 'R will de-

note that element of Gk+i for which

'R(x) = (xi, • • • , x,-_i, Xk+u Xj+i, • • • , Xk, x¡) for x G £t-

Observe that
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* *+i
= (ati, x2, ■ • • , xk-i, Sk'Xk + Sk   -fix))

k+1R is the identity element of Gk+\,

k j -
pk+iO i?o/G 0* for y = 1, 2, • • • , k + 1.

3.2 Lemma. If Y is a bounded open convex subset of Ek and i is a positive

integer, then

S G Afc+i implies

(i) ¡EkN(pkk+1 o S o U   Y,  x)dJ¿kx

^a(k)-HkfKJEhN(pl+1 o Sol   Y„ x) dj&cdjfa,

(ii) N(pl+1 o S o /, F, ac) = S(pkk+1 o S o /, F, ac) /or ^ almost all x in Ek.

Proof. We know that

* i *
(pk+i o S)(w) = (w • (inv S) , ■ ■ ■ , w • (inv 5) )

= (wi, w2, • • • , Wk-i, wk-5k + wk+v5k   )

for wG£*+i- Thus

k — fc
(#hioSo/)(ï) = (íwo5)(j;i, «2, • • • . xk,f(x))

whenever xG£*.

We may infer then that pl+i o S o/£iît. Moreover upon letting E(x)

= Skk-xk+Sl+1 -f(x) for xG£*, a check reveals that

Fi(x) = Sk-xk + Sk    -fi{x) for x G £*,
jfc — k —

■(pk+1oS of)i = pk+i o S o fi,

for every positive integer ¿. Accordingly statements (i) and (ii) follow from

Lemma 2.2 and Theorem 2.4.

3.3 Lemma. If i?GG-*+i, then there exist functions S, T and U for which

S G A*+ii       T G Gk+i,       U G Gk,

j'/*+ij*+i\ = *+ij*+i
* *

/>fc+i o R = t/ o ¿>i+1 o 5 o r.

Proof. We know for any two vector subspaces of a vector space that the

sum of their dimensions is equal to the sum of the dimensions of the vector

spaces generated respectively by their union and intersection.

Accordingly if Z is the subspace of £jt+i spanned by the A-tuple of vectors

/*+ljri    *+1^2   .  . .      k+ljk\

and K the subspace of £t+i spanned by the A-tuple of vectors
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((inv i?)1, (invR)2, ••• ,(inv£)*>,

then the dimension of the subspace KC\Z equals either k or k — 1.

If dimension (KC\Z) = ¿, then K coincides with Z, and we may select

TÇiGk+i so that T is the rotation of Z which transforms (inv R)i into *+1/i

for i = l, 2, • • • , ¿. Letting U denote the identity map of Ek and 5 the

identity map of E*+i we may easily check that

pl+i o R = U o (pl+i o R o inv T) o 7/,
it . k

pk+i o R o mv r = /n+i o S.

Now suppose that the dimension of KC\Z is ¿ — 1.

Using the transitivity of the orthogonal group, we can choose functions

A, U, and T for which

A G Gk+i,       A*(K) = K,

((A o inv R)1, (A o inv R)2, ■ ■ ■ , (A o inv R)^) spans K C\ Z,

UEGk,

U[(pt+i o R)((inv A o inv £)')] = V for í = 1, 2, • • • , ¿,

r g Gk+i,     t*(z) = z,

T[(^ o inv RY] = w/i    for i = 1, 2, • • • , k - 1.

Since (foi o inv i?)* lies in the orthogonal complement of the space

generated by (i+1J1, k+1Pt ■ ■ ■ , *+17*-1), an element 5 of G2 may be picked

such that

(To A o inv R)t-i+i = #î for i = 1, 2.

Then defining 5 to be the element of Gk+i satisfying

(inv S)   =      / for i = 1, 2, • • • , ¿ — 1;

(inv 5),- = 0 for ¿ = ¿, ¿ + 1 ; / = 1, 2, • • • , ¿ — 1 ;

(inv S),- = Bj-k+i for i = ¿, ¿ + 1 ; / = ¿, k + 1 ;

we may infer that 5 (along with inv S) is an element of A*+i.

Inasmuch as

(inv (5 o T))1 = (inv T o inv 51)''

= inv r[(inv5){]

= inv T[(ToA o inv R)*]

= (i4 o inv R)1

= (inv (i? o inv A)){ for i = 1, 2, • • • , k,
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it follows that
* *

pk+í o S o T = pk+i o R o inv A.

Let i be a positive integer no greater than A. To complete the proof it is

sufficient to show the equality of the functions p\+l o R and U o pl+l o S o T

on the vector

(inv R)\

We compute:

(t/ o pk+i oSoT) [(inv R)'] = (U o pl+i o E o inv A) [(inv R)*]

= t/[(j>i+iO i?)((inv 4 o inv R))]
k   i

= I.

3.4 Lemma. // Y is a bounded open convex subset of Ek and i is a positive

integer, then

R G Gk+i implies

JN(pk+1 o Rofi, F, x)dj¿kx
nk

^ a(k)'Hk f    f   N(pt+1oSof, Y., x)dj¿kxd/¿kz.
J KiJ Ek

Proof. Suppose EGG*+i. We use the preceding lemma to select functions

U, S, T, t such that

U G Gk,       S G Afc+i,       T G Gk+x,       t G Gk,

J*fk+lJ-k+l\   =   *+lJ*+l

if wG£*, zG£*, and dG£i, then i(z) =w if and only if J^zi, z2, • • • , zk, v)

= (wh vh, ■ ■ • , w*, v),

k k
pk+i o R = U o pk+i o S o inv T.

We shall denote

inv /(z) = z' whenever z G E*.

and for¿ a positive integer, we define the functions E, E¿, £, Fi by the formulae

F -/oí,       Fi = fiOt,

F(x) = (ati, »2, • • • , **, E(a;)) for x G £*,

Ei(x) = (xi, x2, • • • , Xi, Fi(x)) for x G E*.

The rest of the proof is divided into three parts.
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Part 1. // V<EGk, BCEk, and zGEk, then

[(inv V)*(B)]Z = (mvV)*[BVM].

Proof.

(inv V)*[Bvw] = (inv V)*({y\ y - F(a) G ¿})

= {x| F(x) - V(z) EB}

=  }x| x - zG (inv V)*(B)}

=  [(inv V)*iB)],.

Part 2. (i) ^+1 o Rof=U o pKk+l o 5 o F o inv t,

(ii) £*+1 o R o fi = U o pk+l o S o Fi o inv t.

Proof. It is sufficient to verify (ii). Let zEEk, then

k — k

(pk+ioRofi)(z) = (pk+ioR)(zi, z2, • • • , zk,fi(z))
k

= (U o pk+i o S o inv T)(zu z2, • • • , zjt, /¡(z))

= (J7 o íi+i o5)(zí, Z2, • • • , z*, /i(z))

= (í/o/»*+io5)(zí, z2, • • • , z[-, £¡(z'))

= (í/o/4+io5oF,)(z')

= (U o pk+i o S o Fi o inv t)(z).

Part 3.

/,

k —
N(pk+i o R of i, Y, x)dj[¿kX

Ek

S «(*)-»!* f    f   ^Í+Io5o/, F„ x)d£kxd£kz.
J  A". •/ íiA'i •/ Ek

Proof. With the aid successively of Part 2, Lemma 3.2 applied to £,, Part

1, the fact that

Jt(z) = 1 whenever z G Ek,

and Part 2 again, we check that

/,

k —

N(pk+iO Rofi, Y, x)d£kX
Ek

S. £ _
N(U o pk+i o S o FiO inv t, Y, x)djQikx

Eh

k _
NiP*+i oS o FiO inv /, F, x)djQjkx

Eh
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=  f   Nipt+.oSoFi, (inv t)*(Y), x)d£kx
J Ek

^ a(k)-Hk f    f   N(pl+1oSo F, [(inv 0*(F)]„ x)dJ¿kxd/¿kz
J KiJ Ek

= a{k)-Hk f    f   N(p"k+1oSoF, (inv t)*[Yt(l)], x)d£kxd£kz
J Ki J Ek

= a(kYxV' I      I    X(pkJr\oSo Foiwv I, YHz), x)dj^3kxdjjkz
J KiJ Ek

= a{k)~Hk f   Jt{z) \     N(pt+loS o F oinv l, Y tw,x)dJ¿kxd/¿kz
J Ki J Ek

= a(k)-Hk I /    Nipl+i o S o F o inv t, Y„ x)dj¿kxd/¿kz
J t'(KO       J Ek

= a{k)-Hk f    f   JV(Z7 o pi» oSoFoinvt, F« x)d£kxd/¿kz
J KiJ Ek

= ^(fe)-1^ f    f   AT(J>*+1 o E o/, F, x)d/¿kxd£kz.
J KiJ Ek

3.5 Theorem, i/ Y is a bounded open convex subset of Ek, then

k — fc —
E G G*+i implies N(pk+i o Rof, Y, x) = S(pk+i o R of, F, x)

forJjc almost all xG£t.

Proof. Let i?GG*+i- Just as in the preceding lemma we may select func-

tions U, S, t and define functions F and F so that

E=/o¿,
¿ _ fc _

¿>i+i o E o/ = f o £i+i oS o F o inv /.

Then with the help of Lemma 3.2 we find that

N(pt+1oRof, Y, x)
k —

= N(U o pk+i o S o F o inv t, F, x)

= iV(¿>*+ioSoF, (inv¿)*(F), x)

= S{pk+i o S o F, (inv l)*(Y), x) for J¿k almost all x in Ek
k —

= S(Z7 o pk+i o S o F o inv t, Y, x) for £k almost all x in Ek
k —

= S(pk+i o R o f, Y, x) for J^k almost all x in Ek.

3.6 Remark. // FC£* ¿5 the interior of a k cell and EGG*+i, then
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f   N(pkk+ioRof,Y,x)d£kX=  f   S(pkk+ioRof,Y,x)d£kX
J Ek J Ek

= L(pl+ioRof\ Y).

For if 5, U, t, and F are chosen as in Theorem 3.5, it then follows by

Theorems 2.6 and 3.5 and certain invariance properties of the Lebesgue area

that

L(p"k+1oRof\ Y) = L(Uopkk+1oSoFomvt\ Y) = L(pl+1 o S o F o inv 11 F)

= L(pkk+ioSoF\ (inv t)*(Y))

=  f   N(pl+1oSoF, (inv t)*(Y), x)d£kx
J Et

=  |     N(Uopt+1oSo F o inv/, F, x)d£kx
J Ek

=  |    A^(/>i+i oRof.Y, x)d£kx
J Ek

=  I    S(pk+ioRof, Y, x)¿£*x.
J Ek

3.7 Lemma, i/ XC.Ek is a k cell with boundary X, then

5Ckk+i[f*(X)] =0.

Proof. The method of proof selected for Lemma 2.5 included an explicit

proof of this statement.

3.8 Theorem. // X(ZEk is a ¿ cell, then

ß(k + 1, ¿)-i f       f   N(pt+1 oRof,X, x)d£kxd<t>k+iR
J Oh+1J Ek

= ß(k + 1, k)-1 f       f   S(pt+1 oRof,X, x)dj(¿kxd4>k+iR
J  Ou., J ElOh+l^ Ek

L(f\X)

limKf^X).
j—*00

Proof. Let F=interior X. Then from Lemma 3.5 we know that

f   N(pkk+ioRof,Y,x)d£kX= f   S(pl+ioRof,Y,x)d£kX
J Et J Ek
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for i?GG*+i- Therefore

ß(k + 1, A)-1 f       f   N(pt+1oRof, Y, x)d!Zkxd<¡,k+1R
J Gk+1J Ek

= ß(k + 1, A)-1 f       f   S(pl+1oRof, Y, x)d/¿kxd<t>k+iR.
J Gk+lJ Ek

We suppose that A is an open interval of Ek for which

closure A C F,

and select a positive integer ¿ so large that

A „G Y whenever z G E¿.

Then with the help of [F4, 6.13], [F4, 4.5], and Lemma 3.4 we obtain

«J, | closure A) -  t JU*W*
•JA

= ß(k + 1, k)-1 f       f   N(pt+1 oRofuA, x)d£kxd<l>k+1R
J Gk+1J Ek

= /3(A + 1, k)-1 f     a(k)-Hk f    f   N(pt+1 oRof,A„ x)d£kxd£kzd<j>k+1R
J Gk+1 J KfJ Ek

^ ß(k + 1, k)-1 f       f   N(pl+i o E of, Y, x)d/¿kxd<bk+1R.

From the lower semi-continuity of L on Ck(X) it follows that

L(f\ closure A) ^ lim inf L(fi | closure A)

^ ß(k + 1, A)-i f       f   N(pt+l oRoJ.Y, x)d/¿kxd<t>k+1R.

As a consequence of the arbitrary nature of A

L(f\ F) = |8(A + 1, A)-i f       f   N(p"k+loRof, F, x)dJ¿kxd<l>k+1R
J Gk+lJ Ek

= j8(A + 1, A)"1 f       f   5(#ín oRof,Y, x)d/¿kxd<t>k+1R
J Gk+lJ Ek

á L(f\ F).

Because of Lemma 3.7 this last relationship holds when Fis replaced by X.

Using the foregoing results the other part of the statement may be proved

exactly as the corresponding statement was proved in Theorem 2.6.
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3.9 Remark. For XCZEk a ¿ cell, the results of the last theorem allow us,

using the notation of [F6], to state

L(J\ X) = M**(f\ X) = S**(f\ X) = U**(f\ X) = V**(f\ X) = N**(f\ X).

3.10 Remark. If Y is an analytic subset of Ek, then

jt+Af*(Y)] = ß(k + 1, ¿)-x f       f   N(pl+i oRof,Y, x)d£kxd<t>k+iR.
J Gk+iJ Ek

Since f*(Y) is an analytic subset of Ek+i, the univalence of/implies

fk+i[]*(Y) ]=ßik+ 1, Ä)-i f       f   Nipl+i o R, f*(Y), x)d£kxd<t>k+iR
J Gt+lJ Ek

= ß(k + 1, ¿)-i f       f   iVOÊ+i o R of, F, x)d£kxd<l>k+iR.
J Gk + lJ Ek

3.11 Theorem, i/ XC£t is a k cell and A is a Borel subset of Ek+i, then

jI+i[a r\f*(x)] = yI+î[a r\]*(x)].

Proof. Since in general Jk+l is dominated by Tl+1, it is sufficient to assume

ykk+i[Ar\f*(x)] < oo,

and to show that

yi,i[Ar\J*(x)] ^ vkk+1[A n/*(x)].

We divide the proof of this into three parts.

Part 1. // R£.Gk+i, then

Lif\X) è  f   Sipt+ioRof,X,x)d£kx.
J Ek

Proof. Let i?GG*+i- Select a sequence

Pi, P2, • ■ • ,

of polyhedra of CkiX) for which

lim Pi = /| X, lim inf £(£<) = L(f\ X).
i—* 00 i—* 00

For each positive integer i, pl+í o R o P, is a polyhedron and

lim (pt+i oRoPi) = />*+i o Ro/l X.

Suppose DfJiTj is the sîmplicial triangulation of X associated with P¿.
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From the Lipschitzian character of pl+i o R we may infer that

L(f\ X) = liminf  £ 3C*+1[E,-(7\)]

ä; lim inf   f¡ 3Ci+i[(pl+1 oRo Pi)*(Ti)]
*-">      i=i

^L(pl+1oRof\X).

We know that the A-dimensional Lebesgue area and the A-dimensional

stable area are lower semi-continuous functions on Ck{X), and that both are

extensions of the classical area integral over the class of polyhedra. The

Lebesgue area being numerically the largest of all such lower semi-continuous

extensions, we may conclude that

L(pt+1oRof\ X) ^  f   S(pt+loRof, X, x)d/Zkx.
J Ek

Part 2. If B is a Borel subset of Ek and EGG*+i, then

3C[/*(E)U  f   N(pUloRof,B,x)djC¡kx.
J Ek

Proof. Using Remark 3.10, Theorem 3.8, and Part 1,

7*+:[W)] = L(j\ Y)^  f  S(pt+1oRof, Y, x)d£kx
J Ek

k —
N(pk+X oRof, Y, x)dj¿kxIJ E.Bk

whenever FC£* is a A cell.

The inequality between the first and last members of this string may be

extended (by the customary methods) to hold whenever F is a Borel subset

of Ek.

Part 3. Jl+l [Ar\f*(X) ] èIt+i [Ar\f*(X) ].
Proof. Suppose B is a Borel subset of £4+i and B' = (inv J)*[BC\f*(X)].

Then using Part 2

jt+1 [B r\ J*(X)} = 7kk+1 [/*(£') ] ^  f   N(pl+1 oRof, B\ x)dllkx
J Ek

^/¿k[(pkk+1oRof)*(B')]

- -C*[(/n-i oR)*(Br\ f*(X))] for E G G*+i,

yt+1 [b n f*(x) ] = 7*+i [b n f*(X)].

It follows that
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fk+i[A n/*(x)] è vl+i[A n/*(x)].

3.12 Lemma. // B is a Borel subset of Ek and i?GGl+i, then

f   N(pl+l oRof.B, y)d£ky á jl+i[f*(B)]
J Ek

h+1   p

= E I    N(Pk+io xRof, B, y)d£ky.
i-lJ Ek

Proof. The first inequality is a restatement of Part 2 of the preceding

theorem.

Let FC£fc be a ¿ cell with boundary F. With the help of [F4, 6.13] we

infer that

L(fi\Y) =  f     Jfi(x)dJlkX
J Y-Y

= f  iE {j&Uio'Rofm}*]1'*^*
J Y-Y L  i_l J

/'      *+l       .E/(#*+io'Äo/i)(x)dLO*
r-r <-i

*+l

= Z^ÍÍh-io'ao/íIf)

whenever/ is a positive integer. Letting/—»», it follows from Theorems 3.10

and 2.8 that L(f\ Y) g ££» L(^+1 o ¡R o/| F). We see by reference to

Theorems 2.6, 3.8, and Remark 3.10 that

. fc+i  /»        .

Jk+S*(Y)] =g E      N(pk+io'Rof, Y, y)d&y.
t=l J Y

The proof is completed by extending this inequality to hold whenever F

is a Borel subset of Ek.

3.13 Sectional assumption. For the rest of this section XC£* will de-

note a k cell.

3.14 Lemma. If j is a positive integer not exceeding k, then

/sup JST(i)" _1 »-in! xafjyuu • • • , m,-_i, D, m,+i, ■ • • , Uk)aJ^k-iu
Xai

g L(/| X) g Z) I       r°lPinf X(,)«/(mi, • • • , M,-_i, p, Mi+i, • • • , Uk)dj(j,-iu
.-1 ^ X(i)

+ -6(x).

X(j)
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Proof. We recall for ¿ = 1, 2, • • • , A, that

k i —
(pk+io Rof)(x) = (xi, • ■ • , Xi-i, f(x), xi+u ••'•,*») for x G £*,

k i —

pk+io Eo/G 0*.

Consequently we may use Part 2 of Lemma 2.2, Theorem 3.8, and the preced-

ing lemma to compute:

/2\,_inf X(,)u/(Mi. • ' • . »i-Ji v> ui+u ■ ■ • , Uk)d/j,-iu
X{i)

=  f   N(pkk+1o'Rof, X, x)d£kx ¿ fk+1[f*(X)]
J Ek

*+l    /» .

- L(f\ X) Ú Z I    N(pk+1 o *E o/, X, *)*<>
t'=l J Ek

= Ü I       Tv=iatX(i)"f(ui, • ■ • , »i_i, », î<<+i, • • • , uk)d/¿k-iu + J¿k(X).
i-l J X«)

3.15 Theorem. The following statements are equivalent:

(i) fisBVT on X.

(ii)   Ltf|X)<«.

Proof. This statement is an immediate consequence of the preceding lemma.

3.16 Theorem. If f is BVT on X and U is the subset of X on which f is
approximately differentiable, then

"   (i) jb(X-U)=0,
(ii) ¡YJf(x)dJ^x = Jt+1 [/*( YC\ U) ] ̂ 7í+i [/*( F) ] < oo

whenever Y is an Xjt measurable subset of X.

Proof. Let j be a positive integer no greater than A. Just as in Theorem 2.14

we can show that

Djf(x) exists for J^k almost all x in X.

Whence

Djf(x) exists for j(j¡ almost all x in X,

and Stepanoff's theorem (see [S, IX 12.2]) implies that £Ji(X-U)=0.

We may apply [F2, 5.2], with the measure <ï> replaced by7*+1 (see [F5, 5.10]),

and Theorem 3.15 to obtain

fjf(x)d£kx=  f      Jf(x)d£kX=  f   N(f,YnU,y)dJkk+1y
J Y J Y(lU J Ek

= 7*+i[/*(Fn u)] ss 7*+i[/*(F)] < co.
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3.17 Theorem. If f is B VT on X, then the following statements are equiva-

lent:

(i) Tk+iU*(V)]=0 whenever VCX and/jc(V)=0,

(ii) JrJf(x)dj(jcx = Jl+i[f*iY)]< oo whenever Yis an Jjc measurable subset

of X,
(iii) JxJf(x)d^x=J¡+1 [f*(X) ) < »,
(iv) f is ACT on X.

Proof. Let VCX and J^(V) =0. Select a Borel subset A of Ek so that

VCACX,       £k(A) = 0.

The proof will be divided into five parts.

Part 1. (i) implies (ii).

Proof. Let F be an /^ measurable subset of X and U be the subset of X

on which / is approximately differentiable. Then

J&iY -U)=0,

Jk+i\J*(Y- U)] =0,

and Theorem 3. 16 implies

J //(*0¿O = jt+1[J*(Y r\u)] + jkk+i[f*(Y - u)}

= 7¡U/*(F)] < ».

Part 2. (ii) implies (iii).

Part 3. (iii) implies (i).

Proof. Let e>0. Choose on X a non-negative continuous function c and a

number M satisfying

/I Jfix) — c(x) | dJ^kX g e,        M >  sup c(x).
x *EA"

We can select an open set G of Ek for which

F CG,       -C*(G) < £-M-1,

and a grating of ¿ — 1 planes which defines such a family {X<|¿ = 1, 2, • • • }

of subsets of Ek that

00

V C U Xi C G n X, X,- is a ¿ cell for » = 1, 2, • • ■ ,
¿=i

interior X,- A interior X,- = 0 for i 5^ /.

Then



1954] AREAS OF ¿-DIMENSIONAL NONPARAMETRIC SURFACES 405

yl+i[J*(v)] ï ?:+i[>( G Xi)] ̂  ¿y!Ufw]

= ¿ f   Jf(x)d£kx = £ f JfWd&x
i=lJ X{ i=lJ interior X,-

^   f       Jf(x)d£kx ^   f       c(x)d£kx + e < 2e.
J GClX J gC\X

Because of the arbitrary nature of € the proof is complete.

Part 4. (ii) implies (iv).

Proof. Suppose j is a positive integer no greater than ¿.

The truth of (ii) means

7kk+1[J*(A)] = 0,

and it follows from Lemma 3.12 and Theorem 2.15 that

£k[(pkk+io'Rof)*(A)] = 0,       -GKit-iO W)*(F)] = 0,
hit

pk+i o R of is absolutely continuous on X,

/ is ACT (/) on X.

Consequently

/ is ACT on X.

Part 5. (iv) implies (i).

Proof. Using Theorem 2.15 we know that

/ is ACT ii) on X,
k i -

pk+i o R of is absolutely continuous on X,

Í    N(pl+i olRof,A, x)dJ^kX = 0,
J EiEk

for i = l, 2, • • • , ¿. Recalling that

/k k+1 —N(pk+iO     Rof, A, x)d/j,x = J^kiA),
Ek

we may conclude from Lemma 3.12 that

7hk+i[f*(A)] = 0,        7*+i[J*(F)] = 0.

3.18 Remark. If
(i) h is a continuous function on X into X,

(ii) fEkN(h,X,x)d^jcx<oo,

(iii) / is A CT on X,
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/.

then A is absolutely continuous on X if and only if

j/l+i[(fo h)*(V)} = 0 whenever V C X and £k(V) = 0.

This is a consequence of Theorem 3.17.

3.19 Remark. Using the notation of [F6] we may restate the results of

Theorems 3.8, 3.16, and 3.17:

L(f\ X) < co implies

Jf(x)d/¿kx ̂  L(f\ X) = M**(f\ X) = S**(f\ X) = U**(f\ X)

= F**(/| X) = N**(f\ X),

equality holding if and only if f is ACT on X.

3.20 Theorem. If for xG£* and r>0

C(x, r) = EkC\ {z\ | z - x| ^ r),

then

f is BVT on X implies

L[f\C(x,r)]
lim ■- = Jf(x) for Jtjc almost all x G interior X.

r->o+        a(k)rk

Proof. Letting Theorems 3.8 and 3.16 play the respective roles of Theo-

rems 2.6 and 2.14, the proof is similar to that of Theorem 2.18. In fact only

the verification of the additivity of the singular part of the decomposition is

different. For this the following general property of Carathéodory outer

measures proves useful:

if 0 is a Carathéodory outer measure, A, B, and T are elements of domain

0, and A is 0 measurable, then

0(E n (A w B)) + 4>(t r\ a r\ b) = 0(r r\A) + <t>(T n b).
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