AREAS OF k-DIMENSIONAL NONPARAMETRIC
SURFACES IN k41 SPACE

BY
ROBERT N. TOMPSON

Introduction. Suppose X C Ex (k=2) is a k cell, g is a real-valued continu-
ous function on Ey, j is a positive integer not greater than &, and f is the
mapping defined by the relation

f(x) = (xlv Tty Xy g(x)1 Xitly *° * xk) for x € Ey.

For this class of mappings on E; into E; (denoted by ) we concern ourselves
with the validity of the formula

f | Dig(x) | d.LCxx = L(f| X) =f S(f, X, dLrxy = | N, X, 9)dLry
X Eg Eg

where Djg is the partial derivative of g in the direction of the jth base vector,
L(f| X) is the Lebesgue area of the surface fIX, S(f, X, y) and N(f, X, y) are
respectively the stable multiplicity and multiplicity of f on X, and (i de-
notes the k-dimensional Lebesgue measure.

The main results, which comprise a complete theory of area for the class
, are embodied in Theorems 2.6, 2.13, 2.14, and 2.15.

For k=2 the results are in most part known (see [T1], [T2], and [R]).

The theory of area of the class € is intimately connected with the theory
of area of k-dimensional nonparametric surfaces in Eiy1. In fact if g is the
function defined by

g2(x) = (®1, %, -+ -, Xk, g(x)) for x € Eg,
and 7 is an orthogonal projection of E,,; onto Ey, then
gl x

is a k-dimensional nonparametric surface in E;,;, and
TOg
is a mapping of E; into E;. For some, but not all, orthogonal projections ,
m o g is a member of Q.
A reduction procedure is devised whereby the theory of area of the class
Q. extends, in great part, to the mappings = o g. A theory of area for k-dimen-

sional nonparametric surfaces in E.y; evolves; a theory in which complete
information is obtained concerning the validity of the relation
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f Je®)dLer = L] X)
X

= B(k+ 1, k)_‘f S(?l’:«)-l oRog X, y)dLryd¢r1R

Gr+1Y Eg
=s+ 187 [ [ NOhaoRog X, )ilisuk
Gr+1Y Eg

where Jg is the Jacobian associated with § by means of its approximate dif-
ferential, and where the last two members of the string are respectively the
stable integralgeometric and integralgeometric areas of the surface gl X.

The main results are contained in Theorems 3.8, 3.11, 3.15, 3.16, and 3.17.

For k=2 the theory of area for k-dimensional nonparametric surfaces in
Ei41is well established (see [F4, 6] and [S, V]).

1. Definitions.

1.1 DerINITION. If f is a function, then inv f is its inverse, and for any set
A, f ] A is the function with domain (4MNdomain f) for which -

(f| A)(x) = f(=) whenever x € (4 M domain f).

Furthermore
N(f, 4, x)
is the number (possibly «) of elements of the set AN {zl f(2)=x}, and
f¥(4) = {x]| x = f(2) for some s € 4}.
If g is also a function, then
fog
the superposition of f on g, is defined by the formula
(fog)(x) = f(g(x)) for all «.

1.2 DEeFINITION. Euclidean # space will be denoted by E,. The usual
metric and inner product (denoted by ®) are assumed for this #-dimensional
vector space. We write

x=(xlr xzv'°°'xn) fOl'ern.

For m and # positive integers we shall often identify E.XE, with Enin.
Lebesgue 7 dimensional measure over E, is denoted by L.

a(n) = LalEB-N {z|| 2| < 1}).
1.3 DEFINITION. If f is a function on E, to E; and xE€E,, then we define

lim sup ap f(2)
7
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to be the infimum of the numbers of the form

lim sup f(z)
e =Y
where A is a Lebesgue measurable subset of E, with density one at x.
1.4 DEerFINITION. For m and # positive integers a function L on E,, to E,
is linear if and only if

L(xz + y) = L(x) + L(y) for * € Em, y € Enm,
L(Ax) = \L(x) for x € E,, and \ a real number.

For 1 £71<m let »I* denote the ¢th unit vector of E,. Then if L is a linear
function on E,, to E,

"y =1 =@ i -+, L) € E..

The matrix of L, which we identify with L, is the » by m matrix whose entry
in the jth row and sth column (1<j<#, 1<i<m) is L. If m <n the square
root of the sum of the squares of the determinants of all m by m minors will
be denoted by A(L).
If 1<m=<n, fis a function on E,, to E,, and L is a linear function on E,,
to E, for which
[£z) = f(#) — Lz — %) | _

lim sup ap = 0,
e l Z — xl

then L is unique and is termed the approximate differential of f at x. If x is a
point at which f has the approximate differential L we denote
Jf(x) = A(L).

If f is a function on E, into E, and a <b, then Ti.,f(¢) is the supremum of
the numbers of the form

211w = v |
f==1
where a=t,<$< - - - Sta=b.
If f is a function on E, to E; and j is a positive integer no greater than #,
then D;f is the function on E, such that
x,'-- xo_’x. h,x.’-o-’x — x
D,-(x)=limf(l y Yi—1 z+ i+1 n) f()
h

-0 h

for x € E,.

1.5 DEFINITION. If m < are positive integers, then p} is the function on
E, onto E, defined by

Pa(x) = (%1, - -+ 5 Tm) for x € E,.
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1.6 DEFINITION. If % is a positive integer, then G, will denote the set of
all linear transformations R on E, to E, for which

| R(2)| = | =] - whenever ¥ € E..

With respect to the topology of uniform convergence and the operation of
superposition, G, is a compact topological group, in fact, the orthogonal group
of E..

The identity element of G, will be designated by "I, and ¢, will be the
unique Haar measure over G, for which ¢,(G,) =1.

The following fact may be inferred (see [W, 8]):

If f is a ¢, measurable function on G, then

[ swas.r= [ sinv Rasur = [ fRoS)IR = [ 150 Rien
G, Gp (e Gn

whenever SEG,.
1.7 DEFINITION. If m <% are positive integers, then

a(m)-a(n — m) .

()

1.8 DEFINITION. A function g on E, is said to be a gauge over E, if and
only if domain gC {X| X CE.}, range gC {t|0<t<}.

If g is a gauge over E, and 0 <r =< «, the function g, is defined by the re-
lation

ﬂ(": m) =

g(4) = inf Y g(S) for A C E.,
FEB SEF

where FEB if and only if F is a countable subfamily of domain g for which

AC U S, diameter S < 7, whenever S € F.
SEF

One says that ¢ is generated by g if and only if g is a gauge over E, and ¢
is the function defined by

#(4) = lim g,(4) for A C E,.
r—0+

It may be shown that ¢ is a (Carathéodory outer) measure over E, and that
closed subsets of E, are ¢ measurable.

1.9 DEFINITION. If m <# are positive integers and v7%, {n, and x5 are the
gauges over E, defined by

Ya (S) = sup Lul(pn o R*S)]
REG
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whenever S is a Borel subset of E,,

2() = 80, m)” [ Cul87 0 R¥S)1dsuR
Gn
whenever S is an analytic subset of E,,

x:‘ S) = a(m)2_m (diameter S)m whenever S C E,,

then 3¢ generated by xi, 7 generated by ¢y, and I'y generated by v are
respectively the Hausdorff, the integralgeometric, and the Gross k-dimensional
measures over n space (see [F4], [H], [C]).

One may easily check that 3C7, 77, and I'y are invariant under isometries
of E, and that any subset of E, is contained in a G; set of equal 3C; measure,
in an analytic set of equal ¥, measure, and in a Borel set of equal I'; measure.
The equality of F; and ., is apparent from the definition. It is also true that
3¢s =L (see [SD)).

1.10 DEFINITION. If m <n are positive integers and X CE,, is an m cell
or its interior, then C,(X) will denote the set of continuous functions on X to
E..

If g€ C.(X), then g is a polyhedron if and only if X can be so triangulated
that g maps each simplex baracentrically onto a rectilinear simplex of E,.

It is to be noted that relative to the topology of uniform convergence the
class of polyhedra is dense in C,(X), and also that all areas used in this paper
are equivalent on the class of polyhedra.

1.11 DEFINITION. Suppose m < are positive integers and f is a continu-
ous function on E,, to E,.

If XCE., is an m cell, then

L(f l X), the m-dimensional Lebesgue area of f| X,

is the lower limit of the areas of polyhedra approximating f [ X.
If XCE,, is the interior of an m cell, then

L(f| X), the m-dimensional Lebesgue area of f| X,

is the supremum of L(f I Y) for all subsets ¥ of X which are m cells.
If XCE.,, is either an m cell or its interior, then

the m-dimensional Hausdorff area of f| X = f N(f, X, y)dscn y;
Ep
the m-dimensional integralgeomeiric area of f | X = N(f, X, y)d?:‘y
E,

= B(n, m)~ f ) N(pr o Rof, X, 2)dLmrdduR:

nY Em
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the m-dimensional integralgeometric stable area of f [ X
= B(n, m)~ f S(pn o RO f, X, £)dLmxdd,.R;
6,V En

where S(f, X, x) is the stable multiplicity as defined in [F7].
1.12 DErFINITION. If 7 is a positive integer exceeding one, j is a positive
integer no greater than n, ACE,, 2&E,, and ¥€E,_;, then

A, =E.N{z+z|x€ 4},
Ay = Ex N {'w[ (w1, **+, Wi_1, ¥, Wig1, * * + , Wa) € A for some v},
44'(‘1') = Elm {vl (ul; oty Ui, Oy Ujpr, 0 0, un) EA}.

If f is a continuous real-valued function on E, and < is a positive integer,
then

Ki=E.N {z|| x| < i},

and f;, the sth integral mean, of f, is the real-valued function on E, defined by
the formula

fi(x) = a(n)—lian .f(x + 2)dLaz for x € E,.

2. On a certain class of mappings of E; into E; (k>1). Let @ denote the
class of mappings on E; into itself defined by: f € Q if and only if for some
positive integer j not exceeding &k and for some continuous real-valued function
gon E,, f is defined by the formula

f(x) = (%, -+« %1, 8(%), Xy, * + +, %) for x € E;.

For such a function fEQ; and 4 a positive integer, f; will be defined as that
element of & for which

fi®) = (21, -+ -, ®jog, gi(%), Xipr, - -+, XE) for x € E.

2.1 SECTIONAL ASSUMPTION. In the development of a theory of area for
the class & it will be convenient to fix a function f&EQ which will be defined
by f(x) =(x1, - - -, xx_1, g(x)) for xEEy, where g is a (fixed) real-valued con-
tinuous function on Ej.

No restriction in generality will be effected by this assumption (see Re-
mark 2.20).

2.2 LemMA. If YCEy is a bounded open convex set and ¢ is a positive integer,
then

NG ¥, 9l s aytit [ [ NG, Vo 9aud

E; K;Y E;
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Proof. We let
a(u) = inf Y’(‘k), b(uw) = sup Y'(‘;,) for u € Y @y,

and for each # & Y, we define the function

hy: closure Y':k) — E,,
hu(v) = g(uy, 2, * + -, U—1, V) for v € closure ¥'a,).
The remainder of the proof is divided into four parts.
Part 1. N(f, ¥, (u, v)) =N(hu, Y3y, v) for (u, v) CEx1 X E;.

Proof. If A is a subset of E; we shall denote by ¢(4) the number (possibly
) of elements of A. Whence

N, Y, (#,9) = q[(Es X E) N {(w, 8) | f(w, ) = (%, v)}]
= q[(Bxa X Ex) N { (0, 8) | 0 = u, t € Vs, hult) = v} ]
= q[E:N {t]t € Vi, mu(t) = 0}]
= N(hu, Y&y, v).

Parr 2. fEkN(fv Y» (u) ‘U))d,Ck(’u, W) =fY(k)Tvb-(-uz(u)g(u’ v)d“Ck—lu-
Proof. Using Part 1 and [F1, 4.3] we compute:

fz N, Y, (4, v))dLx(u, v) = L N(f, Y, (u, v)dL1vd Lo

k-1Y E1

= f N(huy ¥'ayy 8)L194.Crrte
YV E

= f N(h,, closure Y, 0)dLavd L1
YV E,

= | T m@d L

Y&

b(u
= T.ia)(u)g(u, v)d.(“_k_lu.
Y&
PART 3. If c and d are real numbers with
c<d and z= (7, z”j E Er1 X Ey,
then
T:-cgi(“y v) < a(k)" 1k T,‘L,g(u + 2, v+ 2")dLz.
K;

Proof. Let c=vo << - + - <vpm=d. Then
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Z | g"(“x 1),,) - gi(u, vp—-l) |
p=1

m

>

=1

< a(k)"1i* S lew+ 3, v, + 5" — g+ 7', v, + 57) | dLxz

K; p=l

a(k)“li"f {g(w+ 3, v, +2") — glu+ 5", v, + 3) }d(kz
K

<

<al) i | Toeglu+ o, v+ 2)d Loz
K

ParT 4. [5,N(f;, ¥V, £)dCix Sa(k)~Y%* [k [o.N({f, Vs, 2)dLixdLrz.
Proof. Suppose z = (2, 2'’) € E;_1 X E;. We know that
V= (Eax X E) N {(4,0) | v E V).
It is easy to check that
Vi=(Era X E)N {(w,0)|v—3"€E Y'(‘k—)"}» Y le = [Vl

Letting x = (#, v) EEx_1 X F; and applying Part 2 to f; we infer with the help
of Parts 3 and 2 that

b(u)

N( f,-, Y, £)dLrx = f T s 8i(t, ©)dLp—11
Ey Y ()

= f a(k)—1ik T:i?(u)g(u + 2/, v + 2")dLr2d Laru
Y (k) K;

b(u)

= a(k)~1i* f f Tomang(% + 2’y v + 2'")dLa14d Lrz
E;Y' Y

= a(k)-1i* f f Tl g, v + 2")dLh1ud Loz
KV Y ()12

) . b(u—2")+2""

= a(k)—l‘l”f f Tvna(u—s’)+t"g(ur ”)d'Ck—lud-C,kz
K; Y (Yo

= a(k)"1ik f N(f, Y., £)dLrxdLsz.
K

iV Ep

2.3 LEMMA. If XCE; is a k cell with boundary X, FECw(X), GECi(X),
and if F| X is homotopic to G| X where

F| X is a map of X into Ex — {v},
G| X is an essential map of X into Ex — {y},
then y is a stable value of F| X — X.
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Proof. Let 7 =inf,cx | F(x) —|, and let 7 denote the function on E;— {y}
into the £—1 sphere defined by the formula

x
w(x) = | for x € Ex — {y}.

x =yl
The proof will be divided into three parts.
PART 1. If degree (w o F| X) 0, then there exists a pCX —X for which
F(p)=y.
Proof. Since X is a & cell, for g€ X we may define a continuous contrac-
tion ¢ of X into {g}:

¢:{t|0 <t =<1} — {H| H is a continuous function on X into X},
(¢(0)(x) = « for x € X,
(6(1))(2) = ¢ for x € X.
Suppose that the statement is false. Then for 0=t =1
Fo¢()| X: X — Ev — {4},
F o ¢(#) | X is homotopic to F 0 ¢(0) | X,
roF 0 ¢(l) | X is homotopic to = o F 0 ¢(0) | X.
Accordingly we arrive at the contradiction
0 = degree (roF o ¢(1) | X) = degree (roFo¢(0) | X) = degree (wroF | X) 5 0.
Part 2. If HECW(X) and |H| X —F| X| <r, then
degree (r o H| X) = degree (roF| X).
Proof. Since for x€ X
|F(x) — H(®) | <|F(2) - 5],
it follows that
y €& Ex N {z' 3 = F(x) + t(H(x) — F(x)) for 0 < ¢ £ 1}.
Hence it suffices to define the continuous function
XX {t|0=st=1} > E - {4y},
6(x, 1) = F(x) + t(H(x) — F(x))  for (x,¢) E X X {t|0s ¢ 1},

to establish that F| X and H| X are homotopic. Consequently = o F| X and
7 o H| X are homotopic and

degree (r oF | X) = degree (v o H| X).

PART 3. y is a stable value of F.
Proof. We infer from the hypothesis that
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degree (r o F | X) = degree (r 0G| X) 5 0.
If LEC(X) and IL—F | <r, we may use Part 2 to establish that
degree (r o L| X) = degree (roF| X),
and Part 1 to show the existence of a p&X — X for which L(p) =y.
2.4 THEOREM. If Y is a bounded open convex subset of Ey, then
N, Y, %) =S(f, Y, ) for L almost all x & Ej.
Proof. We assume %, to have the same meaning as in Lemma 2.2. Let C
be the set of points (%, v) in Y for which &, has either a relative maximum
or a relative minimum at v. We may check that Cis a F, set and
hﬁ(c‘{,,,) is countable for # € ¥V (,.
If follows that f*(C) is L measurable and
L] = o,
We know that
N(f,Y—-C,x) =N, Y, x for x € f*(¥ — C) — f*(C),
N, Y, x) =S, Y, x for x € f*(Y),

hence we may complete the proof by showing that f is stable [F4, 6.6] at
every point of Y —C. For if this were so, then .

S(fr Yr x) = N(fv Y: x) = N(fyy_cr x) §S(f: yr x)

whenever x Ef*(¥Y —C) —f*(C).

Let ¢>0.

If (4 9°) = (ul, 43, - - -, u3_,, ¥)E YV —C, then using the continuity of g
we can select

uw © Y, u: & ¥V, 1 € Ey, 2 € E,,
satisfying '
ug—e<u:<u?<u?<u?+e fore=1,2,---,k—1,
0 1 0 2 0
1 —e< v <9 <9 <9 +eg
and such that if we denote

P=EiNf{u|luisuSufori=1,2---,k—1},
X =(Ea X E)N {(%,9)| 4 € Pand v* <9 < 02},
then X C Y and either

(1) (0t < Bu(v°) < hu(2?) whenever & P,
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or else
2 ha(vt) > hy(v%) > hy(v?) whenever # € P.

Observe that X is a & cell with diameter less than 2k/2¢ and, denoting its
boundary by X and f(u?, 2°) by y, that f| X is a map of X into E;— {y}.
If (1) occurs we can define the function G on X into E;,— {y} by

G(u, v) = (u, yx + v — v for (u, v) € (Exx X E)) N X,
and the function ¢ on XX {¢|0<t=<1} into Ex— {y} by
o(u, v, ) = (u, (1 — )(yx + v — 2°) + thu(v))
for (u, 9, ) E((Ex X E1)NX) X {t|0<¢t=<1}, and infer that
G is an essential map of X into E; — {9y},
G is homotopic to f| X.

Lemma 2.3 implies that y is a stable value of f | X — X, and from the arbitrary
nature of € we conclude that f is stable at (u?, 2°).

Whenever (2) occurs a similar treatment is employed. The proof is com-
plete.

2.5 LEMMA. If X CEy is a k cell with boundary X, then L [f*(X)]=0.

Proof. Let
h(x) = (%1, %2, - -, %1, g(%)) for x € X.

Then observing that X lies on 2k k—1 cells 4; (i=1, 2, - - -, 2k) it is appar-
ent that the % image of each such k—1 cell lies on a % plane in Ei4,, and that

2k
sek (X)) = > Seryi[H*(49)].

If j is a positive integer no greater than 2k, let = be an isometric projec-
tion onto E; of the k plane containing 4; and A*(4;), which satisfies
™(4;) C ExN {z| 2 = 0}.
It follows that

the number of elements in [(r o k)*(4;) ]'(‘,,, =1

for uE€[(r o h)*(4;) la). We apply Fubini’s theorem to obtain
k
e [*(4)] = Lal(r 0 B)*(4))]
= f Laf [(r 0 B)*(4) Ty }dCrie = 0,
[(oh)* (45)] (&)

e [H*(X)] = 0.
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Finally letting R be the element of G for which
R(w) = (w0, * * +, Wi-1, W1, We) for w € Epyy,

we conclude from the Lipschitzian character of pf,, o R that

Ll(D] = Lilprao Ro W*(X)] = o.
2.6 THEOREM. If X CE; is a k cell, then

N(f, X, x)dCxx = | S(f, X, 2)dLax = L(f| X) = lim L(S;| X).
Eyx Ex I

Proof. Let Y denote the interior of X and let A be an open interval of E;
for which

closure 4 C 7.
Select a positive integer 7 so large that
4. CY for z € K.
Then using [F4, 6.13], [F2, 4.5] and Lemma 2.2 we compute

L(f}| closure 4) = f J f;(x)d.ckx
4

N(ft'y A: x)d-c,kx

Ep

a(k)_likfx. . N(f, A, 2)dLrxdrz

IIA

= N(f, Y, x)dLx.
Ey

It follows using the lower semi-continuity of L on C,(X) that

L(f| closure 4) < lim inf L(f.«l closure 4) < N(/, Y, ©)dLsx.

i— o Ek

From the arbitrary nature of 4 and Theorem 2.4 we may conclude

i = [ NG Y, 9l = f S, ¥, dLax < L(| 7).

E Ey
In view of Lemma 2.5 it is seen that this relation holds with ¥ replaced

by X.
For the other part of the statement we recall in general that

L(f| X) < lim inf L(f;| X).
J—w
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Therefore under the assumption that L(f | X) is finite we need to prove that
m? sup L(f;| X) = L(f| X).

Pick €>0. Utilizing the foregoing results we can select an open interval
U of E; such that

XCU, LflU) =L X) +e
Let j be so large a positive integer that
(interior X), C U whenever z € K ;.

Then we can show just as before that
L(fi| X) gf S(f, U, x)d.Crx < L(f| U) < L(f| X) + <
Ey

Accordingly
lim sup L(f;| X) < L(f| X) + e
J—ow

Since € was arbitrary this completes the proof.
2.7 REMARK. Using the results of the preceding theorem and the notation
of [F 6] we find for X CE; a k cell that

L(f| X) = M**(f| X) = M*(f| X) = S*(f| X) = $*(f| X)
= V*(f| X) = VX(f| X) = U(f| X) = U*(f| X)
= N*(f| X) = N*(f| X).
2.8 DEFINITION. If X CE;is a k cell and hECy(X), then

(i) for 7 a positive integer no greater than &, % is said to be of bounded
variation (i) in the sense of Tonelli (BVT (2)) on X if and only if

sup X(i)*
Tomint xe*h (s, * + ) i1, U, Uigr, »* + uk)d-Ck—lu < o
X )

(i1) & is said to be of bounded variation in the sense of Tonelli (BVT) on X
if and only if & is BVT () on X whenever ¢=1,2, - - - | k.

2.9 DeriNITION. If XCE) is a k cell and kECi(X), then

(i) for < a positive integer no greater than k, & is said to be absolutely con-
tinuous (z) in the sense of Tonelli (ACT (¢)) on X if and only if % is BVT (z)
on X and the function

v—> h(ty, * 0, Uiy, U, Yigry * 0, Uk)

is absolutely continuous in the classical sense on X, for Lr—1 almost all
uEXa;
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(ii) % is said to be absolutely continuous in the sense of Tonelli (ACT) on
X if and only if % is ACT (3) on X whenever 1=1, 2, - - - | k.

2.10 DEeFINITION. If X CE; is a k cell and k& Ci(X), then k& is said to be
absolutely continuous on X if and only if

N(h, X, y)d.cky < o,
Ey

and & transforms subsets of X of .Lx measure zero into sets of L measure zero.
2.11 SECTIONAL ASSUMPTION. For the rest of this section X CE; will de-
note a k cell.

2.12 LEmMMA. If g is BVT (k) on X, then
f | Dig(x) | dLyx = f f : | Dig(u, v) | dL1d L1
Y Yo Y Y
§ f T :)l-l-pilff(l;’):k)“g(u’ v)dck—lu
Y (k)
- [ ¥, 7. o 9aLutw o
Ey

= N(f’ Y, y)d«CkJ’

Ep
whenever YCX and Y is a k cell.

Proof. This statement follows directly from Definition 2.8 and Part 2 of
Lemma 2.2.

2.13 THEOREM. The following statements are equivalent:
() gis BVT(k) on X,
(i) L] X) <.

Proof. By virtue of Part 2 of Lemma 2.2 and Theorem 2.6

sup X(x)*
f TS g, )dLovu = L(f| X).
X (x)

The theorem is an immediate consequence of this equality.

2.14 THEOREM. If g is BVT (k) on X, U is the set of those points x in X for
which Dig(x) exists, Y is an L measurable subset of X and Z is an analytic
subset of E contained in X, then

(i) U is a Borel subset of Ey and Lx(X—U)=0,
(i) [r| Dig(x)| dLCox = [, N(f, YNU, 9)d Ly < o,
(iii) Jz| Dig(®)|dLyx <[5, N(f, Z, y) dLxy < .
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Proof. We know from [S, V4.1] that D,g is a Borel measurable function.
We may infer that

U is a Borel subset of Ey,

and since
Lal(X - Nl =0 for L1 almost all ¥ € X ),
may use Fubini’s theorem to conclude that
Lr(X —U)=0.
Using the notation of Lemma 2.2 the statement
| Dig(u, v) | = | D1hu(v) | = Jhu(v) forv € Uy

is true for uE€X ). Also we know that
TN\ U)o

is an £, measurable subset of E; for € X ).
Upon combining these facts and using [F2, 5.2] (applied to k), Part 1 of
Lemma 2.2, and Theorem 2.13, we find that

[ 1D | agus = [ | Digo)| agus
Y YnNu

= f f | Dig(u, v) | d.L19d.Crru
(YnU)(k) (YnU)(k)

- f f T ha(0)dLa0d. Lt
¥NUyqy vV NV

= f N(ha, (¥ N\ Uy, 0)dL194.Crmre
¥y, Y E

= [ [ 670U @il
Eg—1 v Ey

=f N, YNU, y)dLxy < ».
Ej

For (iii) it is only necessary in addition to observe that

N(f,Z, y) is L measurable in y,
[ w2 94 < =.
Ep

2.15 THEOREM. If gis BVT(k) on X, then the following statements are equiva-
lent:
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(1) f is absolutely continuous on X,

(i) [v|Dig(x)] dLyx=[e,N(f, Y, y)dLxy < © whenever Y is an L) measur-
able subset of X,

(ii) [x| Dig(x)| dCox=[uN(f, X, )Ly < =,

(iv) gis ACT(k) on X.

Proof. The proof is divided into five parts.

Parrt 1. (i) tmplies (ii).

Proof. Let U be the set of points x in X for which Dyg(x) exists, and ¥ be
an [ measurable subset of X. Then

N(f, Y, y) is L measurable in v,
LY — U) =0,

and we may infer, using the preceding theorem, that

[ 1pa@age = [ 0.7 A0, ige

= N(f, Y, y)dLry < .
Ey
PART 2. (ii) smplies (iii).

Part 3. (iii) smplies (iv).
Proof. Lemma 2.12 implies that

sup X(m*
Tu:inf(g(k)“g(u» 1)) = f | Dkg(u’ v) | d‘(.lv
Xk

for L—1 almost all #EX ). Whence
' gis ACT(k) on X.

Parrt 4. (iv) implies (ii).
Proof. If YCX and Y is a k cell, then (iv) being true means

T:l‘:filf;(’;)"(k)ug (“v ‘U) = f I D "g(u) ‘D) I dClv
Yk)*
for L4 almost all € YV,
[ w47 a0y < =.
Ey

We infer from Lemma 2.12 that

[ 1D atsa = [ WGV, sy < .
Y Ek
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This equality may be extended to hold whenever Y is a Borel subset of E;
contained in X.

Now suppose W is an [ measurable subset of X. Borel subsets S and T
of E; may be chosen in such a way that

SCWCTCX, JL«T—S)=0.
Since

N(fvsvy)§N(f’va)éN(f:T’y) foryEEk,

[ NG5, 900 = [ | Do) dlan = [ | Drg@) | aes
E S w

- [ 1@ | agw = [ 80, 7. 90y < =,
T Ep
it follows that

N(f,S,y) =N({, T, v) for L almost all y in E,
N(f, W, ) is L measurable in y,

f | Dig(x) | d.Crx =f N(f, W, y)dLxy < .

w Ey

PartT 5. (ii) emplies (i).

2.16 REMARK. A combination of Theorems 2.6, 2.14, and 2.15 reveals that
g is BVT (k) on X implies

[ D] 0w < LG 30 = [ s6. %9105 = [ N0, %, 9L,
X Ey Eg

equality holding if and only if g is ACT (k).
2.17 THEOREM. If h is an L measurable function satisfying
— o = h(x) £ o
for L almost all x in E, then
g is ACT(k) on X implies

[ tkon@)- | Da@ |4 = [ 1) NG, 7, )Ly
Y Ey

whenever Y is an L measurable subset of X.

Proof. This statement is an immediate consequence of Theorem 2.15 and
[F3, 2.1].

2.18 THEOREM. If for x€E; and r >0
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C(x,7) = ExN {z||z — 2| = 7},
then
g is BVT(k) on X implies
o L[f| C(x, ]

TR | Dig(2) | for L almost all x € interior X.
r—0+ a r

Proof. If U is the set of those points x in X for which D,g(x) exists, we
know that U is a Borel subset of E; and may define functions 3, v, and § as
follows:

B(Y)=| N 7Y, dLls,

Ey

wm=j]vmwaa

3¥)=| NG Y —=U, Ly,

Ey

for Y a Borel subset of E; contained in X.
Employing the terminology of Saks [S, p. 30], 8, v, and § are additive
set functions on the class of Borel subsets of Ej contained in X,

v is L absolutely continuous,
and since L[3(X—U)=0
8 is L singular.

Because of Theorem 2.14

B=v+30
Hence using Theorem 2.6 and [S, IV 5.4, 6.3, 7.1] we conclude that
_L[f[C=n] _ . BlC(x )]
lim ——m8M8—— = lim —
—04 a(k)r® —o+ a(k)rk
v[C(x, 7] . 8C(xn]
I ] 4 i
o+ a(k)rk® o+ a(k)r®
= | Dig(a) |

for L almost all xEinterior X.
2.19 REMARK. If g is BVT, then a computation shows that

Jf(x) = | Dig(x) | for L almost all « in X.
In this case the validity of Theorems 2.14, 2.15, 2.17, and 2.18 and Remark
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2.16 holds whenever IDkg| is replaced by Jf.
2.20 ReMARK. If fEQ; were of the form

f(x) = (xlr R ) g(x)» Xit1y =y xk) for x € Ey,

for j some positive integer less than k and g a continuous real-valued function
on E,, then the foregoing theory would hold, provided only that the condi-
tions BVT(k) and ACT(k) be replaced by BVT(j) and ACT(j), and the
function Dyg be replaced by D,g.

3. k dimensional nonparametric surfaces in E;,; (¢>1). Each orthogonal
projection of E;; onto Ey is of the form

k
per10 R

for some REG41. In fact pf,; o R maps the k-dimensional subspace of Ei1
spanned by the & tuple of vectors

((inv R)%, - - -, (inv R)*)
onto Ey, transforming (inv R)?into *I% for 1=1,2, - - - , k.
Since for x EE;y,; and REGry,
(P10 R)(®) = (s@ (v R), - -, v @ (inv R)),
two orthogonal projections pf,, o S and p},; o T are equal if and only if
(inv S)¢ = (inv T)? fori=1,2,.--, k.

For m a positive integer greater than two, A, will denote the set of all
those elements R of G, for which there exists some S&G, satisfying

R="r fori=1,2,---,m—2;
R;:O fori=m—l,m;j=1,2,"'rm_2;
R}:S}:',",,ii fori=m—1,m;j=m—1,m

If fis a continuous real-valued function on E; and % is a positive integer,
then f and f; will be the functions defined by the relations
f-(x) = (xly Xgy ***y Xky f(x)) fOI' x e Eky

fi(x) = (%1, %9, - -+, %, fi)) for x € Ej.

3.1 SEcTIONAL ASsUMPTIONS. We let f be a fixed continuous real-valued
function on Ey, and for j a positive integer no greater than 241, ‘R will de-
note that element of Giyy for which

iR(x) = (%1, * * * ) Tjty Tty Ligly * * * 5 Xhy %) for x € E;.

Observe that
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k1R is the identity element of Giy1,
puo ' RoFEQ  forj=1,2,--+, b+ 1.

3.2 LEMMA. If Y is a bounded open convex subset of Ey and i is a positive
integer, then

S € Apy1 tmplies

(i) JeN@pEi0Sof, ¥V, x)dLix

<a(®)~* [k e Nt 0 Sof, V., x) dLwxdLaz
(ii) N(piy10Sof, ¥, x)=Spi10Sof, Y, x) for Li almost all x in Ey.
Proof. We know that

(prr10S)(w) = (we (invS), -+, we (inv S)"
= (w1, wa * * *, Wi, wk'S: -+ wh+1‘S:+l)
for wEE;y;. Thus

(P10 S 0 F)(®) = (Prsr0S) (21, %oy -+ = , @y f(2))
= (%1, %3, * * * , Xp—1, Sll:‘xk + 51,:+1‘f(x))

whenever x EE;. _
We may infer then that py 0 S o fEQ. Moreover upon letting F(x)
=S¥ %, +S¥+1.f(x) for x EEy, a check reveals that

F(x) = Sk-me+ Sk fi() for x € Ey,
'(?ll:+1 oSof): = ?:+l oSof;

for every positive integer 4. Accordingly statements (i) and (ii) follow from
Lemma 2.2 and Theorem 2.4.

3.3 LEMMA. If R&Grya, then there exist functions S, T and U for which
S € Arey, T € Gy U eGy,
T(k+llk+1) = k+lIk+l’
P:.HOR = Uop:“oSoT.

Proof. We know for any two vector subspaces of a vector space that the
sum of their dimensions is equal to the sum of the dimensions of the vector
spaces generated respectively by their union and intersection.

Accordingly if Z is the subspace of E,,; spanned by the k-tuple of vectors

<k+1]l, k+11‘2’ v, H-lIk)

and K the subspace of E.;, spanned by the k-tuple of vectors



394 R. N. TOMPSON [November

{(inv R)!, (inv R)?, - - -, (inv R)*),

then the dimension of the subspace KMNZ equals either £ or £—1.

If dimension (KMZ)==Fk, then K coincides with Z, and we may select
T &G4 so that T is the rotation of Z which transforms (inv R)? into *¥+1[3
for ¢=1, 2, - - -, k. Letting U denote the identity map of E; and S the
identity map of Ei4; we may easily check that

p110R = Uo (prs10Roinv T) o T,
leoRoinv T = p;:“oS.

Now suppose that the dimension of KNZ is k—1.
Using the transitivity of the orthogonal group, we can choose functions
A, U, and T for which

A EGr,  AX(K) = K,

{((Aoinv R)}, (Aoinv R)?, - .-, (4 oinv R)¥1) spans K N Z,
U € Gy,
Ul(prs10 R)((inv 4 oinv R)H] = *I° fori=1,2 -,k
T e Glc+ly T*(Z) = Z!
T[(Aoinv R)i] = ¥[¢ fori=1,2,---,k— 1.
Since (T 0 4 oinv R)* lies in the orthogonal complement of the space
generated by (*+1J1, k+1J2 . .. k+1Jk-1) ap element B of G, may be picked
such that
(ToAdoinv R)s14: = B fori=1,2

Then defining .S to be the element of Gk satisfying

(inv $)' = "' fori=1,2-+-,k—1;
(inv S); = fori=kk+1;7=1,2,---,k—1;
(inv S)§ = Bipn fori=h k+1;7="F k+1:

we may infer that S (along with inv S) is an element of Az
Inasmuch as

(inv (So 7))t = (inv T oinv S)*¢
= inv T'[(inv S)¢]
= inv T[(T 0 4 o inv R)i]
= (4 oinv R)®
= (inv (Roinv 4))¢ fori=1,2,--,k
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it follows that
1’:+1050 T= P:+1ORoinvA.

Let ¢ be a positive integer no greater than k. To complete the proof it is
sufficient to show the equality of the functions pf,;, o Rand Uo pf,; 0 So T
on the vector

(inv R)%.

We compute:

(Uo pinoSoT)[(nv B)] = (Uo pro Roinv 4)[(nv B)]
U[(prs10 R)((inv 4 o inv R))]

k_i

=T

3.4 LEMMA. If Y is a bounded open convex subset of Ex and i is a positive
integer, then

R € Giy1 implies
N(ﬁl]:.(.l oR O]?.', Y, x)d,Ckx

Ey

= a(k)“i"f N(p:“ 0Sof, ¥, x)dLyxdLsz.
K

iV Ep

Proof. Suppose REGiy1. We use the preceding lemma to select functions
U, S, T, t such that

UEGr, SEA, T €Giay, tEGy
T(FHIR) = BRI

if wEEL, 2EEy, and vEE,, then #(z) =w if and only if T'(z, 25, * -+, 2, 9)
=(wl’ Wy, * * *, W, v),

PII:+10.R = UOP:+IOSOinV T.
We shall denote

inv i(z) = 2’ whenever z € E;,
and for 4 a positive integer, we define the functions F, F;, F, F; by the formulae
F=fol, F; = f;ot,
F(x) = (%1, %3+ + +, %, F(%)) for x € Ex,
Fi(x) = (%1, %3, - - -, %, Fi()) for x € E;.

The rest of the proof is divided into three parts.
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Parrt 1. If VEGk, BCEyx, and 2E Ey, then
[(inv V)*(B)]: = (inv V)*[By s ).
Proof.
(inv V)*[By ] = (inv V)*({y] y — V(s) € B})
= {«| V(*) ~ V(2) € B}
= {xl x — z € (inv V)*(B)}
= [(inv V)*(B)]..
PART 2. (i) pis 0 Rof=Uo pi 0 SoFoinvy,

(i) pfy,oRofi=Uopl,0SoF,oinv ¢
Proof. It is sufficient to verify (ii). Let zEE;, then

(Prr10 ROF)(8) = (Prs10 R)(ar, 22, + + + , 2a, fi(2))
= (UoproSoiny T)(zy, 20, - -+ , 26 fi(2))
= (Uo pr108)(, 28, - -, 3h fi(2)
= (Uop',:“oS)(z;, 2, -, 2k Fi@))
=(Wo IJ:+1 0So F)(7)
=Uo p:+1 oS o F;oinv £)(2).

PART 3.

N(per10 Ro i, ¥, 2)dLax

Ey

= a(k)“‘i"f N(p:n oSof, Y, x)dLxxdLas.
K

iV Er

Proof. With the aid successively of Part 2, Lemma 3.2 applied to F;, Part
1, the fact that

Ji(z) = 1 whenever z € Ey,

and Part 2 again, we check that

N(p:“ oRof, ¥, x)dLux

Ex

= | NWoprioSoFioinvt, ¥, 2)dLex

Ep

= N(ﬁ:“ oSoF;oinv(, ¥, x)dLsx
Ey
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= | N(@inoSoTF, (inv )*(¥), 2)dLax

Ey

a(k)‘li”f N(ja:+1 0SoF, [(inv H*(¥) ], %)d.Lrxd Lz
K

iV Eg

I\

awit [ [ NeokaoSoF, v 9* [ ], dLuedCus
K.

iV Ex

a(k)_li"f N(p:H oSoFoinvt, YViay, 2)dLixd L1z
K

iv By

a(k)_li"f Ji(z) N(P]’:+1 oSo Foinvt, Vi, 2)dLxxdLaz
K;

Ey

a(k)"li"f N(p:+1 oSoFoinvt, V., 2)dlixd sz
*(K) E}

I

a(k)“i”f N(Uo p;’:+1 oSoFoinvt, ¥, 2)dLxxdLsz
Ki;v Ej

a(k)~1i f N(per10 Rof, ¥, x)dLaxd Loz
K

iV Eg

3.5 THEOREM. If Y is a bounded open convex subset of Ey, then

R € Guys implies N(prrio RoF, ¥, #) = S(pirioRof, ¥, %)
for L almost all x EE;.

Proof. Let REGy4;. Just as in the preceding lemma we may select func-
tions U, S, t and define functions F and F so that

S € Ary, UeGr, tE€GH
F=fot
p:+loRof= UopzﬂoSoFoinv L.
Then with the help of Lemma 3.2 we find that
N(p:+1 oR of, Y, x)
= N(Uopl;:+1oSo Foinvt 7, x)
= N(pr10S0 F, (inv )*(¥), )

= S(p:H oS o F, (inv )*(Y), x) for L almost all x in Ey
=SWUo p:“ oSoFoinvt Y, x) for L almost all x in E;
= S(p:+1 oRof, 7, x) for L almost all x in E.

3.6 REMARK. If YCE; is the interior of a k cell and REGyy, then
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N(pi1oRoF, ¥, 9)dLsx = | S(prs1o Rof, ¥, )dLax

Ej Eg

= L(pino RoJ| 1)

For if S, U, ¢, and F are chosen as in Theorem 3.5, it then follows by
Theorems 2.6 and 3.5 and certain invariance properties of the Lebesgue area
that

L(p:“oRofl Y) = L(Uop:.,.loSo'F—oinv t|v) = L(p:+loSoFoinvt| V)
= L(pes10S o F| (inv )*(¥))

= | N(inoSoF, (nv )*(®¥), )dLss

Ey

= N(UOP:.,.loSoFoinv t, Y, x)dLrx
Ey

= | N@rnoRoF, ¥, x)dLsx

Ey

= S(p:H oRof, Y, x)dLax.

Ey
3.7 LeMMA. If XCE, is a k cell with boundary X, then

3C:+1[f*( X)]=o.

Proof. The method of proof selected for Lemma 2.5 included an explicit
proof of this statement.

3.8 THEOREM. If X CEy is a k cell, then

sk+ 1,07 [ [ NohoRof, X, dlusdsuniR
Gr1V Ey
= B(k + 1, B! S(prs10 Rof, X, £)dLazdérsiR
GV Ex
= L(f| )

= lim L(f;| X).
Fand
Proof. Let Y =interior X. Then from Lemma 3.5 we know that

N(prn1oRoJ, V, ®)dLsx = | S(prio Rof, ¥, )dLax

E: By
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for REGy41. Therefore

B(E + 1, k)1 f N(prs1o Rof, ¥V, 6)dLaxdber1R
Gr41vV Ep
=8+ 187 [ [ S@haoRof, V. Dalumibuk.
Gr+1Y Ep

We suppose that 4 is an open interval of E; for which
closure 4 C 7,
and select a positive integer 7 so large that
4. CY whenever z € K.
Then with the help of [F4, 6.13], [F4, 4.5], and Lemma 3.4 we obtain

L(f.-! closure 4) = f JFi(x)dLorx

= ﬂ(k + 1, k)—lf N(p,]:+1 oR Of,’, A, x)d.Ckxd¢]¢+1R

Gr+1Y Ep

SB(E+1, k)1 a(k)~14* f N (p’,:H o Rof, 4., %)d.LxxdLrzdpri 1R
Gr41 K;vV E

= ﬂ(k + 1, k)—lf N(Pl,:+l (o} ROf, Y, x)d.ckxdckaR.

Gr1V Ex
From the lower semi-continuity of L on Cx(X) it follows that
L(f| closure 4) < lim inf L(f;| closure 4)

f— o

S B(E+ 1, B f N(pr1o RoF, ¥V, x)dLaxdbsiR.

Gr+1Y Ey
As a consequence of the arbitrary nature of 4

L@l se+1 o7 [ [ NeohaoRof, V. dlusdeniR

Gr1V Eg

= Bk + 1, )1 f S(per10o RoF, ¥, 2)dLaxdbriiR

Gr+1Y E
s L(f| ).

Because of Lemma 3.7 this last relationship holds when Y is replaced by X.
Using the foregoing results the other part of the statement may be proved
exactly as the corresponding statement was proved in Theorem 2.6.
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3.9 REMARK. For X CE; a k cell, the results of the last theorem allow us,
using the notation of [F6], to state
L(f| X) = M*(F| X) = S*(F| X) = U™(F| X) = v**(| X) = N*(| X).
3.10 REMARK. If Y is an analytic subset of E, then

?l,:+l[f*(y)] = B(k+1, k)_lf N(?:-H OoR Of, Y, x)d.Ckxqu“_lR.
Gr+1Y Ej
Since f*(Y) is an analytic subset of Ei,s, the univalence of f implies
FeulP0] = 8+ 1,07 [ [ Neptuio R 4, 9alusibnR
Gr+1Y E
=8+ 187 [ [ NhaoRof, ¥, Dilsdsrak
G411V Eg

3.11 THEOREM. If X CEy is a k cell and A is a Borel subset of Ey.1, then

Frld NF*(X)] = Tenld N X)),
Proof. Since in general %, , isdominated by I't,,, it is sufficient to assume
Frnald NFHX)] < o,
and to show that
Fir[d N FHX] 2 Tanld N FX)].

We divide the proof of this into three parts.
Part 1. If REGy+, then

L3100 2 [ SthaoRof, X, 9l

Proof. Let REGy41. Select a sequence
P 1 P 2 """y
of polyhedra of Cy(X) for which
lim P; = f| X, lim inf L(P) = L(f| X).
= {— o
For each positive integer 4, p},; 0 R o P; is a polyhedron and

lim (px410 Ro P) = prao Rof| X.
f—

Suppose UJ¥,T; is the simplicial triangulation of X associated with P;.
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From the Lipschitzian character of pf;; o R we may infer that

L(f| X) = lim inf % 5k [P: (T)]

{—x =1

my
> liminf Y. %41 [(pre10 Ro P)*(T5)]

{— 0 j=1
> L(prr10 Ro f| X).

We know that the k-dimensional Lebesgue area and the k-dimensional
stable area are lower semi-continuous functions on Cx(X), and that both are
extensions of the classical area integral over the class of polyhedra. The
Lebesgue area being numerically the largest of all such lower semi-continuous
extensions, we may conclude that

L(ptsioRof | X) = f S(prmoRoF X, x)dL .
Eg

ParT 2. If B is a Borel subset of Ex and REGy4, then

el (B)] 2 fE N(pis10 RoF, B, x)d.Lx.

Proof. Using Remark 3.10, Theorem 3.8, and Part 1,

FenlFF@)] = L(f|lY) =z j; S(p’;;qo Rof, V, x)dLax

= N(p:.u ORof, ¥, 2)dLax

Ey

whenever YCEy is a & cell.

The inequality between the first and last members of this string may be
extended (by the customary methods) to hold whenever Y is a Borel subset
of Ek.

PART 3. Frp [ANF*(X) | 2TE [ANFHX) ]

Proof. Suppose B is a Borel subset of Eiy; and B’ = (inv f)*[BNf*(X)].
Then using Part 2

Fen[BN 0] = Fana[F(B)] 2 fE N(prs1o Rof, B, 2)d.Lax

2 Lel(prsi0 RoP*(B)]
= Lel(Bir 0 R¥B N FH(X))] for R € Gis,
Fer[BOFHX)] 2 vin[B N FH(X)].
It follows that
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k - k -
Frrr[4 N FHX)] 2 Tena[d N FHX)].
3.12 LemMA. If B is a Borel subset of E; and RE Gy, then

N(P:+l oRof, B, )dLxy S 7:+1 [F*B]

Ey
k+1

< 3 | N@pkao Rof, B, y)dly.
=1V E
Proof. The first inequality is a restatement of Part 2 of the preceding
theorem. .
Let YCE; be a k cell with boundary Y. With the help of [F4, 6.13] we
infer that

wiln - [ CreE

= fm}[ g {J(prs10R Off)(;c)}z]llzfi-Ckx

< | X J(pio RoF)(#dLix

Y-Y dm=l
k+1

=Y L(pyi0 Rofi| V)

=1

whenever j is a positive integer. Letting j— =, it follows from Theorems 3.10
and 2.8 that L(f| V)< > 8! L(pk,, 0 ‘Rof| ¥). We see by reference to
Theorems 2.6, 3.8, and Remark 3.10 that

k+1

FenlF(@)] < > YN(p’;Ho ‘Rof, ¥, y)dlsy.

The proof is completed by extending this inequality to hold whenever ¥V
is a Borel subset of E;.

3.13 SECTIONAL ASSUMPTION. For the rest of this section X CE; will de-
note a k cell.

3.14 LEMMA. If j is a positive integer not exceeding k, then

sup X ')“
f Tv—inf lX(i)“f(uh ety Uiy Uy Uipr, 0, uk)d-Ck—lu
X
- L sup X(i)*
SLflx) =X Tomint x@f (81, + + = ) Uicr, 0 Uiy, * -, )AL p—1%
=1V X(i)

+ Lu(X).
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Proof. We recall for =1, 2, - - -, k, that

(p:+10 ‘R of)(x) = (a1, - - - » ity f(®), ®ig, - -+, %) for x € E,
ﬁ:+1 [} 'R Of & Q.

Consequently we may use Part 2 of Lemma 2.2, Theorem 3.8, and the preced-
ing lemma to compute:

sup X%
f Tomint x*f (1, + * + ) %1, 0, Uipay * =, Uk)ALp—1t4
X

= N(p:H o R of, X, 2)dLrx = 7:.;.1[}*()()]

Ey

=L(f| x) = %l N(prn0 RoJ, X, 2)dLsx

1=1v E
Ld sup X"
=> Tomint x@f(1, + + = i1, 9, Uiy, - -, ) ALoam + Lr(X).

3.15 THEOREM. The following statements are equivalent:
(@) fis BVT on X.
(i) L(F|X) <.

Proof. Thisstatement is an immediate consequence of the preceding lemma.

3.16 THEOREM. If f is BVT on X and U is the subset of X on which f is
approximately differentiable, then

(i) L(X—-0)=0, _ _

(ii) fYJf(x)d-*Ckx:'?:H [f*( Ynu) ] §7:+1 [f*( V)]< e

whenever Y is an L measurable subset of X.

Proof. Let j be a positive integer no greater than k. Just asin Theorem 2.14
we can show that

D,f(x) exists for L almost all x in X.
Whence

D;f() exists for L almost all « in X,

and Stepanoff’s theorem (see [S, IX 12.2]) implies that .Li(X— U)=0.
We may apply [F2, 5.2], with the measure & replaced by 7¥,, (see [F5, 5.10]),
and Theorem 3.15 to obtain

[rt@igin = [ sfewicss= [ NG ¥, 9T
Y YNu E

= Fen[FF@ N )] £ Fen[FD)] < .
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3.17 THEOREM. If fis BVT on X, then the following statements are equiva-

lent:

() Fera[f*(V)]1=0 whenever VCX and La(V)=0,

(i) SrIf()dLix=Fei [F¥(Y)] <  whenever V is an i measurable subset
of X, _ _

(iii) [xJf®)dLix=Fon[*(X)] <,

(iv) fis ACT on X.

Proof. Let VCX and (V) =0. Select a Borel subset 4 of Ej so that
VCACKX, Lxd)=0.

The proof will be divided into five parts.

PArT 1. (i) implies (ii).

Proof. Let ¥ be an [ measurable subset of X and U be the subset of X
on which f is approximately differentiable. Then

FenlFF¥ — )] =0,

and Theorem 3. 16 implies
J @i = el @ N OI+ Sl ~ 0)]

= Fin[F@)] < =.
PART 2. (ii) tmplies (iii).

Part 3. (iii) smplies (i).
Proof. Let ¢>0. Choose on X a non-negative continuous function ¢ and a

number M satisfying
f | Tf(2) — o(x) | dCax S 6, M > sup c(#).
X z2EX

We can select an open set G of E; for which

V CG, »C,k(G) < e'M—ly
and a grating of £—1 planes which defines such a family {X Ji=1,2, .- }
of subsets of E; that

VCUX:.CGNX, Xiisa kcellfori=1,2,-..,

=1

interior X; M interior X; = 0 for 7 # j.

Then
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FialP0)] = 7 [#( U x)] = S ulro)

=2 . Tf(®)dLux = il Jf(x)dLrx

1Y x; =1/ interior X;
§f Jf(x)d.Cr gf c(2)dLrx + € < 2e.
enx enx

Because of the arbitrary nature of € the proof is complete.
PART 4. (ii) tmplies (iv).
Proof. Suppose j is a positive integer no greater than k.
The truth of (ii) means

7:+1[f*(A)] =0,

and it follows from Lemma 3.12 and Theorem 2.15 that

Lel(prsio 'RoP* )] =0, Lul(pino RoP*)] =0,
p:H o'Ro f is absolutely continuous on X,
fis ACT (§) on X.
Consequently
fis ACT on X.
PaARrT 5. (iv) implies (i).
Proof. Using Theorem 2.15 we know that
fis ACT (4) on X,
p:.u o'Ro f is absolutely continuous on X,
N(prsro RoF, A, )dLax = 0,
Ey
for ¢=1, 2, - - -, k. Recalling that
N(pr10 ""Rof, 4, 2)dLax = La(4),
By . .-

we may conclude from Lemma 3.12 that

T[] =0,  FralfFFmn] =o.
3.18 REMARK. If

(i) b is a continuous function on X into X,
(ii) fEbN(h) X’ x)d'Cch < ’
(iii) f1s ACT on X,
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then h is absolutely continuous on X if and only if

:7:+1 [(Fo B)*(V)] = 0 whenever V C X and Lx(V) = 0.

This is a consequence of Theorem 3.17.
3.19 ReMARK. Using the notation of [F6] we may restate the results of
Theorems 3.8, 3.16, and 3.17:

L(f| X) < « implies

f CUERRTRY

M(F| X) = S*(f| X) = U*(f| X)

= V(f| X) = N (| X),
equality holding if and only if f is ACT on X.
3.20 THEOREM. If for xEE; and r>0
C(x,7) = ExN {z||5— x| =7},
then
fis BVT on X implies
L[| C(=, 7]

B = Jf(x) for Lx almost all x € interior X.
r—0+ [+4 r

Proof. Letting Theorems 3.8 and 3.16 play the respective roles of Theo-
rems 2.6 and 2.14, the proof is similar to that of Theorem 2.18. In fact only
the verification of the additivity of the singular part of the decomposition is
different. For this the following general property of Carathéodory outer
measures proves useful:

if ¢ is a Carathéodory outer measure, 4, B, and T are elements of domain
¢, and A is ¢ measurable, then

S(T N (AU B)) + ¢(TN AN B) = (TN A) + ¢(T N B).
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