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Introduction. In [l](l) Ambrose has defined ii-systems to be Hubert

spaces in which multiplication is "partially defined." If H is such a system

and a is in H, then La and Ra are the (not necessarily everywhere defined)

operators of left and right multiplication by a and the bounded algebra of II,

written A(H), is [a\ La and Ra are everywheredefined](2). We define the asso-

ciated ring of operators of H, written W(H), to be the weak closure of [La | a

is in A(H)].

If G is a separable, locally compact, unimodular group and H(G) is the

L2 space of G under Haar measure with multiplication "partially defined"

by convolution as in [l ], then H(G) is an iî-system (3). The left regular repre-

sentation represents G faithfully as a group of unitary operators on H(G)

each of which commutes with every element of [Rf\fEA(H(G))]. However,

it is known [6 or 7] that W(H) is the commutant of [Rf\fEA(H)] so that

l(G)CW(H(G)). If we define P(G) = \fEH(G)\f is almost everywhere posi-
tive on G], then the elements of 1(G) have the further property that l(x)P(G)

EP(G). The main result of §1 is that these properties completely characterize

1(G), i.e., the only unitary operators in W(H(G)) which take P(G) into itself

are the elements of 1(G). Using this result we prove that groups whose iJ-sys-

tems are isomorphic in a manner preserving positivity are themselves iso-

morphic. Similar results for the Li algebra of a group have been obtained by

Kawada [8] and Wendel [9].

The question now arises : given an iJ-system H and a subset P of H, when

is H the iZ-system of the group of unitary operators in W(H) which take P

into itself? In §2 a set of necessary and sufficient conditions is found and by

means of these it is shown that any homomorphism of H(Gi) onto a left ideal

in ii(G2) which preserves positivity arises in a natural way from a homo-

morphism of G2 onto Gi.

1. Characterization of 1(G). Throughout this section we assume that G is

a fixed separable, locally compact, unimodular group.

Lemma 1.1. If G'= [UE W(H(G))\ UP(G)QP(G) and U is unitary], then
G' is a topological group in the strong operator topology. G EG' and the topology

of G is that induced from the strong topology on G'.

Received by the editors July 10, 1953.
(*) The numbers in brackets refer to the bibliography at the end of the paper.

(2) If P is a property of some elements of a set S, then we write [s | P(s) ] for the subset con-

sisting of these elements. In general, we use the notation of [2] for the elementary operations on

sets. We write c(A) for the characteristic function of the set A.

(3) The proof of this in [l] is incorrect; see [3].
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Proof. If U and V are in G', then trivially UV is, and for any/ and g in

P(G), (U*f, g) = (f, t/g) ^0, i.e., the inner product of U*f by any element of

P(G) is positive, so U*f is in P(G), so U*EG'. G' is strongly closed in the

group of all unitaries in W(G) which is known to be a topological group, so

G' is a topological group.

Since continuous functions of compact support are dense in H(G), sets of

the form (4) [i7GG'| || Uf— f\\ <ö] for such/form a base for the strong topology

on G'. If M is the measure of the support of/, then there is a neighborhood A

of the identity in G such that if xEA, then | (l(x)f)(y) — f(y) \ <aM~m for

all y so that \\l(x)f-f\\<a, i.e., l(A)E[UEG'\\\Uf-f\\<a]. Hence every
strong open set of G is open. Conversely, if A is a neighborhood of the identity

in G, we can find a neighborhood B of the identity satisfying BB~lEA, and

if xB and B are not disjoint, then xbi = b2 for some &i and b2 in 5 so that

x = bibi-lEBB~lCA. Hence, if jcGC(4), we have \\l(x)c(B) -c(B)\\

= \\c(xB)-c(B)\\=21i2\\c(B)\\ so that Gr\[u\\\Uc(B)-c(B)\\<21'2\\c(B)\\]
EA. This shows that open sets in G are strongly open and completes the

proof of the lemma.

Lemma 1.2. G' as above. If UEG' and S is any set in G of positive finite

measure, then for some positive number a(S) and measurable set U(S), U(c(S))

= a(S)c(V(S)).

Proof. For any a>0 define/„ and g„ by/„(x) = U(c(S))(x) if this is greater

than a, fa(x) =0 otherwise, and ga= U(c(S)) —/„. It will be sufficient to show

that, for every a, either/„ or g„ is zero. Now, c(S) = U*fa+ U*ga, but U*fa and

U*ga are a.e. positive functions satisfying (U*fa, U*ga) = (fa, go)=0; hence,

for some measurable sets Sá and Sá' whose union is S and whose intersection

is of zero measure, U*fa = c(Sá) and U*ga = c(Sá'). If neither/„ nor ga is

zero, we can find an x in G for which the Haar measure of Sa'xrli^\Sa" is not

zero. Define T¿ =Sá Í^Sá'x and TI' =Slx~xC\S" =Tc¡x~1. Since c(T¿) and

c(Sá ) —c(Ta' ) are orthogonal functions in P(G), so are U(c(Tá )) and U(c(Sa' )

— c(T¿)), so they must be restrictions of U(c(S¿)) to subsets of its support.

Similarly, U(c(Tá') is a restriction of g„ so that for a.a. x in G, U(c(Ta"))(x)

^a and U(c(Tá ))(x) is either 0 or >a. But, if r is the right regular representa-

tion, U(c(Ta")) = U(r(x)c(Ti))=r(x)U(c(T¿)), which is impossible.

Lemma 1.3. In the above lemma, a(S) = 1.

Proof. If S1ES2, then U(c(Si)) is a restriction of Z7(c(52)) so a(Si) =a(S2).

If Si and Si are arbitrary, choose an x in G so that Si(~\(S2x) = T has nonzero

measure, then a(S2)c(V(Tx~1)) = U(r(x)c(T))=r(x)a(Si)c(U(T)), so a(Si)

= ö(52) =a.

By a basic sequence we shall mean a countable set (Sn) of neighborhoods

(4) We write |[  [| for L2 norm, ||  \\p for Lp norm if p?¿2, and | ¡ |  for operator norm.
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of the identity having the property that if S is any neighborhood of the

identity, then SnES for large enough n. If (Sn) is a basic sequence, then

(l/||c(5„)||iLC(s„) approaches the identity operator strongly.

Now let (Sn) be a basic sequence so that

lrSliminf HI(1/||C(S„)||O^^IH

^\immí(a/\\c(Sn)\\i)\\c(Ü(Sn))\\i.

But ||c(5„)||i = (c(5„), c(Sn))=ai\\c(U(Sn))\\i,  and substituting this in the

above gives 1 ̂  I/a. Applying this to U* which multiplies characteristic func-

tions by \/a gives the opposite inequality and completes the proof.

For the basic sequence (Sn) let Fn= (i/\\c(Sn)\\i)c(S„).

Lemma 1.4. If Fn and Sn are as above and m is Haar measure on G, then

for every integer n there is an x in G and an integer k for which m(U(Sk)r\xSn)

^(n/(n + l))m(Sk).

J>roof. LUFkc(Sn)(x) = (l/m(Sk))(c(Ü(Sk))c(Su))(x) = (1/m(Sk))m(Sn

r\U(Sk)-lx) = (l/m(Sk))m(xSnr\U(Sk)), so that if the lemma is false,

LvFkc(Sn)(x) i= (n/(n + \)) for all x and k. However, LUFh approaches Ustrong-

ly, so this is impossible.

Theorem 1.1. G = G'.

Proof(6). If UEG' we can choose, for some sequence Sn, integers k(n)

and elements x„ in G to satisfy Lemma 1.4. We wish to show that

l&n-^LvF^ approaches the identity strongly. l(x^)LvFHn) = £/„ where /„

= (i/m(Ski„)))c(xn-1U(Sk(n))). If we define rn = x¡"{n1)í/(5*(„)Pi5n) then, since

the Tn have nonzero measure and get arbitrarily small, the sequence

(l/m(Tn))Lc(T„) approaches the identity strongly. However, |||l</,.

-(l/m(Tn))LCÍTJ\\^\\fn-(í/m(Tn))c(Tn)\\i = 2(í-m(Tn)/m(SkM))-^0sinc¿

m(Tn)^(n/(n + \))m(SkM). Hence, l(xñl)LVFHn) approaches the identity

strongly so l(xn) approaches U strongly. The strong convergence of l(xn) im-

plies that (x„) is a Cauchy sequence and £/ = /(lim x„).

If H is any ü-system with elements a and b, then we write ab for their

product when it is defined. Consistent with this notation, if / and g are func-

tions in L2 of G, we write fg for their convolution and not their pointwise

product.

Lemma 1.5. If Gi and G2 are separable, locally compact, unimodular groups

and w is a linear transformation of H(Gi) into H(G2) satisfying :

(1) w(H(Gi)) is a left ideal in H(G2),

(2) w(P(Gi))CP(G2),

(3) for any fand g in H(Gi), (w(f), w(g)) = (f,g),

(5) The referee has outlined a different proof of this theorem which does not require sepa-

rability.
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(4) if f and g are in H(GX) and fg is defined then w(f)w(g) is defined and

w(/g)=w(/)w(g),

then there is a homomorphism w of G2 into Gi such that l(x)w(f) =wl(w(x))f

for any x in Gt and f in H(Gi).

Proof. If/ is in H(Gi) and x is in G2, then l(x)w(f) is in w(H(Gi)), so there

is a unique element T(x)f in H(Gi) satisfying wT(x)(f)=l(x)w(f). Clearly

T(x) is an isometric linear transformation. If / and g are in P(Gi), then

(T(x)f, g) = (wT(x)(f), w(g)) = (l(x)w(f), w(g))^0, so T(x)P(G1)CP(G1).

Also, T(x) is in W(Gi) since W(Gi) is the commutant of [Rf\f is in A(Gi)]

and for any fEA(Gi), gEH(Gi), wT(x)Rf(g) =wT(x)(gf)=l(x)(w(g)w(f))

= w(T(x)g)w(f)=wRfT(x)(g), i.e., T(x)Rf = RfT(x).

The map T:G2-+W(Gi) satisfies (i), T(x) T(y) = T(xy), and (ii), T(x)*

= T(x~x). These follow from wT(x)T(y)—l(x)wT(y) =l(x)l(y)w = l(xy)w

= wT(xy) and (T(x)f, g) = (wT(x)f, w(g)) = (w(f), l(x^)w(g)) = (w(f),
wT(x~x)g) = (f, T(x~1)g) respectively. Equation (ii), plus the fact that T(e)

= 1, implies that T(x) is unitary; hence, T(x) =l(w(x)) for some w(x) in Gi

and equation (i) implies that w is a homomorphism.

To show the continuity of w, let/ be an element of H(Gi) and 5= [x in

Gi\l(x)f-f\\<a]; then w~>(S) = [y in G2||^(y))/-/|| <a] = [y in G2|
||/(y)w(f) — w(f)\\ <a], which is open. Since sets of this form are a sub-basis

for the topology of Gi, this completes the proof.

Theorem 1.2. // G\ and G2 are locally compact, separable, unimodular

groups, and w is a linear map of H(Gi) onto iî(G2) satisfying the conditions

of Lemma 1.5, then w is an isomorphism onto.

Proof. Trivially w~l satisfies conditions (1) and (3) of Lemma 1.5. If /is

in P(G2) and g is in P(d), then (w~l(f), g) = (f, w(g))^0, so w~l(J) is in

P(Gi), i.e., condition (2) is satisfied. To prove (4) it will be sufficient [l] to

show that if gf is defined in H(G2) and h is in ^4(Gi), then (w~1(g), zw~l(f)*)

= (w~l(gf), z). Trivially ur1(f)* = ur1(f*) so (w-^g), zw~1(f)*) = (g, w(z)f*)

= (gf, w(z)) = (w~l(gf), z). Hence Lemma 1.5 gives a homomorphism w~1 of

Gi into C?2 and l(w(w~1(x))) =wl(w~1(x)) =ww~H(x) =l(x) so ww-1(x) =x and

similarly w~1w(x) =x, which completes the proof.

The assertion of Theorem 1.2 is not true if the assumption of positivity of

W is dropped. Ambrose proved [l, Theorem 10 ] that all Abelian H-systems

are essentially the same algebraically except for dimension and it is an im-

mediate corollary of this that any two finite Abelian groups of the same order

have isomorphic iJ-systems.

2. HP systems. We shall say that a subset P of a Hilbert space H is a

set of non-negative functions in H if there is a representation <p of H as the I,2

of some measure space such that 4>(P) is the set of almost everywhere non-
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negative functions in this L2(6). We write xi£y to mean that y—x is in P,

and x^S to mean that [s — x|sG-S]GP. F°r anY countable set QEP there

is defined an element inf Q in P and if, for some y, x^y for all x in Q, there

is also defined an element sup Q^y in P having all the usual properties. If Q

is a convex subset of P we write inf Q for the unique element of minimal

norm in the uniform closure of Q and if, for some y, Q^y we write sup Q for

inf [x| Q^x]. These definitions are consistent with one another.

If H is a proper ii-system let C(H) be the dense subset consisting of all

finite sums of products. We shall be concerned with the linear map [ ] from

C(H) to the set of weakly continuous functions on W(II) defined by

[22fiëi](T) - ¿2(fi, T(g*)). (Note that this map is well defined for by [10,
p. 76] we can find a set (xa) of approximate left identities in H and since H

is separable we can choose a countable subset (x<) which is still a set of ap-

proximate left identities and then [x](P) =lim (x, Txî).)

Definition. A pair (H, P) is an HP system if if is a proper H system,

P is a set of non-negative functions in H, and the following conditions are

satisfied; when G is the group of unitaries in W(H) which carry P inside

itself:

(1) C(H)r\P is dense in P.

(2) If (/,) is a countable subset of C(H) whose sup exists and sup (\j%])

è [f] for some/in C(H)i\P, then sup (/¡) £/.
(3) If N is any strong neighborhood of / in G there is a nonzero / in

C(H)C\P with [f] vanishing outside N.
If G is a separable, locally compact, unimodular group, II its /i-system,

and P the almost everywhere non-negative functions in II, then, by Theorem

1.1, (H, P) is an HP system. The main result of this section is that the

converse is also true.

We assume until further notice that (H, P) is a fixed HP system, and

write C for C(H)C\P.

Lemma 2.1. C=\j\jEC(H) and [f]^0], P = P*, and if p and q are in P

and pq is defined, then pq is in P.

Proof. If/is in C(H) and [f]^0, then/is in C by condition 2. If/is in C

and [f]i£ — e<0 on some open set N, choose h in C with | [&]([/)| úe and

[h] vanishing outside N, then sup ([h], [/]) sï [f+2/z] so by condition 2,

f+h^sup (f, h) >,f+2h which is impossible.
If/ is in C then [f*] is the complex conjugate of [/], hence/* is in C and

by condition 1 this implies P = P*.

Finally [pq](U) = (p, Uq*)^0 so pq is in C.

(e) Nagy, in [4], proves that P is a set of non-negative functions in H if and only if the

following conditions are satisfied: («, s) êO for every u and v in P, if («, v) ^0 for every v in P

then a is in P, and if ult u2, vt, and v2 are in P and Ui+u2 = vi-\-v2, then there are elements

Wn, Wi2, Wa, w22 in P such that u¡=Wu-\-Wi2 and »¡=i£ii¿-(-a'2,- for i =1,2.
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If/ is in C and A is a subset of G, we say that/ covers A if [/](£/) ^ 1 for

all 17 in ^4, and we say that 4 is bounded if there is an element of C which

covers it. If A is bounded, T(A) is to be the (nonempty) set [sup F\ FEC,

F¿f for some/, and there exists an enumerable set of sets XiEA and ele-

ments/,- in F such that/,- covers Xi and E-^'=^]- r(-<4) is convex since if

Fi and F2 are subsets of C satisfying the above conditions, then so does the

set£=[(l/2)(/,+/2)|/iisinFi]andsup£=(l/2) (sup £i+sup F2). We define,

for bounded A, d(A) =inf T(A).

Lemma 2.2. If the sets A, B, and Ai are bounded, AEB, and U an element of

G, then

(i) d(A)id(B),
(ii) d(Ai)^mi(d(Ai)),
(iii) A~l is bounded and d(A~x) =d(A)*,

(iv)   UA is bounded and d(UA) = Ud(A),

(v) if A= 2~^Ai then d(A) =sup (d(A¡)).

Proof. The first four assertions are trivial and in the fifth it is clear that

<¿(^4)^sup (d(A¡)). Choose subsets F{ of C so that ||sup Fi — d(Ai)\\2^e2-i,

then sup (sup £/) = sup (E^<)^¿(yl) and \\d(A) - sup (d(Ai))\\2

^||sup (sup (£.-))-sup d(At)\\*£ ¿||sup (Fi)-d(Ai)\\2^e.

Lemma 2.3. If A and B are closed and bounded, then d(AC\B) =inf (d(A),

d(B)). If further AEB, then d(B - A) = d(B) -d(A).

Proof. Suppose A and B are disjoint. For any V in B there is some neigh-

borhood N of the identity for which VN does not intersect A. Choose /0

acording to assumption 3 for this TV and let /=2/0/max [f0] so that

inf ([Uf], [7/])=0if U is noting. In this case [Uf+ Vf] =sup ([Uf], [F/])
so that Uf+Vf^ sup ([//, F/) by assumption 2 and this implies that

inf (Uf, F/) =0 so we must have (Uf, Vf) =0. For each U, Uf covers some

neighborhood of U and we can choose a countable subcovering (Uf) of A.

Then (d(A), Vf) :S(sup (Uif), Vf) =0. Again we can choose a countable sub-

covering of B from among all such F/'s so (d(A), d(B))=0, and hence

ini(d(A),d(B))=0.

We can now prove the second assertion. If (Ni) is a basic sequence,

then by the previous lemma d(B—A)+d(A)= lim (d(B—ANi)+d(A))

= lim d(B—ANi+A)^d(B). The opposite inequality is trivially true for

any bounded sets B— A and A.

The first assertion now follows from inf (d(A), d(B)) =inf (d(A —Af~\B),

d(B -AC\B)) + d(AHB) =\im inl(d(A - (Ar\B)N{), d(B - (AC\B)Ni))
+d(Ar\B)=d(Ar\B).

The set R0 = [ E"(-^«'— ̂ <) M«' an<3 -ß, are closed and bounded, BiZ)A(,

and the summands are mutually disjoint] is a ring.

Lemma 2.4. If Xi and X2 are in R0 and are disjoint, then inf (d(Xi), d(X2))
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... 0, and d(X1VX2) =d(X1) +d(X2). If Xi are mutually disjoint and L~ Xi 
-X is in R o, then d(X) = L~ d(X;). 

Proof. If X = L(Ai-Bi) and (Ni) is a basic sequence, then X is the limit 
(on k) of the closed sets L(Ai-BiNk ) and this by the previous lemma im-
plies the first assertion. The other two are immediate consequences of this 
one. 

The above lemma says that the measure m on Ro defined by: m(X) 
= Ild(X)1I 2 is countably additive, hence can be extended to the IT-ring R gen-
erated by Ro. 

LEMMA 2.5. The measure m is both left and right invariant and (G, R, m) 
is a measurable group [2, p. 257]. 

Proof. Since d is left invariant on Ro so is m, and if X is in R o, 

m(XU) = Ild(XU)112 = Ild(XU)112 = Ild(U-IX-l) 112 = Ild(X-l)112 
= Ild(X) 112 = m(X). 

This extends trivially to R. To complete the proof we must show that the 
shearing transformation T: (U, V)-(U, UV) of GXG onto itself preserves 
measurability. Since R is generated by the open bounded sets which it con-
tains, it will be sufficient to show that T(A XB) is measurable if A and B 
are open and bounded. But if (U, V) is in T(A XB), that is, U is in A and V 
is in UB, and N is a bounded neighborhood of the identity with NUCA and 
N-INC UBV-t, then NUXNVCT(A XB), and if (NiUiXNi Vi) is a count-
able subcovering, T(A XB) = L(NiUiXNi Vi). 

LEMMA 2.6. The Weil topology with respect to the measure m coincides with 
the strong topology. 

Proof. A base for the Weil topology is given by sets of the form 
[Ulm(p(S, US»<e] (for S in Rand e>O where p is the symmetric differ-
ence). If S= LSi where the Si are mutually disjoint elements of Ro and V 
is in the strongly open set In [ulli Ud(S;) -d(S;)1I2<e2-i ], then m(p(S, VS» 
~ L~ m(p(Si' VSi » = L~II Vd(Si) -d(Si)112+ L:+l m(p(Si' VSi» <e if n is 
chosen large enough. Hence every Weil open set is strongly open. Conversely 
if N is a strong neighborhood of I, choose a neighborhood S satisfying SS-l 
eN. Then if Uis not in N, SnUS=Osoinf (d(S) , Ud(S» =Oso (d(S), Ud(S» 
=0 and hence [UI (d(S), Ud(S» >0 ]CN. It only remains to show that 
deS) ;;eo, but this is a trivial consequence of assumptions 2 and 3. 

The above lemma implies that G is complete in the Wei! topology, hence 
by Weil's theorem [2, p. 275] G is a locally compact group in this topology 
and m is its Haar measure. 

Let S be the linear transformation of H(G) into H which takes c(X) into 
d(X) for X in R. S takes positive elements into positive elements and (Sx, Sy) 
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= (x, y). If we define Tx= [x] for x in C(H), then for x and y in P, (Tx, Ty)

= sup (a, b), a and b take on only a finite number of values, all non-negative,

da [x] and b^ [y]^(x, y) since (a, b) = (Sa, Sb) and Sa^x, Sb^y. Hence

T can be extended to a transformation of H onto H(G) which preserves

positivity.

Theorem 2.1. ST and TS are the identity operators, S and T preserve posi-

tivity and take adjoints into adjoints. For every Uin G we have TU = l(U)T and

US = Sl(U). If ab is defined in H, then TaTb is defined in 11(G) and TaTb
= T(ab) ; if xy is defined in H(G), then SxSy is defined in H and SxSy = S(xy).

Proof. To show that TS is the identity it will be sufficient to show that

TSc(X) =c(X). Choose (ft) EC so that, for fixed n, (/?) gives a covering of X,

d(X)=\imn  sup¡   (/T),   and  c(X)=limn  sup¿   ([/?])•   Then

T(d(X)) = lim T[ sup/") ^ lim sup sup [/?] â c(X),

but since ||7"((/(X))|| ^||c(x)|| this proves the assertion.

If E = ST, then E(H)=S(H(G)), E preserves positivity, E2=>E, and

(E*Ex, y) = (Ex, Ey) g (x, y) for all x and y in P, which implies that E*Ex^x

for all x in P. If x is in P, then so is p = Ex — E*E(Ex) =Ex — E*Ex and, for

any y, (p, Ey)=0. Hence if z is in A(H)r~\PnS(H(G)), for example if

z = d(X) for small enough X, then  [pz(U)] = (p,  t/z*)=0 since  US(H(G))

= S(H(G))=S(H(G))* and hence pz = 0. But we can choose a g in P(~\A(H)

with 0<q^.p and by assumption 3 we can find X>0 in C(H)C\P with [X]

îïinf (||z||2, ||<jr||2)/2 and support contained in

[U\ \\Uz-z\\ < IHI/2, \\Up- p\\ < \\q\\/2]

so that \<zz* and \<q*p, which implies 0 <||x||2 < (zz*, q*p) = (qz, pz)=0,

so p = 0. Thus E=E*E = E* and, if x is in P, then x — £x = x — E*Ex^0 and,

for any y, (x — Ex, Ey) =0 so as before x —Ex = 0, that is, E — I.

T and 5 trivially preserve positivity and adjoints on the sets C(H) and

[d(X)|X in R] respectively, hence everywhere. If/is in C(H), then [c/f](F)

= \f](U-lV)=l(U)\f](V) so, by continuity, TU = l(U)T, and then US
= STUS = Sl(U)TS = Sl(U).

If Tf is continuous and has compact support and fg is defined, then

(Tf)(Tg)(U) = (Tf, l(U)(Tg)*) = (Tf, TUg*) = (f, Ug*) = \fg](U). If gh is
defined in II and / is as before, then (Tg, TfTh*) = (Tg, T(fh*)) = (g, fh*)

= (gh,f) = (T(gh), Tf) so [1, p. 29] TgTh is defined and equal to T(gh). If
5a is in A(H), then SaSb = S(T(SaSb)) = S(ab) and by the same argument

as before this implies the general case.

Theorem 2.2. The homomorphism w whose existence is proved in Lemma 1.5

carries G2 onto G\.
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Proof. If / is in A(H(Gi)), co(g) is in H(G2), and w(h) is the projection of

z into «(fr(Gx)), then ((«(/)-«(/*)*)co(g), z) = ((«(/)-co (/*)>(g), to(A))

= («(fg),«(A)) -(«(«),«(f*A)) = (/g, Ä) - (g,f*h) =0.Hence (co(/) -co(/*)*)co(g)
= 0 and if (e„) are a set of approximate identities in H(G2), then (co(g), 03(f)*

-«(/*)) =lim ((«(/)-«(/*)*) «(«), 0=0 so co(/))*-co(f*) is orthogonal to

everything in a(H(Gi))r\A(H(Gi)) which is dense in o>(H(Gi)) [l, p. 41 ] so

||co(/*)||2=(co(/*), «(/)*), that is, «(/)*=«(/*).

Suppose £ = 12figi is in C(H(Gi)) and [^]^0 on Z(co(G2)), then if x is in

g2, Mi)](/(«)) =d («ao, *(*)«(&*))= x: («a«), eo/(«(x))(ft*))=E (/,,
*(*(*))(&*)) = [£](*(«(*))) ^0. Thus «(/») is in P(G,) and if q is in P(Gi),

(P> 9.) = (a(p), o}(q))^0 so p is in P(Gi). Now all the requirements of the

definition of an HP system are satisfied for H(Gi), P(Gi) with the group G

replaced by l(w(G2)) and the proof of Theorem 2.1 goes through as before,

¿i(G2) being complete, to give H(w(Gi)) isomorphic to H(Gi) under a posi-

tivity preserving map so that, by Theorem 1.2, Gi is isomorphic to ¿ö(G2).
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