SYMPLECTIC MODULAR COMPLEMENTS

BY
IRVING REINER

Introduction. Let Ω_{n} denote the group of $n \times n$ integral matrices of determinant ± 1 (the unimodular group), and let $I^{(n)}$ be the identity matrix in Ω_{n}. We use X^{\prime} to represent the transpose of X, and $X \dot{+} Y$ for the direct sum of X and Y.

The symplectic modular group $\left.{ }^{1}\right) \Gamma_{2 n}$ is the group of $2 n \times 2 n$ integral matrices \mathfrak{M} such that

$$
\mathfrak{M}\left(\begin{array}{cl}
0 & I^{(n)} \\
-I^{(n)} & 0
\end{array}\right) \mathfrak{M}^{\prime}=\left(\begin{array}{cc}
0 & I^{(n)} \\
-I^{(n)} & 0
\end{array}\right) .
$$

A primitive integral $(j+k) \times 2 n$ matrix

$$
\left(\begin{array}{ll}
A_{1}^{(i, n)} & B_{1}^{(j, n)} \tag{1}\\
C_{1}^{(k, n)} & D_{1}^{(k, n)}
\end{array}\right)
$$

$$
(j, k \leqq n)
$$

in which

$$
\begin{equation*}
A_{1} B_{1}^{\prime} \text { and } C_{1} D_{1}^{\prime} \text { are symmetric } \tag{2}
\end{equation*}
$$

and

$$
A_{1} D_{1}^{\prime}-B_{1} C_{1}^{\prime}=\left(\begin{array}{ll}
I^{(j)} & 0 \tag{3}
\end{array}\right) \quad \text { or } \quad\binom{I^{(k)}}{0}
$$

(depending on whether $j \leqq k$ or $j \geqq k$) will be called a normal (j, k) array. A normal ($j, 0$) array will be called a normal pair. Then $\Gamma_{2 n}$ is known to consist of all normal (n, n) arrays.

In this paper we shall consider the problem of completing a normal (j, k) array to an element of $\Gamma_{2 n}$ by placing ($n-j$) rows after the first j rows, and ($n-k$) rows after the last k rows. Since a sub-array of a normal array is normal, it is clear that an array cannot be completed unless it is normal. It will be shown that every normal array may be so completed, and a parametrization of the general completion will be obtained. These results will generalize those due to C . L. Siegel ${ }^{2}{ }^{2}$) for the special case $j=n, k=0$, but the proofs given here will not depend on his results.

[^0]1. Let $\mathfrak{X}_{1}, \mathfrak{X}_{2}$ be arrays of the type given in (1); we write $\mathfrak{X}_{1} \sim \mathfrak{X}_{2}$ if there exists $\mathfrak{V} \in \Gamma_{2 n}$ such that $\mathfrak{X}_{1}=\mathfrak{X}_{2} \mathfrak{V}$. This relationship is an equivalence relationship, and we have:

Lemma 1. Let \mathfrak{X}_{1} be a normal array and $\mathfrak{X}_{2} \sim \mathfrak{X}_{1}$. Then \mathfrak{X}_{2} is also a normal array, and \mathfrak{X}_{2} can be completed if and only if \mathfrak{X}_{1} can be completed.

Proof. Clear.

Before proceeding to the next lemma, it will be convenient to single out certain elements of $\Gamma_{2 n}$ which play the same role in $\Gamma_{2 n}$ as do the elementary transformations in Ω_{n}. Specifically, we define three types of elements of $\Gamma_{2 n}$:
(I) Translations

$$
\mathfrak{T}_{S}=\left(\begin{array}{ll}
I & S \\
0 & I
\end{array}\right)
$$

(II) Rotations

$$
\Re_{U}=\left(\begin{array}{cc}
U & 0 \\
0 & U^{-1}
\end{array}\right), \quad U \in \Omega_{n}
$$

(III) Semi-involutions

$$
\mathfrak{S}_{J}=\left(\begin{array}{cc}
J & I-J \\
J-I & J
\end{array}\right), \quad J \text { diagonal with elements 0's and 1's. }
$$

Lemma 2. If G.C.D. $\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}\right)=1$, then

$$
\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}\right) \sim(1,0, \cdots, 0,0, \cdots, 0)
$$

Proof. We first observe that

$$
\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}\right) \Re U=\left(\left(a_{1}, \cdots, a_{n}\right) U,\left(b_{1}, \cdots, b_{n}\right) U^{\prime-1}\right)
$$

for $U \in \Omega_{n}$. If we set $a_{0}=$ G.C.D. $\left(a_{1}, \cdots, a_{n}\right)$, by proper choice of U we obtain

$$
\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}\right) \sim\left(a_{0}, 0, \cdots, 0, b_{1}, \cdots, b_{n}\right)
$$

for some integers $\bar{b}_{1}, \cdots, \bar{b}_{n}$. Let $b_{0}=$ G.C.D. $\left(b_{2}, \cdots, b_{n}\right)$; then the above reasoning with $U=1 \dot{+} U_{1}, U_{1} \in \Omega_{n-1}$, shows that

$$
\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}\right) \sim\left(a_{0}, 0, \cdots, 0, b_{1}, b_{0}, 0, \cdots, 0\right)
$$

and furthermore G.C.D. $\left(a_{0}, b_{1}, b_{0}\right)=1$.
We now note the formulas
$\left(x_{1}, x_{2}, 0, \cdots, 0, y_{1}, y_{2}, 0, \cdots, 0\right) \mathfrak{I}_{s}=\left(x_{1}, x_{2}, 0, \cdots, 0, y_{1}+\lambda x_{1}, y_{2}, 0, \cdots, 0\right)$, where $S=\lambda \dot{+} 0^{(n-1)}$, and
$\left(x_{1}, x_{2}, 0, \cdots, 0, y_{1}, y_{2}, 0, \cdots, 0\right) \Im_{J}=\left(-y_{1},-y_{2}, 0, \cdots, 0, x_{1}, x_{2}, 0, \cdots, 0\right)$, where $J=0^{(n)}$. The alternate use of these formulas has the effect of setting up a Euclidean algorithm on the elements in the first and ($n+1$)st positions. Therefore after a finite number of steps we have either

$$
\left(a_{1}, a_{2}, \cdots, a_{n}, b_{1}, \cdots, b_{n}\right) \sim(a, 0, \cdots, 0,0, c, 0, \cdots, 0)
$$

(where c occurs in the $(n+2)$ nd position) or

$$
\left(a_{1}, a_{2}, \cdots, a_{n}, b_{1}, \cdots, b_{n}\right) \sim(a, b, 0, \cdots, 0,0,0, \cdots, 0)
$$

for some integers a, b, and c. In the former case observe that

$$
(a, 0, \cdots, 0,0, c, 0, \cdots, 0) \Im_{J}=(a,-c, 0, \cdots, 0,0,0, \cdots, 0)
$$

where $J=1 \dot{+} 0^{(n-1)}$. In either case, therefore,

$$
\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}\right) \sim(a, d, 0, \cdots, 0,0, \cdots, 0)
$$

where a and d are relatively prime. Now choose $V \in \Omega_{2}$ so that $(a, d) V=(1,0)$, and set $U=V \dot{+} I^{(n-2)}$. Then

$$
(a, d, 0, \cdots, 0,0, \cdots, 0) \Re_{U}=(1,0, \cdots, 0,0, \cdots, 0)
$$

This proves the result.
Theorem 1. Let A_{1} and B_{1} be $j \times n$ integral matrices, $j \leqq n$. Then $\left(A_{1} B_{1}\right)$ can be completed to an element of $\Gamma_{2 n}$ by placing $2 n-j$ rows below $\left(A_{1} B_{1}\right)$ if and only if $\left(A_{1}, B_{1}\right)$ is a normal pair.

Proof. If $\left(A_{1} B_{1}\right)$ is completable, trivially $\left(A_{1}, B_{1}\right)$ form a normal pair. We now prove the converse by induction on n. The result for $n=1$ is an immediate consequence of Lemma 2 ; let $n>1$, and assume that a normal pair of $t \times(n-1)$ integral matrices can be completed to an element of $\Gamma_{2(n-1)}$ for $t \leqq n-1$.

Since $\left(A_{1} B_{1}\right)$ is primitive, the G.C.D. of the elements of its first row is 1. By Lemma 2 we have therefore

$$
\left(A_{1} B_{1}\right) \sim\left(\begin{array}{llll}
1 & \mathfrak{n}^{\prime} & 0 & \mathfrak{n}^{\prime} \\
\mathfrak{x} & A_{2} & \mathfrak{y} & B_{2}
\end{array}\right)
$$

where \mathfrak{x} and \mathfrak{y} are $(j-1) \times 1$ vectors, and \mathfrak{n} represents a null column vector whose size depends on the context. Since the right-hand side is a normal pair, the matrix

$$
\left(\begin{array}{ll}
1 & \mathfrak{n}^{\prime} \\
\mathfrak{x} & A_{2}
\end{array}\right)\left(\begin{array}{cc}
0 & \mathfrak{y}^{\prime} \\
\mathfrak{n} & B_{2}^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
0 & \mathfrak{y}^{\prime} \\
\mathfrak{n} & \mathfrak{x} \mathfrak{y}^{\prime}+A_{2} B_{2}^{\prime}
\end{array}\right)
$$

must be symmetric; therefore $\mathfrak{y}=\mathfrak{n}$, and consequently $\left(A_{2}, B_{2}\right)$ form a normal
pair of $(j-1) \times(n-1)$ matrices. By the induction hypothesis there exists a matrix

$$
\left(\begin{array}{ll}
R & S \\
T & U
\end{array}\right) \in \Gamma_{2(n-1)}
$$

with its first ($j-1$) rows given by $\left(A_{2} B_{2}\right)$. Define

$$
\mathfrak{X}=\left(\begin{array}{cc}
1+R & 0 \dot{+} S \\
0 \dot{+} T & 1 \dot{+} U
\end{array}\right)
$$

Then $\mathfrak{X} \in \Gamma_{2 n}$, and

$$
\left(\begin{array}{llll}
1 & \mathfrak{n}^{\prime} & 0 & \mathfrak{n}^{\prime} \\
\mathfrak{x} & A_{2} & \mathfrak{n} & B_{2}
\end{array}\right) \mathfrak{X}^{-1}=\left(\begin{array}{ccccc}
1 & \mathfrak{n}^{\prime} & & 0 & \mathfrak{n}^{\prime} \\
\mathfrak{x} & I^{(j-1)} & 0 & \mathfrak{n} & 0
\end{array}\right)
$$

But the right-hand matrix consists of the first j rows of \Re_{V}, where

$$
V=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
\mathfrak{x} & I^{(j-1)} & & 0 \\
\mathfrak{n} & 0 & & I^{(n-j)}
\end{array}\right) .
$$

The theorem now follows by the use of Lemma 1.
Theorem 2. The array given by (1) is completable if and only if it is normal.
Proof. As observed before, a completable array is obviously normal. Assume hereafter that the array given in (1) is normal, and (without loss of generality) that $j \geqq k$.

For, if the given array is a normal (j, k) array with $j<k$, then

$$
\left(\begin{array}{rr}
C_{1} & D_{1} \\
-A_{1} & -B_{1}
\end{array}\right)
$$

is a normal (k, j) array; if this latter array is completed to an element $Y \in \Gamma_{2 n}$, then the original array is completable to

$$
\left(\begin{array}{cc}
0 & -I^{(n)} \\
I^{(n)} & 0
\end{array}\right) \cdot Y \in \Gamma_{2 n}
$$

By Theorem 1 we have

$$
\left(\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right) \sim\left(\begin{array}{cc}
I^{(j)} & 0
\end{array} 0\right.
$$

for some C_{2}, D_{2}. By Lemma 1 we see that $\left(C_{2}, D_{2}\right)$ form a normal pair, and furthermore

$$
\left(I^{(j)} 0\right) D_{2}^{\prime}=\left(I^{(k)} 0\right)^{\prime}
$$

so that we have

$$
D_{2}=\left(I^{(k)} 0^{(k, j-k)} X^{(k, n-j)}\right)
$$

for some X. Now set

$$
U=\left(\begin{array}{ccc}
I^{(k)} & 0 & 0 \\
0 & I^{(j-k)} & 0 \\
X^{\prime} & 0 & I^{(n-j)}
\end{array}\right)
$$

and observe that

$$
\left(\begin{array}{cccc}
I^{(j)} 0 & 0 & 0 & 0 \\
C_{2} & I^{(k)} & 0 & X
\end{array}\right) \Re_{U}=\left(\begin{array}{ccccc}
I^{(j)} & 0 & 0 & 0 & 0 \\
C_{3} & C_{4} & I^{(k)} & 0 & 0
\end{array}\right)
$$

where C_{3} is a $k \times j$ matrix, and C_{4} a $k \times(n-j)$ matrix. Again using Lemma 1, the matrix

$$
\left(C_{3} C_{4}\right)\left(I^{(k)} 000\right)^{\prime}
$$

must be symmetric, so that

$$
C_{3}=\left(C_{31}^{(k, k)} C_{32}\right)
$$

with symmetric C_{31}. But now

$$
\left(\begin{array}{cccccc}
I^{(j)} & 0 & 0 & 0 & 0 \\
C_{31} & C_{32} & C_{4} & I^{(k)} & 0 & 0
\end{array}\right)
$$

consists of the first j rows and the $(n+1)$ st, $\cdots,(n+k)$ th rows of

$$
\left(\right) \in \Gamma_{2 n}
$$

This proves the result.
2. We now turn to the problem of finding an expression for the general completion © of a given normal (j, k) array, and we again assume without loss of generality that $j \geqq k$. If \mathfrak{C}_{0} is a specific completion of the given array, then \mathfrak{C} is a completion if and only if $\mathscr{C} \mathscr{C}_{0}^{-1}$ is an element of $\Gamma_{2 n}$ whose first j rows are given by

$$
\left(I^{(j)} 0^{(j, 2 n-j)}\right)
$$

and its $(n+1)$ st, $\cdots,(n+k)$ th rows by

$$
\left(0^{(k, n)} I^{(k)} 0^{(k, n-k)}\right)
$$

Thus if \mathfrak{X} represents the general such element of $\Gamma_{2 n}$, then $\mathfrak{X} \mathscr{C}_{0}$ is the general completion of the given array.

Let us write

$$
\begin{aligned}
& \mathfrak{X}=\left(\begin{array}{llllll}
I & 0 & 0 & 0 & 0 & 0 \\
0 & I & 0 & 0 & 0 & 0 \\
E_{1} & E_{2} & E_{3} & F_{1} & F_{2} & F_{3} \\
0 & 0 & 0 & I & 0 & 0 \\
G_{4} & G_{5} & G_{6} & H_{4} & H_{5} & H_{6} \\
G_{1} & G_{2} & G_{3} & H_{1} & H_{2} & H_{3}
\end{array}\right) k \begin{array}{l}
k-k \\
k-j
\end{array} \\
& \begin{array}{llllll}
k & j-k & n-j & k & j-k & n-j
\end{array}
\end{aligned}
$$

where we have indicated the numbers of rows and columns in the various submatrices. Then $\mathfrak{X} \in \Gamma_{2 n}$ if and only if \mathfrak{X} is an integral matrix for which

$$
\left(\begin{array}{lll}
I & 0 & 0 \\
0 & I & 0 \\
E_{1} & E_{2} & E_{3}
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & F_{1}^{\prime} \\
0 & 0 & F_{2}^{\prime} \\
0 & 0 & F_{3}^{\prime}
\end{array}\right) \text { and }\left(\begin{array}{lll}
0 & 0 & 0 \\
G_{4} & G_{5} & G_{6} \\
G_{1} & G_{2} & G_{3}
\end{array}\right)\left(\begin{array}{lll}
I & H_{4}^{\prime} & H_{1}^{\prime} \\
0 & H_{5}^{\prime} & H_{2}^{\prime} \\
0 & H_{6}^{\prime} & H_{3}^{\prime}
\end{array}\right)
$$

are symmetric, and

$$
\left(\begin{array}{lll}
I & 0 & 0 \\
0 & I & 0 \\
E_{1} & E_{2} & E_{3}
\end{array}\right)\left(\begin{array}{lll}
I & H_{4}^{\prime} & H_{1}^{\prime} \\
0 & H_{5}^{\prime} & H_{2}^{\prime} \\
0 & H_{8}^{\prime} & H_{3}^{\prime}
\end{array}\right)-\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
F_{1} & F_{2} & F_{3}
\end{array}\right)\left(\begin{array}{lll}
0 & G_{4}^{\prime} & G_{1}^{\prime} \\
0 & G_{5}^{\prime} & G_{2}^{\prime} \\
0 & G_{6}^{\prime} & G_{3}^{\prime}
\end{array}\right)=I
$$

These conditions give:

$$
\begin{aligned}
& F_{1}=0, F_{2}=0, E_{3} F_{3}^{\prime} \text { symmetric, } G_{4}=0, G_{1}=0, G_{5} H_{5}^{\prime}+G_{6} H_{6}^{\prime} \text { symmetric, } \\
& G_{2} H_{2}^{\prime}+G_{3} H_{3}^{\prime} \text { symmetric, } G_{5} H_{2}^{\prime}+G_{6} H_{3}^{\prime}=H_{5} G_{2}^{\prime}+H_{6} G_{3}^{\prime} \\
& E_{1}=0, H_{4}=0, H_{1}=0, H_{5}=I, H_{2}=0, \\
& E_{2} H_{5}^{\prime}+E_{3} H_{6}^{\prime}-F_{3} G_{6}^{\prime}=0, E_{2} H_{2}^{\prime}+E_{3} H_{3}^{\prime}-F_{3} G_{3}^{\prime}=I
\end{aligned}
$$

Hence we have

$$
\mathfrak{X}=\left(\begin{array}{llllll}
I & 0 & 0 & 0 & 0 & 0 \\
0 & I & 0 & 0 & 0 & 0 \\
0 & E_{2} & E_{3} & 0 & 0 & F_{3} \\
0 & 0 & 0 & I & 0 & 0 \\
0 & G_{5} & G_{6} & 0 & I & H_{6} \\
0 & G_{2} & G_{3} & 0 & 0 & H_{3}
\end{array}\right)
$$

with symmetric $E_{3} F_{3}^{\prime}, G_{5}+G_{6} H_{6}^{\prime}, G_{3} H_{3}^{\prime}$; where

$$
E_{2}=F_{3} G_{6}^{\prime}-E_{3} H_{6}^{\prime}, \quad G_{2}=H_{3} G_{6}^{\prime}-G_{3} H_{6}^{\prime}, \quad \text { and } \quad E_{6} H_{3}^{\prime}-F_{3} G_{3}^{\prime}=I
$$

Therefore

$$
\left(\begin{array}{cc}
E_{3} & F_{3} \\
G_{3} & H_{3}
\end{array}\right) \in \Gamma_{2(n-j)}
$$

and so

$$
\binom{E_{2}}{G_{2}}=\left(\begin{array}{ll}
E_{3} & F_{3} \\
G_{3} & H_{3}
\end{array}\right)\binom{-H_{6}^{\prime}}{G_{6}^{\prime}}
$$

is true if and only if

$$
\binom{-H_{6}^{\prime}}{G_{6}^{\prime}}=\left(\begin{array}{rr}
H_{3}^{\prime} & -F_{3}^{\prime} \\
-G_{3}^{\prime} & E_{3}^{\prime}
\end{array}\right)\binom{E_{2}}{G_{2}}
$$

We find easily that

$$
\begin{aligned}
G_{5}+G_{6} H_{6}^{\prime} & =G_{5}+\left(-E_{2}^{\prime} G_{3}+G_{2}^{\prime} E_{3}\right)\left(-H_{3}^{\prime} E_{2}+F_{3}^{\prime} G_{2}\right) \\
& =G_{5}+E_{2}^{\prime} G_{3} H_{3}^{\prime} E_{2}+G_{2}^{\prime} E_{3} F_{3}^{\prime} G_{2}-G_{2}^{\prime} E_{3} H_{3}^{\prime} E_{2}-E_{2}^{\prime} G_{3} F_{3}^{\prime} G_{2}
\end{aligned}
$$

But $E_{3} H_{3}^{\prime}=I+F_{3} G_{3}^{\prime}$, so

$$
G_{5}+G_{6} H_{6}^{\prime}=G_{5}-G_{2}^{\prime} E_{2}+\text { symmetric matrix }
$$

and therefore $G_{5}+G_{6} H_{6}^{\prime}$ is symmetric if and only if $G_{5}-G_{2}^{\prime} E_{2}=S$ is symmetric. We now observe that

$$
\mathfrak{X}=\left(\begin{array}{cccc}
& I & & 0 \\
0 & 0 & 0 & \\
0 & S & G_{2}^{\prime} & I \\
0 & G_{2} & 0 &
\end{array}\right)\left(\begin{array}{cccccc}
I & 0 & 0 & & & \\
0 & I & 0 & & 0 & \\
0 & E_{2} & I & & & \\
& & & I & 0 & 0 \\
& 0 & & 0 & I & -E_{2}^{\prime} \\
& & & 0 & 0 & I
\end{array}\right)\left(\begin{array}{ccc}
I \dot{+} E_{3} & 0+F_{3} \\
& \\
0+G_{3} & I+H_{3}
\end{array}\right)
$$

Hence, if \mathfrak{C}_{0} is a specific completion of a given normal (j, k) array, the general completion equals \mathfrak{C}_{0} multiplied on the left by the above expression for \mathfrak{X}, where

$$
\left(\begin{array}{ll}
E_{3} & F_{3} \\
G_{3} & H_{3}
\end{array}\right)
$$

is an arbitrary element of $\Gamma_{2(n-j)}$, where S is an arbitrary symmetric ($j-k$) $\times(j-k)$ matrix, and where G_{2} and E_{2} are arbitrary $(n-j) \times(j-k)$ matrices.

For the special case $j=n, k=0$ we obtain from the above Siegel's result that

$$
\mathfrak{C}=\left(\begin{array}{ll}
I & 0 \\
S & I
\end{array}\right) \mathfrak{C}_{0}
$$

with symmetric S.
We finally note that the above reasoning holds true for any Euclidean ring.

University of Illinois, Urbana, Ill.

[^0]: Presented to the Society, September 3, 1953; received by the editors August 4, 1953.
 ${ }^{1}$) It is sometimes more convenient to define the symplectic modular group as the factor group of $\Gamma_{2 n}$ over its centrum. See C. L. Siegel, Math. Ann. vol. 116 (1939) pp. 617-657; L. K. Hua, Trans. Amer. Math. Soc. vol. 57 (1945) pp. 441-490; L. K. Hua and I. Reiner, Trans. Amer. Math. Soc. vol. 65 (1949) pp. 415-426.
 $\left.{ }^{(2}\right)$ C. L. Siegel, Ann. of Math. vol. 36 (1935) p. 592.

