SYMPLECTIC MODULAR COMPLEMENTS

BY
IRVING REINER

Introduction. Let 2, denote the group of nX#n integral matrices of de-
terminant 1 (the unimodular group), and let I™ be the identity matrix
in ©,. We use X’ to represent the transpose of X, and X+ Y for the direct sum
of X and V.

The symplectic modular group(!) I';, is the group of 2% X2n integral
matrices I such that

0 I 0 I™
(g0 )2 (oo )
—Im™ 9 —I™ 0

A primitive integral (j+£k) X2n matrix

(1) 4B G, kEEn)
n N 1) =N
Cl(k') D(lk ) J
in which
2 A;B; and C,D; are symmetric
and
o I®
(3) A1D1 - B1C1 = (I(i) 0) or ( 0 )

(depending on whether j<k or j=k) will be called a normal (j, k) array. A
normal (4, 0) array will be called a normal pair. Then Ty, is known to consist
of all normal (n, ) arrays.

In this paper we shall consider the problem of completing a normal (j, k)
array to an element of I'y, by placing (n—j) rows after the first j rows, and
(n—k) rows after the last k& rows. Since a sub-array of a normal array is
normal, it is clear that an array cannot be completed unless it is normal. It
will be shown that every normal array may be so completed, and a para-
metrization of the general completion will be obtained. These results will
generalize those due to C. L. Siegel(?) for the special case j=#, k=0, but the
proofs given here will not depend on his results.

Presented to the Society, September 3, 1953; received by the editors August 4, 1953.

(*) It is sometimes more convenient to define the symplectic modular group as the factor
group of T, over its centrum. See C. L. Siegel, Math. Ann. vol. 116 (1939) pp. 617-657;
L. K. Hua, Trans. Amer. Math. Soc. vol. 57 (1945) pp. 441-490; L. K. Hua and I. Reiner,
Trans. Amer. Math. Soc. vol. 65 (1949) pp. 415-426.

(?) C. L. Siegel, Ann. of Math. vol. 36 (1935) p. 592.
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1. Let %,;, %. be arrays of the type given in (1); we write ¥;~%, if there
exists P €Ty, such that ¥, =%,9). This relationship is an equivalence relation-
ship, and we have:

LEMMA 1. Let X, be a normal array and Xa~%,. Then X; is also a normal
array, and %, can be completed if and only if X, can be completed.

Proof. Clear.

Before proceeding to the next lemma, it will be convenient to single out
certain elements of I';, which play the same role in I';, as do the elementary
transformations in ,. Specifically, we define three types of elements of I's,:

(I) Translations

I
Ty = (0 5), S symmetric.
(II) Rotations
u o
Ry = (0 U"‘)’ U€EQ,.
(IT1) Semi-involutions
J I- . .
S; = (] ;7 J), J diagonal with elements 0’s and 1’s.

LeMMA 2. If G.C.D. (ay, * * *, @n, by, + -+, ba) =1, then
(@, **+ , Gn by, -+, b)) ~(1,0,---,0,0,--,0).
Proof. We first observe that
(@1, +++ , Gn b1, ++ -, b)Re = ((a1, + - + 5 an)U, (by, - - -, b)U'Y)

for UEQ,. If weset ay=G.C.D. (ay, - - -, @), by proper choice of U we ob-
tain

(alt"'yambly"':bn)N(aO!O!'°°:0)blr°°'1bﬁ)

for some integers by, - - -, b,. Let bp=G.C.D. (b;, - - -, b,); then the above
reasoning with U=1+4U;, U;EQ,_;, shows that

((11,‘°',d,.,b1,"’,bn)N(ao,O,"',0,61,60,0,"',O),

and furthermore G.C.D. (ao, b1, bo) =1.
We now note the formulas

(xl) Xo, O; cet .O,yl,yz, 0, A ,O)Es= (xly X2, 01 tet )01 Y + )\xly y2, 0’ tr 0)1
where S=\40"-1 and
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(xly X2, O’ : 0 Y1, y2; ° O)®J ( Y1, — Y2 01 R )01 X1, X2, 09 Tty 0):

where J=0™. The alternate use of these formulas has the effect of setting
up a Euclidean algorithm on the elements in the first and (n-+1)st positions.
Therefore after a finite number of steps we have either

(ay, @, **+ , @my by - -+, ba) ~(a,0,-+-,0,0,¢,0,---,0)
(where ¢ occurs in the (#+42)nd position) or
(@y, @s, =+ + Gy by, -+, bn) ~ (a,8,0,---,0,0,0,---,0),
for some integers @, b, and c¢. In the former case observe that
(a,0,---,0,0,¢0, , 05 = (¢, —¢,0,---,0,0,0,---,0),
where J=1-40®-D, In either case, therefore,
(@, -+, @n by -+, b)) ~(a,d,0,---,0,0,--,0),

where @ and d are relatively prime. Now choose VEQ; so that (e, d) V=(1, 0),
and set U= V+4I®2, Then

(a,d,O,n-,O,O,-H,O)ERU= (1101"' ,0,0,"’,O)..
This proves the result.

THEOREM 1. Let A, and By be jXn integral matrices, j<n. Then
(A1 By) can be completed to an element of T, by placing 2n—j rows below (A, B;)
if and only if (4.1, By) is a normal pair.

Proof. If (4, B;) is completable, trivially (4,, B:) form a normal pair.
We now prove the converse by induction on #. The result for =1 is an im-
mediate consequence of Lemma 2; let #>1, and assume that a normal pair
of £X(n—1) integral matrices can be completed to an element of I'y,_yy for
t=n—1.

Since (41 B,) is primitive, the G.C.D. of the elements of its first row is 1.
By Lemma 2 we have therefore

“ B)N(t As Y Bz

where ¢ and y are (j—1) X1 vectors, and n represents a null column vector
whose size depends on the context. Since the right-hand side is a normal pair,

I 112 n B2 n II) l 11 2B2

must be symmetric; therefore y=n, and consequently (4, By) form a normal
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pair of (j—1) X(n—1) matrices. By the induction hypothesis there exists a
matrix

¢ e
T U 2(n—1)

with its first (j—1) rows given by (4; B,). Define
- (1 +R O -i-S)
“\NodT 14U/

Then ¥E&T's,, and

(l n 0 11’2)%_1 (1 n 0 n’)
t A, n B t IGY 0 n 0o/

But the right-hand matrix consists of the first j rows of Ry, where
1 0 --- 0
V=]|g IGD 0
n 0 [
The theorem now follows by the use of Lemma 1.
THEOREM 2. The array given by (1) is completable if and only if it is normal.

Proof. As observed before, a completable array is obviously normal.
Assume hereafter that the array given in (1) is normal, and (without loss of
generality) that j=k.

For, if the given array is a normal (4, k) array with j <k, then

(Lo )

—A, —B

is a normal (&, j) array; if this latter array is completed to an element VY &I,
then the original array is completable to

0 —I™
(I(n) 0 )'YEP“'

By Theorem 1 we have
A1 By I90 0
(cl D1> N( C, D)
for some C;, D;. By Lemma 1 we see that (Cs, D;) form a normal pair, and

furthermore

(ID 0)D; = (I™® 0,
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so that we have
Dy = (I® Qki—k) X (hin—i))
for some X. Now set
™ 0 0
U=|0 J16G-®» 0o |,
). ¢ 0 J =D

and observe that
(I(f> 0 0 0 O)SR <I(f) 0 0 0 0)
Ce i o x)77 " \¢e, ¢ I 0 0
where C;is a £ Xj matrix, and Cs a kX (n—j) matrix. Again using Lemma 1,
the matrix
(C3 Co)(I™ 0 0)
must be symmetric, so that
(k. k)

CS = (CBI

with symmetric C3. But now

( I 0 0 0 0)
Csi Css Co I® 0 0

Cs)

consists of the first j rows and the (n+1)st, - - -, (n+%)th rows of
Iw 0
) 0
0 JT(n—=9
C31 C32 C4 I(k) 0 0 E I‘2ﬂo
Csz O 0 0 IG-®m 0
C:e O 0 0 0 It=D

This proves the result.

2. We now turn to the problem of finding an expression for the general
completion € of a given normal (4, k) array, and we again assume without
loss of generality that j=k. If € is a specific completion of the given array,
then € is a completion if and only if €G5! is an element of I';, whose first j
rows are given by

(I(i) O(i.zn—i))

and its (n+1)st, - - -, (n+k)th rows by
C(0tkem) TR QCkin—k)),
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Thus if ¥ represents the general such element of I',,, then %@, is the general
completion of the given array.
Let us write

I 0 0 0 0 0 1k

0 I 0 0 0 0 |j—¢

E, E, E; F, F, Fy |n—3j
=1 0 0 I 0 0o |

G. Gs Gs H, Hy |Hel|lj—¢

GG G G H Hy  Hyln—j

E o j—kn—j k j—k n—j

where we have indicated the numbers of rows and columns in the various sub-
matrices. Then ¥ET, if and only if % is an integral matrix for which

I 0 0)(0 O Fi 0 0 0)(I H: H:
0 I 01|00 0 Fs| and |G: Gs Gs||0 Hi H:
E, E, E;J\0 0 F; G. Gy Gs)|\0 Hs H;

are symmetric, and
I 0 O0)(I H H) (0 0 0)(0 G/ G
0 I ol|o H; Hil—1]0 0 o0/||0 G: G:| =1
E, E, E;) |0 Hy H; F, F, F3) |0 Gs Gs
These conditions give:
Fy = 0, F, = 0, EsF3 symmetric, Gy = 0, Gy = 0, GsHy + G4H; symmetric,
G:H: + GsH; symmetric, GsH; + GsHz = HiG: + HiGs,
E1=0,H4=0,H1=0,H5=I,Hz=0,
E:H; + EsHg — FsGs = 0, EoH; + EsH; — FiGy = 1.

Hence we have

I 0 0 0 0 O
0 I 0 0 0 O
- 0 E, Es 0 0 Fg
o 0o 0o I 0 01’
0 Gs Gs 0 I H,
0 G Gz 0 0 H;
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with symmetric E;F{, Gs+GeH{ , G:H{, where
E, =FG{ — EsH{, G;= HsG{ —G;H¢, and E:H{ —FGj{ = I.

Therefore

(Es Fs) er
Gs Hs 2(n—7)

(G 2) (G 3 19 3) ( G 6 )
(;0 G3 E3 G2

Gs + GeHs = G5 + (— EoGs + G1Es)(— H3E; + FiGy)
= Gs + EsGsH3E; + G1EsFiGy — GiEsH3Ey — EfGoFiGo.
But EaHs’ =I+F3G3,, SO

and so

is true if and only if

Gs + GeH é =Gy — GéEz + symmetric matrix,

and therefore Gs+GeHY{ is symmetric if and only if Gs— G4 E; =S is symmetric.
We now observe that

I 0 0
I ollo 1 o 0 I+7Es 0+4F,
0 E, I
X =
0 0 O I 0 0
0 S Gy I 0 0 I —E;||04Gs I+ H;
0 G O ) 0 0 I

Hence, if €, is a specific completion of a given normal (j, k) array, the general
completion equals €, multiplied on the left by the above expression for %,

where
Es F3
G )
is an arbitrary element of I'y,_;, where S is an arbitrary symmetric (j—#)
X (j— k) matrix, and where G, and E, are arbitrary (n—j) X (j —k) matrices.
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For the special case j=#, k=0 we obtain from the above Siegel’s result that
(/T O
@ = )60,
I

with symmetric S.
We finally note that the above reasoning holds true for any Euclidean

ring.
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