
NOTE ON THE BESSEL POLYNOMIALS

BY

M. NASSIF

1. This note can be considered as an addendum to the comprehensive

study of the class of Bessel polynomials carried on by H. L. Krall and O.

Frink [l ]. In fact I study here the expansion of particular functions in terms

of Bessel polynomials as well as the location of the zeros of these polynomials.

Write pn(z) = yj/fc pnkzk, so that [l, p. 101 ]

(1) pnk = 2-k(n + k)l/(kl(n - k)l),        0^k^n;n^0.

The first result is the following

Theorem A. Let f(z) be a function regular in \z — a\ ^R, where R>0 and

a is any point of the plane. Then f(z) can be expanded in a series of Bessel poly-

nomials of the form f(z)~2~Lc" Pn(z — a), where

cn = 2»(2w + 1)¿ (-2Yf^+'\a)/(v\(2n + v + 1)!),

and the series is convergent uniformly in \z — a\ ^R.

We first suppose that f(z) is regular in \z\ ^R and prove that f(z) can be

expanded in a series X/y« PÁZ) where

(2) yn = 2«0 + 1) ¿ (-2)'/<**>(0)/r>!(2« + v + 1)!),

and that the series is uniformly convergent in |s| ¿R. Theorem A follows

readily when z — a is written for z.

Since the set {pn(z)} of Bessel polynomials is basic in the sense of J. M.

Whittaker [3, Chap. II], we shall appeal in the proof to the theory of basic

series of polynomials as given by J. M. Whittaker and B. Cannon. In fact

suppose that z" admits the representation

(3) z» = 2Z irmpi(z),
i

so that the matrix (7rn<) is the unique reciprocal of the matrix (pni) (see

Whittaker [3, T«, p. 40]). Hence

(4) pi.íKi.i =   1,

and
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(5) É pnkTki = 0, n > i, i è 0.

Setting n = m+i in (5) and inserting the values of (pnk) from (1) we obtain

»p» 2m~'(2i + m + v)\(m + i)l
(6) TTm+i i  =   —   Z_i   -'-'-'- ""i+y,«•

,t¿ (* + f)\(m - v)\(2i +2m){

Applying (6) and the identity

A /m \ / k + m + v\
E(-D'(   )( -V-o
,-o \ y / \    w — 1/

(this is in fact the coefficient of xh+m+l in the expansion of (1 +x)m(\ +x)~m

= 1), we can easily deduce by induction that

(~2)m(m+ i)\(2i+ 1)!
Tm-i-i.t =-Tfi.i't rn, i > 0.

m\i\(2i + m+ 1)!

Substituting for 7Ti,,- from (4) it follows that

(7) *•„,< = (-1)»-<2»k!(2í + l)/((» - t)K« + i + 1)0-

We now substitute for zn from (3) in the Taylor expansion 2Zz"/(n)(0)/w!

of /(z) about the origin to get formally the series ^2y,,pn(z), where

7n= ¿Zrn+r.nß"+'K0)/(n + v)l.
v-0

Hence inserting the value of irn+„,n from (7), (2) follows at once.

In order to prove that the series ¿2,ynpn(z) is convergent in \z\ ^R we

form the sum (see [3, Chap. II, III])

»«(Ä) = T,\**i\Mi(R),
i

where M{(R) =maxlz^B \pi(z)\ = XXo PikRk. Applying (1) and (7) we ob-

tain after simple reduction

"/n\ n^/n-k\ (2k + 2j + l)(2k+j)l

*=o \ k / ,-_o \    3    /        (n + k + i + 1) !
(8)

< (2n+ l)R*it( l)wR)"/kl = (2n+ l)BnR",
fc=0 \ k /

say. Effecting the transformation y = x (1 +x)_1 on the function x exp (ix/R)

= ZrT-o (4/^)"x"+1/m! it follows that

*(?) - (y/(l - y)) exp {4y/(Ä(l - y))} = ¿ Bny"+\
71-0
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This function is regular in |y| <1; hence by Cauchy's inequality we have

Bn < K/a"+l (0 < a < 1),

where K = ma.x\y¡=a \ F(y)\ < =°. Inserting this in (8) and making n tend to

infinity we obtain

\(R) = lim sup {wn(R)} "» g R/a,

and since a can be taken as near to 1 as we please we conclude that \(R) =R.

According to Cannon [3, Ts, p. 11 ] we infer that the series 2~2ynpn(z) is uni-

formly convergent in \z\ ¿R, as required.

2. As for the location of the zeros of Bessel polynomials the following re-

sult is established.

Theorem B. All the zeros of the Bessel polynomial pn(z), for «>1, lie within

or on the circle \z\ = ((n — \)/(2n —1))1/2.

We shall suppose that w^3, as the zeros of p2(z) are of modulus (1/3)1/2.

Write r = ((2n —1)/(« —1))1/2. We shall first show that the real zeros of pn(z),

if any, are of modulus less than i/r. Let x be any real number not less than

1/r, then the formula (1) for the coefficients (pnk) yields

(9) p^x* < pn,k+ixk+\ 0 á h á n - 4,

and furthermore

Rn(x)   =  pnnXn  —  ín,n-l*"_1  + ín,n-2*n_2  ~  Pn.n-iX"-3

= (n - l)-1pn,n^xn-3{(2n - l)(xz - x2) + (n - l)x - (n - 2)/3J.

It can be easily shown that the cubic polynomial inside the brackets has, for

ra^3, one real positive zero less than 1/r. Hence for x^i/r we have

(10) Rn(x) > 0, (» à 3).

Since the coefficients of pn(z) are all positive we need only consider pn(—x)

where x^i/r. Thus (9) and (10) yield

n/2-3

pn(-x) = 1 +   E   (-Pn,2k+ix2k+1 + pn.n+2X2k+2) + R„(x) > 0 (n even)
k-0

and

(n-l)/2-2

í»(-*)   =       E (Pn.2kx2h  -  pn,2k+lx2k+l)   ~   Rn(x)   <  0 (« Odd).
fe-0

Hence all the real roots of pn(z) lie in — 1/r <x<0.

Now write qn(z) =znpn(l/z) and consider the polynomial qn(rz). Since we

shall always be concerned with this particular polynomial we may suppress

the suffix n and write
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Çn(rz) = g(z) = X) akZh,
£-0

so that ak = pn,n-krk. Inserting the values of the coefficients (pnk) from (1) we

can easily observe that

0 < ai = ra0,

ak > rak+i > 0, 1 S í á « - 1.

We form, with M. Marden [2, p. 148], the successively derived coefficients

at" given by

(12)   a4    = a*, a*       = a0  ak    — an_jan^j^k;   0S«<«-j;ÜSjS)(-l.

As for the first derived coefficients au1', the relations (11) yield the following:

for k = n—i,

a„-i = ffoffn-i — anai > U,

and for k>0,

a*    — Ok+i = a0(ak — ak+i) + an(an-k^i — an_*) > (1 — l/r)a*   ,

so that

(13) akl) > ral+i > r*"*"*«^, > 0, lgi|«-2.

Finally, for £ = 0,

«!    — a0    = öo(«i — a0) — an(an-i — an) < (r — l)a0   ,

so that

(14) 0 < aiX) < rth\

A comparison between the relations (13) and (14) for the case j = l, on the

one hand, and the relations (11) for j = 0, on the other hand, suggests that

for the jth derived coefficients we should have

_    .    U)    .     U)
0 < ai    < ra0   ,

(    ' (í) ^      (/)   ^ n 1  ^ 7. *- •       <
ak   > rak+i > 0, l^k^n—j— l.

In fact (15) is valid for j = l, in view of (13) and (14). Moreover supposing

(15) to be true for some j <n— 2, then the method used in deriving (13) and

(14) from (11) can be similarly applied to (15) to derive easily the following

relations

n ^    u'+1)  ^      (i+1)
0 < ai       < rao      ,

a*       > rfli+i    >0, lâ«<B-;-l,
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so that (15) is true for l^j^n — 2. We may apply (15) withj = w — 2 to deduce

thata¡jn_1)>0, so that

a0O> > 0, 1 ¡S / ¿ » - ,1-

Applying Marden's theorem concerning the number of zeros of a polynomial

inside the unit circle in terms of the coefficients a^ [2, Theorem (42.1), p.

150] we infer that the polynomial g(z) will have at most one zero inside the

unit circle. Consequently the polynomial pn(z) will have at least « —1 of its

zeros within or on the circle \z\ =\/r. Suppose that the number of zeros of

pn(z) within or on the circle \z\ = i/r is exactly n — 1 and that the remaining

zero ß is outside the circle. By the first part of the proof ß cannot be real and

hence its conjugate ß, which is also a zero of pn(z), lies outside the circle \z\

= 1/r. We conclude from this contradiction that all the zeros of pn(z) lie within

or on the circle \z\ =l/r, and this completes the proof of Theorem B.
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