NOTE ON THE BESSEL POLYNOMIALS

BY M. NASSIF

1. This note can be considered as an addendum to the comprehensive study of the class of Bessel polynomials carried on by H. L. Krall and O. Frink [1]. In fact I study here the expansion of particular functions in terms of Bessel polynomials as well as the location of the zeros of these polynomials. Write $p_n(z) = \sum_k p_{nk} z^k$, so that [1, p. 101]

(1)
$$p_{nk} = 2^{-k}(n+k)!/(k!(n-k)!), \qquad 0 \le k \le n; n \ge 0.$$

The first result is the following

THEOREM A. Let f(z) be a function regular in $|z-a| \le R$, where R > 0 and a is any point of the plane. Then f(z) can be expanded in a series of Bessel polynomials of the form $f(z) \sim \sum c_n p_n(z-a)$, where

$$c_n = 2^n(2n+1)\sum_{\nu=0}^{\infty} (-2)^{\nu} f^{(n+\nu)}(a)/(\nu!(2n+\nu+1)!),$$

and the series is convergent uniformly in $|z-a| \leq R$.

We first suppose that f(z) is regular in $|z| \le R$ and prove that f(z) can be expanded in a series $\sum \gamma_n p_n(z)$ where

(2)
$$\gamma_n = 2^n (2n+1) \sum_{\nu=0}^{\infty} (-2)^{\nu} f^{(n+\nu)}(0) / (\nu! (2n+\nu+1)!),$$

and that the series is uniformly convergent in $|z| \le R$. Theorem A follows readily when z-a is written for z.

Since the set $\{p_n(z)\}$ of Bessel polynomials is *basic* in the sense of J. M. Whittaker [3, Chap. II], we shall appeal in the proof to the theory of basic series of polynomials as given by J. M. Whittaker and B. Cannon. In fact suppose that z^n admits the representation

$$z^n = \sum_i \pi_{ni} p_i(z),$$

so that the matrix (π_{ni}) is the unique reciprocal of the matrix (p_{ni}) (see Whittaker [3, T_{31} , p. 40]). Hence

$$p_{i,i}\pi_{i,i}=1,$$

and

Received by the editors June 19, 1953.

(5)
$$\sum_{k=i}^{n} p_{nk} \pi_{ki} = 0, \qquad n > i, i \ge 0.$$

Setting n = m + i in (5) and inserting the values of (p_{nk}) from (1) we obtain

(6)
$$\pi_{m+i,i} = -\sum_{\nu=0}^{m-1} \frac{2^{m-\nu}(2i+m+\nu)!(m+i)!}{(i+\nu)!(m-\nu)!(2i+2m)!} \pi_{i+\nu,i}.$$

Applying (6) and the identity

$$\sum_{\nu=0}^{m} (-1)^{\nu} \binom{m}{\nu} \binom{k+m+\nu}{m-1} = 0$$

(this is in fact the coefficient of x^{k+m+1} in the expansion of $(1+x)^m(1+x)^{-m} \equiv 1$), we can easily deduce by induction that

$$\pi_{m+i,i} = \frac{(-2)^m (m+i)! (2i+1)!}{m! i! (2i+m+1)!} \pi_{i,i}; \qquad m, i \ge 0.$$

Substituting for $\pi_{i,i}$ from (4) it follows that

(7)
$$\pi_{n,i} = (-1)^{n-i} 2^n n! (2i+1) / ((n-i)!(n+i+1)!).$$

We now substitute for z^n from (3) in the Taylor expansion $\sum z^n f^{(n)}(0)/n!$ of f(z) about the origin to get formally the series $\sum \gamma_n p_n(z)$, where

$$\gamma_n = \sum_{\nu=0}^{\infty} \pi_{n+\nu,n} f^{(n+\nu)}(0) / (n+\nu)!.$$

Hence inserting the value of $\pi_{n+r,n}$ from (7), (2) follows at once.

In order to prove that the series $\sum \gamma_n p_n(z)$ is convergent in $|z| \leq R$ we form the sum (see [3, Chap. II, III])

$$\omega_n(R) = \sum_i |\pi_{ni}| M_i(R),$$

where $M_i(R) \equiv \max_{|z|=R} |p_i(z)| = \sum_{k=0}^{\ell} p_{ik} R^k$. Applying (1) and (7) we obtain after simple reduction

(8)
$$\omega_n(R) = 2^n \sum_{k=0}^n \binom{n}{k} (R/2)^k \sum_{j=0}^{n-k} \binom{n-k}{j} \frac{(2k+2j+1)(2k+j)!}{(n+k+j+1)!}$$

$$< (2n+1)R^n \sum_{k=0}^n \binom{n}{k} (4/R)^k / k! = (2n+1)B_n R^n,$$

say. Effecting the transformation $y = x (1+x)^{-1}$ on the function $x \exp(4x/R) = \sum_{n=0}^{\infty} (4/R)^n x^{n+1}/n!$ it follows that

$$F(y) \equiv (y/(1-y)) \exp \{4y/(R(1-y))\} = \sum_{n=0}^{\infty} B_n y^{n+1}.$$

This function is regular in |y| < 1; hence by Cauchy's inequality we have

$$B_n < K/\alpha^{n+1} \qquad (0 < \alpha < 1),$$

where $K = \max_{|y|=\alpha} |F(y)| < \infty$. Inserting this in (8) and making n tend to infinity we obtain

$$\lambda(R) \equiv \limsup_{n \to \infty} \{\omega_n(R)\}^{1/n} \leq R/\alpha,$$

and since α can be taken as near to 1 as we please we conclude that $\lambda(R) = R$. According to Cannon [3, T₅, p. 11] we infer that the series $\sum \gamma_n p_n(z)$ is uniformly convergent in $|z| \leq R$, as required.

2. As for the location of the zeros of Bessel polynomials the following result is established.

THEOREM B. All the zeros of the Bessel polynomial $p_n(z)$, for n > 1, lie within or on the circle $|z| = ((n-1)/(2n-1))^{1/2}$.

We shall suppose that $n \ge 3$, as the zeros of $p_2(z)$ are of modulus $(1/3)^{1/2}$. Write $r = ((2n-1)/(n-1))^{1/2}$. We shall first show that the real zeros of $p_n(z)$, if any, are of modulus less than 1/r. Let x be any real number not less than 1/r, then the formula (1) for the coefficients (p_{nk}) yields

(9)
$$p_{nk}x^k < p_{n,k+1}x^{k+1}, \qquad 0 \le k \le n-4,$$

and furthermore

$$R_n(x) \equiv p_{nn}x^n - p_{n,n-1}x^{n-1} + p_{n,n-2}x^{n-2} - p_{n,n-3}x^{n-3}$$

= $(n-1)^{-1}p_{n,n-2}x^{n-3}\{(2n-1)(x^3-x^2) + (n-1)x - (n-2)/3\}.$

It can be easily shown that the cubic polynomial inside the brackets has, for $n \ge 3$, one real positive zero less than 1/r. Hence for $x \ge 1/r$ we have

$$(10) R_n(x) > 0, (n \ge 3).$$

Since the coefficients of $p_n(z)$ are all positive we need only consider $p_n(-x)$ where $x \ge 1/r$. Thus (9) and (10) yield

$$p_n(-x) = 1 + \sum_{k=0}^{n/2-3} \left(-p_{n,2k+1} x^{2k+1} + p_{n,2k+2} x^{2k+2} \right) + R_n(x) > 0 \qquad (n \text{ even})$$

and

$$p_n(-x) = \sum_{k=0}^{(n-1)/2-2} (p_{n,2k}x^{2k} - p_{n,2k+1}x^{2k+1}) - R_n(x) < 0 \quad (n \text{ odd}).$$

Hence all the real roots of $p_n(z)$ lie in -1/r < x < 0.

Now write $q_n(z) = z^n p_n(1/z)$ and consider the polynomial $q_n(rz)$. Since we shall always be concerned with this particular polynomial we may suppress the suffix n and write

$$q_n(rz) \equiv g(z) = \sum_{k=0}^n a_k z^k,$$

so that $a_k = p_{n,n-k}r^k$. Inserting the values of the coefficients (p_{nk}) from (1) we can easily observe that

(11)
$$0 < a_1 = ra_0, \\ a_k > ra_{k+1} > 0, \qquad 1 \le k \le n-1.$$

We form, with M. Marden [2, p. 148], the successively derived coefficients $a_{\mathbf{k}}^{(j)}$ given by

$$(12) a_k^{(0)} = a_k, a_k^{(i+1)} = a_0^{(i)} a_k^{(i)} - a_{n-j}^{(i)} a_{n-j-k}^{(i)}; \ 0 \le k < n-j; \ 0 \le j \le n-1.$$

As for the first derived coefficients $a_k^{(1)}$, the relations (11) yield the following: for k=n-1,

$$a_{n-1}^{(1)} = a_0 a_{n-1} - a_n a_1 > 0,$$

and for k > 0,

$$a_k^{(1)} - a_{k+1}^{(1)} = a_0(a_k - a_{k+1}) + a_n(a_{n-k-1} - a_{n-k}) > (1 - 1/r)a_k^{(1)}$$

so that

(13)
$$a_k^{(1)} > r a_{k+1}^{(1)} > r^{n-k-1} a_{n-1}^{(1)} > 0, \qquad 1 \le k \le n-2.$$

Finally, for k=0,

$$a_1^{(1)} - a_0^{(1)} = a_0(a_1 - a_0) - a_n(a_{n-1} - a_n) < (r - 1)a_0^{(1)},$$

so that

$$(14) 0 < a_1^{(1)} < ra_0^{(1)}.$$

A comparison between the relations (13) and (14) for the case j=1, on the one hand, and the relations (11) for j=0, on the other hand, suggests that for the jth derived coefficients we should have

(15)
$$0 < a_1^{(j)} < ra_0^{(j)}, \\ a_k^{(j)} > ra_{k+1}^{(j)} > 0, \qquad 1 \le k \le n - j - 1.$$

In fact (15) is valid for j=1, in view of (13) and (14). Moreover supposing (15) to be true for some j < n-2, then the method used in deriving (13) and (14) from (11) can be similarly applied to (15) to derive easily the following relations

$$0 < a_1^{(i+1)} < ra_0^{(i+1)},$$

$$a_k^{(i+1)} > ra_{k+1}^{(i+1)} > 0, 1 \le k < n - j^{-1},$$

412 M. NASSIF

so that (15) is true for $1 \le j \le n-2$. We may apply (15) with j=n-2 to deduce that $a_0^{(n-1)} > 0$, so that

$$a_0^{(j)} > 0,$$
 $1 \le j \le n - 1.$

Applying Marden's theorem concerning the number of zeros of a polynomial inside the unit circle in terms of the coefficients $a_0^{(j)}$ [2, Theorem (42.1), p. 150] we infer that the polynomial g(z) will have at most one zero inside the unit circle. Consequently the polynomial $p_n(z)$ will have at least n-1 of its zeros within or on the circle |z| = 1/r. Suppose that the number of zeros of $p_n(z)$ within or on the circle |z| = 1/r is exactly n-1 and that the remaining zero β is outside the circle. By the first part of the proof β cannot be real and hence its conjugate $\bar{\beta}$, which is also a zero of $p_n(z)$, lies outside the circle |z| = 1/r. We conclude from this contradiction that all the zeros of $p_n(z)$ lie within or on the circle |z| = 1/r, and this completes the proof of Theorem B.

REFERENCES

- 1. H. L. Krall and O. Frink, A new class of orthogonal polynomials: The Bessel polynomials, Trans. Amer. Math. Soc. vol. 65 (1949) pp. 100-115.
- 2. M. Marden, The geometry of the zeros of a polynomial in complex variables, Mathematical Surveys, no. 3, New York, American Mathematical Society, 1949.
- 3. J. M. Whittaker, Sur les séries de base de polynomes quelconques, Paris, Gauthier-Villars, 1949.

FACULTY OF ENGINEERING, ALEXANDRIA, EGYPT.