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I. Introduction

1.1. The classes Hp (0<p< oo), consisting of those functions/which are

analytic in the interior U of the unit circle and for which

(1.1.1) M?(\f\) =   f     \f(rei6)\pdd
J o

is bounded for 0<r<l, were introduced into analysis by G. H. Hardy [10].

The principal facts concerning the behavior of these functions at the bound-

ary were established by F. Riesz [17; 22, p. 162] with the aid of an interesting

factorization theorem. Macintyre, Rogosinski, and H. S. Shapiro [ll; 19]

have treated linear extremum problems (for p^l) in great detail. Walters

[2l] has discussed the structure of the linear space Hp for 0<£<1.

These "classical" Hv classes will be denoted by HP(U) in the sequel. It

is the purpose of this paper to define analogous classes of functions on arbi-

trary domains (i.e., connected open sets in the extended complex plane) and

to study their properties. Most of the results of Parts I and II carry over to

Riemann surfaces, but in view of the problems discussed in Parts III and IV

we shall content ourselves with the plane case.

We shall base our definition on the observation that |/| p is subharmonic

if / is analytic. The easiest proof of this well-known fact is probably the

following: log |/| is subharmonic, |/|p = exp (p log |/|), and every convex

increasing function of a subharmonic function is again subharmonic [16, p.

15].
1.2. DefinitionC). For any domain D, and any value of p(2), we define

HP(D) as the set of all functions/ which are single-valued and analytic in D,

and for which there exists a function u, harmonic in D, such that

|/(z)M«(z) (zGD).

Presented to the Society, April 25, 1953 under the titles Hv classes in general domains and

Schwarz's lemma in Hi; received by the editors May 26, 1953 and, in revised form, September

16, 1953.
(') After the original version of this paper was sent to the editors, the author's attention

was drawn to Parreau's thesis, where the same definition is introduced [14, p. 178]. Although

the viewpoints of the two papers are quite different, some of Parreau's ideas reappear in Part I

and the beginning of Part II. The author is indebted to the referee for the detailed references to

[14] which are included in the text.

(*) Unless the contrary is explicitly stated, it will always be understood that 0<p< °o.
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It is well known [16, p. 33; 18, p. 357] that if a subharmonic function has

a harmonic majorant in D, then there exists a least harmonic majorant. Hence,

for every fEHp(D) there exists a function %, harmonic in D, such that |/|p

Suf, and such that u/^u whenever |/| p^u and u is harmonic in D.

If D=U, it is easy to see that our definition coincides with the classical

one; in fact, the following theorem shows that even in the general case we

could define HP(D) by requiring certain integrals to be bounded (compare

[14, p. 135]):

1.3. Theorem. Fix a point tED, and let f be single-valued and analytic in

D. Let A be any domain with smooth boundary T, such that A\JTED, and /£A.

Then fEHp(D) if and only if there exists a constant M, independent of A, such

that

(1.3.1) — j   \f\" —ds ^ M.
2wJr dn

Here G is the Green's function of A, with pole at t, and the derivative is

taken along the interior normal; a "smooth" boundary is the union of a finite

number of continuously differentiable curves.

Proof. Let v be harmonic in A, with boundary values |/|p; then the left

member of (1.3.1) is equal to v(t). IffEHp(D), let u be a harmonic majorant

of |/|p. Since \f\p is subharmonic, v(t)^u(t), so that (1.3.1) holds with

M=u(t).

Conversely, let {At} be an increasing sequence of domains, satisfying the

conditions of the theorem, whose union is D. The associated harmonic func-

tions vk form an increasing sequence which is bounded at t. By a well-known

theorem of Harnack, the sequence \vk\ converges to a harmonic function u,

and it is easy to see that this u is a majorant (in fact, the least harmonic

majorant) of |/| p in D.

1.4. Analytic invariance of Hp(D). The classes HP(D) are invariant

under conformal one-to-one transformations of D. In fact, they enjoy a

stronger property, which Ahlforsand Beurling [2, p. 102] have called analytic

invariance, and which is as follows:

Let 0 be single-valued and meromorphic in a domain 2?i and suppose 0(2?i)

CD. For anyfEHp(D), define

(1-4.1) /i(z) =/(*«) (z£2?i).

ThenfxEHp(Di).
This is clear if we note that for any harmonic majorant u of |/| p in D, the

function U\ defined by

Wl(z) = «(*(«)) (z E Dd

is a harmonic majorant of |/i| p in 2?i.
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In particular, let D be a domain in the finite plane, with at least three

boundary points (since the case in which the boundary of D has capacity

zero is of no interest, by Theorem 1.6, this assumption involves no loss of

generality). The principal uniformization theorem [6, p. 70; 13, p. 8] shows

that there is a function \f/, regular in U, whose range is precisely D. This

mapping function \p is invariant under an infinite group Q (the so-called auto-

morphic group of D) of linear fractional transformations of U onto U, i.e.,

(i-4.2) *(«(*)) = *oo (zeu,geg).

The transformation (1.4.1) then maps HP(D) into a subset of HP(U),

consisting of functions invariant under Q. In Part II we shall define a norm

in HP(D), and we shall see that (1.4.1) actually induces a norm-preserving iso-

morphism between HP(D) and a closed subspace of HP(U) (Theorem 2.6).

1.5. For better orientation it is interesting to consider two other classes of

single-valued functions analytic in D: the class H„(D), consisting of all

bounded functions, and the class Log+ (D), consisting of those functions/

for which log+ |/| has a harmonic majorant in D (Parreau considers an

analogous class of meromorphic functions [14, p. 180]).

It is clear that these two classes are also analytically invariant, and that

Log+ (D) corresponds to a subset of the analytic functions of bounded char-

acteristic [13, p. 157] in U, under the transformation (1.4.1). Moreover,

Theorem 1.3 holds for Log+ (D) if \f\p is replaced by log+ |/[ in (1.3.1),

since log+ |/| is subharmonic. Let us note that

Log+ (D) D HP(D) D H,(D) D H„(D) (p < q)

for any domain D. We shall call any of these classes trivial if it contains

nothing but the constant functions.

It is a well-known unsolved problem, posed by Painleve [l ], to find neces-

sary and sufficient conditions on D under which HX(D) is nontrivial. If B

is the boundary of D, it is necessary that the linear measure of B be positive

[l, p. 2]; if B is a subset of an analytic arc, this is also sufficient [2, p. 122];

but little is known about the general case.

For Log+ (D), on the other hand, a very simple criterion exists:

1.6. Theorem. Log+ (D) is trivial if and only if cap 73 = 0.

Here cap B means the logarithmic capacity of B.

Proof. It is convenient to assume that the point at infinity is not in D (if

D had no boundary point, there would be no nonconstant analytic functions

onD).
If cap B>0, let ^ be analytic in U, with range D. A theorem of Nevan-

linna [13, p. 201] shows that ^GLog+ (U). Let v be the least harmonic

majorant of log+ |^| in U. We wish to show that v is invariant under the

automorphic group   (j.  Since v(g(z))  is the least harmonic  majorant of
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log+ |iA(g(z))|i which is equal to log+ |0(z)|, it follows immediately that

v(g(z)) =v(z) for every z£ U and every g£(/'. Hence the formula

u(w) = v(ip~l(w)) (w £ D)

defines a single-valued harmonic function u in D which is a majorant of

log+ | w | ; it follows that the identity f unction/(w) = w is a member of Log+ (D).

Conversely, if cap2? = 0, suppose that/£Log+ (D). Letw be a harmonic

majorant of log+ |/|. The function v= — u can be defined on B so as to be

subharmonic in the extended plane [5, p. 31]. Since v is upper semi-continu-

ous and bounded above, v attains its maximum, which is impossible unless

v is constant. Hence /is bounded in D, and therefore constant [13, p. 132].

Thus Log+ (D) is trivial.

1.7. The following two questions may now be asked.

(Qi) For what values of p (if any) is HP(D) nontrivial whenever cap B > 0?

(Q2) For what values of p (if any) is HP(D) trivial whenever H„(D) is

trivial?

Both questions seem to be very difficult. An attempt to throw some light

on (Q2) by the methods of Ahlfors and Beurling [2] led to the study of an

extremum problem, analogous to Schwarz's lemma, in Hi(D). The results are

summarized in Theorems 4.10 and 4.12, and show some rather unusual fea-

tures, reminiscent of eigenvalue problems. But in spite of the intrinsic inter-

est of this extremum problem, the solution seems to yield no information

about (Q2).
Although it has no a priori bearing on the analytic case, we may note at

this point that a question analogous to (Q2) may be asked about harmonic

functions, and that the answer is: for all p>l [14, p. 164].

1.8. Removable singularities. The problem of removable singularities

is closely connected with the above questions. The following theorem seems

to be the best known result in this direction [14, p. 182]:

Theorem. If N is a compact subset of D, if cap N = 0, and if fEHp(D — N),

then f can be defined on N so that fEHp(D).

(Since cap Ar = 0, D — N is a domain, so that it makes sense to speak of

HP(D-N).)
For HK(D), a much stronger result holds, since singularities distributed

over sets of linear measure zero are removable [l, p. 2]. On the other hand,

the analogous proposition is false for Log+ (D), where even isolated singu-

larities may not be removable: Let N consist of the point z = 0, let/(z) = 1/z.

Then/£Log+ (U—N), but the singularity at z = 0 is not removable.

II. The linear spaces Hp(D)

2.1. The 22p-norm. Let us fix a point 2£Z>. If / is single-valued and

analytic in D, we define
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(2.1.1) H/ii, = (u(t)yi>,

where u is the least harmonic majorant of |/| p, provided fGHp(D); the right

member of (2.1.1) is interpreted as + oo if f(£Hp(D). Thus HP(D) is char-

acterized by the inequality ||/||P< + °°. II D=U, we shall take t = 0.

Let {Dk\ be an increasing sequence of domains with smooth boundaries

Ck, such that tGDi and D = \jDk. Let Gk be Green's function of Dk, with pole

at /. A glance at the proof of Theorem 1.3 will show that

(2.1.2) ||/||p = lim {- I       |/f— ds\      ,

the limit being independent of the choice of {Dk} (compare [14, pp. 178,

137]).

If p^l, Minkowski's inequality may be applied to the integrals in (2.1.2),

and shows that ||/||p is a genuine norm, i.e., the triangle inequality holds:

(2-1.3) ||/+g||P^||/||P + ||g||P (p^l).

This ceases to be true if 0 <p < 1; in that case we have, however [22, p. 67],

(2.1.4) ii/+«n;sii/ii;+y; (o<#<«.

In any case, the above inequalities, combined with the obvious homo-

geneity of the norm, show that HP(D) is a complex linear space.

2.2. The relation between Hp(D) and Hp(U). Let \{/ be analytic in U,

with range D, such that ^(0) =t, and let (/be the group under which \(/ is in-

variant (compare 1.4). If fG.Hp(D), define

(2.2.1) /i(«) -/(*(«)) (zeu).

Then fi€z.Hp(U), and the same transformation carries the least harmonic

majorant of |/| p into a harmonic majorant of |/i| p. Thus

(2-2.2) IIAUp^ ll/HP (fGHp(D)).
Moreover, /i is invariant under Q.

Conversely, suppose fi(£Hp(U), and/i is invariant under Q. The argu-

ment used in the proof of Theorem 1.6 shows that the least harmonic ma-

jorant of |/i|p is invariant under Q. Thus the transformation (2.2.1) defines

a single-valued function / in D which satisfies

(2.2.3) ll/H, g \\fi\\P (fiGHp(U)).

Combining these two inequalities, we see that there is a natural norm-

preserving isomorphism between HP(D) and the subspace of Hp( U) consisting of

those functions which are invariant under Cj, a relationship which is also indi-

cated in Parreau's paper [14, p. 179]. Theorem 2.6 will describe the situation

more explicitly.
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2.3. Lemma. Let K be a compact subset of D, and let u be positive and har-

monic in D. There exists a constant M, depending only on K, D, and t, such

that u(z) ^ Mu(t) for all zEK.

Proof. Although the complete inverse image of K under 0 is not compact

(unless D is simply connected), there is a compact subset Ki of U such that

ip(Ki)Z)K- It is therefore enough to prove the lemma for the case D= U; in

that case we can use Poisson's formula, and conclude that

1 +r
u(z) ^-w(0) (|z|=r<l).

1 — r

The lemma follows. A direct proof, not depending on the uniformization theo-

rem, is of course also quite easy.

2.4. Corollary, (a) Let K be a compact subset of D. There exists a constant

M, depending on D, K, t, p, but not on f, such that

(2.4.1) \f(z)\^M\\f\\P (fEHp(D),zEK).

(b) If ||/n—/||P—*0 as w—*<», then fn(z)^>f(z) uniformly on every compact

subset of D.

2.5. The strong topology of Hp(D). We define a subset 5 of HP(D) to

be open if for every foES there is an r>0 such that/£5 whenever ||/— /0||p

<r.

If p = l, this gives the usual topology induced by the metric. If 0<p<l,

HP(D) is not a metric space, but the above topology nevertheless makes it

into a linear Hausdorff space, i.e., a linear space which satisfies the Hausdorff

separation axiom (distinct points have disjoint neighborhoods) and in which

addition and scalar multiplication are continuous operations. For HP(U)

this was pointed out by Walters [21], and the general case follows from 2.2.

If X is a linear topological space, a sequence {x„} of elements in X is said

to be a Cauchy sequence if lim (x„ —xm)=0 as n, m—>°o. If every Cauchy

sequence converges, then X is said to be complete. This definition is inserted

here since HP(D) is not metric for p<l.

Let C be the boundary of U. By LP(C) we mean the space of measurable

complex-valued functions on C, normed by

[  1     n 2t 1/p

11/11.. = br I   l/^M    ■

2.6. Theorem, (a) There is a natural norm-preserving isomorphism be-

tween HP(D) and a closed subspace of HP(U).

(b) There is a natural norm-preserving isomorphism between HP(U) and a

closed subspace of LP(C).

(c) HP(D) is a complete separable linear Hausdorff space.
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(d) If p ^ 1, HP(D) is a Banach space; if p > 1, HP(D) is uniformly convex.

(e) Although the norm ||/||p depends on the choice of the point tED, the in-

duced topology does not.

Proof, (a) follows from 2.2 if we can show that the set of all functions

fEHp(U) which are invariant under (j forms a closed subspace of HP(U); but.

this is an immediate consequence of 2.4(b).

(b) is well known: if fEHp(U), then/ has radial boundary values f*(eie)

p.p. on C,f*ELP(C), ||/*||j> = ||/lli» anc* the isomorphism is the correspondence

/m./* [17; 21].
Part (c) of the theorem follows from (a) and (b).

The first assertion of (d) is a trivial consequence of (c) and (2.1.3). The

second follows from the fact that HP(D) is isometrically isomorphic to a

closed subspace of LP(C), and the latter space is known to be uniformly convex

ifp>l [7].
Finally, Lemma 2.3 shows that if we define two norms, using two different

points of reference, the ratio of these two norms will have finite and positive

upper and lower bounds; (e) follows.

2.7. In view of the preceding theorem, one is naturally led to ask: for

what domains D, and for what values of p, does HP(U) contain a nontrivial

subspace invariant under Ql This suggests that a study of the automorphic

groups may yield some information on the problems mentioned in 1.7.

2.8. Linear functionals. If T is a linear functional on HP(D), we de-

fine, as usual

(2-8.1) ||r|| = sup (I P/I/II/IU) (fEHp(D)).
T is bounded if || 7]| is finite. It is then an easy matter to verify that Hp(D) *,

the space of all bounded linear functionals on HP(D), is a Banach space, even

if p<l.

Although Lp(C) has no nonzero bounded linear functionals if p<l, HP(D)

does admit such functionals [21]:

2.9. Theorem. The functionals Tm,z defined on HP(D) by

Tm.zf = /<">(z) (m = 0, 1, 2, • • • ; z £ D)

are bounded.

Proof. Cover z with a closed circular disc of radius r which lies in D. Then

2*Tm,,f = m! f   f(z + rei6)(reie)~mde.
J o

By 2.4, we can choose M such that \f(z+reu)\ ^M||/||p for O^0<2tt. Hence

\\Tm,z\\^Mm\r-».

Corollary. There exists a countable set of bounded linear functionals on



1955] ANALYTIC FUNCTIONS OF CLASS Hp 53

HP(D) which separates elements of HP(D).

For instance, the sequence {Tm,z}, w = 0, 1, 2, • • • , for fixed zGD, has

the property that Tm,zf = 0 for all m if and only if/=0.

2.10. Weak convergence. If fnGHp(D) and fGHp(D), we say that

/„—*/ weakly provided that Tfn—>Tf, as n—*•<», for every TGHP(D)*.

We saw in 2.4 that strong convergence implies uniform convergence on all

compact subsets of D. That the converse is not true, even if {||/n||P} is

bounded, is shown by the sequence/„(z) = zn (zGU).

Walters [21, p. 804] has proved that weak convergence in HP(U) (0<p<l)

implies uniform convergence on every compact subset of U. His proof, which

relies on a category argument in the Banach space HP(U)*, applies without

change in any domain D. For p^l, we find the following relations between

weak and uniform convergence:

2.11. Theorem. If f„—>f weakly in HP(D) (p^l), then {||/«||P} is bounded,

and /n(z)—»/(z) uniformly on every compact subset of D. The converse is true if

p>l, but is false for Hi( U).

For general domains D, the analogous negative conclusion concerning

Hi(D) is not yet established.

Proof. In any Banach space, the norms of the elements of a weakly con-

vergent sequence are bounded. Thus {/„(z)} is uniformly bounded on every

compact subset of D, by 2.4(a). Applying Theorem 2.9, with m = 0, we see

that/„(z) —»/(z) for every zGD- The direct part of the theorem now follows

from Vitali's theorem.

Since HP(D) can be regarded as a subspace of HP(U), it is sufficient to

prove the converse for the case D=U. Let us suppose then that ||/B||P<1,

and that/„(z)—>0 for every zGU; uniform convergence on compact subsets

follows, as above. If

/»(z) = H a»,*z*        (n = 1, 2, 3, • • ■ ;z£.U),
fc-0

Cauchy's formula shows that

(2.11.1) <*„.*->• 0    as   »^» (k = 0, 1, 2, • • • ).

We imbed HP(U) in LP(C), whose conjugate space is Lq(C), with l/p

+ l/q—l, noting that every functional on HP(U) can be extended to LP(C).

If P is a polynomial in z and 1/z, (2.11.1) shows that

fn(ei')P(ei')dd -► 0    as   « -> oo.
o

Since these polynomials are dense in Lq(C) (here we use the fact that q< oo),

it follows that Tfn-+0 as »-+», for every TG.HP(U).
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We shall now construct an example which shows that the converse is

false in H\(U). Let Fn map the upper half of U onto a rectangle with vertices

at 1/2, i/n, 0, such that

F„(l) = 1/2,       F„(e»/«) = i/n,       Fn(-1) = 0.

Extend F„ to U, by reflection in the real axis, and put/n(z) = P„' (z). Fn maps

U onto a rectangle Rn whose circumference tends to 1 as n—> oo. Hence

||/„||t= (1/2t)  f  ' |/»(«") | «» - 1/2t.

Since Fn(eie)—>0 boundedly p.p. on C, Cauchy's formula shows that F„(z)—>0

uniformly in \z\ <r<l; hence/„(z)—>0 uniformly in \z\ <r <1, for every r <1.

Thus, if {/n} did converge weakly, the weak limit would be zero, and Tfn

would tend to zero for every TEHi(U)*. But if

Tf =   f   /(z)<fe = - * f TJ(e«)e«dB,

then

27„ = P„(l) - F.(-l) = 1/2 (n = 1, 2, 3, • • • ),

which is a contradiction.

Actually, {/„} does not even contain a weakly convergent subsequence.

2.12. Linear extremum problems. If TEHP(D)*, let us consider the

problem of maximizing | Tf\  under the restriction ||/||p^l.

If p>l, the uniform convexity of HP(D) implies that there always exists

a unique/o£2Jp(Z>) such that 7/o = ||P|| and ||/0||p = l (for the uniqueness we

must of course eliminate the trivial case T = 0)  [15, p. 249].

If p = 1, there may not be an extremal function, and if there is one it need

not be unique. Examples of this, for H\(U), may be found in [ll] and [19].

Part IV is devoted to a detailed study of a particular problem of this sort

in Hi(D), where D has finite connectivity.

If p>l, HP(D) is reflexive, since it is uniformly convex [15]. The example

given in 2.11 shows that the unit sphere of HX(U) is not weakly compact, so

that 22i( U) is not reflexive.

2.13. The case p = 2. For/ and gEH2(D), we define

(2.13.1) 2r(f, g) = lim   f   fg (-^) ds,
i^» J ck      \ an/

with the same notation as was used in (2.1.2). To prove that this limit exists,

we multiply the identity

4/g=   \f+g\2~  \f~ g\2 + i\f+ig\2-i\f-k\2
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by dGk/dn, integrate over Ck, and apply (2.1.2).

It is clear that H2(D) is now a Hilbert space, with inner product (f, g);

we note that (f, g) has been defined without the use of Theorem 2.6.

For fixed x(E.D,f(x) is a bounded linear functional on H2(D). Hence there

is a unique function RXGH2(D), which we call the ZZ2-kernel function of D

[2, p. 40], with the reproducing property

(2.13.2) f(x) = (f,Rx).

If {(/>„} is a complete orthonormal set of functions in H2(D), we have

oo

(2.13.3) Rx(z) = E <?„(*)4>„(z) (z G D),
n=l

the series converging uniformly on every compact subset K of D. To prove

this, we note that (Rx, </>„) =<jin(x), by (2.13.2), so that E#»(x)0n converges

to Rx, in the H2 norm. By 2.4(b) the convergence is uniform on K.

A more detailed study of this conformally invariant kernel function might

well be interesting. At the present, let us merely note the identity

oo

(2.13.4) Rt(z) = £ $n(t)<bn(z) = 1 (zGD)
n-i

where t is the distinguished point used in the definition of the norm. (2.13.4)

follows from the uniqueness of the kernel function, and from the fact that

(/,!)=/(/)•

III. Domains with analytic boundary

3.1. Preliminaries. Let D be a bounded domain, whose boundary B

consists of k analytic simple closed curves. For fixed tGD, let G(z) =G(z, t)

be Green's function for D, with pole at t, and put

P(z) = P(z, t) = G(z) + UI(z),

where II is the harmonic conjugate of G. The function P is multiple-valued,

but has a single-valued derivative P'(z) which is analytic in D, except for a

pole with principal part — (z — t)~l.

Since G(z) = 0 on B, the reflection principle shows that P' is analytic on B;

we have the important differential identity

(3.1.1) iP'(z)dz = (dG/dn)ds > 0 (z G B),

which, combined with the argument principle, implies that P' has precisely

£ — 1 zeros in D. These are called the critical points of G [13, p. 31].

We let A(D) denote the set of all functions which are single-valued and

analytic on the closure of D. By LP(B) we mean the space of complex-valued

measurable functions /* on B, normed by
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ii ( 1   C i     ,   oG    1 llp

(3.1.2) n/*||p= |_JJ/*|P_*J    .

If p^l, we let HP(B) denote the (evidently closed) subspace of LP(B) con-

sisting of those /* for which

(3.1.3) f f*(z)<j>(z)dz = 0
J B

whenever 0 £^4 (D).

The following theorem describes the behavior of functions of class HP(D)

near the boundary.

3.2. Theorem, (a) If fEHp(D), there is a function f*, defined on B, such

that f has nontangential boundary values f* almost everywhere on B.

(b) 7"Ae mapping y: f—f* is a norm-preserving isomorphism from HP(D)

into LP(B).

(c) If p ^ 1, the range of y is HP(B), and the inverse of y is given by

1    r f*(w)
(3.2.1) f(z) =—  I   -±—dw (zED)

2iriJB w — z

and also by

l   r    dG
(3.2.2) f(z) =—      f*-ds

2tc J b     an

where G is Green's function of D, with pole at z.

We shall call /* the boundary function of /; the term "boundary value"

will always refer to arbitrary nontangential approach.

The proof can be reduced to the simply-connected case by means of the

following decomposition theorem:

3.3. Theorem. Let Bi, ■ • ■ , Bk be the components of the boundary of D,

with Bi forming the outer boundary. Let D\ be the interior of B\, and Z>2, • • • , Dk

the exteriors of 2J2, • • • , Bk, including the point at infinity.

For every fEHp(D) there exists a decomposition

(3.3.1) f(z) = h(z) + • • • + fk(z) (zED),

such that fnEHp(Dn) (n = \, ■ ■ ■ , k).

Proof. Let Ci, ■ ■ ■ , Ck be nonintersecting smooth curves in D, which

bound a domain A, such that Cn is close to Bn, and put

i  r f(w)
(3.3.2) /■»(*)=—:l    "^-dw      (n = 1, • • ■ ,k;zE A).

2wi J c„w — z
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Then (3.3.1) holds in A. Since the distances between C„ and Bn can be made

arbitrarily small, /„ is analytic in Z?„, and (3.3.1) holds in D.

To prove that fnGHp(Dn), suppose n = 1 (the proof being the same in the

other cases) and assume, without loss of generality, that Bx is the unit circle.

Let v be a harmonic majorant of |/| p in D. Choose ra<l so that the ring R:

r0^ \z\ <1 is in D. Since f2, •••,/* are bounded in R, there exists a positive

constant b such that the function u=v+b is a harmonic majorant of \fi\p

in R. Then

(3.3.3) u(reie) = Ui(reie) + u2(reie) (r0 < r < 1)

where Mi is harmonic in r<l, u2 is harmonic in r0<r, and W2 is bounded in

r0<r<l. Since |/i|p is bounded in r^r0, it is clear that the function c+Ui,

where c is a sufficiently large constant, is a harmonic majorant of |/i| p in Di.

3.4. Lemma. A(D) is dense in HP(D).

Proof. If £>=£/ and fGHp(U), define

/»(z) = /(«) for r-< 1 and z G f/.

Then ||/,-/]|,->0 as r-+l [22, p. 162]. Thus A(U) is dense in HP(U); the

same is true for any simply-connected domain, by the conformal invariance

of the norm. The general case follows from Theorem 3.3, noting that the

norm in HP(D) does not exceed the norm in Hp(Dn), if both are defined with

respect to the same point tGD.

3.5. Proof of Theorem 3.2. The existence of nontangential boundary

values almost everywhere on B is a local property and follows immediately

from the simply connected case [13, p. 197], even for the class Log+ (D). If

we apply Fatou's lemma to (2.1.2) we find that ||/*||p^||/||j,. Thus 7 is a

bounded linear transformation from HP(D) into LP(B). Since 7 is clearly

norm-preserving on A(D), and A(D) is dense in HP(D), parts (a) and (b) of

the theorem are proved.

Now let p ^ 1. For any <p GA (D), the integral

Kf) =  {f*(z)4>(z)dz (fGHp(D))

is a bounded linear functional which is zero for fGA(D), hence for all

fGHp(D). It follows that f*GHp(B). The Cauchy formula (3.2.1) is now

proved in the usual manner, by deleting a small circular disc with center

at z from D, and applying the results established so far to the domain of

connectivity k + l thus obtained.

By (3.1.1) we see that the integrals in (3.2.1) and (3.2.2) are equal

whenever f*GHp(B).

We still have to prove that the range of 7 includes all of HP(B). Choose

g*GHp(B), and define
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1    r      dG i    r   f(w)
/(*) = t- I «*■ r * = t-\ —±dz (2 e 2?)

In J b       an liriJ b w — z

where G has its pole at z. Then / is single-valued and analytic in D, and

i        i 1    C i      ,   dG
|/(z)M—      \g*\p—ds (zED).

2w J b an

The integral on the right is a harmonic function of z, so that fEHp(D). Let

/* be the corresponding boundary function, and put A* =/* —g*. The proof

will be complete if we can show that A* = 0 p.p. on B.

It is clear that h*EHp(B), and that

/•   h*(w)-dw = 0 (zED).
B   W — 2

Differentiating the last equation, we obtain

/h*(w)-——dw = 0      (z ED;n = 1, 2, 3, • ■ • ).
J5   (w   —   z)n

Since every continuous function on B is the uniform limit of a sequence of

rational functions with poles in the complement of B, we have

f h*(w)K(w)dw = 0
J B

for every function K which is continuous on B; thus h*(w) =0 p.p. on B.

3.6.  Corollary. If g* is bounded and measurable on B, and if

/g*(w)<p(w)dw = 0
B

for all 4>EA(D), then there exists a unique function gC270O(2?) which has non-

tangential boundary values g* almost everywhere on B.

IV. Schwarz's lemma in HX(D)

4.1. We again consider a bounded domain D whose boundary consists of

k analytic simple closed curves Blt ■ ■ ■ , Bk, and we let t be a distinguished

point of D with respect to which the norm ||/||i is defined. We are concerned

with the problem of maximizing \f'(t) \, under the restrictions f(t) =0, ||/||i ^ 1.

The principal difference between this problem and Garabedian's work in

[9] lies in the definition of the norm. Garabedian used essentially

( 1  r 1   1   1Up ( 1  r ,   , °G   ) i'p
\- I    l/*l"<M instead of     \- |    |/*|p — ds\      .
\ 2ic J B ) \ 2tt J b dn      )
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This led to his problem not being conformally invariant. The present norm

seems better suited to the discussion of function theoretic problems.

We shall let X stand for the subspace of HX(D) consisting of those func-

tions/for which f(t) =0, and we put

(4.1.1) a = a(t) =   sup   | /'(/) | ,
fEXo

where X0 is the intersection of X with the unit sphere of Hi(D).

4.2. The corresponding problem in H„(D) has been the subject of investi-

gations by Ahlfors [l], Garabedian [8], and Nehari [12]. The solution is as

follows: if

(4.2.1) j8 = 0(t) = sup | f(t) | (/ G HX(D), | /(Z) | < 1 in D),

there exists a unique function F(z) = F(z, t) such that

(4.2.2) F'(l) = p,        \F(z)\ < liaD,       F G HJp).

This function F is analytic and single-valued on the closure of D, \ F(z) \ = 1

for all zGB, F(t) =0, and F has precisely k — l other zeros at points Zi, • • • ,

Zk-i in D. These points are the zeros of the Szego kernel function K(z, t) of

D, and F maps D in a &-to-l manner onto U [3, Chap. VII]. The relation

fi = 2irK(t, t) makes explicit computation of p1 possible.

It is evident that |8^a.

We begin with three lemmas.

4.3. Lemma. Suppose <j>GA(D) and <j> is not constant. If \(p(z)\ =1 for all

zGB, then <f> has at least k zeros in D.

Proof. Since | <p(z) \ < 1 in D (by the maximum modulus theorem) a glance

at the Cauchy-Riemann equations of the function log <p shows that arg <p(z)

increases as z traverses B in the positive sense. Hence arg <p increases by an

integral multiple of 27r on each component of B, so that the total increase is

2m7r, where the integer m is not less than k. The lemma now follows from the

argument principle.

4.4. Lemma. Suppose fGHi(D) and f has real boundary values almost

everywhere on an open arc Y of B. Then f can be continued analytically across V.

Proof. If we take a simply-connected subdomain of D which is bounded

in part by Y, the conformal invariance of the problem shows that it is enough

to consider the case D= U.

By (3.2.2), / and therefore its imaginary part v can be written as the

Poisson integral of a summable function. Since the boundary values of v are

zero p.p. on Y, zj(z)—>0 as z—>Y along any path, so that v can be extended

harmonically across Y; the same is then evidently true for the real part of

/, and hence for/ itself.
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That the hypothesis of fEH\(D) is not superfluous is shown by the

function

*(1 +2)
m=-4—- (z <d

1 — z

which has real boundary values on \z\ =1, except at z=l, where there is a

singularity.

4.5. Lemma. Let T be an open arc on the circumference of U. Suppose

fEHi(U), gEHx(U), h(z) =f(z)g(z) in U, A can be continued analytically across

r, and g has boundary values of absolute value 1 almost everywhere on T. Then

f and g can be continued analytically across T.

Proof. If Ti is any closed subarc of T, then the zeros of A have no limit point

on Ti. Let T2 be an analytic arc connecting the end points of Yi, which lies

in U except for its end points, such that A has no zeros on T2 and in the

domain D bounded by Ti and T2. Mapping D conformally onto U, we see that

we may add the following assumptions to the original hypotheses without

loss of generality: A is continuous on the closure of U and has no zeros there,

except possibly a finite number of zeros on T.

It is enough to show that log \g\ is the Poisson integral of a summable

function; this will show that log \g\ can be continued harmonically across

r, since its boundary values are zero, so that g is analytic on V. The ana-

lyticity of/ follows from/(z) =h(z)/g(z).

Using the notation of (1.1.1) we see that M?(log+ \h\) and Af?(log+ 11/A|)

are bounded as r—>l. Since fEHi(U), il2?(log+ |/|) is also bounded, and the

formula l//=g/A, together with the boundedness of g, shows that the same

is true of M?(log+\ 1//|). Hence [22, p. 87] log |A| and log |/| are Poisson

integrals of summable functions; the same is true of log |g| since log |g|

= log |A| -log |/|.
We now take up our maximum problem.

4.6. Our first aim is to show that there always exists a function /0£X0

such that/o (t) =a. We shall call/o an extremal function.

Choose a sequence {/„} (n = \, 2, 3, • ■ • ) of members of X0 such that

f'n(t)-^a. The inequality (2.4.1) shows that {/„} is a normal family, so that

there exists a subsequence, again denoted by {/„}, which converges uniformly

on every compact subset of D, to a limit function /0. If C is a small circle

about t, we therefore have

1       C Mz) If AW
{> (t) =- I    -J-LL- dz = hm- I    -^±-L~ dz = lim /„' (t) = a.

2iriJ c (z — t)2 2iriJ c (z — t)2

A similar passage to the limit, applied to the integrals in (2.1.2), shows

that ||/o||i^l. Since/o is extremal, ||/o||i = l.

4.7. Let T be the linear functional defined on X by Tf=f'(t). Since the
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Cauchy integral formula is valid with B as path of integration (Theorem 3.2)

we can write

(4.7.1) Tf - f(t) = -^ f  ^~ P'(*)& (/ G X).
2ir J b   z — t

We continue to use the notation introduced in III: /* stands for the boundary

function of/.

By Theorem 3.2, X is (isometrically isomorphic to) a closed subspace of

Li(B). We apply the Hahn-Banach theorem [4] to extend T from X to

Li(B), preserving its norm a, so that T is of the form

(4.7.2) Tf* = ~ ( f*(z)g*(z) P'(z)dz (f* G Li(B)),
2x J B

where g* is measurable on B, and |g*(z)| ^a. Comparison of (4.7.1) and

(4.7.2) shows that

(4.7.3) jj*(z) |g*(z) - -^-j\p'(z)dz = 0 (fGX).

In particular,

(4.7.4) J <p(z) {**(«) - -—1 (z - t)P'(z)dz = 0 (*G^(0)).

If we write the integrand of (4.7.4) in the form <b(z)w*(z), it follows from

3.6 that there exists a function wGH«,(D) whose boundary values are w* p.p.

Thus there exists a function g of the form

(4.7.5) g(z) = —-+E -^- + b(z) (zGD),
Z t m=-l   Z tm

with boundary values g* p.p. on 5; here bGH„(D), h, • • • , tk-i are the crit-

ical points of the Green's function of D with pole at t, and C\, • • • , ct-i

are constants, some of which may conceivably be zero. If twd or more of the

critical points coincide, (4.7.5) must be modified so as to contain poles of

the appropriate orders; nothing in our proof is affected by such a change.

Substitution of an extremal function/0 into (4.7.2) yields

a = Tfo = -- f fo*(z)g*(z)P'(z)dz
2ir J b

= ~- f !/•*(«)«*(«) I FM* = «||/o||i = a.
It J b

Hence the equality signs must hold in both inequalities; we conclude first

that
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(4.7.6) fo*(z)g*(z) ^ 0 (p.p. on 2?),

and secondly that

(4.7.7) \g*(z)\=a (p.p. on B),

since /0*(z) ̂ 0 p.p. on B [13, pp. 197-198].

Let us put

(4-7.8) h(z) = /o(z)g(z) (z£2)).

Restricting ourselves to a neighborhood of B in which g has no poles, 4.4

shows that A is analytic on B. Letting A be a simply-connected subdomain of

D, partly bounded by an arc T of B, 4.5 shows that ft, and g are analytic on B.

The relations (4.7.6) and (4.7.7) determine arg g and \g\ on B, so that g

is unique; this means that there exists only one norm-preserving extension of

rfromXtoZ,!^).

On the other hand, (4.7.6) determines arg/0 on B, but this is not enough

to give uniqueness of/0.

4.8. Let us define y = inf sup2g B \ g*(z) |, the inf being taken over all func-

tions of the form (4.7.5). Our preceding work shows that y ^a. Actually, y =a,

since y <a would lead to a norm-decreasing extension of T from X to LP(B),

which is absurd.

This maximum-minimum duality is a well known phenomenon [9; 11;

19]. It may be formulated abstractly as follows: Let X be a closed linear sub-

space of a Banach space E. Let X be the subspace of E* which annihilates X.

For any TEE*, let

5 = sup | Tx\ (xE X, ||*|| ^ 1).

Then

5 = inf||r-S|| (SEX±),

and the minimum is attained.

This can be proved quite easily by applying the Hahn-Banach theorem

to the restriction of T to X [19].

4.9. We return to our maximum problem. By (4.7.6) and the argument

principle, A has as many zeros as poles in D, if zeros on B (necessarily of even

order) are counted with half their multiplicities. Since/0(/) =0 and /0 has no

poles in D, g has fewer zeros than poles in D.

Two possibilities can now be distinguished.

Case (a). The zeros Zi, ■ • ■ , zk-\ of the Szego kernel function (see 4.2)

coincide with the critical points t\, ■ ■ • , tk-\ of G(z) (see 3.1).

Case (b). The sets (zi, • ■ • , z*_i) and (h, ■ ■ ■ , tk-i) are not identical.

If (a) holds, set <p(z) = F(z)g(z), where F is described in 4.2. We see that

<f>EA(D) and that |0| =a on B. The function F has precisely k zeros, and
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we saw above that g has fewer zeros than poles, so that <£ has at most k — 1

zeros in D. By Lemma 4.3, <b is constant. Since <j>(t) =p\ by (4.2.2) and (4.7.5),

we have

(4.9.1) g(z) = L3/F(z).

Thus g has k poles and no zeros in D, so that/0 has k zeros. Also, a=fl

since \<j>\ — a on B; in particular, F is an extremal function of 4.1 as well as

of 4.2.

Suppose next that (b) holds, and that g has no zero in D. Then | g(z) \ >a

in D. Put <p(z) =a/g(z). Then |<£(z)| <1 in D, and <p'(t)=a. Thusj3 = a, and

the uniqueness of F shows that <t> = F, so that the poles of g do coincide with

the zeros of F, which takes us back to Case (a).

It follows that g has at least one zero in D if (b) holds, so that any

extremal function f0 has fewer than k zeros in D. Also, a>(3, for otherwise F

would be an extremal function with k zeros.

4.10. We now summarize the information we have obtained:

Theorem, (i) The extremum problem 4.1 always has at least one solution

foGX0 such that fI (t) =a. Every such/0 is analytic on the closure of D.

(ii) There exists a unique function g of the form (4.7.5), analytic on B, such

that | g(z) | =a on B; for every f0, fo(z)g(z) ^0 on B.

(iii) Depending on the choice of t and D, there exist integers N, M, 1 ̂  M :2 N

^ k, such that g has N poles and N—M zeros in D, and every fo has M zeros in D.

Any zeros of fa on B are of even order, and are to be counted with half their multi-

plicities in this enumeration.

(iv) In Case (a) o/4.9, M = N = k,anda=f3. In Case (b), M<N,anda>f3.

(v) If two extremal functions fo have the same zeros, they are identical.

The only assertion not yet proved is (v); it follows from the fact that the

ratio of any two such functions, which is equal to 1 at t, is regular in D, and

has real boundary values, so that its imaginary part must vanish in D.

4.11. Remarks. Despite the discontinuous manner in which the zeros of

/o depend on the location of t (4.10(iv) and 4.12), the maximum a(t) is a

continuous function of /. This follows from Theorem 1, p. 103, of [2], since

X0 satisfies the hypotheses of that theorem.

If k^3, we do not know whether for every D there is a tGD such that

Case (a) occurs, or indeed whether Case (a) can occur for any domain of

connectivity greater than two. If k = 2, we can describe the situation more

completely:

4.12. Domains of connectivity two. Since every domain bounded by

two curves can be mapped conformally onto an annulus 0<r<|z| <1 [3,

p. 61 ], we may restrict ourselves to that case. We also lose no generality by

assuming that r<t<l.
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Theorem. If t¥-rxt2, Case (b) occurs; N=2, M=\, and there is a unique

extremal function.

Ift = r112, Case (a) occurs. For every x£[ —1, —r] there is an extremal func-

tion fa such that fo(x) =0, and every extremal function is obtained in this way.

The ratio of any two of these is an elliptic function of log z.

Proof. The critical point h of G(z, t) satisfies the inequality

- t£ h ^ - r1'2 (r1'2 < t),

(4.12.1)
- r1'2 £ fi S - J (/ < r1/2).

This follows from the work of Walsh ([20, p. 266, Theorem 2], plus the con-

cluding remarks on p. 268 of [20]).

The Szego kernel function can be computed explicitly for the annulus by

normalizing the complete orthogonal set {zn},ra = 0, +1, ±2, • ■ • , over the

boundary [3, p. 77]. The result is

1   -A     (zt)n
(4.12.2) K(z, 1)=-!,; ■

2jt _„ 1 + r2n+1

(The series also converges outside D, for r2< | tz\ <1.) It is easily verified that

K(z, 0=0 if

(4.12.3) z = zi = -r/t (r<t<l).

A comparison of (4.12.1) and (4.12.3) shows that Case (a) occurs if and

only if t = rl/2.

Ii t^r1'2, our assertions therefore follow from Theorem 4.10 (iv), (v).

Suppose now that t = r112, so that h = zx= —t. In this case F (see 4.2) is

an extremal function. If/o is another extremal, with a zero at *, where x^t,

X9^—t (if x£5,/0 must have a double zero at x), set

(4.12.4) 0(z) = f0(z)/F(z).

Then 0 has the following properties: 0(0 = 1, 0 has a simple pole at  —t,

0(x)=O, and0(z)^O on B, by (4.7.6).

Conversely, if 0 is any function with these properties, we obtain an

extremal f0 by putting f0(z) = <p(z)F(z); for f0' (t) = F'(t) =a, and since | F(z) |

= 1 for all zEB we have

||/o||i = ||0||i = -£- f <b(z)P'(z)dz = 0(0 = 1,
lit   J B

the pole of 0 being cancelled by the zero of P' at —t.

Let

p(s) = s~2 + 23' {(s — mw — nw')~2 — (mw + nw')~2)

be Weierstrass'elliptic function, with  periods w = 2 log r, w' = 2iri, and put
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q(z) = j?(log z). Since &(s) is even, real for real s, and attains every value

twice in the period parallelogram, we see that q is schlicht in D (D cor-

responds to one half of the parallelogram). Also, q(z) is real on B and on the

real axis. Put

(4.12.5) ^(z) =  [q(z) - q(-t)Yx -  [q(x) - q(-t)]~l

and

(4.12.6) *C0 = *i(*)/*i(0-

If x is real, <p(z) is real wherever q(z) is. If — 1 ̂ x^ — r, </> is negative be-

tween x and —t, and non-negative on B; it is clear that <j> also has the other

desired properties.

On the other hand, if the problem can be solved for a given x, we can use

the mapping 5 = log z, extend <j> to an elliptic function in the 5-plane, use the

theorem that an elliptic function is determined (up to a multiplicative con-

stant) by the location and multiplicity of its zeros and poles, and conclude

that <f> must be of the form (4.12.6). But if xGD is imaginary, so is q(x), and

<p(z) cannot have real boundary values on all of B. If xG [r, 1 ], 4>(z) is positive

on one component of B and negative on the other. If xGB, <f> has a double

zero at x; but 0'(z) =0 at z=l, — 1, r, — r only.

4.13. If t^rm, then g(w) =0 for some wGD, whereas g has no zero in the

closure of D if t = rV2. We wish to conclude by showing what happens to this

zero as t—>rl/i.

Suppose t^r112. First, g(z) is real for real z; for otherwise the function

g(z) would also be of the form (4.7.5), which would contradict the unique-

ness of g. Thus w is real. Similarly, f0(z) is real for real z.

We claim that —Kw<—r; for if r<w<l, the function h(z)=fa(z)g(z)

would change sign in (r, 1), so that h(z) could not be positive on both com-

ponents of B. Let

u(z) = log I g(z) I - log a = G(z, w) - G(z, t) - G(z, h),

so that

(4.13.1) If g&= log I »|- log'- log 1'^

2irJc dn log r

where C is the circle \z\ =r. Since exp (u+iv), where v is the conjugate of u,

is single-valued, the left member of (4.13.1) must be an integer m, so that

I iv I   = I th I rm.

Using (4.12.1) it is seen that m = 0 if t>rl/i, and that m=-l if t<r112.

It follows that w—> — r as t—+r112 from the right, and that w—>— 1 as t—>r112

from the left.
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