
MAXIMAL SETS OF INVOLUTIONS

BY

IRVING REINER

§1. Let U„ denote the unimodular group consisting of all nXn integral

matrices of determinant +1. An element WCUn is called an involution if

W2 = I{n) (the w-rowed identity matrix). We shall consider abelian sets of

involutions in Un of maximal size, and call such a set a maximal set. For a

given involution WC Un, define N(W) to be the maximum number of in-

volutions, all conjugate to W in Un, which can occur in a maximal set. Cer-

tainly N(W) depends only on the class of W in Un. We already know(x) that

as x, y, and z range over all non-negative integers such that 2x-t-y+z = n, the

matrix

/l    0 \   , .   /I    0 \   .
(1) W(x,y,z) = (^  _,) + ••• +(^  _) + (-I)™ + IM

(where x two-by-two blocks occur in the direct sum) gives a complete set of

nonconjugate representatives of the classes of involutions in Un. We shall ob-

tain a new proof of this result during our investigation of N(W).

§2. The analogous problem for the group E„ of rational nonsingular nXn

matrices has previously been considered(2). We quote some of the known

results:

Let V he the space of rational nXl vectors. To each involution W£E„

we let correspond the plus-space W+= {xC V: Wx=x}, and the minus-space

W~= {xC V: Wx= —x\. Then V is the direct sum of W+ and W~. If p is

the dimension of W+, and q that of W~, then p+q = n and we call W a (p, q)

involution. If W is a (p, q) involution, we may choose the coordinate system

in such a way that the first p columns of IM span W+, and the last q columns

span W~. This gives at once(3)

rE">     0   "j

~ L o -/<»>_].
Therefore, in E„ every (p, q) involution is a conjugate of the above matrix.

On the other hand, any decomposition V=A+B determines a unique involu-

tion WCRn for which W+ = A,W~ = B.

Presented to the Society, October 30, 1954; received by the editors September 25, 1954.

(') L. K. Hua and I. Reiner, Trans. Amer. Math. Soc. vol. 71 (1951) pp. 331-348.

(2) J. Dieudonn£,  Memoirs of the American Mathematical Society, no. 2,  1951; also

G. W. Mackey, Ann. of Math. vol. 43 (1942) pp. 244-260.
(s) Throughout this paper we shall use 0 to denote a null matrix of appropriate size.
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Next we have for a pair of involutions W, ZdRn-

(i) ZW= WZ if and only if ZIF+ = W+, ZW~ = W~.
(ii) ZIF = WZ implies

W+ = (W+ + Z+) + (W+ D Z"),

W~ = (IF- + Z+) + (IF- fl Z").

From these it follows that a set of m mutually commutative involutions gives

rise to a decomposition of Finto a direct sum of subspaces Vi, • • • , Vn, each

of positive dimension. If we choose the direct sum of some of the Vi as IF+,

and the direct sum of the remaining Vi as IF-, a unique involution IF is deter-

mined. Since the h spaces Vi, • • • , Vh can be grouped into two disjoint sets

in 2h ways, we can obtain at most 2h mutually commutative involutions from

this decomposition of F; therefore m ^ 2h. If we now take the Vi all of dimen-

sion 1, an abelian set of 2" involutions is generated, and this set is certainly

maximal in size. Thus a maximal set in Rn has 2" elements, and is gotten by

starting with any n linearly independent vectors vi, • ■ ■ ,vn in F, choosing as

basis for W+ any subset of these vectors, and letting the remaining vectors

serve as basis for W~. We shall say that the matrix with columns Vi, ■ ■ ■ , vn

generates the maximal set. Finally we observe that a maximal set contains

exactly Cn,P involutions of type (p, q).

§3. Let us call a maximal size abelian set of (p, q) involutions in R„ a

maximal (p, q) set. The above reasoning shows that a maximal (p, q) set con-

tains at least C„,p elements. We show now that there must be exactly C„iP ele-

ments in a maximal (p, q) set, and that such a set is embeddable in a uniquely

determined maximal set. For, suppose that we have an abelian set of m invo-

lutions of type (p, q), and that they give rise to a decomposition F= Vi+ • ■ •

+ Vh- Let nti>0 be the dimension of F,-. We obtain (p, q) involutions from

this decomposition by choosing for W+ those direct sums

Vu + ■ • ■ + Vi,

for which

m,+ • • • + niit = p.

Hence m cannot exceed the number of solutions of the above equation, so that

(2) m ^ coefficient of x" in (1 -f- xmi) •••(! + xmh).

On the other hand, the right-hand side of (2) is ^coefficient of xp in

(1 + x)mi •••(! + x)mh = (1 + x)n,

with equality if and only if each m, = l (except when p = 0 or q = 0). Thus

m^Cn,P, and furthermore m = Cn,P implies that each w, = l. Thus any max-

imal (p, q) set arises from a decomposition of F into n one-dimensional sub-

spaces by choosing, in Cn,P ways, any p of these subspaces to make up IF+,
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and using the remaining q of them for W~. This decomposition of V generates

a unique maximal set containing the given maximal (p, q) set.

§4. We now return to the unimodular group Un, and consider an involu-

tion WC Un. Since also WCRn, we may associate with W the pair of spaces

W+, W~. Let G denote the set of all nXl vectors with integral elements, and

define W+=W+r\G, W-= W~C\G. If W is a (p, q) involution, there exist

vectors Vi, • ■ • , vpCW+ which form an integral basis for W+, that is, every

vector in W+ is uniquely expressible as a linear combination of Vi, • • • , vp

with integral coefficients. Likewise there exists an integral basis for W—

In practice, these integral bases may be obtained as follows: let Xi, • • • ,

XpC V be a basis for W+. Since xCW+ implies axC W+ for rational a, we may

take Xi, • • • , XpCG, with each x* primitive(4). As b ranges over all integers,

let b0 be such that the greatest common divisor of the elements in the column

vector x2+bxi is maximal, say Co. Then replace x2 by (x2+boXi)/co, and repeat

the procedure with x3+biXi+b2x2, etc. The integral nXp matrix whose col-

umns are the p vectors finally obtained by this procedure will be primitive(4),

and its columns will furnish an integral basis for W+. In fact, a set of p vec-

tors yi, • • • , yPCW+ is an integral basis for W+ if and only if the matrix

(yi ■ ■ ■ yv) is primitive(6).

§5. We have thus shown that to each involution WC Un there correspond

two primitive matrices pnXp and Q"Xo, whose columns give integral bases for

W+ and W-, respectively. Set T=(P Q); then we see that T=(P Q) and

Ei = (Ei Qi) arise from the same involution in Un if and only if there exist

matrices RCUP, SCUq such that Pi = PR, Qi = QS. Furthermore, T=(P Q)

and Ti = (Pi Qi) arise from conjugate involutions if and only if there exist

matrices A C U„, RC Up, SC Uq such that

/E   0\
Ei = APR, Qi = AQS, that is, 2\ = AT I        J.

Theorem 1. Using the above notation, let T=(P Q) arise from an involution

WC Un- Then the invariant factors of T are 1, ■ • -,1,2, ■ • • , 2, and the num-

ber of 2's is at most min (p, q).

Proof. Let N be the module consisting of all integral linear combinations

of the columns of T. The invariant factors «i, • • • , en of Ehave the property

that there exists an integral basis «i, ••-,«„ of G for which dUi, • • • , enun

is an integral basis of N(6). As we shall show in a moment, uCG implies

2uCN. From this we have at once that each e» is 1 or 2.

(4) An integral matrix is called primitive if the greatest common divisor of its maximal size

minors is 1.

(5) See H. Weyl, Trans. Amer. Math. Soc. vol. 48 (1940) pp. 126-164; also C. L. Siegel,
Geometry of numbers, New York University notes, 1946.

(6) van der Waerden, Modern Algebra II, 2d ed., Chap. XV.
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For any udG we write

2u= (I + W)u + (I - W)u.

Since (I+W)udW+, and (I-W)udW-, we have 2udN.

Finally, P and Q are both primitive, so the pth and qth determinantal

divisors of P are both 1. Therefore ei= • • • =ep = l, ex= • • • =e4 = l, so

the number of invariant factors which are 2 is at most min (n—p, n—q)

= min (p, q).

Definition. If there are x 2's occurring as invariant factors of T, we shall

say that W is a (p, q; x) involution.

We now assert that two involutions are conjugate in Un if and only if

they are of the same type. It is easy to see, using the criterion for conjugacy

given at the beginning of this section, that conjugate involutions are of the

same type. The converse will follow from:

Theorem 2. Let Wd Un be a (p, q;x) involution. Then in Un, Wis conjugate

to W(x, q — x, p—x) (see Equation (1)).

Proof. We shall give a proof which does not depend on the result stated

in §1. Let IF be a (p, q; x) involution, and let T=(P Q). The matrix P may be

replaced by

/R  0\
Ti = ATl        J,    A d Un, Rd Up,Sd u„

without changing the class of IF. Since P is primitive, we may choose AdUn

so that T becomes

Lo        Q J'
Now replace T by

rPp)  o I rp»>  Qx~\riM   on
Ax d Uq, B d l\.

Lo    ^JLo     qJLo     by

This replaces Q2 by AXQ2B, and by proper choice of Ax and P we may diagonal-

ize Q2. Since none of these operations affects the invariant factors of T, it

follows at once that Q2 has (q — x) l's and x 2's along its main diagonal. Hence

we may take

v<»>     Q%      <?4 "

T =      0     P*-*>       0     .

. 0 0        27<*'_

Replacing T by
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"/'»'     -Qz      C ~

0      /C*-«>      0     T,

_ 0 0        /<»>_

we may make (?3 = 0, and reduce the elements of Cm (mod 2). Next replace

T by XPX-1, where X^At+I^-^+B-1 with i2G(/p, BG^. Then Qt is
replaced by .djQiP, and can be diagonalized. As above, reduce the elements of

Qi (mod 2), so that Qi is now a diagonal matrix with diagonal elements 0's

and l's. None of them can be 0, since under all of these transformations each

column of P remains primitive. Therefore T becomes

r o      p*n
o       o

o    /<«-*>    0

_ 0 0        2P*>_

and so IF is conjugate to

r o     -/<*n
T'p)

0 0

0      _/<»-*)      o

_ 0 0        -/<*>_

This latter matrix is clearly conjugate in Un to JF(x, g — x, p — x).

§6. We shall now prove a result which is roughly the converse of Theorem

1, and which eliminates a great deal of computation in what follows.

Theorem 3. Let M be an integral nonsingular nXn matrix with invariant

factors 1, • • • , 1, 2, • • • , 2, where k l's and (n — k) 2's occur. Let Mxx"1 con-

sist of any nx columns of M, and let MS*"2 consist of the remaining n2 columns

of M. Then the involution W for which W+ is spanned by the columns of Mx,

and W- by those of M2, is an involution in Un- Furthermore, if m< = rank (mod

2) of Mi (i = l, 2), then Wis of type (nx, n2; x) with x = mx+m2 — k.

Proof. 1. We show firstly that IF is integral. Let e, be thej'th column of

Pn). Since the invariant factors of M are l's and 2's, 2e,- is an integral linear

combination of the columns of M. Thus

2ej — ux + u2,

where wt is an integral linear combination of the columns of Mf (i = l, 2). But

then

Mi — M2

We, =- = gy — u2.
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Therefore We,, thej'th column of W, is integral. This holds for each j; hence

W itself is integral.

2. By the 2-rank of an integral array, we shall mean the rank (mod 2) of

that array, that is, its rank over GE(2). Since the &th determinantal divisor

of M is 1, the (& + l)st 2, we see that the 2-rank of M is k. Consequently

mi+m2 — k.

3. Suppose now that by elementary operations(7) on the columns of M,

a new matrix N is obtained having a column 2m, uCG. The matrix Ni gotten

by replacing 2u by u then has invariant factors 1, • • • , 1, 2, • • • , 2, where

now (k + 1) l's occur.

On the other hand, elementary operations on the columns of M cannot

produce a matrix Mi having a column 4m, uCG. For in that case, letting

xi, • • • , x„ be the columns of M, we have

4m = aiXi + ■ ■ ■ + anx„,

where oi, • • • , an are integers whose greatest common divisor is 1. But since

M has invariant factors l's and 2's, we have

2m = bxxi + ■ ■ ■ + b„xn

for some integers bi, ■ • ■ , bn. From the linear independence of X\, • ■ • , xn

we obtain a, = 2&,- (i = l, ■ ■ • , n), contradiction.

4. Now let M be partitioned into Mi and M2 as in the hypothesis of the

theorem. In general, Mi will not be primitive; in fact, we may rearrange the

columns of Mi (thereby leaving unchanged the space spanned by its col-

umns) so that the first nil oi them are linearly independent (mod 2), and the

remaining ni — mi of the columns will then be linearly dependent (mod 2) on

the first Wi columns. By further elementary operations on the columns, we

may take the last ni — mi columns in the form 2vi, v(CG (i = mi + l, ■ ■ • , «i).

Upon replacing each column 2vt by Vi (i = mi + l, • ■ ■ , «i), we obtain a

"reduced" matrix If i whose first Wi columns, Mi, • • • , umi, coincide with those

of Mi. We now verify that Mi is primitive, and for this it suffices to show

Mi primitive (mod 2). If this were not the case, we would have a relation

ml n\

^Z aiui +    zZ   aivi — nuu vector (mod 2),
t=l i^m^l

where each a* = 0 or 1, and at least one a, = l. Not all of the last (ni — mi) a<'s

vanish, since wi, • • • , umi are linearly independent (mod 2). Multiplying the

above congruence by 2, we obtain

mi ni

2   23 aiui +    zZ   aiui — null vector (mod 4).
t=l .-!»,+1

(') See C. C. MacDuffee, The theory of matrices, Springer, 1933, p. 32.
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Hence, elementary operations on the columns of Mx yield a column of the

form 4m, udG. This is impossible, since the columns of Mx are also columns

of M. Therefore Mx is primitive.

5. In the same manner we get a reduced matrix M2 from M2; set

T=(MXM2). The columns of Mx furnish an integral basis for IF+, those of

M2 for IF_. We have made (nx — mx)+(n2 — m2) divisions by 2 in passing

from (MXM2) to (MiM2), so P has invariant factors 1, • • • , 1, 2, • • • , 2,

where the number of 2's is

(n — k) — («i — mi) — (n2 — m2) = mi + m2 — k.

This completes the proof of the theorem.

§7. We now consider maximal size abelian sets of involutions in Un; every

such set is also in P„, hence cannot contain more than 2" elements. On the

other hand, there certainly exist maximal sets in Un containing 2" elements;

for example, such a set is the set of diagonal matrices with + l's as diagonal

elements. Thus, we shall consider abelian sets of 2" involutions in Un- From

the discussion in §2, every maximal set in Un arises from a generating matrix

M consisting of n linearly independent primitive column vectors Mi, • • • , un,

by choosing in all possible ways a subset of the m,'s as basis for W+, and the

remaining m/s as basis for IF-. We shall call M permissible if the 2" involu-

tions which it generates are all integral. Examples easily show that not every

integral M is permissible.

Suppose now that the permissible generating matrices M and Mx give

rise to two maximal sets: Wx, ■ ■ ■ , W2*, and Zx, ■ ■ ■ , Z2«, respectively. If

there exists a matrix Yd Un such that the Wt's are a rearrangement of the

matrices YZiY"1, we call the two maximal sets conjugate, and say that Mand

Mx are equivalent (denoted by M~MX).

Theorem 4. Let M and Mx be permissible generating matrices. Then

M~M\ if and only if there exist matrices A G Un, Bd Un (where B is gotten from

/(") by permuting columns, possibly changing their signs), such that MX—AMB.

Proof. The sufficiency of the condition is obvious. To prove necessity,

let Wi, ■ ■ ■ , Wn be the (n — 1, 1) involutions in the first maximal set, and

suppose them numbered so that m,-, the ith column of M, is basis for W^. Re-

number the Z's so that Z,= FIF.F-1; then Zi, • • • , Z„ are also (n—1, 1) in-

volutions. Permute the columns of Mx so that »,-, the ith column of Mx, is

basis for Z4~. Then Wnn=— u{ implies Y~1ZiYui= — m,-, so ZiYui= — Yu{.

Therefore i\= + Fm,-, and so, after changing the signs of some of the Vi if

necessary, we have Mx = YM. This completes the proof.

In Rn any two maximal sets are conjugate; simple examples show that

this is no longer the case in Un- We seek a complete system of nonequivalent

permissible generating matrices. We may remark at once that M~Pn) if

and only if M is unimodular. Further, M~MX implies that M and Mx have
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the same invariant factors. This condition is not sufficient, however, as the

example

~1   0   11 ri   0    1~

¥=010,        Mi =    0    1    1

_0   0    2j |_0   0    2_

shows. The maximal set generated by M contains ±1, two each ±(2, 1; 1)

involutions, one each ±(2, 1;0) involutions. That generated by Mi contains

±1 and three each +(2, 1; 1) involutions. Hence the maximal sets are not

conjugate.

§8. In order to simplify the statement and proof of the next theorem, we

introduce here the following four operations on an integral rXs array E:

(i)  Replace R by T, where T=R (mod 2).

(ii) Permute the rows of R.

(iii)  Permute the columns of R.

(iv)  If E is of the form

replace R by

r'   « 1.
l_ — v   S — vuj

Or, more generally, if R = (aij) and some apq=l, perform the corresponding

replacement where now u represents the pth row from which apq has been

deleted, v the gth column from which apq has been deleted, and 5 the (r — 1)

X(s — 1) array obtained by deleting the pth row and 5th column from E(8).

We call two r Xs arrays related if one can be obtained from the other by a

finite number of operations of the four types just described. It is easy to see

that being related is an equivalence relation.

Theorem 5. Every permissible generating matrix is equivalent to one of the

form

r/(r)      R   l

where the elements of R are O's and l's, and where R has no zero columns. Every

matrix of this form is permissible. Furthermore, two such matrices

(8) The case first illustrated is that where p = q = l. The more general case could have been

reduced to the case p = q = l, by use of operations (ii) and (iii).
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r/(D R    -j rj(0 T    "J

L 0       2/(""')J    ̂       L 0       2E"-')J'

arc equivalent if and only if r=t and R is related to T.

Proof. 1. The generators equivalent to the permissible generator M are

given by A MB, where A C Un and where E permutes the columns of M, pos-

sibly changing some of their signs. Let Mi = AM, ACUn; by suitable choice

of A, we may take Mi in Hermite canonical form:

di    di2 • • • din~

0     d2 • ■ ■ d2n
Mi =

J

-0 0       •   •   •   dn _

with each di>0 (i = l, ■ • ■ , n), and each <f,-,- reduced (mod d,) (i<j; i, j

= 1, • • ■ , n). Since the first column of M is primitive, we have di — 1. Sup-

pose that exactly r of the diagonal elements di, ■ ■ • , d„ are 1; by permuting

rows and permuting columns, we obtain from Mi the equivalent generator

-/(D R

dr+l - • " «r+l,n
M 2  =

0.

0 • • •      dn    _

The matrix M2 is equivalent to the permissible generator M, hence it too

is permissible. In particular, if we choose the first r columns of M2 as basis

for W+, the remaining n — r columns as basis for W~, and construct a reduced

matrix Af2 (as in the proof of Theorem 3) whose first r columns form an

integral basis for W+, and whose last n — r columns form such a basis for W-,

then the invariant factors of M2 must be l's and 2's. However, in this reduc-

tion of M2 to M2, the first r + 1 columns are unchanged. Upon subtracting

from the (r + l)st column of M2 suitable multiples of each of the first r col-

umns, a column vector is obtained all of whose elements are multiples of dr+i-

On the other hand, M2 has as invariant factors only l's and 2's, and so (as in

Part (3) of the proof of Theorem 3) we conclude that dr+i = 2. Next choose the

first r + 1 columns of M2 as basis for W+, the remaining columns as basis for

W~; then the same type of argument shows that dr+2 = 2. Continuing in this

manner, we obtain finally dr+i=dr+2= • ■ • =dn = 2.

Next we show that <£,-,-= 0 for r<i<j. For fixed i>r, let j>i be minimal

such that dn= 1. (Certainly each such dtj is 0 or 1, since it is reduced modulo

dj.) Upon interchanging the ith and jth columns of M2, we obtain the equiv-

alent generator
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! J ~
/to...: :...

Ms= 1    0 • • • 0    2 • • •     i

0   • • • • •

2        • • •       6 • • •    j.

By subtracting from the (* + l)st, • • • , jth rows suitable multiples of the ith

row, a new generator 71^4 is found, where

i j

/(d . . . :

Mi =      1          1 0 ■ ••0   2 • • •     i

0

0   • • • • ■

0 ...   -4-.-    j.

But Mi is a permissible generator, and is triangular. The above discussion has

already shown that the diagonal elements in such a matrix are l's and 2's.

This gives a contradiction; therefore each <£,-,• = 0, r<i<j. Thus we have

rP')      r   i

L 0      2/<—'>J

where each element of P is reduced (mod 2) and so must be 0 or 1. Further-

more, R has no zero column, since the column vectors of the original matrix

M were all primitive. This completes the proof of the first statement in the

theorem.

2. The matrix given by (3) has invariant factors l's and 2's. Therefore,

by Theorem 3, it is permissible.

3. Since equivalent generators have the same determinant, the two gen-

erators given by (4) cannot be equivalent unless r = t. Suppose hereafter that

r = t. We show now that if R and T are related, the generators are equivalent.

(i)  If R=T (mod 2), set P=P+25. Then

VI     PI      VI   SI VI     TI

Lo    27"J ~~ LO    7j LO    27j'

(ii) If R = PTQ, where P permutes the rows of T, Q the columns of P,

then
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VI    RI _ VP    0 "j VI     TI vp-1   on

Lo    2lj ~ Lo    Q-1} Lo    2/J Lo       QJ '
(iii)  If T is obtained from R by an operation of type (iv), we may assume,

after repeated use of operations (ii) and (iii), that

ri   mi r   l      u   n
R = and    T =\ \,

Lv   Sj [_ — v   S — vuj

and we must show that

M = \ 1~| \ = N.
LO    27j      LO    27j

Let B be the permutation matrix which interchanges the 1st and (r + l)st

columns of M. Then

-1   0••-0    1 u    ~

0

v Z<-» •          51

MB = 0

2 0---0 0 0---0

0 0---0 0 2---0

_0   0 • • • 0    0    0 • • • 2_

Premultiplication of MB by

_    1    0 • ••<r

— v

Ai =     -2

0      7>-D

_    0

gives

-/cr) r    -

-2    0---0

AiMB = 0

0 27

0
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so there exists a matrix ACUn such that

(5) AMB = N.

Therefore Af~/V. (We shall have occasion to use the above discussion again

in the course of this proof.)

4. We must now prove, conversely, that if

r/(r)       R   1 rEr)        T   "1

(6) = A\ \B,L 0      2/<"-'->J          L 0      2E"-r>J

where ACU„, and where E permutes columns (possibly changing their signs),

then E and T are related. We think of the columns of

L 0      2I<»-r>J

as partitioned into two sets, the first set consisting of the first r columns of N,

the second of the last (n — r) colunns. We say that E displaces a column of TV

if it moves the column out of its set. We now proceed by induction on the

number of columns in the first set which B displaces.

If E does not displace any of the first r columns of N, we may write

E = C^ + C^"-^, where each C,-is a permutation (and possibly sign-changing)

matrix. We then obtain

rf   ei        rCi   oi rd"1    oir/   rirCi   oi

Lo    2/J ""      L 0    CJ L 0      ClJ LO    2/J L 0     C2\

ri C: Vc2i        r/   En

= ̂ L0      2/      J=Ho    2/J'
where Ti = Ci1TC2 is related to T, and A2CU„. From the uniqueness of

Hermite canonical form, we see at once that R=Ti (mod 2), so that E is

related to Ti. Hence R and T are related.

Suppose now that E displaces some of the first r columns of N, and (for

simplicity in exposition) suppose that the first column of N is displaced by

E. Then at least one of the last (n — r) columns which B displaces must have

1 as its first component; for otherwise, the 2-rank of the first r columns of

LO    2/J

would be less than r, while on the other hand these first r columns are also the

first r columns of

""to    2+
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and hence have 2-rank equal to r. Let us suppose that the qth column of

N (q>r) has 1 as its first component, and is displaced by P. Let Pi be the

permutation matrix which interchanges the 1st and gth columns of a matrix;

by the argument in Part 3, there exists a matrix A3dUn such that

LO    27j LO    27j

where Pi is related to T by an operation of type (iv). Hence (6) becomes

[        1 =AAf1\       Msr'P,
Lo    27j LO    27J

that is, we get a new equation in which Pi is related to P, and where BX1B

displaces one fewer of the first r columns than P does. This completes the

proof of the theorem.

§9. While we are now in a position to find complete sets of nonequivalent

generators, it will be more convenient to prove a type of duality theorem first.

Let Wx, • ■ • , W2n be a maximal set in £/„. Then the set of their transposes

W{, • • ■ , W'2n is also a maximal set in U„. Furthermore, if IF is an involution

of type (p, q; x), so is IF'. Thus the two maximal sets contain any given type

of involution equally often, so that many times it will be enough to consider

only one of the pair of sets.

Theorem 6. The permissible generating matrices

rPr)        R    ~\ r27<r>        0   1
M =\ \    and    Mi = \L 0      2/<»-'>J L-P'    7<"-r>J

give rise to two maximal sets; the elements in one set are the transposes of the ele-

ments in the other set. Furthermore,

r/Cn-r) R>   -1

M i ~ M * =
L    0        2/wJ

Proof. As D ranges over all 2" diagonal matrices with diagonal elements

+ 1, the involution IF defined by

(7) WM = MD

ranges over the 2" elements in the maximal set which M generates. From (7)

we obtain

W'-W-1 = M'-W-K

However, PF"1 = IF and D'-1 = D. Thus

WM'-1 = M'-'D.

But if
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ri   Ri l r 2/    on
M =\ ,    then    M'-1 = —

LO    2/J 2 L-E'    /J
so that

W'Jf i = MiD.

Hence the elements in the set which Mi generates are the transposes of those

generated by M. The last statement, Mi~M*, is trivial.

We shall say that iii" and M* are dual generators. It might be well to point

out that although R has no zero columns, R' may very well have such. In

this case, we merely make each column of M* primitive. For example,

~1    0    1    l-] TI    0    1    0_

0    10    1 0    111
M = ,    M* = ;

0020 0020

_0    0    0    2J |_0    0    0    2_

_i   o   i   in ri   o  o  o~

0    10    0 0    10    1
M = ,    M * ~

0    0    2    0 0    0    11

_0    0    0    2j |_0    0    0    2_

Thus, in the first case M is self-dual (up to equivalence). A consequence of

this result is that if the two generators given in (4) are equivalent, then E

and T must have the same number of zero rows.

§10. In this section we shall list complete sets of nonequivalent generat-

ing matrices, and the types of involutions in the maximal sets they generate,

for n = 2, 3, 4. Since in a maximal set the elements may be paired as + W, and

since the negative of a (p, q; x) involution is of type (q, p; x), we can list the

elements in a maximal set according to type +(p, q; x).

For n = 2, there are 2 nonequivalent generators.

(1    0\
I 1 generates 1 ±(2, 0; 0) involution, 2 (1, 1; 0) involutions.

(1     1\
I 1 generates 1 ±(2, 0; 0) involution, 2 (1, 1; 1) involutions.

For n = 3, there are 4 nonequivalent generators, given by

-l   o  oi ri   o   in ri   o   n n   1   l-

Mi=   0    10,   M2=   010,   M3=   011,   Mi=   020.

_0    0    lj Lo    0    2 J |_0    0    2j LO    0    2_

The types of involutions they generate are shown in the following table:
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Mi M2 Mz Mi

±(3, 0;0) 1 1 1 1

+ (2, 1;0) 3 1 0 0

±(2, 1;1) 0 2 3 3

We may remark that Mi and M2 are each self-dual, while Mz and Mi are

duals of one another.

For n =4, there are 8 nonequivalent generators, given by

-i o o on ri o o o~| ri o o on ri o o i-

0100 0100 0101 0101
Mi= ,   7kf2= ,   M3= ,   Mi= ,

0010 0011 0011 0011

_0 0 0 lj Lo 0 0 2j Lo 0 0 2j Lo 0 0 2_

"1 0 1 n   ri o 1 on   ri o 1 in   ri 1 1 r

0100     0101     0110     0200
Ms,= ,   Mo= ,   M7= ,   M» =

0020 0020 0020 0020

_o 0 0 2J Lo 0 0 2J Lo 0 0 2J Lo 0 0 2_

Mx M2 M3 Mi Af5 M6 Mi Ms

±(4, 0;0)     1     1     1     1     1     1     1     1        self-dual: Mu M2, Mo, M7

±(3, 1;0)     4     2     1     0     1     0     0     0
duals: M3 and M5, M4 and Mx.

± (3, 1; 1)     0    2    3    4    3    4    4    4

(2, 2; 0) 6 2 0 0 0 2 0 0

(2, 2; 1) 0 4 6 6 6 0 2 6

(2, 2; 2)     0    0    0    0    0    4    4    0

In order to find a complete set of nonequivalent generators for a given n,

we list for each r (1 ^r^n) a complete set of rX(#-r) arrays of 0's and l's,

having no zero columns, such that no two arrays can be gotten from one

another by row and column permutations. It is not too difficult to decide

whether two listed arrays can be gotten one from the other by use of type
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(iv) operations coupled with the other three types. By striking out all but

one from each set of related arrays, we obtain a complete set of unrelated

rX(n — r) arrays. As E ranges over all of these arrays, the matrix given by

r/(r>       E   1

(8) M =\ L 0      2E"-''J

gives nonequivalent generators. The totality of these for all r (1 ^rtsn) form

a complete set of nonequivalent generators.

We let C„ denote the number of nonconjugate abelian sets of involutions

in Un containing 2" elements; that is, C„ is the number of nonequivalent

nXn generators. The method described above can be used to show that

C5 = 16 and Cs = 36. (This last figure dashes one's expectations that C„ = 2n_1.)

However, to compute C„ by the above procedure is very tedious for large n.

It would be of interest to have a simple method for evaluating C„.

§11. Letf(p, q; x) be the maximum number of involutions of type (p, q; x)

which occur in any maximal set; this maximum need be taken only over a

complete set of nonconjugate maximal sets. Trivially/(£, q; x) =f(q, p; x)

g C„,„. We now note some partial results on the evaluation of f(p, q; x). By

considering the maximal set generated by En), we see that f(p, q; 0) = C„,P.

Further, this is the only maximal set (up to conjugacy) all of whose involu-

tions have x = 0.

Next set
"1     1 ••• 1"

0
M = 2E"-1>     .

_0

In the maximal set which M generates, every involution (except + /) has

x = l. Therefore f(p, q; l) = Cn,p for l^p^n — 1. Further, the maximal sets

generated by M and its dual M* are the only sets (up to conjugacy) all of

whose elements (except +/) have x = l.

For x>l, the problem of evaluating/(£, q; x) becomes more difficult. For

example, it may be shown that for fixed x>l, and fixed q>x, we have

f(n — q, q; x) < Cn,q for all sufficiently large n. On the other hand, let Vw de-

note a square matrix all of whose elements are +1, except for 0's along the

main diagonal. Set

r       i • • • n
M =\ or V

L 0     2/WJ
L    0 2E*>  _

according as n = 2k or n = 2k + l. Then the maximal set generated by M con-



1955] MAXIMAL SETS OF INVOLUTIONS 475

tains C„,2 involutions of type (n — 2, 2; 2) for «^6. In general it is true that

f(n — x, x; x) = C„iX for x< [n/2].

§12. We shall now characterize the +(« — 1, 1; 0) involutions in Un by

inner properties; however, we shall not give any group-theoretic method for

distinguishing between the (n — 1, 1; 0) and (1, n — 1; 0) involutions. For the

moment, take «>4. Then we show that f(p, q; x)>n except when (p, q; x)

=±(«-l, 1; 0), ±(»-l, 1; 1) or ±(n, 0; 0). Certainly/(£, q; 0) = C„,p>w

when min (p, q)>l, and alsof(p, q; 1) = C„,p>w when min (p, q)>l. We must

therefore prove that f(p, q; x)>n for 1 <x^q^p <n — l.

Let us write n=ax+b, 0^6<x. Since x^n/2, certainly a = 2. Define

/(*)      J(x)       J(x)   .   .  .   J(x)

M = 0     .

_ 0 27<"-*>

Case 1. <? Six-4-6. If we choose any q consecutive columns of M as basis for

IF", and the remaining p columns as basis for W+, then W is of type (p, q; x)

because the 2-rank of each of the two submatrices is x. Thus, the maximal set

generated by M contains at least n involutions of type (p, q; x). We may ob-

tain one extra (p, q; x) involution by choosing the 1st column of M instead

of the (x + l)st or (2x + l)st, etc., in one of the previously considered n parti-

tions of M. (This extra involution does not arise when w=4 and x = 2; in-

deed, f(2, 2; 2) =4.) Hence we havef(p, q; x)>n when g_x+6.

The same argument also works for x = 2 and x = 3 even when q<x+b,

provided that we change M by replacing

fll [10'

(7)by (!)•    >■-«•.
11J lo  i.

according asx = 2, b = l, orx = 3, 6 = 1, or x = 3, 6 = 2, respectively.

Case 2. Now let 4^x^q<x+b. Choose any x linearly independent col-

umns from the first ax columns of M, then pick q — x other columns from the

last 6 columns of M, and use these as basis for W~; let the remaining p col-

umns of M serve as basis for W+. Every such IF will be of type (p, q;x), and

there will be at least ax of them. Thus

f(p, q; x) ^ ax.

Since a 5:2, certainly f(p, q; x) ^2I>» when x>log2 n. When 4^x5Slog2 n, we

have

n                  n
a>-1 ^-1,

x log2 n

so that
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/    n \*       /    n \4

f(P,q;*) = (--i) =--i).
\log2 n        / \log2 n        /

However, it is easy to verify that

n
-1 > «1/4 for n ^ 9.
log2 n

Hence in all casesf(p, q; x)>n for w>4 except when (p, q; x) = + (n — 1, 1; 0),

or + (n — 1, 1; 1), or ± (n, 0; 0). On the other hand, when n = 4, the table in

§10 permits us to characterize the + (3, 1; 0) involutions by inner properties.

Now we may further distinguish the +(« — 1, 1; 0) involutions from the

+ (« —1, 1; 1) involutions by observing that all maximal sets containing n

involutions of type (n — 1, 1; 0) are conjugate, whereas this is false (for n>2)

for involutions of type (n — 1, 1; 1). For n = 2, other arguments may be used

to make this distinction(9).

§13. Define g(p, q; x) to be the maximum number of elements in a maxi-

mal (p, q; x) set. The previous discussion shows at once that f(p, q; x)

= &(P, T, x) ^ Cn,p. We remark that neither equality sign can hold in general.

For example, we have already shown that/(2, 2; 2) =4; we prove now that

g(2, 2; 2) =6. Let
-1111-

0    2    0    2
N =

0    0    2    2

_0    0    0    4_

The maximal set which N generates contains 16 involutions; of these, the 8

involutions of types ±(3, 1) are not integral, while the remaining 8 are +/

and 6 integral involutions of type (2, 2; 2). On the other hand, it is easy to

verify that g(3, 2; 2) <10. These remarks show that "maximal" sets in Un in

the sense of embeddability need not be maximal in size. It would be of inter-

est to investigate the structure of abelian sets of involutions in Un which

could not be embedded in larger sets.
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(9) Hua and Reiner, op. cit.


