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Suppose that a and p. are two distinct order types for which a <p(2). The

question of the existence of an order type t for which a<r<p is hereafter

referred to as "problem P." Whenever such an order type r exists we shall

say problem P admits of a solution. The two purposes of this paper are

(a) to study the order types of simply ordered sets of solutions to prob-

lem P, as applied to the cases where (I) <x is any linear order type and p. =X(3),

and (II) (r = 0, p, is any linear order type of power 2N°, and t is of power 2N»;

and (b) to study pairs of simply ordered sets whose symmetric difference con-

tains just two elements and whose order types are incomparable.

1. Exact sets.

Definition. A simply ordered set E is called exact if E is similar to no

proper subset of itself.

If E is exact, then the order type of E is called exact.

It is easily seen that E is exact if and only if each point of £ is a fixed

point of -E(4). It is also easily seen that if B is exact and A dB, then A < B.

The following two facts on exact sets are known [l ]:

A. There does not exist an exact set of N0 elements.

B. There exists a dense subset of R, of power 2N», which is exact.

The following result is immediately obtained from (I) of §2 of [3].

Theorem 1. If E is exact and F = E, then there is one and only one similar-

ity transformation g of E into F. Furthermore, g(E) = F.

Corollary. If E is exact and E = F, then F is exact. Furthermore, E = F.

Presented to the Society, February 28, 1953, under the title Incomparable order types and

September 5, 1953, under the title of Order types of simply ordered sets of solutions to problem P;
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(') In three previous papers [3; 4; 5] on order types, the author has made numerous refer-

ences to an article which had been submitted to another journal. Since that paper is not to

appear in the designated publication, its results, together with other material, have been

coalesced to form the present paper.

(2) Let A and_B be_two simply ordered sets, with A and B being the order types of A_ and B

respectively. Let A ^ B if there exists a similarity transformation of A into B. Let A = 23 if

there is_a similarity transformation of A into B and_a similarity transformation of B into A.

A and B are incomparable order types, denoted by ^4||2J, if therejs no similarity transforma-

tion of A into B and nosimilarity transformation of_B into A. If A =B is false, then A and B

are called distinct. Let A <B if A ^B, but A and B are distinct. See [ll].

(3) By R is meant the set of real numbers, ordered in the natural manner. By X is meant the

order type of R. By linear set is meant any subset of R.

(4) p is a fixed point of E if f(p) =/> for each similarity transformation f oi E into E.
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We now consider some other properties of exact order types.

Theorem 2. // a and 8 are exact order types, then so is ct+8-

Proof. Let A and B be two sets such that A=a and B=8 and such that

A +B is an ordered sum(6). Let/ be a similarity transformation of AKJB into

a proper subset of AKJB. Suppose that/04) is a proper subset of A. Then this

contradicts the fact that A is exact. Therefore/(E) is a proper subset of B.

But this contradicts B being exact. Therefore no such similarity transforma-

tion can exist, i.e., A + B is exact.

Since a finite ordinal number is exact we get

Corollary 1. If a is exact and n is a finite ordinal number, then n+a and

a+n are both exact.

It is easily seen that the converse to Theorem 2 is also true, i.e., if y is

exact and y =a+8, then both a and 8 are exact. From this we infer

Corollary 2. If A is exact and B is a finite set, then A^JB and A—B are

both exact.

From Theorem 2.2 of [3] and Corollary 2 above we get

Theorem 3. Let y =a+8 be exact. Then problem P, as applied to a =y and

p =a+n + l +8, admits of precisely n distinct solutions. These are r=a+j + l

+8, where j<n. Problem P, as applied to <r=y and p,=a+ui+8, admits of

precisely No distinct solutions. These are r=a+n + l+8, where n<co.

In preparation for Theorem 4 we state Lemma 1. The proof of this result

follows from the well known Cantor-Meray process for completing a space.

Lemma 1. Any simply ordered, dense set B(6), with no first and no last ele-

ment, is similar to a set A which is topologically dense in R.

Corollary. Let B be a nonempty simply ordered set such that each point of

B is a two sided limit point of B. Then B is dense and thus similar to a topo-

logically dense subset of R.

We shall call p a right sided (left sided) c-condensation point of the linear

set E if, for each real number y, where y <p (p<y), the open interval (y, p)

((P, y)) 0I E contains 2^° elements of £. A point which is both a right sided

and a left sided c-condensation point of E shall be called a c-condensation

point of E.

(6) By the ordered sum of the family {Ea j aCA} of pairwise disjoint sets, where A is simply

ordered, is meant the set C=U„gx Ea, the elements being ordered as follows. If u<v in £„,

then u <v in C. If u is in E„ and v is in Eb, where a <b, then u <v.

(6) A simply ordered set E is dense if, for each pair of elements x and y in E, x<y, a third

element z in E can be found so that x<z<y.
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A linear set, of power 2t<°, is said to have property C if each point of E is

a c-condensation point of E.

Turning to problem P we have

Theorem 4. Let E be a linear set of power 2^°. Then problem P, as applied

to a = 0 and p=E, admits of a solution t, of power 2*°, which is exact.

Proof. Let B be the set of c-condensation points of E which are in E. The

set B satisfies the hypotheses of the corollary to Lemma 1. Hence there exists

a similarity transformation h of B onto a dense subset G of R, each point of

G being a c-condensation point of G. If A is an exact subset of G, of power

2s", then by Corollary 2 of Theorem 2, A — {p} is exact, p being a point of A.

Since A is exact, A — {p\ <A. Then t = A — {p} will satisfy the conclusion

of the theorem. The construction of an exact subset of G, of power 2K°, has

been given in several places already, for example Theorem 1.1 of [4]. In each

case the proof has been quite complicated since other properties were de-

manded. Accordingly, we now present a simple proof that G contains an

exact subset of power 2N».

Denote by K*(G) the set of those similarity transformations of G into R

which are not the identity transformation. Well order the elements of R and

K*(G) into the two sequences {xj}, %<6, and {/{}, £<0(7), respectively. By

transfinite induction we define a subset of G as follows:

Let u0 be the first element for which/0(x)^x and let va=fo(u0). Since/0

is not the identity transformation of G the element u0 certainly exists. Sup-

pose that Mf and zi$ have been defined for£<a<0. Since fa is a similarity trans-

formation of G, the set of those points x for which/„(x) =x cannot be dense in

G. Thus there exist two real numbers, aa and ba, where aa<ba, such that

fa(x)^x for x in Ha, Ha being defined as the set GC\{y\aa<y<ba\. Since

each element in G is a c-condensation point of G, the power of Ha is 2N°. Now

the power of the set

Sa = {m{|£< a} VJ {»t|{< a}

is smaller than 2K». Hence there exists an element x in the set Ha—[Sa

^,/«1('S'a)](8)- Let u* be the first such element, and va=fa(ua). Let

A = {u(\t:<6}.
If / is any interval in R, then there exists a similarity transformation of

G into R which is the identity on G—J and is not the identity on JC\G.

Thus there exists an ordinal number a for which ua is in GC\J, i.e., A is a

dense subset of G.

It now follows that the set A is exact. For if / is a similarity transforma-

tion of A into R which is not the identity, then / can be extended to be an

element/,, of K*(G). Therefore the element f(ua) =fa(ua) is not in A. Thus

(') By 0 is meant the smallest ordinal number whose power is 2Ko.

(8) By/-1 is meant the inverse function of/.
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there is no similarity transformation of A into itself which is not the identity,

i.e., A is exact.

2. Property A.

Definition. A linear set £ is said to have property A if the power of £

is 2^°, and no two disjoint subsets of £, of power 2K° each, are similar. If £

has property A, then £ is said to have property A.

The existence of a set having property A was first shown in [2, pp. 609-

610] and [ll, pp. 263-264]. We shall show that if £ is any linear set of power

2^°, then problem P, as applied to <r = 0 and p. = £, admits of a solution t

having property A. The proof differs from that given in [2] and [ll].

Lemma 2. Let Ebe a linear set andfa similarity transformation of E into R.

Then f can be extended to be a similarity transformation into R of some Borel set

B which contains £.

Proof. Let E* be the topological closure of £, and A the set of one-sided

limit points of E* which do not belong to £. Now A is enumerable [6, p. 171 ].

Therefore, if B =£* — A, then B is a Borel set which contains E. Let g be the

function which is defined by g(y) =f(y) for y in E, and g(y) =limI.v-/(x) for y

in B-E.
Let m and v, where u<v, be any two elements of B. Clearly g(u) ^g(v).

If u and v are each elements of E, then g(u) <g(v). If at least one of the two

points is in B — E, then since it is a two-sided limit point of £* and thus of

£, it follows that there exist two points, x and y, of E, such that u <x <y <v.

Then
g(u) ^ g(x) < g(y) g g(v).

Thus g is a similarity transformation of B into R.

Theorem 5. Let E be any linear set of power 2N°. For a = Q and p. = E,

problem P admits of a solution t which has property A.

Proof. By Theorem 1 of [ll], there exists a subset Q of E, of power 2**°,

such that Q<E. It will be sufficient to show that Q contains a set which has

property A.

Denote by V the set of those Borel sets B in R for which the power of the

set BC\Q is 2K». For each element B in V let L(B) be the set of those similarity

transformations f oi B into R for which the power of the set {x|/(x)^x,

xCB(~\Q) is 2N». Denote by S the set of couples,

S= {(B,f)\BCV,fCL(B)}.

The power of the set S is 2K°. Well order the elements of Q and 5 into the two

sequences {xj}, £<0, and {sj}, £<0, where si = (Bi, /{). For each function/{

define Jj to be the set

Ji{x\fi(x) ?± x, xC 5jPi<3}.
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Denote by p0 the first element in J0- Now suppose that the element pi has

been defined for each £<a, where a<6. Let Pa= {pt\%<ce}, and pa be the

first element in the set Ja — Da, where

d. = p.wu /t(p«) w u frKPa).

The element pa certainly exists since the power of Ja is 2S° and the power of

Da is <2«o.

Denote by M the set ikT= {/>j||;<0}. Suppose that E and G are two dis-

joint subsets of M, of power 2N» each, and that/is a similarity transformation

of E onto G. By Lemma 2, / may be extended to become an element of

L(B() for some ordinal number £, where B( is an element of V which contains

the set E. For each element pa in F consider the element ft(pa), where £ <<x.

As/j maps Eonto G,f((pa) T^pa- For each ordinal number 5>0, pa+s is not an

element of the set/{(£„+«)• Since pa is in Pa+s, f^(pa)y^pa+i. Suppose that

fi(Pa)=py, where 7<a. Then fi(pa) is an element of P„, so that pa is an

element of/f1(Pa). But this contradicts the manner in which the element pa

was selected. Thusfi(pa) T^py for y <a. Therefore, for pa in E, fi(pa) is not an

element of M if £<a. Consequently the power of the set ft(F)(~\M must be

<2"». But fi(F)r\M = Gr\M = G, and the power of G is 2«». From this con-

tradiction, we see that the two sets E and G cannot exist, i.e., the set M has

property A. Q.E.D.

Remark. The above demonstration furnishes yet another proof of Theo-

rem 1 of [ll ]. To see this define Q to be the set of c-condensation points of E

which are in E, and obtain M as in the theorem. Let M be the union of two

disjoint subsets T and U, of power 2X» each. The set T has property A, and

as is easy to see, T<Q<E.

3. Order types of simply ordered sets of solutions to problem P. The

following known result will be used: If £ has properties A and C, then £ is

exact [3].

Suppose that <r is any order type which is <X. By Theorem 2.4 of [3],

or by the remark at the end of §2, there exists an exact subset E of the open

interval (0, 1) for which a<E. Let X be a subset of the open interval (1, 2)

which has properties A and C. It is well known that X is the union of two

disjoint sets U and V, each having property C and each dense in X. Let K

be any subset of V. The set UVJK has properties A and C, and hence is

exact. Therefore, by Theorem 2, the set EUU^JK is exact. From this we

see that if K and L are any two subsets of V such that KCL, then

£W UKJK < 'E\J~Ur\JL.

Now let Y be any abstract set of power 2K», and II a simply ordered family

of subsets of Y. Since Y and V have the same power, there exists a one to one
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function of Y onto V. From the discussion it follows that the family H is

similar to the set of order types

{P\P = E\J UVJ f(M), M dE)

under the mapping which takes M into £U UUf(M). This implies that prob-

lem P, as applied to any order type a which is <X, and ju=X, has a simply

ordered set, which is similar to H, of exact solutions, each solution being of

power 2N». While not used in the sequel, it is true that the mapping which

takes M into E\JU^Jf(M) has the following property:

The mapping is a one to one, order preserving function, of the family

{m\MCLY} onto the set {t\ EUH^t ^eUUXJV}. Furthermore, the in-

verse function is also order preserving.

To see this it is sufficient to show that if r is any order type for which

ETJU<t<eTTuUV, then there exists a subset K of V such that

t=EUTJUK. Let F be a subset of £W[/U7 such that F=t. Let B and

W be two subsets of F, with E = B and U = W, such that B^J W is an ordered

sum. Hence BVJW is a subset of EKJU^JV. First suppose that B is a sub-

set of E. Since E is exact and B = E, it follows that B=E. This implies

that W is a subset of U^J V. Now the set IAJ V has properties A and C,

while W has the property that for any two elements a and b in W, the

power of the set {x\a<x<b, xdW] is 2N». From this we see that each

element of W must be a fixed (W, U^JV) point(9). As W=U, it follows

that W=U. Consequently, for some subset K of V, F = EVJUVJK. Suppose,

on the other hand, that B is not a subset of E. Then IF is a subset of ITU V.

As above we see that W=U. Therefore B is a subset of E. From this we see

that F = EUUUK for some subset K of V.
Now let a be any linear order type of power 2Ko. Let D be a linear set

whose order type is a. D contains a set E which has property A, by Theorem

5. Let X be the set of c-condensation points of E which are in E. The set X

has properties A and C. Repeating the procedure given above we see that the

mapping which takes M into UUf(M) is a one to one, order preserving func-

tion, of the family { Af| Af C F} onto the set {t\ U^t= UUV}. Furthermore,

the inverse function is also order preserving. From this we see that problem

P, as applied to <r = 0 and p = a, has a set, which is similar to H, of exact

solutions, each solution being of power 2**°.

Summarizing the preceding discussion we have the following two results:

Theorem 6. Let a be any order type which is <X. Let Y be any set of power

2S° and H a simply ordered family of subsets of Y, ordered by set inclusion. Then

problem P, as applied toa=a and p. =X, admits of a set, which is similar to H, of

exact solutions, each solution being of power 2M°.

Theorem 7. Let a be any linear order type of power 2N°. Let Y be any set

of power 2N° and H a simply ordered family of subsets of Y, ordered by set in-

(9) See §4.
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elusion. Then problem P, as applied to <r=0 and p, = a, admits of a set, which

is similar to H, of exact solutions, each solution being of power 2K°.

Theorems 6 and 7 yield several consequences. For example, let Y=R and

let 5 be the set of rational numbers ordered in the natural manner. Denote

by H the family of sets

H = {Ex\xCR;Ez = {y\y < x,yCS}}.

The order type of H is X. Consequently we obtain

Theorem 8. Let a be any order type which is <X. There exist two linear sets

E and F, where ECF and F—E is denumerably infinite, with the following

two properties: (1) a<E<F<\; and (2) problem P, as applied to a = E and

p, = F admits of a set, of order type X, of exact solutions, each solution being of

power 2K°.

Corollary. Let a be any order type which is <X. For each linear order

type 8, problem P, as applied to cr = a and p, =X, admits of a set, of order type /3,

of exact solutions, each solution being of power 2**°.

Theorem 9. Let a be any linear order type of power 2N°. There exist two

linear sets £ and F, where ECF and F—E is denumerably infinite, with the

following two properties: (1) E<F<a, and (2) problem P, as applied to cr = E

and p. = F, admits of a set, of order type X, of exact solutions, each solution being

of power 2^o.

Corollary. Let a and 8 be any two linear order types, the power of a being

2N». Then problem P, as applied to (7 = 0 and p=a, admits of a set, of order type

8, of exact solutions, each solution being of power 2N».

Remark. Theorems 3 and 4 state that for any linear order type a, of

power 2R», there exist two linear sets £ and E, where ECF and F—E is

denumerably infinite, with the following two properties: (1) £<F<a, and

(2) problem P, as applied to a = E and p, = F, admits of a set T, of order type

w, of exact solutions, each solution being of power 2K«. The set F—E obtained

consists of No elements, no one of the elements being a fixed point of E. In

Theorem 9 the set F—E contains N0 elements, each of which is a fixed point

of E.

Using Theorem 2.4 of [3], a similar discussion is possible for two sets E

and Efor which a<E<F<\.

Sierpinski [9; 10 ] has shown that if Y is a set of power 2K», then there

exists a simply ordered family, of power > 2Ho, of subsets of Y, ordered by

set inclusion. This in conjunction with Theorems 6 and 7 yields

Theorem 10. Let a be any order type which is <X. Then problem P, as ap-

plied to a=a and p. =X, admits of a simply ordered set, of power >2N°, of exact

solutions, each solution being of power 2K°.



348 SEYMOUR GINSBURG [July

Theorem 11. Let a be any linear order type of power 2N°. Then problem P,

as applied to <r = 0 and p=a, admits of a simply ordered set, of power > 2**°, of

exact solutions, each solution being of power 2N°.

Another proof of Theorem 10, without appealing to Theorem 6, will be

given later (Corollary to Theorem 15).

We now consider "decreasing" sequences of solutions to problem P.

Theorem 12. Let E be any linear set of power 2**° and H a simply ordered

set of power ^2N°. Then problem P, as applied to tr = 0 and p = E, admits of a

set T, of order type H, of exact solutions, of power 2M» each, so that there is no

order type t, of power 2N», which is <j3for each j3 in T, if and only if H has no

first element.

Proof. Suppose that H has no first element. Let B be any subset of E hav-

ing properties A and C. Decompose B into a family of disjoint sets

{ Ch | hdH}, where each set Ch has property C and is also topologically dense

in B. An obvious modification in the construction of the sets { Cj} defined in

Theorem 3.4 of [4], which is possible since the power of H is ^ 2^°, shows that

such a family of sets exists. Let En<> = B— U/,§>,„ Ch for each h0 in H. Clearly

each set Eh has properties A and C. Since E^C-Ea, for ha <hx, the set of order

types T= {Eh\hdH} is similar to H. Thus since H has no first element,

^HEh = 0.
We now show that there is no order type r, of power 2K», which is <Eh

for each h. Assume the contrary, i.e., suppose that t is an order type, of power

2N°, which is <Eh for each h. Let g be a definite element of H. Let G be a

subset, of order type t, of Ea, and D the set of c-condensation points of G

which are in G. The set D has properties A and C. As Ea has property A, each

element of D is a fixed (D, Eg) point. For each h<g let Fh be a subset of Eh

such that Fh = D. The set Fh certainly exists since Fh<Eh. Now D and Fh are

two similar subsets of Eg. Since each element of D is a fixed (D, Ef) point it

follows that D = Fh- Therefore D is a subset of each set Eh, h^g. Then

DCfl^, Eh = ft/,£H Eh = 0. But the set D has 2N° elements. From this con-

tradiction it follows that no such order type t can exist.

Suppose that H has a first element, say g. Let {ah} be any set of exact

order types, where each an is of power 2**°, and ah0<ahl for ho<hx in H. By

Theorem 4 there exists an exact order type r, of power 2K', satisfying

0<T<aa^ah. Q.E.D.

Corollary. Let E be any linear set of power 2N». Let y be any limit number

of power =2^°. Then problem P, as applied to <r=0 and /x = £, admits of a set

T, of order type y*, of exact solutions, of power 2**° each, with the following

property. There is no order type r, of power 2S°, such that r<j3 for each element

jS in T.

The question of whether or not the power of H can be > 2K° arises. On

assuming that 2K° = Ki the answer shall be shown to be in the negative.
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Theorem 13. Let E have property A. If 2N» = 6<i and if {«{}, £<Y, is a

strictly decreasing sequence of order types, with ao = E, then 7^2^».

Proof. For each £ let Ej be a subset, of order type aj, of £. Denote by D$

the set of c-condensation points of £5 which are in Ef. Suppose that p is an

element of D$. Since £ has property A, p is a fixed (Dj, £) point(]0). For

z><£, D^E^<EV. Hence there exists a similarity transformation/of Z>{ into

E„. Since E„ is a subset of E and /> is a fixed (D$, E) point, it follows that

f(p) =p. Thus p is in E„, i.e., Z>{ is a subset of E„. As each element /> of D$

is a c-condensation point of Z>j, thus of £„, £ is also in Dv. In other words, for

»<£, Z>{ is a subset of Dv. Thus we have

Do 2 £>i 2 • • • 2 #{ 2 • • • ({ < y).

Note that since the power of D0 is 2N», there are at most 2N» different sets Z>£.

Assuming that 2s° = Ni we see that the power of the set £j —Dj is ^Xo-

For a given £ as Z?{<X, the power of the set R — D$ is 2**° [ll]. There are

exactly (2K°)K° = 2N° distinct subsets, of power ^^0 each, of R — D(. Since

E^=D^\JQi, where Q$ is a subset of R — D$ of power ^fr$o, it follows that

for a given set £>j there can be at most 2K» sets E„ which have the property

that DV=D(. This, in conjunction with the fact that there are at most 2N»

different sets Dj, implies that 7^2S«. Q.E.D.

Suppose that there is no order type t, of power 2N°, which is <ct( for each

£. This implies that the power of the set fl{<y £)£ is <2*V Therefore there is

no smallest (as a point set) Dj. Since there are at most 2N° different sets Z){,

without assuming that 2N° = Ni we obtain

Theorem 14. Let £ have property A and let {«{},£ <y, be a strictly decreas-

ing sequence of order types, with a0 = E. If there is no order type t, of power 2N°,

which is <atfor each £, then there exists an ordinal number p, wherep^d, which

is cofinal with y.

The problem of whether or not there exists any linear order type a0, such

that a strictly decreasing sequence of order types {aj}, £<Y, where 7>2N»,

can be found remains unanswered.

We now turn to strictly increasing sequences of linear order types. In

[ll ] Sierpinski has shown that if {«„}, n <w, is any sequence of order types,

each a„ being <X, then there exists an order type a such that an<a<\ for

each n. We now consider an extension of this result. Suppose that {«{}, £<0,

is a sequence of order types, each aj being <X. We shall show that there exists

an order type a such that a^<a<\ for each £.

Lemma 3. If E is a linear set such that £=X, then £ contains a Borel set of

power 2N°.

(10) See §4.
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Proof. Let/ be a similarity transformation of R into E. Since/ is a simi-

larity transformation, it is a Baire function. If g is a one to one Baire function

defined on a Borel set, then g(G) is a Borel set [7, p. 397]. Therefore/(i?) is a

Borel set of power 2N°.

Lemma 4. There exists a family G= {Bt\t;<d} of pairwise disjoint linear

sets such that B^=\ for each £. Furthermore, G has the property that for each

nondenumerable Borel set B, an ordinal number v<6 can be found so that

Bf~\Bv contains a nondenumerable Borel set.

Proof. If B is a nondenumerable Borel set, then 2?=X. This is so since

each nondenumerable Borel set contains a nonempty perfect set [7, p. 355].

Each nondenumerable Borel set is thus of power 2K°. Let H= {Pt\%<d} be

a family of pairwise disjoint, nondenumerable, perfect sets. Being a perfect

set, each Pj is a Borel set. Let the family of those nondenumerable Borel sets,

which are not elements of H, be well ordered into the sequence

(1) Go, Qi, • • • , Qi ({ < 6).

Denote by Ro the first element in (1) which is almost disjoint with each

element of H(u). Suppose that for each v<y, where y<6, an element Rv of

(1) has been defined which is almost disjoint with each element in the family

HU {R(\t;<v}. Let Ry be the first element in (1), if one exists, which is almost

disjoint with each element of the family HU {2?£ | £ <7}. By transfinite induc-

tion this procedure is continued until either i?j is defined for each £<d, or

else, for some ordinal number 7, the set Ry does not exist.

Consider the family of sets {.S{|£<0} = HU{i?{|$<7g0}. From the

selection of the sets Rt, it follows that for each nondenumerable Borel set B,

there exists an ordinal number v such that B(~\SV is nondenumerable. As the

intersection of two Borel sets is a Borel set, 23P\S„ is a nondenumerable Borel

set. Denote by B0, the set S0, and for each v<6, by Bv the set

S, - [ U (Scr\5t)l■

Note that the Bv are pairwise disjoint. If S^C\SV is nondenumerable,

being a Borel set it is of power 2K°. As the S( are almost disjoint, it fol-

lows that S^Sv is denumerable. Combining this with the fact that v<6,

we see that the set U{<» (Str\Sv) is of power <2K«. In [ll] Sierpifiski has

shown that if P=X, then on removing <2N° elements from P, the resulting

set is =X. Consequently Bv =X. Now let B be any nondenumerable Borel set.

For some ordinal number v, BC^SV is a nondenumerable Borel set, thus

5nS»,=X. Since the power of Sv — Bv is <2N», BC\Bv=\. From Lemma 3,

BC~\Bv contains a Borel set of power 2H».

(n) A set A, of power 2"o, is almost disjoint with a family of sets Q, each element of Q

being of power 2Mo( if, for each element P in Q, the power of A (~)P if <2K°.
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Remark. If 2 °=Ni, then the sets Ej obtained above are Borel sets.

Lemma 5. Let {«{}, £<0, be a sequence of order types, each a^ being <X.

There exists a linear set £ with the following two properties: (1) £<X; and

(2) E is the union of a family {£f| £ <d} of pairwise disjoint sets, where Ej =«{

for each £.

Proof. Let G={E{|£<0} be a family of pairwise disjoint sets, where

B(=\ for each £. Let G have the property that for each nondenumerable

Borel set B an ordinal number v<9 can be found so that Br\Bv contains a

nondenumerable Borel set. The existence of such a family is guaranteed by

Lemma 4. For each £ let Ej be a subset of Ej such that Ef = aj, and let

E=Uj<» Ej. In order to see that £<X, suppose the contrary, i.e., suppose

that E=X. Let/ be a similarity transformation of E into E. Since/(E) is a

Borel set of power 2"», for some ordinal number v, f(R)(^\Bv contains a non-

denumerable Borel set A. Since ^4=X,/(E)P\E«=X. As the E£ are pairwise

disjoint sets and/(E) is a subset of E,

X = JjRjrnr, ^ EC\BV = £„.

This is a contradiction since £„=a„<X. Consequently no such function/can

exist, i.e., £<X. Q.E.D.
In view of the fact that for any order type a which is <X there exists an

exact order type r such that ct<r<\ [3], we have the following result:

Theorem 15. For any sequence {aj}, £<0, of order types, each a$ being

<X, there exists an exact order type r such that a^<r <X for each £.

Corollary. Let a be any order type which is <X. Problem P, as applied to

<r=a and ju=X, admits of a well ordered set, of power >2K°, of exact solutions,

each solution being of power 2Ko.

Turning briefly to denumerable order types we have

Theorem 16. Let {an}, n < co, be a sequence of denumerable order types, where

each an is <rj. Then a<r), where a=a0+ai+ ■ ■ ■ +an+ ■ • • .

Proof. Denote by S the set of rational numbers, ordered in the natural

manner. For each integer w^O, let An be a subset of SC\(n, n + 1), such that

An=an. Now in [8] it was shown that if E is a denumerable set, then a

necessary and sufficient condition that E be =r\ is that for each denumerable

ordinal number 8, E contain a set Dp such that Dp=8- For each n let /?„ be

the smallest ordinal number which has the property that An contains no

subset of ordinal type |3n. Since an is assumed <tj, /3„<wi. Let 8=8o+@i

+ • • • +8n+ ■ ■ ■ . Being the sum of a denumerable number of denumerable

ordinal numbers, j3 is <«i. Consider the order type/3 + 1. The set F= Un<u An

does not contain a set of order type 0 + 1 [8]. Therefore a=F<t). Q.E.D.
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In [3 ] it was shown that if a <r] then there exists an order type t such that

a<T<r). From this we conclude

Corollary. Let a be any denumerable order type which is <rj. Problem P,

as applied to o~=a and // = 77, admits of a set, of order type a>x, of solutions.

The following problem has been open for several years.

(1) For cr = 0 and p = rj, does problem P admit of a set of solutions of

order type co*?

Two open questions related to (1) are

(2) Does there exist a denumerable set which has fc$o fixed points?

(3) Do there exist ^0 incomparable denumerable order types?

A positive solution to (2) would imply a positive solution to both (1) and (3).

4. Schisms.
Definition. Let A and B be two simply ordered sets such that A < B.

If A is the ordered sum A =F+G, such that /^-rT + GUi?, then the ordered

pair (F, G) is called a schism of (^4, B).

For A < B it is not always true that (^4, B) has a schism. One need only

examine the case where A <A2 = B. To consider a situation where a schism

occurs, let an element p in A be called a. fixed (A, B) point if there exists an

element q in B such that/(£) =q for every similarity transformation f oi A

into B. Then (A, B) has a schism if there exists a fixed (.4, B) point.

The assumption of the existence of a fixed (A, B) point p is a strong one,

implying in particular that p is a fixed point of A. As to a sufficiency condi-

tion for a fixed (A, B) point the following results are easily shown:

(1) Let Au<Bo}. Let the two relations, (a) Au<Bn and (/?) Au>= Bn

both be false for every positive integer n. If E = Aco + l and F= Bu + 1, then

p is a fixed (E, F) point, where p is the last element of E.

(2) Let E have properties A and C. If B is a subset of E such that, for

any two elements a<b in B, the power of the set \x\a<x<b, xG-5} is 2K°,

then each element of B is a fixed (B, E) point.

We now show that the concept of a schism is invariant under " = " of

order types.

Theorem 17. Let (a', fi') be a schism of (y', b'). Then for each pair of order

types 7=7' and 5 = 8', there exists a pair of order types a and /3 such that a=a',

P=B', and (a, /3) is a schism of (7, 5).

Proof. Let E' be a simply ordered set which contains two subsets C and

D' whose order types are 7' and 8' respectively. As (a', l3') is a schism of

(7', 8'), it follows that C is the ordered sum of two subsets A' and B', whose

order types are a' and p" respectively. Denote by p some abstract element

which is not in E'. Let p follow each element in A' and precede each element

of B'. Thus the order type of the set A'U {p} UB' is a' + l +/3'. Now the two

facts, (1) a'+|3'<8' and (2) a' + l+/3' and 8' are incomparable, together

imply that a'+18'<a' + l-|-j3'. Therefore by Theorem 2.1 of [3] p is a fixed
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point of the set A'\J{p} U5'. Let D be any set whose order type is 6 and C

a subset of D whose order type is y. As C^C', there exists a similarity trans-

formation f oi C into C, and a similarity transformation g of C into C. Let

,4 = {x|/(x) CA'} and E = {xj/(x) G2T}. Clearly C is the ordered sum A +B.

We shall now show that A=A' and B=B'. This will imply that (A, B) is a

schism of (C, D).

To accomplish this it will be sufficient to show that (a) g(A') is a subset

of A and (b) g(B') is a subset of B. Therefore suppose that either (a) or (b) is

false, say (a). Hence the set g(A')C\B is nonempty. Let r be some element of

g(A')C\B. Denote by h the function which is defined by h(x) =g(x) for x in

A', h(p)=gf(r), and h(x)=gfg(x) for x in B'. Then h is a similarity trans-

formation of A'yj{p\^JB' into C. This contradicts the assumption that

C<A' + 1 + B'. An analogous contradiction arises upon assuming that condi-

tion (b) is false. Therefore (a) and (b) both must be true. Q.E.D.

In preparation for Theorem 18 the following result is needed.

Lemma 6. Let A be a proper subset of B and p a fixed point of A. Then p

is a fixed point of the set C = A KJ {q} for each element q of B — A.

Proof. Suppose that p is not a fixed point of C, i.e., suppose there exists a

similarity transformation g of C into C for which g(p) ?±p. We shall show that

this implies the existence of a similarity transformation f oi A into A for

which f(p) ?±p, thus obtaining a contradiction. We shall suppose that q<p,

an analogous treatment being possible if q>p. Several possibilities arise:

(a) For no element y in C does g(y) =q. Let/(x) =g(x) for each element

x in A.

(b) There exists an element y in C such that g(y) =q.

(1) If y>q, let/(x) = g(x) for x>y, and f(x) =g\g(x)~\ for those elements

x in A which are ^y.

(2) If y=q, let/(x) =g(x) for each element x in A.

(3) If y<q, let/(x) =x for x5£y, and/(x) =g(x) for those elements x in A

which are >y.

In each case the function / is a similarity transformation of A into A for

which f(p) 9^p.

Theorem 18. Let A be a simply ordered set containing two fixed points p

and q which have the property that the power of the set [x\p<x<q, xCA\ is

infinite. Then there exists a schism of (A — {p}, A), and a schism of (A — {q\,

A).

Proof. It will be sufficient to exhibit a schism of (A — {p\, A), a similar

exhibition being possible for (A — {q\, A).

Let E= {x|x<g, xCA— {p}} and G={x\x^q, xCA}. For some ab-

stract element r which is not in A, let r follow each element in E and precede

each element in G. Then (F, G) is a schism of (A — {p},A), i.e., FU{r} WG||Z.
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To see this let B = FU {r} UG. Suppose that there exists a similarity trans-

formation f of A into B. If f(p) <p, let g(x) =/(x) for x^p, and g(x) =x for

x>p. Suppose that f(p)>p. Several possibilities arise:

(1) There exists an element 5 such that p^s<r and f(s)>r. Let g(x)

=/(x) for x<r, g(r) =f\f(s)}, and g(x) =/[/(x)] for x>r.

(2) p<f(x) <r for each element x satisfying p^x<r. Let g(x) =/(x) for

each element x<r and g(x) =x for xStr.

(3) p<f(x)^r for each element x satisfying p^x<r, and for some ele-

ment Xo, /(xo)=r. It follows that xo and r are consecutive elements in the

set AUB, i.e., there is no element x in AUB such that x0<x<r. By Lemma 6

then, q is a fixed point of AUB. Thus r is a fixed point of AUB. Thus there

is a maximal set of consecutive elements of AUB in which r is the last ele-

ment. Clearly this set must be finite. Let the elements of this maximal set be

xn<xn_i< • ■ • <xo<r. Since the power of the set \x\p<x<q, xG-4} is

infinite, there are an infinite number of elements x for which p<x<xn. Since

there is no immediate predecessor of x„ in AUB, if there were an element t

such that p<t<xn and f(t) =ixn, then an infinite set of elements, namely the

set {x|f^x^r}, would be mapped by / into the finite set of elements

{x„, xn~x, • • ■ , Xo, r}. As this violates/ being a one to one function, it follows

that p<f(x)<xn for p^x<xn. Let g(x) =f(x) for x<x„ and g(x)=x for

x^x„.

In each of the above cases we have constructed a similarity transformation

g of AUB into AUB such that g(p) 9^p. By Lemma 6 however, p is a fixed

point of AUB. From this contradiction we see that there can be no similarity

transformation f oi A into B.

In a similar manner, by investigating/(r), it can be shown that there is

no similarity transformation/of B into A. This, combined with the fact that

there is no similarity transformation of A into B, proves that ^4||2?. Thus

(F, G) is a schism of (A — \p], A).
Remark. If the assumption of the existence of a second fixed point q in

Theorem 18 is removed, then the conclusion may be false. This is so, for exam-

ple, in a simply ordered set of order type 1+co*. Likewise the conclusion is

false if the assumption that there are an infinite number of elements between

the two fixed points is removed. This is so in a set of order type co-f-2.

Corollary. Let A be an infinite, exact set, and let p be any element of A.

Then there exists a schism of (A — {p), A).

5. Consequences of Theorem 18. The demonstration given for Theorem

18 essentially has proved the following result.

Theorem 19. Let p and q, p<q, be two fixed points of the set A. If the set

{x\p<x<q, xdA } is infinite, then A — {p}\\A — {q}.

From Theorem 19 and the fact that, by Corollary 2 of Theorem 2, if A
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is exact and also a subset of B, then A W {p} is exact for each element p in B,

there follows

Theorem 20. Let A be a subset of B and p and q any two elements of B—A.

If A is exact and if the power of the set [x\p<x<q, xCA } is infinite, then

AU[f}\\AU{q~}.
Corollary 1. Let A be an exact subset of R, and p and q any two elements of

R — A for which the power of the set {x\p<x<q, xCA} is infinite. Then

A~U{f}\\AU{f}.
In Theorem 4 it was shown that each linear set of power 2K» contains an

exact subset which has property C. Hence

Corollary 2. Each linear set of power 2"° contains a family of subsets

{£{|£<#} such that each set is exact and of power 2*°, the order types of the

sets are pairwise incomparable, and the symmetric difference of the sets is two

elements.

The following result is a generalization of Theorem 5 in [ll].

Corollary 3. Let A be a dense, exact, subset of R. If p and q are any two

distinct elements of R — A, then iUj^|||i4Ujg).

Remark. In reply to a question of the referee, the power of R — A is 2*°.

This result is due to Sierpinski [ll] since A <X. Thus there are 2N» such

points p and q.

In [3] it was shown that R is the union of two disjoint, exact, dense (in R),

subsets G and H, of power 2So each. From this we get

Corollary 4. There exist two disjoint linear sets G and H, of power 2N«

each, with the following properties:

(1) GVJH=R; _
(2) for any two elements p and q in H, G\J{p]  G\J{q\;

(3) for any two elements p and q in G, H^J{p) H\J{q}.

Corollary 5. To each set of order types [a^\^<y<d], where «{<X for

each £, there corresponds a family of exact sets {^4j|£<#}, a set of points

{^{|£<0}, and a set A with the following three properties: (1) a(<A^<\;

(2) A% =A\J {pn}; and (3) the order types of the A$ are pairwise incomparable.

Corollary 5 follows from 2.4 of [3] and Theorem 15.

One method for obtaining the points p and q which are described in Theo-

rem 19 is to apply the next lemma.

Lemma 7. Let A\\B. If p is a fixed point in the ordered sum {p} +A, and q

is a fixed point in the ordered sum B + {q}, then p and q are both fixed points

in the ordered sum D = {p} +A+B+{q}. Furthermore, the set F={x\p<x<q,

xCD] is infinite.



356 SEYMOUR GINSBURG [July

Proof. Since the order types of any two simply ordered sets, one of which

is finite, are comparable, it follows that the sets A and B are both infinite.

Thus the set F is infinite. Suppose that one of the points, say p, is not a fixed

point of D. Hence there exists a similarity transformation of D into D such

that f(p)> p. Denote by G the set

G=   Un<4x\fn(p) ^ x<f+i(p),xdD}.

Suppose that G is a subset of A. Then the function g, which is defined by

g(x) =f(x) for x in G and g(x) =x for x in A — G, is a similarity transformation

of {p}UA into {p)UA such that f(p)9^p. From this contradiction of p

not being a fixed point we see that there exists a point y in G(~\B. This implies

that for some positive integer n, fn(p) is in B. Consider the similarity trans-

formation/". It maps A into B. This contradicts the fact that .4|| B. Therefore

p must be a fixed point in D. An analogous argument shows that q is a fixed

point in D. Q.E.D.
Remarks. (1) If the incomparability of the order types A and B is re-

moved, then one can only conclude that one of the points, p or q, must be

fixed. This is a special case of the following result whose proof is in [5].

"If p and q are fixed points of A and B respectively, then either p or q is a

fixed point in the ordered sum A+B."

(2) The converse to Lemma 7 is not true, i.e., the following is false:

(*) Let p and q, p<q, be two fixed points of the simply ordered set D. If

the set F= {x\p<x<q, xdD} is infinite, then F is the ordered sum of two

sets A and B whose order types are incomparable.

Let E be an infinite exact subset of (0, 1) and H a subset of (1, 2) which is

similar to E. Let D = {0, 2} UEUH. Now the set D is exact so that 0 and 2

are both fixed points in D. Clearly ^is infinite. If Fis the ordered sum A +B

then either 4C£ and HQB, or else EQA and B^H. Thus J\\B. Conse-

quently the conclusion in (*) is false.

We conclude this section with a simple consequence of Lemma 7 and

Theorem 19. Let a and /3 be two transfinite ordinal numbers. Then 1 +a*+/3

||o*+/5+l.
6. On the converse of Theorem 19. The converse of Theorem 19 is also

true as we shall now show. A generalization of the converse will then be given

(Theorem 21).

Lemma 8. If B\\C, and if the symmetric difference, (B-C)U(C-B), con-
tains just two elements, p and q, where p<qin the set D=BUC, then

(1) p and q are both fixed points in D;

(2) there exists a set A such that B=AU{y] and C = AU{z], where y is

one of the points p or q and z is the other point; and

(3) the set F = {x\p<x<q, xdD) is infinite.

Proof. Let A=B—{y) where y is the element p or q which is in B. (2) is



1955] ORDER TYPES AND SIMILARITY TRANSFORMATIONS 357

now obvious. As to (1), if y is not a fixed point oi D = A\J \y\VJ {z), then by

Theorem 2.1 of [3], D=AVJ{z} = C. Thus E^25s=C, a contradiction. Simi-

larly z is a fixed point of D. As to (3), suppose that E is finite, its elements be-

ing

p = xa < xi < • • •   < xn = q.

Let/be the function which is defined as follows :/(x) =x if x<p or x>q, and

f(xi) =Xi+i for i<n. Then/ is a similarity transformation of one of the sets

B or C onto the other, i.e., B = C. This contradicts the assumption that

E|| C. Therefore E must be infinite.

Theorem 21. Let H={A,\i^n\ be a family ofn + 1 sets with the following
two properties: (a) The order types of the A < are pairwise incomparable; and

(8) the symmetric difference of each pair of sets A{ and Aj, iy^j, contains just

two elements. Then one of two possibilities occurs.

(A) There exists a unique set of n + 1 elements, {p < | i ^ n}, and a unique set

A, such that

(1) pi is a fixed point in the set D = Uig„ A,;

(2) Ai=A\J{pi\i^n)-{pi)=D-{pi};a.na\

(3) if pi<pj then the set E<;= {x\pi<x<pj, xCD} is infinite.

(B) There exists a unique set of n + 1 elements {ti\i^n}, and a unique set

A, such that

(1) ti is a fixed point of the set D = U,g„ At;

(2) Ai = AV{ti} = [D- {tj\j^n}]yj{ti}; and
(3) if ti<tj then the set E,; = {x\tt<x<tj, xCD} is infinite.

Furthermore, ifn^3, then every subfamily of H, consisting of three or more sets,

satisfies the same set of conclusions, (A) or (B), as does the family H.

Proof. It is evident, in view of Lemma 8, that in both (A) and (B), (1), (3),

and the uniqueness of the sets will follow from (2). We shall now consider (2).

For any two sets £ and F denote the symmetric difference of the sets by

EAE. Notice that for ij*j, A( — A,- is a set consisting of just one element.

By Lemma 8 the theorem is true for n = l. Continuing by mathematical

induction suppose that the theorem is true for n=k. We shall demonstrate

our result if we show that the theorem is true for n = k + l.

By the induction hypothesis either (A) or (B) holds for n = k.

First suppose that (A) holds. Thus there exists a set B and a set of k + 1

points, {pi\i^k}, such that Af = B*U{pi\i^k} — {pi} iori^k. Denote by q

the element for which Ao — Ak+i = {?}. Two alternatives arise:

(a) Suppose that q^pt for i^k. Denote by pk+i the element q. Since

pk+i is'mAo — Ak+i andpk+i^piiori^k, it follows that pk+i is in B. Signifying

by A the set E— {pk+i}, we have

At = AKJ{pj\jg k+1} - [pi] for »$ k.
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Let {r} =Ak+x — A0. Suppose that r^p0. Then r is not in A0U{p0}, thus not

in Ax (since k^l). Hence {r} =Ak+x—Ax. Combining this with the fact that

{pk+x} =AX — Ak+X we get -4*+iA.4o = ./l*+iA.4i. Now it is well known that if

EAF = EAG, then F=G. Therefore A0 = AX, a contradiction. Consequently

r=po. Thus

Ak+.QAoU {p0} = A U {pi\ i ^ k+ l}.

Since pk+x is not in Ak+X it follows that Ak+XQAU{pi\i^k}. As {pk+i\

= Aa — Ak+X, we get A0QAk+xU{pk+x}, or what is the same, A0— \pk+\\

QAk+x- This, together with the fact that pa is in -4jt+i, implies that .4W{£,|i

Sk)czAk+x. ThusAk+x=AU{pi\i^k}.
(b) Suppose that q=pi for some integer i^k. As po is not in A0, it follows

that 0<i^k. Thus

{pi} = A0 — Ai = Ao — Ak+X.

Suppose that po is in Ak+X. Then

{po} = Ak+X — Ao = Ai — A0.

Hence ^4oA^4t+i=^4oA^4,-. Thus Ai = Ak+x, a contradiction. Therefore po is not

in Ak+X. Let {r} =Ak+x—Aa. Since r is in Ak+X, it follows that r^po and

rj^pi. Suppose that k>l. Let j be an integer ^k which is distinct from 0 and

i. Then the set Aj — Ak+X contains the two elements po and pi. This contra-

dicts the fact that Aj—Ak+X contains just one element. Consequently, if

k>l, then only case (a) above can exist. Suppose that k = l. Then i — 1 and

Ak+i=A2. From {r} =A2 — A0 we get A2QA0U{r}. Since px is not in .42, it

follows that A2QBU{r}. From {px} =A0 — A2 we get A0QA2U{px}, i.e.,

BQA2. Asr is in .42, BU{r} C.A2. Hence A2=BU{r}. Denoting by A the set

B and by to, tx, and t2, the elements px, po, and r respectively, we obtain (B).

Now suppose that (B) holds. Since the case where k = 1 has been handled

under (A) we shall assume that £2:2. Thus, there exists a set of k +1 elements,

{ti\i^k}, and a set A, such that At = AU{ti} ior i^k.het {r} = Ak+x — A0.

(c) Suppose that r=*/< for i^k. Therefore r is not in Ai for i^k. Thus

■4*4-1— Ai— {r}, so that Ak+xQAiU{r}. From this we get Ak+xQAU{r}.

This, together with ti not being r, yields Ai — Ak+i= {ti}. Thus AiQAk+x

U{tt}, i.e., ACAk+x. Since r is in Ak+X, AU{r} QAk+x. Consequently

iUJr) =.4*+i. Denote by tk+x the element r. In this case then (B) is satisfied.

(d) Suppose that r=ti for some integer i^k. As to is in Ao, t>0. Thus

Ak+xQAaU {u} = A U {t0,ti}.

Consider the element q, where {q} = Ao~ Ak,x. Since ti is in Ak+X, q^t{. Two

possibilities arise.

First suppose that g = /0. Then Ak+xQAU{ti}. Let {s} =A, — Ak+X. As ti

is in Ak+X, s must be in A. The set A0 — Ak+i now contains the two elements 5

and to. This is a contradiction.
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Now suppose thatq^to, i.e., /0is in A^i- Since k^2 there exists an integer

j^k which is distinct from 0 and 1. The set Ak+i~^j contains the two ele-

ments to and ti. Again we have a contradiction.

Since each of the two possibilities leads to a contradiction, case (d) cannot

occur, i.e., only case (c) can exist.

The remaining part of the conclusion follows from the fact that for k}±2,

the process of extending (A) or (B) to k + 1 sets from k sets always yields the

same selection (A) or (B) for the k + 1 sets as for the k sets. Q.E.D.

Remarks. (1) The generalization of Theorem 21 to the case in which n is

any ordinal number offers no difficulty. One merely replaces finite induction

by transfinite induction.

(2) By virtue of Theorems 19 and 20 there exist families of sets where (A)

holds and families of sets where (B) holds.

(3) The demonstration in Theorem 21 essentially proves the following

result in general set theory: "Let H= {^4{|£<a} be a family of sets such that

Ai — Av contains exactly one element for £^z/. Then either (2) in (A) or (2) in

(B) holds. Furthermore, if a ^3, then every subfamily of H, consisting of

three or more sets, satisfies the same set of conclusions, (A) or (B), as does the

family H"

7. More on incomparable order types. Denote by C the Cantor perfect

set. Then E— C, being an open set, is the union of a family of pairwise disjoint

open intervals {.4n|w<w}. Let B be a dense subset of the open interval (0, 1)

which has property C. Furthermore, let B have property A. Now the set B is

evidently an ordered sum, B = B0+ • • • +Bn+ ■ • • , where each set Bn has

the following properties:

(1) Bn is a dense subset of some open interval Dn;

(2) Bn has property C; and

(3) Bn has property A.

For each n let E„ be a dense subset of An which is similar to E„. Denote by G

the set G= U„<u £„. G is dense in R—C, thus dense in R. It is easy to see

that G has properties A and C. Now each c-condensation point in a set M

which has property A is a fixed point of M, by Theorem 2.3 of [3]. Therefore

G is exact. Being perfect, C contains a subset H which is similar to R. From

Corollary 2 of Theorem 20 there now follows

Theorem 22. There exist two disjoint linear setsG and H with the following

properties:

(1) H is similar to the real numbers;

(2) G is a dense, exact subset of R, which has properties A and C;

(3) if p and q are any two elements of H, then G\J {p}\\Gyj {q\.

Corollary. For each linear set D there exists two disjoint sets G and H

which have the two properties: (1) H = D, and (2) if p and q are any two elements

of H, then GUJp]\\GU{q}.



360 SEYMOUR GINSBURG [July

While discussing sets which have property A we mention

Theorem 23. Each linear set £ of power 2K° contains two disjoint sets G and

H, both having properties A and C, and which have the following additional

properties:

(1) G\\H; _
(2) for any two elements p and q in H, G\J{p]  G\J{q};

(3) for any two elements p and q in G, H\J{p) HVJ{q\; and

(4) for any two elements p in G and q in H, G\J{q}\\H^J\p].

Proof. E contains a set D having properties A and C. As is well known D

can be decomposed into the union of two disjoint sets G and H which satisfy

the two conditions: (1) G and Heach have property C; and (2) G and H are

each dense in D. There is no difficulty in verifying that the sets G and H

satisfy the conclusions of Theorem 23.

Remark. It is easily seen that instead of two sets G and H, m sets, where

2 <ra^2N°, could have been obtained, the sets satisfying the obvious general-

izations of the conditions (1), (2), (3), and (4).

We conclude with some results on schisms.

Theorem 24. Let Ebe a linear set of power 2M°. Let B be any subset of E, of

power 2N°, with the following two properties: (1) B<E; and (2) £ contains no

two disjoint, similar sets, of power 2K» each, whose order types are ^ B. Then

there exists a schism of (B, E). Furthermore, a point q in R can be found so that

B\J[a~\\\E-

Proof. Denote by C the set of c-condensation points of B which belong to

B. Since C has property C and the set £ satisfies (2) above, it follows that the

only similarity transformation of C into £ is the identity transformation, i.e.,

each point of C is a fixed (C, £) point. Hence there exists a schism of (C, E).

It remains to be shown that this schism can be affected by a point q in R.

To see this let D be a linearly dense, enumerable subset of C, i.e., if x and

y are any two elements of C for which x<y, then there exists an element z in

D such that x<z<y. D certainly exists since every dense in itself subset of

R contains such a set. Suppose that for each gap (E, G) of D(12) there exists

an element x in £ such that u<x<v for each element u in Fandv in G. Then,

as is well known, E contains a set which is similar to R, i.e., £=X. Since E

satisfies condition (2) it is clear that E=X is false. Hence there must exist a

gap (E0, Go) of D for which there is no element x in £ such that u<x<v for

each element u in E0 and v in G0. Let q be any element in R — E for which

u<q<v for each element u in E0 and v in G0. Consider the set BVJ{q}. If/

is any similarity transformation of B^J{q}  into E, then f(x)=x for each

(1!) (F, G) is a gap of D if D is the ordered sum of two nonempty sets F and G, where F

has no last element and G no first element.
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element x in C. However the element f(q) cannot be in E since u=f(u) <f(q)

<f(v) =v for each element u in Fa and v in Ct0. Thus no such transformation/

is possible. Since 2J<JEand since BU{q\ ikE is false, B<BU\q}. By Theo-

rem 2.1 of [3], q is a fixed point of BU{q}. Suppose that E^BU{q\. Then

B<E^BU{q}. By Theorem 2.2 of [3], there is no order type r for which

B<T<BU{q\. Thus E = BU{q\, so that BUjq] ^E. From this contradic-

tion we see that E^BUjq] is false. We conclude that BU{q}\\E. Q.E.D.

If E has property A then condition (2) is satisfied for every subset B. Thus

we get

Corollary. Let E have property A and let B be any subset such that B<E.

Then there exists a schism of (B, E). Furthermore, a point qin R can be found so

that BU{q)\\E.

Remarks. (1) In general it is not true that if £ is a linear set and B is a

subset of E for which a schism of (B, E) exists, then there must exist a point

q in R such that ZJU{g}||E. For example, it is not true in the case where

B = {-l/n\ 1 g n < a;} U {0} U {l/»| 1 ^ n < w}

W {2 - (l/w)| 1 ^ n < co}

and£ = 5U{2}.

(2) Theorem 24 may be modified to the extent of replacing, everywhere it

occurs, "2N°" by "non denumerable."
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