ORDER TYPES AND SIMILARITY TRANSFORMATIONS!

BY
SEYMOUR GINSBURG

Suppose that ¢ and p are two distinct order types for which ¢ <u(2). The
question of the existence of an order type 7 for which ¢ <7 <pu is hereafter
referred to as “problem P.” Whenever such an order type 7 exists we shall
say problem P admits of a solution. The two purposes of this paper are

(a) to study the order types of simply ordered sets of solutions to prob-
lem P, as applied to the cases where (I) o is any linear order type and u=\(3),
and (II) ¢=0, u is any linear order type of power 2%, and 7 is of power 2%;
and (b) to study pairs of simply ordered sets whose symmetric difference con-
tains just two elements and whose order types are incomparable.

1. Exact sets.

DEFINITION. A simply ordered set E is called exact if E is similar to no
proper subset of itself.

If E is exact, then the order type of E is called exact.

It is easily seen that E is exact if and only if each point of E is a fixed
point of E(). It is also easily seen that if B is exact and 4 CB, then 4 < B.

The following two facts on exact sets are known [1]:

A. There does not exist an exact set of N, elements.

B. There exists a dense subset of R, of power 2%, which is exact.

The following result is immediately obtained from (I) of §2 of [3].

THEOREM 1. If E is exact and F=E, then there is one and only one similar-
ity transformation g of E into F. Furthermore, g(E) =

CoRrOLLARY. If E is exact and E=TF, then F is exact. Furthermore, E=F.

Presented to the Society, February 28, 1953, under the title Incomparable order types and
September 5, 1953, under the title of Order types of simply ordered sets of solutions to problem P;
received by the editors May 28, 1954.

() In three previous papers [3; 4; 5] on order types, the author has made numerous refer-
ences to an article which had been submitted to another journal. Since that paper is not to
appear in the designated publication, its results, together with other material, have been
coalesced to form the present paper.

(2) Let A and B be two simply ordered sets, with 4 and B being the order types of 4 and B
respectively. Let A <B if there exists a similarity transformation of 4 into B. Let A =B if
there is a similarity transformation of 4 into B and a similarity transformation of B into 4.
A and B are incomparable order types, denoted by A”B if there is no similarity transforma-
tion of 4 into B and no similarity transformation of B into 4. If A =B is false, then 4 and B
are called distinct. Let A <B if 4 <B, but 4 and B are distinct. See [11].

(®) By Ris meant the set of real numbers, ordered in the natural manner. By X is meant the
order type of R. By linear set is meant any subset of R.

(%) pis a fixed point of E if f(p) =p for each similarity transformation f of E into E.
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We now consider some other properties of exact order types.
THEOREM 2. If o and (3 are exact order types, then so is a+p3.

Proof. Let 4 and B be two sets such that 4 =« and B=f and such that
A+ Bis an ordered sum(®). Let f be a similarity transformation of 4\UB into
a proper subset of A\UB. Suppose that f(4) is a proper subset of 4. Then this
contradicts the fact that 4 is exact. Therefore f(B) is a proper subset of B.
But this contradicts B being exact. Therefore no such similarity transforma-
tion can exist, i.e., 4+ B is exact.

Since a finite ordinal number is exact we get

COROLLARY 1. If a is exact and n is a finite ordinal number, then n—+a and
a+n are both exact.

It is easily seen that the converse to Theorem 2 is also true, i.e., if v is
exact and ¥ =a+p, then both « and 8 are exact. From this we infer

COROLLARY 2. If A is exact and B is a finite set, then AAJB and A — B are
both exact.

From Theorem 2.2 of [3] and Corollary 2 above we get

THEOREM 3. Let v =a+8 be exact. Then problem P, as applied to ¢ =7 and
p=a+n+1+B, admits of precisely n distinct solutions. These are T=a+j+1
+B, where j<n. Problem P, as applied to ¢ =7 and p=a+w+B, admits of
precisely N, distinct solutions. These are T =a+n+1-+8, where n <w.

In preparation for Theorem 4 we state Lemma 1. The proof of this result
follows from the well known Cantor-Meray process for completing a space.

LEMMA 1. Any simply ordered, dense set B(®), with no first and no last ele-
ment, is similar to a set A whick is topologically dense in R.

COROLLARY. Let B be a nonempty simply ordered set such that each point of
B is a two sided limit point of B. Then B is dense and thus similar to a topo-
logically dense subset of R.

We shall call p a right sided (left sided) c-condensation point of the linear
set E if, for each real number y, where y <p (p <y), the open interval (y, p)
((p, v)) of R contains 2% elements of E. A point which is both a right sided
and a left sided c-condensation point of E shall be called a c¢-condensation
point of E.

(%) By the ordered sum of the family {E,,l a€ A} of pairwise disjoint sets, where 4 is simply
ordered, is meant the set C =U¢EA E,, the elements being ordered as follows. If # <v in E,,
then u<vin C. If u is in E; and v is in Es, where a <b, then u <v.

(%) A simply ordered set E is dense if, for each pair of elements x and y in E, x <y, a third
element z in E can be found so that x <z <y.
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A linear set, of power 2%, is said to have property C if each point of E is
a ¢-condensation point of E.
Turning to problem P we have

THEOREM 4. Let E be a linear set of power 2R, Then problem P, as applied
to 0 =0 and u=E, admits of a solution 7, of power 2%, which is exact.

Proof. Let B be the set of ¢c-condensation points of E which are in E. The
set B satisfies the hypotheses of the corollary to Lemma 1. Hence there exists
a similarity transformation % of B onto a dense subset G of R, each point of
G being a c-condensation point of G. If 4 is an exact subset of G, of power
2%, then by Corollary 2 of Theorem 2, 4 — {p} is exact, p being a point of 4.
Since 4 is exact, A—{p} <4. Then 7=24—{p} will satisfy the conclusion
of the theorem. The construction of an exact subset of G, of power 2%, has
been given in several places already, for example Theorem 1.1 of [4]. In each
case the proof has been quite complicated since other properties were de-
manded. Accordingly, we now present a simple proof that G contains an
exact subset of power 2%,

Denote by K*(G) the set of those similarity transformations of G into R
which are not the identity transformation. Well order the elements of R and
K*(G) into the two sequences {x;}, £<0, and {f:}, £ <0(?), respectively. By
transfinite induction we define a subset of G as follows:

Let uo be the first element for which f(x) #x and let vo=fo(%0). Since fo
is not the identity transformation of G the element u, certainly exists. Sup-
pose that u; and v; have been defined for £ <a <#8. Since f, is a similarity trans-
formation of G, the set of those points x for which f,(x) =x cannot be dense in
G. Thus there exist two real numbers, a. and b,, where a, <b., such that
fa(x) #x for x in H,, H, being defined as the set GN {y|a.<y<b.}. Since
each element in G is a ¢-condensation point of G, the power of H, is 2%, Now
the power of the set

Se = {u;lE<a}U{‘Ugl£<a}

is smaller than 2%, Hence there exists an element x in the set H,— [S.
Uf2(S.)1(®). Let u, be the first such element, and v,=f.(%.). Let
A= {ut<8}.

If Jis any interval in R, then there exists a similarity transformation of
G into R which is the identity on G—J and is not the identity on JNG.
Thus there exists an ordinal number « for which u, is in GN\J, i.e., 4 is a
dense subset of G.

It now follows that the set 4 is exact. For if f is a similarity transforma-
tion of 4 into R which is not the identity, then f can be extended to be an
element f, of K*(G). Therefore the element f(u,) =f.(%,) is not in A. Thus

(") By 6 is meant the smallest ordinal number whose power is 20,
(8) By f1is meant the inverse function of f.
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there is no similarity transformation of 4 into itself which is not the identity,
i.e., 4 is exact.

2. Property A.

DEFINITION. A linear set E is said to have property A if the power of E
is 28, and no two disjoint subsets of E, of power 2% each, are similar. If E
has property A, then E is said to have property A.

The existence of a set having property A was first shown in [2, pp. 609
610] and [11, pp. 263-264]. We shall show that if E is any linear set of power
2% then problem P, as applied to ¢ =0 and u=E, admits of a solution 7
having property A. The proof differs from that given in [2] and [11].

LEMMA 2. Let E be a linear set and f a similarity transformation of E into R.
Then f can be extended to be a similarity transformation into R of some Borel set
B which contains E.

Proof. Let E* be the topological closure of E, and 4 the set of one-sided
limit points of E* which do not belong to E. Now 4 is enumerable [6, p. 171].
Therefore, if B=E*— A4, then B is a Borel set which contains E. Let g be the
function which is defined by g(y) =f(y) for y in E, and g(y) =lim..,-f(x) for y
in B—E.

Let u and v, where u <v, be any two elements of B. Clearly g(u) <g(v).
If # and v are each elements of E, then g(u) <g(v). If at least one of the two
points is in B— E, then since it is a two-sided limit point of E* and thus of
E, it follows that there exist two points, x and y, of E, such that u <x <y <wv.
Then

g(u) = g(x) < g(y) = ().

Thus g is a similarity transformation of B into R.

THEOREM 5. Let E be any linear set of power 2%. For ¢ =0 and u=E,
problem P admits of a solution T which has property A.

Proof. By Theorem 1 of [11], there exists a subset Q of E, of power 2%,
such that O <E. It will be sufficient to show that Q contains a set which has
property A.

Denote by V the set of those Borel sets B in R for which the power of the
set BMQis 2%, For each element B in V let L(B) be the set of those similarity
transformations f of B into R for which the power of the set {x|f(x)=x,
xEBﬂQ} is 2%, Denote by S the set of couples,

S=1{(B|BEV,fELB)I.

The power of the set S is 2%. Well order the elements of Q and S into the two
sequences {xg}, £<6, and {s;}, £ <0, where s;= (B, fi). For each function f;
define J; to be the set

Telz| fo(x) = 2, € Be N Q}.
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Denote by p, the first element in Jo. Now suppose that the element p; has
been defined for each £ <a, where a <. l.et P,= {pg|$<a}, and p, be the
first element in the set J,—D,, where

Do, = P, U U fe(Pa) U U frU(Pa).

Ka <a

The element p, certainly exists since the power ot J, is 2% and the power of
D, is <2®,

Denote by M the set M = {Pg|£<0}. Suppose that F and G are two dis-
joint subsets of M, of power 2R each, and that f is a similarity transformation
of F onto G. By Lemma 2, f may be extended to become an element of
L(B;) for some ordinal number &, where B; is an element of ¥ which contains
the set F. For each element p, in F consider the element f;(p.), where £ <a.
As f; maps F onto G, fi(pa) #pa. For each ordinal number § >0, pays is not an
element of the set fi(Pats). Since po is in Pays, fi(Pa) # Pars. Suppose that
fe(pa) =P, where v <a. Then fi(p.) is an element of P,, so that p, is an
element of fi1(P,). But this contradicts the manner in which the element p,
was selected. Thus fi(p.) #p, for ¥ <a. Therefore, for p, in F, fi(p.) is not an
element of M if £ <a. Consequently the power of the set f:(F)M\M must be
<2®. But fi(FYN\M=GNM =G, and the power of G is 2%. From this con-
tradiction, we see that the two sets F and G cannot exist, i.e., the set M has
property A. Q.E.D.

REMARK. The above demonstration furnishes yet another proof of Theo-
rem 1 of [11]. To see this define Q to be the set of c-condensation points of E
which are in E, and obtain M as in the theorem. Let M be the union of two
disjoint subsets T" and U, of power 2% each. The set T has property A, and
as is easy to see, T <Q<E.

3. Order types of simply ordered sets of solutions to problem P. The
following known result will be used: If E has properties A and C, then E is
exact [3].

Suppose that ¢ is any order type which is <X. By Theorem 2.4 of [3],
or by the remark at the end of §2, there exists an exact subset E of the open
interval (0, 1) for which ¢ <E. Let X be a subset of the open interval (1, 2)
which has properties A and C. It is well known that X is the union of two
disjoint sets U and V, each having property C and each dense in X. Let K
be any subset of V. The set U\UK has properties A and C, and hence is
exact. Therefore, by Theorem 2, the set E\JU\UK is exact. From this we
see that if K and L are any two subsets of V such that KCL, then

EVUUK<EVUUWU L

Now let ¥ be any abstract set of power 2%, and H a simply ordered family
of subsets of Y. Since Y and V" have the same power, there exists a one to one
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function of ¥ onto V. From the discussion it follows that the family H is
similar to the set of order types

{P|P=EVUU M), MEc H}

under the mapping which takes M into E\JU U\Uf(M). This implies that prob-
lem P, as applied to any order type o which is <\, and p=AX\, has a simply
ordered set, which is similar to H, of exact solutions, each solution being of
power 2%, While not used in the sequel, it is true that the mapping which
takes M into E\JUUf(M) has the following property:

The mapping is a one to one, order preserving function, of the family
{M|MC Y} onto the set {r| EUU<7<EUUUV]}. Furthermore, the in-
verse function is also order preserving.

To see this it is sufficient to show that if 7 is any order type for which
EUU<r<EUJUVUJYV, then there exists a subset K of V such that
r=EUUUK. Let F be a subset of ELJUUYV such that F=7. Let B and
W be two subsets of F, with E=B and U =W, such that BUW is an ordered
sum. Hence B\UW is a subset of E\JU\UV. First suppose that B is a sub-
set of E. Since E is exact and B=E, it follows that B=E. This implies
that W is a subset of U\UV. Now the set U\UV has properties 4 and C,
while W has the property that for any two elements @ and b in W, the
power of the set {x|a<x<b, x€EW} is 2%. From this we see that each
element of W must be a fixed (W, UUYV) point(®). As W=T, it follows
that W= U. Consequently, for some subset K of V, F=E\UU\UK. Suppose,
on the other hand, that B is not a subset of E. Then W is a subset of UU V.
As above we see that W= U. Therefore B is a subset of E. From this we see
that F=E\UUUK for some subset K of V.

Now let o be any linear order type of power 2%, Let D be a linear set
whose order type is a. D contains a set E which has property A, by Theorem
5. Let X be the set of ¢c-condensation points of E which are in E. The set X
has properties A and C. Repeating the procedure given above we see that the
mapping which takes M into UUf(M) is a one to one, order preserving func-
tion, of the family { M| MC Y} onto the set {r| TU<r<TUV}. Furthermore,
the inverse function is also order preserving. From this we see that problem
P, as applied to ¢=0 and u=e, has a set, which is similar to H, of exact
solutions, each solution being of power 2%,

Summarizing the preceding discussion we have the following two results:

THEOREM 6. Let o be any order type which is <\. Let Y be any set of power
2% and H a simply ordered family of subsets of ¥, ordered by set inclusion. Then
problem P, as applied to o =a and p=X\, admits of a set, which is similar to H, of
exact solutions, each solution being of power 2%,

THEOREM 7. Let o be any linear order type of power 2%, Let Y be any set
of power 2% and H a simply ordered family of subsets of Y, ordered by set in-

(%) See §4.
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clusion. Then problem P, as applied to 0 =0 and p=«, admits of a set, which
is similar to H, of exact solutions, each solution being of power 2%o,

Theorems 6 and 7 yield several consequences. For example, let ¥=R and
let S be the set of rational numbers ordered in the natural manner. Denote
by H the family of sets

H={E:|lx€R;E.= {y|y <= y€ES}}.
The order type of H is A. Consequently we obtain

THEOREM 8. Let a be any order type which is <N. There exist two linear sets
E and F, where ECF and F—E is denumerably infinite, with the following
two properties: (1) a<E<F<\; and (2) problem P, as applied to o =E and
w=F admits of a set, of order type \, of exact solutions, each solution being of
power 2o,

COROLLARY. Let a be any order type which is <\. For each linear order
type B, problem P, as applied to o =« and u=NX\, admits of a set, of order type (3,
of exact solutions, each solution being of power 2%,

THEOREM 9. Let o be any linear order type of power 2®. There exist two
linear sets E and F, where ECF and F—E is denumerably infinite, with the
following two properties: (1) E<F <a, and (2) problem P, as applied to e =E
and u=F, admits of a set, of order type \, of exact solutions, each solution being
of power 2%,

COROLLARY. Let o and 3 be any two linear order types, the power of a being
2%, Then problem P, as applied to 0 =0 and u=a, admits of a set, of order type
B, of exact solutions, each solution being of power 2R

REMARK. Theorems 3 and 4 state that for any linear order type «, of
power 2% there exist two linear sets E and F, where ECF and F—E is
denumerably infinite, with the following two properties: (1) E<F <e, and
(2) problem P, as applied to 0 =E and u=F, admits of a set T, of order type
w, of exact solutions, each solution being of power 2%, The set F— E obtained
consists of 8, elements, no one of the elements being a fixed point of F. In
Theorem 9 the set F— E contains R, elements, each of which is a fixed point
of F.

Using Theorem 2.4 of [3], a similar discussion is possible for two sets E
and F for which a <E<F <.

Sierpifiski [9; 10] has shown that if ¥ is a set of power 2%, then there
exists a simply ordered family, of power >2®, of subsets of ¥, ordered by
set inclusion. This in conjunction with Theorems 6 and 7 yields

THEOREM 10. Let o be any order type which is <\. Then problem P, as ap-
plied to 0 = and p=NX\, admits of a simply ordered set, of power >2%o, of exact
solutions, each solution being of power 2%o,
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THEOREM 11. Let « be any linear order type of power 28, Then problem P,
as applied to =0 and u=«, admits of a simply ordered set, of power >2%o, of
exact solutions, each solution being of power 2%,

Another proof of Theorem 10, without appealing to Theorem 6, will be
given later (Corollary to Theorem 15).
We now consider “decreasing” sequences of solutions to problem P.

THEOREM 12. Let E be any linear set of power 2% and H a simply ordered
set of power <2%. Then problem P, as applied to ¢ =0 and u=E, admits of a
set T, of order type H, of exact solutions, of power 280 each, so that there is no
order type T, of power 28, which is <P for each 8 in T, if and only if H has no
first element.

Proof. Suppose that H has no first element. Let B be any subset of E hav-
ing properties A and C. Decompose B into a family of disjoint sets
{Ci| hEH}, where each set Cj has property C and is also topologically dense
in B. An obvious modification in the construction of the sets { C;} defined in
Theorem 3.4 of [4], which is possible since the power of His <2%, shows that
such a family of sets exists. Let Ey,=B— Uz, Cy for each kg in H. Clearly
each set Ej has properties A and C. Since E4,C Ej, for by <#;, the set of order
types T={Es|h€H} is similar to H. Thus since H has no first element,
MignEr=0.

We now show that there is no order type 7, of power 2%, which is <ZEj
for each k. Assume the contrary, i.e., suppose that 7 is an order type, of power
2% which is <E, for each k. Let g be a definite element of H. Let G be a
subset, of order type 7, of E,, and D the set of ¢-condensation points of G
which are in G. The set D has properties A and C. As E, has property A, each
element of D is a fixed (D, E,) point. For each £ <g let F; be a subset of E,
such that F,=D. The set F; certainly exists since Fx < Ex. Now D and Fj are
two similar subsets of E,. Since each element of D is a fixed (D, E,) point it
follows that D= F,. Therefore D is a subset of each set E;, 2<g. Then
Dch,g, E;.=n;,EH E,=. But the set D has 2% elements. From this con-
tradiction it follows that no such order type 7 can exist.

Suppose that H has a first element, say g. Let {ah} be any set of exact
order types, where each a; is of power 2%, and as, <o, for ho<hy in H. By
Theorem 4 there exists an exact order type 7, of power 2%, satisfying
0<r<oy=as Q.E.D.

COROLLARY. Let E be any linear set of power 2%, Let v be any limit number
of power <2%. Then problem P, as applied to =0 and p=E, admits of a set
T, of order type v*, of exact solutions, of power 2% each, with the following
property: There is no order type 7, of power 2%, such that v <@ for each element
Bin T.

The question of whether or not the power of H can be >2% arises. On
assuming that 2% =N, the answer shall be shown to be in the negative.
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THEOREM 13. Let E have property A. If 2820=N, and if {ag}, E<v,isa
strictly decreasing sequence of order types, with o= E, then ¥ = 2%,

Proof. For each £ let E; be a subset, of order type a;, of E. Denote by D;
the set of ¢c-condensation points of E; which are in E;. Suppose that p is an
element of D;. Since E has property A, p is a fixed (D¢, E) point(*®). For
v<§, Dy < E;<E,. Hence there exists a similarity transformation f of D; into
E,. Since E, is a subset of E and p is a fixed (D;, E) point, it follows that
f(p)=p. Thus p is in E,, i.e., D¢ is a subset of E,. As each element p of D;
is a ¢c-condensation point of D¢, thus of E,, p is also in D,. In other words, for
v<§, D; is a subset of D,. Thus we have

DyD2D,D---2D; 2D -+~ E<m).

Note that since the power of Dy is 2%, there are at most 2% different sets D;.

Assuming that 280 =, we see that the power of the set E;— D; is <N,.
For a given £ as D;<\, the power of the set R—D; is 2% [11]. There are
exactly (2®)R®o=28 distinct subsets, of power =N, each, of R— D;. Since
E;=D;\JQ;, where Q; is a subset of R—D; of power =N,, it follows that
for a given set D; there can be at most 2% sets E, which have the property
that D,=D;. This, in conjunction with the fact that there are at most 2%
different sets Dy, implies that ¥ <28, Q.E.D.

Suppose that there is no order type 7, of power 2%, which is <oz for each
£. This implies that the power of the set N;c, D; is <2®. Therefore there is
no smallest (as a point set) D;. Since there are at most 2% different sets Dy,
without assuming that 2% =, we obtain

THEOREM 14. Let E have property A and let {a;} , £, be a strictly decreas-
ing sequence of order types, with ao=E. If there is no order type t, of power 2%,
which 1s <oy for each &, then there exists an ordinal number p, where p <0, which
1s cofinal with 7.

The problem of whether or not there exists any linear order type ay, such
that a strictly decreasing sequence of order types {ae}, £ <7, where 7> 2%,
can be found remains unanswered.

We now turn to strictly increasing sequences of linear order types. In
[11] Sierpifiski has shown that if {an }, n <w, is any sequence of order types,
each o, being <A, then there exists an order type « such that a, <a <\ for
each n. We now consider an extension of this result. Suppose that {0[5}, £<0,
is a sequence of order types, each a; being <A. We shall show that there exists
an order type « such that ez <a <\ for each &.

LemMA 3. If E is a linear set such that E=X, then E contains a Borel set of
power 2R,

(19) See §4.
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Proof. Let f be a similarity transformation of R into E. Since f is a simi-
larity transformation, it is a Baire function. If g is a one to one Baire function
defined on a Borel set, then g(G) is a Borel set [7, p. 397]. Therefore f(R) is a
Borel set of power 2%

LEMMA 4. There exists a family G= {BE|£<0} of patrwise disjoint linear
sets such that By=X\ for each &. Furthermore, G has the property that for each
nondenumerable Borel set B, an ordinal number v<0 can be found so that
BN\B, contains a nondenumerable Borel set.

Proof. If B is a nondenumerable Borel set, then B=X\. This is so since
each nondenumerable Borel set contains a nonempty perfect set [7, p. 355].
Each nondenumerable Borel set is thus of power 2%, Let H={ P;|£ <8} be
a family of pairwise disjoint, nondenumerable, perfect sets. Being a perfect
set, each P;is a Borel set. Let the family of those nondenumerable Borel sets,
which are not elements of H, be well ordered into the sequence

(1 Qo, Qu, * + -, Q¢ (E < 0)-

Denote by R, the first element in (1) which is almost disjoint with each
element of H('!). Suppose that for each v <v, where ¥ <8, an element R, of
(1) has been defined which is almost disjoint with each element in the family
HYU { Rgl E<v } . Let R, be the first element in (1), if one exists, which is almost
disjoint with each element of the family H\J { Rg[ <y } . By transfinite induc-
tion this procedure is continued until either R; is defined for each £ <6, or
else, for some ordinal number v, the set R, does not exist.

Consider the family of sets {Si|t<8} =HU{R:|{<y=<6}. From the
selection of the sets Ry, it follows that for each nondenumerable Borel set B,
there exists an ordinal number » such that BMNS, is nondenumerable. As the
intersection of two Borel sets is a Borel set, BN\.S, is a nondenumerable Borel
set. Denote by B,, the set Sy, and for each v <8, by B, the set

S, — [ U (SJ\SE)].

<o
Note that the B, are pairwise disjoint. If S¢S, is nondenumerable,
being a Borel set it is of power 2®. As the S; are almost disjoint, it fol-
lows that S;N\S, is denumerable. Combining this with the fact that v<#,
we see that the set Ui, (SiNS,) is of power <2%. In [11] Sierpifiski has
shown that if P=)\, then on removing <2® elements from P, the resulting
set is =\. Consequently B,=\. Now let B be any nondenumerable Borel set.
For some ordinal number », BMNS, is a nondenumerable Borel set, thus
BNS,=\. Since the power of S,—B, is <2%, BN\B,=\. From Lemma 3,
BN\B, contains a Borel set of power 2%,

(1) A set 4, of power 280, is almost disjoint with a family of sets Q, each element of Q
being of power 2R, if, for each element P in Q, the power of 4 NP if <28,
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REMARK. If 2 0=, then the sets B; obtained above are Borel sets.

LEMMA 5. Let {a;}, £<0, be a sequence of order types, each oy being <.
There exists a linear set E with the following two properties: (1) E<\; and
(2) E 1s the union of a family {Eg|$<0} of pasrwise disjoint sets, where Ey =
Jor each &.

Proof. Let G= {Bg|£<0} be a family of pairwise disjoint sets, where
Be=\ for each £. Let G have the property that for each nondenumerable
Borel set B an ordinal number v <6 can be found so that BN B, contains a
nondenumerable Borel set. The existence of such a family is guaranteed by
Lemma 4. For each ¢ let E; be a subset of B; such that B;=q;, and let
E=U; E;. In order to see that E<\, suppose the contrary, i.e., suppose
that E=N\. Let f be a similarity transformation of R into E. Since f(R) is a
Borel set of power 2%, for some ordinal number », f(R)N\B, contains a non-
denumerable Borel set 4. Since 4=\, f(R)N\B,=\. As the B; are pairwise
disjoint sets and f(R) is a subset of E,

A=fRNB,<ENB, =E,.
This is a contradiction since E, =a, <\. Consequently no such function f can
exist, i.e., E<\. Q.E.D.
In view of the fact that for any order type a which is <\ there exists an
exact order type 7 such that « <7 <\ [3], we have the following result:

THEOREM 15. For any sequence {cz}, £<8, of order types, each ay being
<\, there exists an exact order type T such that ay <t <\ for each &.

COROLLARY. Let o be any order type which is <\. Problem P, as applied to
o=« and u=N\, admits of a well ordered set, of power >2%o, of exact solutions,
each solution being of power 28,

Turning briefly to denumerable order types we have

THEOREM 16. Let {an } , n<w, be a sequence of denumerable order types, where
each a, is <7n. Then a <7, where a=ao+ou+ « - - Fa,+ - - -

Proof. Denote by .S the set of rational numbers, ordered in the natural
manner. For each integer =0, let 4, be a subset of S"\(%n, n+41), such that
A,=a, Now in [8] it was shown that if E is a denumerable set, then a
necessary and sufficient condition that E be =7 is that for each denumerable
ordinal number B, E contain a set Dg such that Dg={. For each n let 3, be
the smallest ordinal number which has the property that A, contains no
subset of ordinal type (.. Since «, is assumed <7, 8,<wi. Let 8=8,+0:
+ -+ - 4B+ - - - . Being the sum of a denumerable number of denumerable
ordinal numbers, 8 is <w;. Consider the order type 3+1. Theset F=U, <, 4,
does not contain a set of order type 8+1 [8]. Therefore a =F <7. Q.E.D.
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In [3]it was shown that if &« <7 then there exists an order type 7 such that
a <7 <7n. From this we conclude

COROLLARY. Let o be any denumerable order type which is <n. Problem P,
as applied to o = and p=n, admits of a set, of order type wi, of solutions.

The following problem has been open for several years.

(1) For ¢=0 and pu=m, does problem P admit of a set of solutions of
order type w*?

Two open questions related to (1) are

(2) Does there exist a denumerable set which has N, fixed points?

(3) Do there exist N, incomparable denumerable order types?

A positive solution to (2) would imply a positive solution to both (1) and (3).

4. Schisms.

DEFINITION. Let 4 and B be two simply ordered sets such that 4 < B.
If A is the ordered sum 4 = F+G, such that F+1+G|| B, then the ordered
pair (F, G) is called a schism of (4, B).

For 4 < B it is not always true that (4, B) has a schism. One need only
examine the case where 4 <42 = B. To consider a situation where a schism
occurs, let an element p in A be called a fixed (4, B) point if there exists an
element ¢ in B such that f(p) =¢ for every similarity transformation f of 4
into B. Then (4, B) has a schism if there exists a fixed (4, B) point.

The assumption of the existence of a fixed (4, B) point p is a strong one,
implying in particular that p is a fixed point of 4. As to a sufficiency condi-
tion for a fixed (4, B) point the following results are easily shown:

(1) Let Aw< Bw. Let the two relations, («) Aw<Bn and () Aw=Bn
both be false for every positive integer #. If E=4w+1 and F= Bw+1, then
p is a fixed (E, F) point, where p is the last element of E.

(2) Let E have properties 4 and C. If B is a subset of E such that, for
any two elements a <b in B, the power of the set {x| a<x<b, xEB} is 2%,
then each element of B is a fixed (B, E) point.

We now show that the concept of a schism is invariant under “=" of
order types.

THEOREM 17. Let (o, 8') be a schism of (v', &8'). Then for each pair of order
types y=v"and §=0', there exists a pair of order types a and 3 such that a=c’,
B=p', and («, B) is a schism of (v, 9).

Proof. Let E’ be a simply ordered set which contains two subsets C’ and
D’ whose order types are v’ and &’ respectively. As (o, B’) is a schism of
(v’, &), it follows that C’ is the ordered sum of two subsets A’ and B’, whose
order types are o’ and B’ respectively. Denote by p some abstract element
which is not in E’. Let p follow each element in 4’ and precede each element
of B’. Thus the order type of the set A’U{p}UB’ is o/ +1+p’. Now the two
facts, (1) o +8'<8" and (2) &’+1+pB' and & are incomparable, together
imply that o/ 48’ <a’+1+p". Therefore by Theorem 2.1 of [3] p is a fixed
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point of the set 4'U {p } \UB’. Let D be any set whose order type is § and C
a subset of D whose order type is y. As C=C’, there exists a similarity trans-
formation f of C into C’, and a similarity transformation g of C’ into C. Let
A={x|f(x)EA’'} and B={x|f(x)EB’}. Clearly Cis the ordered sum 4 +B.
We shall now show that A=4’ and B=B’. This will imply that (4, B) isa
schism of (C, D).

To accomplish this it will be sufficient to show that (a) g(4’) is a subset
of A and (b) g(B’) is a subset of B. Therefore suppose that either (a) or (b) is
false, say (a). Hence the set g(4’)M\B is nonempty. Let 7 be some element of
g(A")NB. Denote by % the function which is defined by k(x) =g(x) for x in
A’, h(p) =gf(r), and h(x) =gfg(x) for x in B’. Then £ is a similarity trans-
formation of A’U{p}UB’ into C. This contradicts the assumption that
C<4’+1+B'. An analogous contradiction arises upon assuming that condi-
tion (b) is false. Therefore (a) and (b) both must be true. Q.E.D.

In preparation for Theorem 18 the following result is needed.

LEMMA 6. Let A be a proper subset of B and p a fixed point of A. Then p
is a fixed point of the set C=A\J{q} for each element q of B— A.

Proof. Suppose that p is not a fixed point of C, i.e., suppose there exists a
similarity transformation g of Cinto C for which g(p) #p. We shall show that
this implies the existence of a similarity transformation f of 4 into 4 for
which f(p) #p, thus obtaining a contradiction. We shall suppose that ¢ <p,
an analogous treatment being possible if ¢>p. Several possibilities arise:

(a) For no element y in C does g(y) =¢. Let f(x) =g(x) for each element
x in A.

(b) There exists an element y in C such that g(y) =g¢.

(1) If y>gq, let f(x) =g(x) for x>y, and f(x) =g[g(x)] for those elements
x in A which are =y.

(2) If y=gq, let f(x) =g(x) for each element x in 4.

(3) If y<gq, let f(x) =x for x =y, and f(x) =g(x) for those elements x in A4
which are >y.

In each case the function f is a similarity transformation of 4 into 4 for

which f(p) #p.

THEOREM 18. Let A be a simply ordered set containing two fixed points p
and q which have the property that the power of the set {x| p<x<gq, xCA} is
infinite. Then there exists a schism of (4 —{p}, A), and a schism of (4 — {q],
4).

Proof. It will be sufficient to exhibit a schism of (4—{p}, 4), a similar
exhibition being possible for (4 — {¢}, 4).

Let F={x|x<q, x€A—{p}} and G= {x|x=g, x€4}. For some ab-
stract element 7 which is not in 4, let » follow each element in F and precede
each element in G. Then (F, G) is a schism of (4 — {p], 4), i.e., FU{r} UG|| 4.
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To see this let B=F\U {r}\UG. Suppose that there exists a similarity trans-
formation f of 4 into B. If f(p) <p, let g(x) =f(x) for x<p, and g(x) =x for
x>p. Suppose that f(p) >p. Several possibilities arise:

(1) There exists an element s such that p<s<r and f(s)>r. Let g(x)
=f(x) for x<r, g(r) =f[f(s) ], and g(x) =f[f(x)] for x>r.

(2) p<f(x)<r for each element x satisfying p <x<r. Let g(x) =f(x) for
each element x <r and g(x) =x for x=r.

(3) p<f(x)=r for each element x satisfying p Sx<r, and for some ele-
ment xo, f(xo) =r. It follows that x, and » are consecutive elements in the
set A\UB, i.e., there is no element x in 4A\UB such that xo<x <r. By Lemma 6
then, ¢ is a fixed point of A\UB. Thus 7 is a fixed point of A\UB. Thus there
is a maximal set of consecutive elements of 4\UB in which 7 is the last ele-
ment. Clearly this set must be finite. Let the elements of this maximal set be
X <%, 1< - - - <xo<r. Since the power of the set {x|p<x<g, x€4} is
infinite, there are an infinite number of elements x for which p <x <x,. Since
there is no immediate predecessor of x, in A\UB, if there were an element ¢
such that p <t<x, and f(¢) 2 x,, then an infinite set of elements, namely the
set {x|t<x=<r}, would be mapped by f into the finite set of elements

Xy Xne1, * * ° , X0, 7 } As this violates f being a one to one function, it follows
that p <f(x) <x, for p=<x<x, Let g(x)=f(x) for x<x, and g(x) =x for
X=X,

In each of the above cases we have constructed a similarity transformation
g of AUB into A\UB such that g(p) #p. By Lemma 6 however, p is a fixed
point of A\UB. From this contradiction we see that there can be no similarity
transformation f of 4 into B.

In a similar manner, by investigating f(r), it can be shown that there is
no similarity transformation f of B into 4. This, combined with the fact that
there is no similarity transformation of 4 into B, proves that 4|/ B. Thus
(F, G) is a schism of (4 — {p}, 4).

ReEMARK. If the assumption of the existence of a second fixed point g in
Theorem 18 is removed, then the conclusion may be false. This is so, for exam-
ple, in a simply ordered set of order type 1+w*. Likewise the conclusion is
false if the assumption that there are an infinite number of elements between
the two fixed points is removed. This is so in a set of order type w+2.

COROLLARY. Let A be an infinite, exact set, and let p be any element of A.

Then there exists a schism of (A—{p}, 4).

5. Consequences of Theorem 18. The demonstration given for Theorem
18 essentially has proved the following result.

THEOREM 19. Let p and g, p <q, be two fixed points of the set A. If the set
{x|p<x<q, xCA} is infinite, then A — {p}||A —{q}-

From Theorem 19 and the fact that, by Corollary 2 of Theorem 2, if 4
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is exact and also a subset of B, then 4\ { p} is exact for each element p in B,
there follows

THEOREM 20. Let A be a subset of B and p and q any two elements of B—A.
If A is exact and if the power of the set {x|p<x <gq, x€A} is infinite, then
AU p)[4V{g)

COROLLARY 1. Let A be an exact subset of R, and p and q any two elements of
R—A for which the power of the set {x|p<x<q, xEA} is infinite. Then
AYp}l 4V g}

In Theorem 4 it was shown that each linear set of power 2®o contains an
exact subset which has property C. Hence

CoROLLARY 2. Each linear set of power 2% contains a family of subsets
{EEIE <0} such that each set is exact and of power 2%, the order types of the
sets are pairwise incomparable, and the symmetric difference of the sets is two
elements.

The following result is a generalization of Theorem 5 in [11].

COROLLARY 3. Let A be a dense, exact, subset of R. If p and q are any two
distinct elements of R— A, then A\ J{p}||AU{q].

REMARK. In reply to a question of the referee, the power of R— 4 is 2%,
This result is due to Sierpifiski [11] since 4 <\. Thus there are 2% such
points p and gq.

In [3] it was shown that R is the union of two disjoint, exact, dense (in R),
subsets G and H, of power 2% each. From this we get

COROLLARY 4. There exist two disjoint linear sets G and H, of power 2%
each, with the following properties:

(1) GUH=R;

(2) for any two elements p and g in H, G\J {p}||G\I{q};

(3) for any two elements p and q in G, HJ {p}||HJ{q]}.

CoROLLARY 5. To each set of order types {ag!£<'y <0}, where o <\ for
each &, there corresponds a family of exact sets | Ag|£<0}, a set of points
{pe|£<8}, and a set A with the following three properties: (1) ap<Ag<\;
(2) Ay=AY { p,.} ; and (3) the order types of the Ay are pairwise incomparable.

Corollary 5 follows from 2.4 of [3] and Theorem 15.
One method for obtaining the points p and g which are described in Theo-
rem 19 is to apply the next lemma.

LemMA 7. Let A|| B. If p is a fixed point in the ordered sum {p} +A, and q
is a fixed point in the ordered sum B+ {q}, then p and q are both fixed points
in the ordered sum D= {p} +A4+B+{q}. Furthermore, the set F= {x|p<x<y,
xED} is infinite.
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Proof. Since the order types of any two simply ordered sets, one of which
is finite, are comparable, it follows that the sets 4 and B are both infinite.
Thus the set Fis infinite. Suppose that one of the points, say p, is not a fixed
point of D. Hence there exists a similarity transformation of D into D such
that f(p) >p. Denote by G the set

G = Un{z|fn(p) < x < f*+1(p), = € D}.

Suppose that G is a subset of 4. Then the function g, which is defined by
g(x) =f(x) for x in G and g(x) =x for x in A — G, is a similarity transformation
of {p}U4 into {p}\U4 such that f(p)p. From this contradiction of p
not being a fixed point we see that there exists a point ¥ in G\ B. This implies
that for some positive integer n, f*(p) is in B. Consider the similarity trans-
formation f=. It maps 4 into B. This contradicts the fact that 4|| B. Therefore
p must be a fixed point in D. An analogous argument shows that ¢ is a fixed
point in D. Q.E.D.

ReMARKs. (1) If the incomparability of the order types 4 and B is re-
moved, then one can only conclude that one of the points, p or g, must be
fixed. This is a special case of the following result whose proof is in [5].

“If p and g are fixed points of 4 and B respectively, then either p or gis a
fixed point in the ordered sum 4 +B.”

(2) The converse to Lemma 7 is not true, i.e., the following is false:

(*) Let p and ¢, p <g, be two fixed points of the simply ordered set D. If
the set F= {xlp<x <gq, xE€D} is infinite, then F is the ordered sum of two
sets A and B whose order types are incomparable.

Let E be an infinite exact subset of (0, 1) and H a subset of (1, 2) which is
similar to E. Let D= {0, 2}\UE\UH. Now the set D is exact so that 0 and 2
are both fixed points in D. Clearly F is infinite. If F is the ordered sum 4 +B
then either A CE and HCB, or else EC4 and BCH. Thus 4| B. Conse-
quently the conclusion in (*) is false.

We conclude this section with a simple consequence of Lemma 7 and
Theorem 19. Let o and 8 be two transfinite ordinal numbers. Then 14-a*+4
[la*+B41.

6. On the converse of Theorem 19. The converse of Theorem 19 is also
true as we shall now show. A generalization of the converse will then be given

(Theorem 21).

LemMmaA 8. If FH-C, and if the symmetric difference, (B— C)\J(C— B), con-
tains just two elements, p and q, where p <q in the set D =B\JC, then

(1) p and q are both fixed points in D;

(2) there exists a set A such that B=AVU{y} and C=A\U{z}, where y is
one of the points p or g and 2 is the other point; and

(3) the set F= {x|p<x<g, xED} s infinite.

Proof. Let A =B— {y} where y is the element p or ¢ which is in B. (2) is
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now obvious. As to (1), if ¥ is not a fixed point of D= AU{ }U{ } then by
Theorem 2.1 of [3], D=AU{z} =C. Thus B=D=C, a contradiction. Simi-
larly z is a fixed point of D. As to (3), suppose that F is finite, its elements be-
ing

p=2< < <z =q

Let f be the function which is defined as follows: f(x) =x if x <p or x>¢, and
f(x:) =241 for <m. Then f is a similarity transformation of one of the sets
B or C onto the other, i.e., B=C. This contradicts the assumption that
B||C. Therefore F must be mﬁmte

THEOREM 21. Let H= { A.-] 1= n} be a family of n+1 sets with the following
two properties: (o) The order types of the A; are pairwise incomparable; and
(B) the symmetric difference of each pair of sets A: and A;, i 5], contains just
two elements. Then one of two possibilities occurs.

(A) There exists a unique set of n+1 elements, { pil 1=n } , and a unique set
A, such that

(1) psis a fixed point in the set D=U;<, A;;

(2) A:i=AU{p; {p:} =D—{p:}; and

(3) if ps<pjthen the set Fi;={x|p;<x<p; xED} is infinite.

(B) There exists a unique set of n+1 elements {t.-l 1Zn }, and a unique sel
A, such that

(1) ti s a fixed point of the set D=U.<, Ay;

(2) A;i=AV{t:} =[D—{t;|i<n}]V{t}; and

(3) if t:<t; then the set Fi;={x|t;<x<t; x€D} is infinite.

Furthermore, if n=3, then every subfamily of H, consisting of three or more sets,
satisfies the same set of conclusions, (A) or (B), as does the family H.

Proof. It is evident, in view of Lemma 8, that in both (A) and (B), (1), (3),
and the uniqueness of the sets will follow from (2). We shall now consider (2).
For any two sets E and F denote the symmetric difference of the sets by
EAF. Notice that for 73, A;—A4; is a set consisting of just one element.

By Lemma 8 the theorem is true for n=1. Continuing by mathematical
induction suppose that the theorem is true for n =k. We shall demonstrate
our result if we show that the theorem is true for n =k -+1.

By the induction hypothesis either (A) or (B) holds for »=Ek.

First suppose that (A) holds. Thus there exists a set B and a set of £+1
points, {p:|i<k}, such that 4;=BU {p:|i<k}—{p:} for i<k. Denote by ¢
the element for which 4y— A1 = {g . Two alternatives arise:

(a) Suppose that gp; for i<k. Denote by pi,1 the element g. Since
Pryrisin Ao— Ay and pryr 7 p; for i <k, it follows that pyy, is in B. Signifying
by 4 the set B— {px;1}, we have

Adi=AV {p;|js b+ 1} = {p:} for i < k.
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Let {7} =Ai;1—Ao. Suppose that 75 p,. Then 7 is not in 4,\J{po}, thus not
in 4, (since k=1). Hence {r} =A4);1—4,. Combining this with the fact that
{pk+l} =A,—Ary we get Ay uAAo=ArAA,. Now it is well known that if
EAF=EAG, then F=G. Therefore Ay=A4., a contradiction. Consequently
r =p,. Thus

Arpr S Ao\ {po} = AU {pi] i < B+ 1},

Since D1 is not in Ak+1 it follows that Ak+1 QAU {P,I 1:§k} As {Pk+1
=A¢— Ak, we get AogAk+1U{p,,+,}, or what is the same, 4,— {pk+l
C A This, together with the fact that po is in Ay, implies that A\ {p;|4
<k} CArn. Thus Aeu=AVU{p:|i<k}.

(b) Suppose that g =p; for some integer 1 < k. As p, is not in 4,, it follows
that 0<2=<k. Thus

{p:} = 40— 4i = 40— Apsr.
Suppose that pg is in Ax1. Then
{PO} = App1 — Ao = A; — 4o

Hence A)AAr1=A40AA;. Thus A;=Ax1, a contradiction. Therefore p, is not
in Aey. Let {r} =4 1—Ao. Since 7 is in Awy, it follows that 7#p, and
7% p;. Suppose that £>1. Let j be an integer <k which is distinct from 0 and
i. Then the set A;— A1 contains the two elements p, and p;. This contra-
dicts the fact that 4;— A1 contains just one element. Consequently, if
k>1, then only case (a) above can exist. Suppose that k=1. Then ¢=1 and
Ay =4, From {r} =A4,—A4, we get A, CA\J{r}. Since p1 is not in A, it
follows that 4,CBU{r}. From {p,} =A4,—4: we get A CAN {1}, ie.,
BCA,. Asrisin Ay BU {7} C A4, Hence A;=B\U {r}. Denoting by 4 the set
B and by o, £, and £, the elements i, po, and 7 respectively, we obtain (B).

Now suppose that (B) holds. Since the case where k=1 has been handled
under (A) we shall assume that k= 2. Thus, there exists a set of k+1 elements,
{t:{i<k}, and a set 4, such that A;=AU{t;} fori<k. Let {r} =Ara—A4o..

(c) Suppose that rs£t; for i<k. Therefore 7 is not in A; for <k. Thus
App—As={r}, so that 4,,CA4.J{r}. From this we get A CAVU{r}.
This, together with f; not being r, yields A;— A= {t,-}. Thus A;:CAin
U{t}, ie, ACAipu. Since 7 is in Aw, AU{r} S4s. Consequently
AV {r} = Ar41. Denote by #;41 the element 7. In this case then (B) is satisfied.

(d) Suppose that 7 =t; for some integer 1< k. As ¢ is in 4o, ¢>0. Thus

Ar C AU {8} = 4 U {1, t:}.

Consider the element ¢, where {q} =A¢—A; 1. Since ¢; is in Agq, ¢#ti. Two
possibilities arise.

First suppose that g=f,. Then Az AU {t:}. Let {s}=4:i—Ain. As t;
is in A1, s must be in 4. The set 4o— A1 now contains the two elements s
and to. This is a contradiction.
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Now suppose that g#t,, i.e., £y is in Az;1. Since k= 2 there exists an integer
j=k which is distinct from 0 and 1. The set 4x.1—A4; contains the two ele-
ments £ and ¢;. Again we have a contradiction.

Since each of the two possibilities leads to a contradiction, case (d) cannot
occur, i.e., only case (c) can exist.

The remaining part of the conclusion follows from the fact that for 2=2,
the process of extending (A) or (B) to k41 sets from k sets always yields the
same selection (A) or (B) for the k41 sets as for the & sets. Q.E.D.

REMARKS. (1) The generalization of Theorem 21 to the case in which # is
any ordinal number offers no difficulty. One merely replaces finite induction
by transfinite induction.

(2) By virtue of Theorems 19 and 20 there exist families of sets where (A)
holds and families of sets where (B) holds.

(3) The demonstration in Theorem 21 essentially proves the following
result in general set theory: “Let H= {Ag|£<a} be a family of sets such that
A;— A, contains exactly one element for £ #v. Then either (2) in (A) or (2) in
(B) holds. Furthermore, if >3, then every subfamily of H, consisting of
three or more sets, satisfies the same set of conclusions, (A) or (B), as does the
family H.”

7. More on incomparable order types. Denote by C the Cantor perfect
set. Then R— C, being an open set, is the union of a family of pairwise disjoint
open intervals {A,.I n<w}. Let B be a dense subset of the open interval (0, 1)
which has property C. Furthermore, let B have property A. Now the set B is
evidently an ordered sum, B=By+ - - - +B,+ - - -, where each set B, has
the following properties:

(1) B, is a dense subset of some open interval D,;

(2) B, has property C; and

(3) B, has property A.

For each n let E, be a dense subset of 4, which is similar to B,. Denote by G
the set G=U,<, E,. G is dense in R— C, thus dense in R. It is easy to see
that G has properties A and C. Now each c-condensation point in a set M
which has property 4 is a fixed point of M, by Theorem 2.3 of [3]. Therefore
G is exact. Being perfect, C contains a subset H which is similar to R. From
Corollary 2 of Theorem 20 there now follows

THEOREM 22. There exist two disjoint linear sets G and H with the following
properties:

(1) H is similar to the real numbers;

(2) G is a dense, exact subset of R, which has properties A and C;

(3) if p and q are any two elements of H, then GU{p}||GU{g].

COROLLARY. For each linear set D there exists two disjoint sets G and H
which have the two properties: (1) H=D, and (2) if p and q are any two elements
of H, then GU{p}||GU{q}.
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While discussing sets which have property A we mention

THEOREM 23. Each linear set E of power 2% contains two disjoint sets G and
H, both having properties A and C, and which have the following additional
properties:

(1) Gl|H;

(2) for any two elements p and q in H, G\J {p}

(3) for any two elements p and q in G, H\J p})’HU{g} and

(4) for any two elements p in G and q in H, GJI{q}||HI{p].

Proof. E contains a set D having properties A and C. As is well known D
can be decomposed into the union of two disjoint sets G and H which satisfy
the two conditions: (1) G and H each have property C; and (2) G and H are
each dense in D. There is no difficulty in verifying that the sets G and H
satisfy the conclusions of Theorem 23.

REMARRK. It is easily seen that instead of two sets G and H, m sets, where
2 <m =< 2%, could have been obtained, the sets satisfying the obvious general-
izations of the conditions (1), (2), (3), and (4).

We conclude with some results on schisms.

THEOREM 24. Let E be a linear set of power 2%, Let B be any subset of E, of
power 2%, with the following two properties: (1) B<E; and (2) E contains no
two disjoint, similar sets, of power 2% each, whose order types are < B. Then
there exists a schism of (B, E). Furthermore, a point g in R can be found so that
BUg}||E.

Proof. Denote by C the set of c-condensation points of B which belong to
B. Since C has property C and the set E satisfies (2) above, it follows that the
only similarity transformation of Cinto E is the identity transformation, i.e.,
each point of Cis a fixed (C, E) point. Hence there exists a schism of (C, E).
It remains to be shown that this schism can be affected by a point ¢ in R.

To see this let D be a linearly dense, enumerable subset of C, i.e., if x and
y are any two elements of C for which x <y, then there exists an element z in
D such that x<z<y. D certainly exists since every dense in itself subset of
R contains such a set. Suppose that for each gap (F, G) of D('?) there exists
an element x in E such that # <x <v for each element % in Fand v in G. Then,
as is well known, E contains a set which is similar to R, i.e., E=\. Since E
satisfies condition (2) it is clear that E=N\ is false. Hence there must exist a
gap (Fo, Go) of D for which there is no element x in E such that u <x <v for
each element % in F, and v in G,. Let ¢ be any element in R—E for which
u <q<uv for each element % in Fo and v in Go. Consider the set BU{Q}. If f
is any similarity transformation of BU{q} into E, then f(x) =x for each

(1%) (F, G) is a gap of D if D is the ordered sum of two nonempty sets F and G, where F
has no last element and G no first element.
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element x in C. However the element f(¢) cannot be in E since » =f(u) <f(q)
<f(v) =y for each element % in Fp and v in G,. Thus no such transformatlonf
is possible. Since B<E and since BU{q} < E is false, B<BU{ {g}. By Theo-
rem 2.1 of [3], g is a fixed point of BU{ }. Suppose that E<BU{q]}. Then
B<E<BU{ }. By Theorem 2.2 of [3], there is no order type 7 for which
B<r<BU{q}. Thus E=BU g}, so that BU{q} < E. From this contradic-
tion we see that E< BU {q} is false We conclude that BU{g}|| E. Q.E.D.

If E has property A then condition (2) is satisfied for every subset B. Thus
we get

COROLLARY. Let E have property A and let B be any subset such that B<E.
Then there exists a schism of (B, E). Furthermore, a point g in R can be found so
that BU{q}||E.

REMARKS. (1) In general it is not true that if E is a linear set and B is a
subset of E for which a schism of (B, E) exists, then there must exist a point

¢ in R such that BU{q]}||E. For example, it is not true in the case where
B={—-1/n[1sn<o}U{0}] VU {1/n]1=n<w}
Ui2—@/m[12n<o}
and E=BU{2}.

(2) Theorem 24 may be modified to the extent of replacing, everywhere it
occurs, “2%” by “non denumerable.”
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